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Abstract

Preconjugate variables X have commutation relations with the energy-momentum P of
the respective system which are of a more general form than just the Hamiltonian one.
Since they have been proven useful in their own right for finding new spacetimes we present
here a study of them. Interesting examples can be found via geometry: motions on the
mass-shell for massive and massless systems, and via group theory: invariance under spe-
cial conformal transformations of mass-shell, resp. light-cone – both find representations
on Fock space. We work mainly in ordinary fourdimensional Minkowski space and spin
zero. The limit process from non-zero to vanishing mass turns out to be non-trivial and
leads naturally to wedge variables. We point out some applications and extension to more
general spacetimes. In a companion paper we discuss the transition to conjugate pairs.



1 Introduction

It is current belief that the unification of gravity with the successful models of particle
physics requires new structures: avoiding a clash of measurement with the microscopic
structure of spacetime at distances of the Planck scale might be possible by introducing
coordinate operators Qµ as non-commuting observables [1]. One way of obtaining such
objects is via the construction of conjugate pairs {Pµ, Qν}

[Pµ, Qν ] = iηµν , (1)

where P is to be identified with the total energy-momentum operator of the system in
question.
In [2–4] respective studies have been started. It turned out that in practice one better
finds first preconjugate pairs satisfying

[Pµ, Xν ] = iNµν , (2)

with Nµν denoting an operator which can be inverted in a sense to be specified. Depending
on respective state spaces this may be mathematically delicate and rendering “operators”
to bilinear forms or the like.
We do not attempt to characterize possible Q’s axiomatically, however rely on geomet-
rical and group theoretical notions for finding suitable candidates. Suppose we choose
Fock space as state space. Then one can interpret creation and annihilation operators
as mappings of the manifold p2 = m2 – the mass shell, to Hilbert space. A motion on
the manifold, i.e. a motion which does not leave the manifold, can then be described in
Hilbert space by a charge like operator: this will be a candidate for X. If m2 = 0, the
lightcone p2 = 0 is left invariant by infinitesimal special conformal transformations, the
respective charge is also a candidate for an X. Similarly the light cone x2 = 0 in, say
four dimensional Minkowski space, is also left invariant by infinitesimal special conformal
transformations, also represented in Hilbert space by charge like operators. Here one
quickly realizes that group theoretic considerations, apriori not confined to a state space
specified in advance, will be a useful tool. In a nutshell, these are the main topics to
be treated in the present paper. We will analyze (2) and leave the study of inversion to
achieve (1) to a subsequent paper [5].
In sect.2 we work out the details of this program on-shell, in sect.3 we employ Green
functions, i.e. work off-shell. In sect.4 we consider a generalization to other spacetimes
(essentially (Anti-)deSitter)) and discuss an application of a preconjugate pair via defor-
mation theory. In sect.5 we summarize our results and mention open questions.
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2 On-shell approach

2.1 One-particle wave functions

To begin with we realize preconjugate operators Xµ as differential operators acting on
one-particle wave functions. For simplicity we treat here only the scalar case. Below we
shall discuss generalizations.
Starting point is the Klein-Gordon equation with either m2 6= 0 or m2 = 0. I.e. we
consider square integrable functions f from R4 → C and impose the equation

(2 +m2)f(x) = 0 m2 6= 0 or m2 = 0 (3)

as additional constraint. We realize the translations as before by

Pµf(x) = −i ∂
∂xµ

f(x) Pµf̃(p) = pµf̃(p) (4)

and discuss now preconjugate partners to them as they are suggested by geometry of the
manifold p2 = m2 or the invariance of (3).

2.1.1 The differential operator X(∇)

Let us define (massive case) a differential operator Xν by

Xν = i∇ν ≡ i(
∂

∂pν
− pν
m2

pλ
∂

∂pλ
) in mom. space, (5)

Xν = −(xν +
5

m2

∂

∂xν
+

1

m2
xλ

∂2

∂xλ∂xν
) in pos. space. (6)

Since it satisfies
[Pµ, Xν ] = i(ηµν −

pµpν
m2

), (7)

it clearly qualifies as an operator preconjugate to Pµ, the latter being interpreted as
momentum operator. Obviously Poincaré covariance is manifest. In fact, ∇ν is known
as a tangential derivative [6] and maintains the mass shell condition resulting from the
Klein-Gordon equation.
For the commutator of X’s one finds

[Xµ, Xν ]f̃ =
−1

m2
(pµ

∂

∂pν
− pν

∂

∂pµ
)f̃ (8)

=
i

m2
Mµν f̃ , (9)

i.e. the Lorentz transformations: the preconjugate X(∇) is non-commutative.
One technical remark is in order. If in solutions f̃ of the Klein-Gordon equation the
component p0 of the argument is replaced by its values p0 = ±ωp ≡ ±

√
m2 − plpl then
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the derivative ∂/∂p0 is identically zero and the sum of derivatives pλ∂/∂pλ is reduced
accordingly to pl∂/∂pl. I.e. the motions induced by Xν are confined to a 3-dimensional
submanifold in p-space, hence also in x-space: Energy, respectively time are fixed and
the preconjugate pairs reduce to those of purely space-type. This is best seen in the rest
system, p = 0, clearly X0 = 0.
These algebraic properties originate from geometry, as we now show. Embedding the
hyperboloid p0 = ωp into flat Minkowski space R4 with metric η = diag(+1,−1,−1,−1)
we achieve to end up at a submanifold with induced metric g as follows:

choose variables qj = pj j = 1, 2, 3 (10)

identify submetric g(q)jk =
∂pµ

∂qj
∂pν

∂qk
ηµν (11)

find submetric g(q)jk = ηjk +
qjqk

m2 + qlql
j, k, l = 1, 2, 3 (12)

find inverse submetric g(q)jk = ηjk − qjqk

m2
(13)

We note first that there holds

∇j = (ηjk − pjpk

m2
)
∂

∂pk
= gjk∂k (14)

(with obvious relation to (5)). We then calculate the Christoffel symbols for the submetric

Γjkl =
pj

m2
gkl (15)

and finally verify that
∇rg

jk = 0. (16)

Hence the Christoffel symbols constitute the Levi-Civita connection, the ∇’s are covariant
derivatives and all quantities are intrinsically defined, i.e. not a property of the chosen
parametrization, but of the (sub)manifold involved.

2.1.2 The differential operator X(<)

This operator originates fromX(∇) by going over to “wedge coordinates” (“<” for “wedge”).
First, it is an operator in its own right, but second, it will eventually suggest the limit
of vanishing mass in a controllable way. It is obvious that for X(∇) this limit does not
exist.
In order to proceed we first introduce new variables in p-space by

pu =
1√
2

(p0 − p1) p0 =
1√
2

(pv + pu) (17)

pv =
1√
2

(p0 + p1) p1 =
1√
2

(pv − pu). (18)
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For later use we also note the respective variable change in x-space:

u =
1√
2

(x0 − x1) x0 =
1√
2

(v + u) (19)

v =
1√
2

(x0 + x1) x1 =
1√
2

(v − u). (20)

Note: pu = pv, p
v = pu. The mass shell condition is given by

2pupv − papa = m2 a = 2, 3 summation over a (21)

We call these variables “wedge” variables; in the case of m2 = 0 “light wedge” variables.
The geometry is governed by metric tensors which we now study. In a first step we go
over from variables pµ to variables p′µ given by

p′0 = pu p′1 = pv p′a = pa a = 2, 3. (22)

The new metric gµν(p′) is obtained from the old metric ηµν = diag(+1,−1,−1,−1) by

gµν(p′) =
∂pλ
∂p′µ

∂pρ
∂p′ν

ηλρ (23)

and given by

gµν(p′) =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 ≡ η̄µν . (24)

The inverse metric gµν(p′) = (g−1)µν(p′) has the same form:

gµν(p
′) =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 ≡ η̄µν . (25)

The basis transformation p → p′ was linear, hence flat space goes into flat space, the
metric ηµν into η̄µν .

In the second step we implement the (non-linear) mass shell constraint p′0 = (m2 +
p′ap
′
a)/2p

′
1, introduce three variables qj and define the metric g(q)ij of the submanifold by

q1 = p′1 = pv
q2 = p′2 = p2
q3 = p′3 = p3

g(q)ij =
∂p′µ
∂qi

∂p′ν
∂qj

η̄µν . (26)

The result for the metric reads

g(q)ij =

 −
m2+qaqa

q21

q2
q1

q3
q1

q2
q1

−1 0
q3
q1

0 −1


ij

, g(pv, pa)
ij =

 −m2+papa
p2v

p2
pv

p3
pv

p2
pv

−1 0
p3
pv

0 −1


ij

. (27)
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For the inverse metric g(q)ij we obtain

g(q)ij = − q21
m2

 1 q2
q1

q3
q1

q2
q1

m2+q2q2
q21

q2q3
q21

q3
q1

q2q2
q21

m2+q3q3
q21


ij

, g(pv, pa)ij = −

 p2v
m2

pvp2
m2

pvp3
m2

p2pv
m2

m2+p2p2
m2

p2p3
m2

p3pv
m2

p2p2
m2

m2+p3p3
m2


ij

.

(28)

Our next task is to find the tangential derivatives ∇(<) to the mass shell 2pupv − papa =
m2. They are defined by the requirement

∇(2pupv − papa) = 0 at pu =
m2 + papa

2pv
(29)

Returning to the wedge variables p we define in analogy to the Coleman/Mandula ∇

∇u =
∂

∂pu
− pu

m2
pλ

∂

∂pλ
∇2 =

∂

∂p2
− p2

m2
pλ

∂

∂pλ
(30)

∇v =
∂

∂pv
− pv

m2
pλ

∂

∂pλ
∇3 =

∂

∂p3
− p3

m2
pλ

∂

∂pλ
. (31)

Although in the wedge variables both shells of the hyperboloid are covered the transition
from standard to wedge variables is essentialy a change of parametrization only and again
the respective ∇’s will express generic properties of the underlying submanifold.
At the level of one-particle wave functions the respective operators X(<), defined by

X(<) = i∇(<) with indices {u, v, a = 1, 2} (32)

do not seem to be significantly different from the previous X(∇). It is, however, to
be expected that on n-particle wave functions (or on n-particle Fock space states) they
permit an interesting distinction between centre of mass and relative variables (s. [7]).

2.1.3 The differential operator X(light wedge)≡ X(<0)

Here we study the massless limit of X(<) denoted by X(<0).
We observe that for the submetric (27) the limit m2 → 0 exists, but that “coordinate”
singularities appeared; for the inverse submetric (28) the limit of vanishing mass does not
exist, however no “coordinate” singularities occur. (The determinant of (27) vanishes for
m2 = 0.)
If we wish to avoid both of these shortcomings we have to perform a substantial change in
our setting. We propose the following one: we consider the subspaces {pu, pv} and {p2, p3}
as being independent from each other. Then in (26) the range of {µ, ν} is restricted
in the summation accordingly to {u, v}, resp. {2, 3}, hence the off-diagonal terms in
(27,28) disappear. The only remaining relation between the two sectors is the mass-shell
constraint

2pupv = p2p2 + p3p3 ≡ papa. (33)
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For the induced submetric we end up with

g(pv, pa)
ij =

 −papa
p2v

0 0

0 −1 0
0 0 −1

 , (34)

for the induced inverse submetric with

g(pv, pa)ij =

 − p2v
papa

0 0

0 −1 0
0 0 −1

 . (35)

Neither of the two expressions p2v, nor papa must vanish. This is no serious restriction
because it only means that the circle papa = const must have non-vanishing radius and
the hyperbola 2pupv = papa = const 6= 0 has its standard singularity in pv = 0 which has
to be taken care off.
As far as interpretation is concerned it is clear that we went from a four dimensional
momentum space carrying the manifold p2 = m2 and associated Lorentz transformations
SO(1, 3) to a direct product space with two two-dimensional factors carrying the manifolds
2pupv = const, resp. papa = const and thus the invariance groups SO(1, 1) resp. SO(2).
It is to be noted that here we can cover both shells of the hypercone pµpµ = m2 = 0 if we
permit p0 = ±ωp.
The differential operators to be found for vanishing mass should be tangential to the
respective submanifolds. Hence they are defined by the requirement

∇(2pupv − papa) = 0 at pu =
papa
2pv

(36)

Again, in terms of wedge variables p we try in analogy to the Coleman/Mandula ∇ the
ansatz

∇u =
∂

∂pu
− pv

2pupv
(pv

∂

∂pv
+ pu

∂

∂pu
) ∇2 =

∂

∂p2
+
p2

ω̃2
p

pb
∂

∂pb
(37)

∇v =
∂

∂pv
− pu

2pupv
(pv

∂

∂pv
+ pu

∂

∂pu
) ∇3 =

∂

∂p3
+
p3

ω̃2
p

pb
∂

∂pb
. (38)

Differing from (30) the denominators 2pupv and (ω̃p)
2 = (

√
papa )2 (sum over a = 2, 3)

represent the curvatures in the respective submanifolds.
Using pu = pv (17) the expressions for ∇u,∇v simplify to

∇u =
1

2
(
∂

∂pu
− 1

pu
pv

∂

∂pv
) ∇v =

1

2
(
∂

∂pv
− 1

pv
pu

∂

∂pu
) (39)

Those of ∇2,∇3 can be rewritten as

∇2 =
∂

∂p2
− p2

papa
pb

∂

∂pb
∇3 =

∂

∂p3
− p3

papa
pb

∂

∂pb
. (40)
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All ∇’s are indeed tangential.
Altogether these differential operators satisfy the algebra

[∇u,∇v] =
−1

2pupv
(pu

∂

∂pv
− pv

∂

∂pu
) =

1

papa
(pu

∂

∂pv
− pv

∂

∂pu
) (41)

[∇u,∇2] = [∇u,∇3] = [∇v,∇2] = [∇v,∇3] = 0 (42)

[∇2,∇3] = − 1

ω̃2
p

(p2
∂

∂p3
− p3 ∂

∂p2
) =

1

2pupv
(p2

∂

∂p3
− p3 ∂

∂p2
). (43)

Let us note:
(1) Due to the respective metrics in the subspaces an SO(1, 1) is realized in the (pu, pv)-
variables, whereas in the (pa, a = 2, 3)-variables an SO(2) shows up. Again, the factors
1/(2pupv) and 1/ω̃2

p resp. correspond to curvature values in the given subspaces. As a
consequence of the mass shell constraint their values can be considered as constant when
applying the differentiations.
(2) The groups SO(1, 1), SO(2) may be considered as subgroups of the ambient SO(1, 3)
which operates in the ambient four-dimensional Minkowski space.

In order to familiarize ourselves with these light-wedge-∇’s we calculate their action on
the components of p

∇vpu = ∇upu = − pu
2pv

∇vpv = ∇upv = 1
2

∇upu = ∇vpu = 1
2

∇upv = ∇vpv = − pv
2pu
.

(44)

Analogously one has in the sector (a, b) a, b = 2, 3

∇2p2 = 1− p2p2
papa

∇2p3 = −p2p3
pbpb

∇3p2 = −p3p2
pbpb

∇3p3 = 1− p3p3
pbpb

.
(45)

We also note the relations

pu∇u + pv∇v = 0 p2∇2 + p3∇3 = 0. (46)

They express projection properties, as will become clear below.
We may now define operators X(<0) acting on functions f̃(pu, pv, p2p3) as differential
operators by

Xu(<0) = i∇u X2(<0) = i∇2 (47)
Xv(<0) = i∇v X3(<0) = i∇3. (48)

Their algebra is given by

[Xu(<0), X
v(<0)] = i

1

PaP a
Muv (49)

[X2(<0), X
3(<0)] = i

1

2PuPv
M23 (50)

[Xu(<0), X
2(<0)] = [Xu(<0), X

3(<0)] = [Xv(<0), X
2(<0)] = [Xv(<0), X

3(<0)] = 0.
(51)
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Here we have incorporated the mass shell constraint by rewriting appropriately the de-
nominators.
Their commutation relations with the energy-momentum operator P generalize (44,45):

[Pα, Xβ(<0)] =
−i
2

( −Pu
Pv

1

1 −Pv
Pu

)
α, β = u, v (52)

[Pa, Xb(<0)] = −i
(

1 + P2P2

PbP b
−P2P3

PbP b
−P3P2

PbP b
1 + P3P3

PbP b

)
a, b = 2, 3 (53)

It fits to the before mentioned projection properties (46) that the subdeterminants in the
(u, v), resp. (a, b) sectors both vanish.

2.1.4 The differential operator X(ω)

In paper [3] a preconjugate operator XSiSo has been proposed whose spatial components
are equivalent to the Newton/Wigner operator on one-particle states, hence cannot be
completed to a four vector. Ad hoc it had been provided with a “zero component”. In
order to clarify more completely the surrounding of that operator XSiSo we amend now
the zero component given there by spatial one’s. As differential operator on one-particle
wave functions it reads

X(ω)
ν = i(− pν

ωp2
pl
∂

∂pl
) ω2

p ≡ −plpl (54)

The zero component of X(ω) transforms thus as a vector w.r.t. Lorentz transformations,
however the spatial components do not properly transform under boosts.
The algebra of these operators is given by

[Pµ, X
(ω)
ν ] = i

pµpν
ω2
p

[X(ω)
µ , X(ω)

ν ] = 0 (55)

All these relations are on-shell, hence p0 = ωp and ∂/∂p0 ≡ 0. The operators X(ω) cause
some motion in p-space, since however no term ∂/∂p appears, this motion is not a trans-
lation, it is rather like a p-dependent dilatation.
The factor 1/ω2

p in the commutation relation (55) represents the curvature for the sphere
defined by plpl = p20 = fixed 6= 0. This sphere is however not a submanifold of the double
cone p0 = ±ω.

2.1.5 The differential operator X(x-conformal)

Again, we assume f to be a square integrable function f from R4 → C. The largest group
of coordinate transformations in four-dimensional Minkowski spacetime which leaves in-
variant the light cone x2 = 0 is built up by the conformal transformations: translations,
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Lorentz transformations, dilatations and special conformal transformations. Infinitesi-
mally they operate on f(x) as follows

δPµ =
∂

∂xµ
δMµν = xµ

∂

∂xν
− xν

∂

∂xµ
(56)

δD = xλ
∂

∂xλ
δKµ = (2xµx

ν − δνµx2)
∂

∂xν
(57)

The Klein-Gordon operator 2 turns out to be covariant with respect to these transfor-
mations, hence on the formal level every solution transforms into a solution.
Defining operators

Pµ = −iδPµ Mµν = −iδMµν (58)

D = i(δD + d) Kµ = −i(δKµ + 2dxµ) (59)

we find the well-known conformal algebra

[Pµ, Pν ] = 0 (60)
[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ + ηνσMµρ − ηνρMµσ) (61)

[Pµ, Pν ] = 0 [Mµν , Pρ] = i(ηνρPµ − ηµρPν) (62)
[Kµ, Kν ] = 0 [Mµν , Kρ] = i(ηνρKµ − ηµρKν) (63)
[D,Mµν ] = 0 (64)

[D,Pµ] = −iPµ [D,Kµ] = iKµ (65)
[Pµ, Kν ] = 2i(ηµνD −Mµν) (66)

The commutation relations of P with K we interpret as preconjugation between these
operators; with

X(x-conf) ≡ X(conf) .
= K. (67)

For later use we calculate the effect of Kµ on the Fourier transform:

f(x) =
1

(2π)4

∫
d4p e−ipxf̃(p)

Kµf(x) = i
1

(2π)4

∫
d4p e−ipx(−2(d− 4)

∂

∂pµ
+ 2pλ

∂2

∂pλ∂pµ
− pµ

∂2

∂pρ∂pρ
)f̃(p) (68)

Remark: In [8] it has been shown that conformal charges exist on Hilbert space as es-
sentially self-adjoint operators which then have at least one self adjoint extension. The
authors started from the well known off-shell special conformal transformation, incorpo-
rated then the Klein-Gordon equation and derived thereby the on-shell law for them. We
shall find that form below in subsubsection 2.3.5. Nevertheless we present the off-shell
version here in the “on-shell” subsection because the transition to the mass shell is smooth
as will be explicitly shown in section 4.
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2.1.6 The differential operator X(p-conformal)

If we solve the KG with vanishing mass parameter and consider it in Fourier space we
find

f(x) =
1

(2π)4

∫
d4p e−ipxδ(p2)f̂(p). (69)

The cone p2 = 0 is left invariant by an infinitesimal conformal transformation in p-space.
Hence we may define an operator ∇µ(p-conf) by

∇µ(p-conf)f̃(p) = (2pµp
λ − δλµp2)

∂

∂pλ
f̃(p), (70)

and study its properties.
With the help of ∂λδ(p2) = 2pλδ

′(p2) (the prime indicates differentiation with respect to
the argument) we find

∇µ(p-conf)δ(p2) = −2pµδ
′(p2), (71)

i.e. this differential operator maintains δ(p2) and thus we may define an operatorXµ(p-conf)
and consider its action in x-space:

Xµ(p-conf)f̃(p) = i∇µ(p-conf)f̃(p) = i(2pµp
λ − δλµp2)

∂

∂pλ
f̃(p) (72)

=

∫
d4p eipx(8

∂

∂xµ
+ 2xλ

∂2

∂xλ∂xµ
− xµ2)f(x). (73)

By adding 2idpµ to Xµ(p-conf) we obtain

(Xµ(p-conf) + 2idpµ)f̃(p) = i(∇µ(p-conf) + 2pµ)f̃(p) (74)

=

∫
d4p eipx(−2(d− 4)

∂

∂xµ
+ 2xλ

∂2

∂λ∂µ
− xµ2)f(x). (75)

This has precisely the form of Kµf(x) in (68)!
Remark: The differential operator defined in (74) is an off-shell operator. It is treated
here (in the section “on-shell”) because it has an immediate on-shell restriction and fits in
here due to its geometric meaning.

2.2 Preconjugate operators on one-particle Fock space

The aim of the present subsection is to go over from one-particle wave functions to one-
particle Fock space, thereby obtaining a basis independent formulation. Most conveniently
we start from the decomposition of a free scalar field into annihilation and creation oper-
ators, which corresponds to separation into positive and negative frequency parts

φ(x) =
1

(2π)
3
2

∫
d4p e−ipxφ̃(p) =

1

(2π)
3
2

∫
d4p e−ipxδ(p2 −m2)φ̂(p) (76)

=
1

(2π)
3
2

∫
d3p

2ωp
(e−ipxa(p) + eipxa†(p)) = φ(+)(x) + φ(−)(x). (77)
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Next we have to translate the above differential operators acting on functions to operators
X(a, a†) acting on one-particle Fock space states via the commutation relations 1

[a(p), a†(q)] = 2ωpδ
(3)(p− q) [a, a] = 0 = [a†, a†] (78)

Eventually we aim at X’s which are charge like (i.e. map one-particle states into one-
particle states), Hermitian and – most relevant for their final form – reproduce the algebras
we found for the differential operators.

2.2.1 The operator X(∇)(a†, a) on Fock space

We start from an operator X(∇)(pre) (“pre” for “preliminary”)

X
(∇)
0 (pre) =iα

∫
d3p

2ωp
(− ωp
m2

)pl∂la
†(p)a(p) (79)

X
(∇)
j (pre) =iα

∫
d3p

2ωp
(
∂

∂pj
− pj
m2

pl∂l)a
†(p)a(p) (80)

which implements the transformation law given by the differential operator ∇ on a†.
We check the Hermiticity of X(∇)(pre) via

1

2
(X(∇)

ν (pre)±X(∇)†
ν (pre)) =

i

2

∫
d3p

2ωp
(α∇νa

†a∓ ᾱa†∇νa) (81)

(recall: p0 = ωp, ∂/∂p0 ≡ 0))
and find for the transformation of a†

[
1

2
(X(∇)

ν (pre)±X(∇)†
ν (pre)), a†(p)] = −i(α± ᾱ

2
∇νa

†(p)± 3ᾱ

2

pν
m2

a†(p)) (82)

For α ∈ R the Hermitian part qualifies as a suitable extension to Fock space, whereas the
anti-Hermitian part does not play a role at this stage. (For α purely imaginary “Hermi-
tian” and “anti-Hermitian” are interchanged; for α ∈ C no suitable candidate is singled
out.)

We therefore define now

X(∇)
ν (a, a†) =

i

2

∫
d3p

2ωp
(a†(p)∇νa(p)−∇νa

†(p)a(p)). (83)

This operator is charge like, (formally) Hermitian, made up from a, a† and ∇, s. (5), which
will guarantee that the mass shell constraint is maintained. Its most important property
is however that it reproduces the algebraic relation (7) in the form

[Pµ, X
(∇)
ν ] = i

∫
d3p

2ωp
(ηµν −

pµpν
m2

)a†(p)a(p) (84)

= iηµνN − i
∫
d3p

2ωp

pµpν
m2

a†(p)a(p), (85)

1Here we normalize the creation and annihilation operators Lorentz covariantly, in contrast to [2–4]
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where Pµ, N denote the energy-momentum, resp. the number operator

Pµ =

∫
d3p

2ωp
pµa

†(p)a(p), N =

∫
d3p

2ωp
a†(p)a(p). (86)

It therefore qualifies as an operator preconjugate to P on Fock space.
To derive (84) becomes an exercise once one has calculated the “transformation law” for
a#(p) (which stands for a and a†)

i[X(∇)
ν , a#(p)] = ∇νa

#(p)− 3

2

pν
m2

a#(p). (87)

It is to be noted that the second term does not contribute to the commutator (84), since P
commutes with itself. It will also not push the field φ(x) off its mass shell – just because it
generates a translation in x-space. The remaining commutators which form the equivalent
to (8) on Fock space read

[X(∇)
µ , X(∇)

ν ] =
i

m2
Mµν(a, a

†), (88)

withMµν , the generators for Lorentz transformations in terms of creation and annihilation
operators (s. Appendix (A.2, A.3)). With the help of (87) one can also calculate the effect
of X(∇) on the field φ(x). The result reads

[X(∇)
ν , φ(±)(x)] = ±(xν +

1

m2
(
3

2
+ xλ

∂

∂xλ
)
∂

∂xν
)φ(±)(x), (89)

and is interesting because it shows that Hermiticity of X(∇) leads to different behaviour
of positive and negative frequency part of the field.

2.2.2 The operators X(wedge) on Fock space

On the level of differential operators X(wedge) can be obtained from X(∇) by a change
of variables. On Fock space, however, one has to introduce new creation and annihilation
operators since both parts of the mass hyperboloid contribute in a different way than in
the standard decomposition into positive and negative frequency parts. We postpone this
treatment to later work.
We also postpone the formulation of X(<0)(a†, a) to later work.

2.2.3 The operator X(ω) on Fock space

We proceed exactly as for X(∇). The differential operator yields first

X(ω)
ν (pre) = iα

∫
d3p

2ωp
(− pν
ω2
p

)pl∂la
†(p)a(p) (90)
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which implements the transformation law given by the differential operator X(ω) on a†.
Hermiticity: via

1

2
(X(ω)

ν (pre)±X(ω)†
ν (pre)) =

i

2

∫
d3p

2ωp
(α
pν
ω2
p

a†a∓ ᾱa† pν
ω2
p

a) (91)

transformation of a†

[
1

2
(X(ω)

ν (pre)±X(ω)†
ν (pre)), a†(p)] = −i(α± ᾱ

2

pν
ω2
p

a†(p)± 5iᾱ

2

pν
ω2
p

a†(p)) (92)

The reasoning is the same as for X(∇), we define therefore accordingly

X
(ω)
0 =

i

2

∫
d3p

2ωp

1

ωp

(
−a†pl∂la+ pl∂la

†a)
)

(93)

X
(ω)
j =

i

2

∫
d3p

2ωp

pj
ω2
p

(
a†pl∂la− pl∂la†a)

)
(94)

and remark that X(ω)
0 coincides with XSiSo

0 X
(ω)
µ entails a† with the transformation law

[X(ω)
µ , a†(p)] = −i(pµ

ω2
p

pl∂la
†(p) +

5

2

pν
ω2
p

a(p)†). (95)

For the algebra one finds

[Pµ, X
(ω)
ν ] =i

∫
d3p

2ωp

pµpν
ω2
p

a†a (96)

[X(ω)
µ , X(ω)

ν ] =0 (97)

We recall that only the zeroth component of X(ω) transforms as (on-shell) Lorentz vector.
The commutator [P0, X0] = iN was in [3] the reason for combining X0 with Xj’s having
the commutator −iN with Pj. Those did however not have X(ω)

0 as its zeroth component,
but transformed into a generic tensor under Lorentz. Here we find that Xj’s do transform
into a generic tensor once we extend X0 to Xj’s by demanding Lorentz covariance for it.

2.2.4 The operator X(x-conformal) on Fock space

In [3] the Fock space representatives for these transformations have been derived by start-
ing from the conformal current as x-moment of the improved energy-momentum tensor
and then going over to the respective charge, first in x- and thereafter in p-space. Equally
well one can derive them by translating the off-shell x-space variation of a scalar field into
p-space, go on-shell and follow then the derivation pattern used for X(∇) and X(ω). The
result is in both cases the same and reads (in covariant normalization of the annihilation
and creation operators):

K0 =

∫
d3p

2ωp
ωp a

†(p)∂l∂la(p) (98)

Kj =

∫
d3p

2ωp
a†(p)

(
pj∂

l∂l − 2pl∂l∂j − 2∂j
)
a(p) (99)
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Remarkably they come out as Hermitian operators immediately. They yield as transfor-
mation law

[K0, a
†(p)] =ωp∂

l∂la
†(p) (100)

[Kj, a
†(p)] =

(
pj∂

l∂l − 2pl∂l∂j − 2∂j
)
a†(p) (101)

for the creation operator.
Kµ forms together with Pµ,Mµν , D the conformal algebra (60) realized on Fock space.

2.2.5 The operator X(p-conformal) on Fock space

In the, by now standard, procedure we start from the differential operator (70) and (74)
(by some abuse of notation)

∇µ(p-conf)f̃(p) = ((2pµp
λ − δλµp2)

∂

∂pλ
+ 2dpµ)f̃(p), (102)

i.e. off-shell (d ∈ R). On-shell (p2 = 0, p0 = ωp, ∂/∂p
0 ≡ 0) we define

K(p)
ν (pre) = α

∫
d3p

2ωp
(2pν(d+ pl

∂

∂pl
))a†a, (103)

and calculate

1

2
(K(p)

ν (pre)±K(p)†
ν (pre)) =

1

2

∫
d3p

2ωp
(2(d(α+ᾱ)∓3ᾱ)pνa

†a+(α∓ᾱ)pνp
l ∂

∂pl
))a†a. (104)

Hence we find for α = ᾱ ∈ R

K(p−Herm)
ν ≡1

2
(K(p)

ν (pre) +K(p)†
ν (pre)) = 2(d− 3

2
)αPν (105)

K(p−anti−Herm)
ν ≡1

2
(K(p)

ν (pre)−K(p)†
ν (pre)) = α(

3

2
− iĎ)Pν , (106)

with Ď ≡ipl ∂
∂pl

. (107)

Again, for α purely imaginary the roles of “Hermitian” and “anti-Hermitian” are inter-
changed, for α ∈ C the outcome is a general mixture. We conclude that the case with real
α is the only reasonable one and that (for d 6= 3/2) the operator K(P−Herm) is equivalent
to the standard translations P . Hence we need not pursue it further.
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3 Off-shell approach: Green functions

In the present section we shall work with Green functions as the relevant system of
functions on which the preconjugate operators act. The Green functions are defined as
the vacuum expectation value of time ordered products of fields

Gn(x1, ..., xn) =< 0|T (φ(x1)...φ(xn))|0 > . (108)

(For simplicity of notation we have chosen a scalar field as example.) The field is an
operator, hence the c-number Gn is, more mathematically speaking, a distribution – a
fact which has to be taken into account in the sequel.
The Green functions can be obtained from a generating functional Z(J)

Gn(x1, ...xn) =
δ

iδJ(x1)
· · · δ

iδJ(xn)
Z(J)|J=0 (109)

Z(J) = T < 0|exp(i
∫

d4xJ(x)φ(x))|0 > (110)

(Unless one supplies Z(J) with true content this definition is purely formal.)
On suitable test function spaces the Green functions can be Fourier transformed

Gn(x1, ..., xn) =
1

(2π)n

∫
d4npe−i(p1x1+···+pnxn)G̃(p1, ..., pn), (111)

such that the considerations on functions above apply.
In the context of the Lehmann-Symanzik-Zimmermann (LSZ) formulation of QFT one is
able to derive Hilbert space operators, in fact Fock space operators, from off-shell Green
functions via the so-called reduction formalism. The preconjugate operators which we
wish to construct can thus be formulated as functional differential operators acting on Z.
A familiar case is given by those which formulate tentative symmetries like conformal.
Hence we study first how preconjugate pairs can be realized by Ward identity like func-
tional differential operators and second, which ones can be continued on-shell.

3.1 A first trial

Let Γ be the generating functional for vertex functions

Γ =
∑ 1

n!

∫
d4nxϕ(x1), ..., ϕ(xn)Γn(x1, ..., xn). (112)

We introduce functional differential operators which represent field transformations. For
translations and X-transformations resp. they read

W T
µ Γ = i

∫
d4x ∂µϕ(x)

δ

δϕ(x)
Γ (113)

WX
ν Γ =

∫
d4y yνϕ(y)

δ

δϕ(y)
Γ. (114)
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Their commutator is easily calculated:[
W T
µ ,W

X
ν

]
= −iηµν N (115)

with N =

∫
d4x ϕ(x)

δ

δϕ(x)
(116)

When applied to an n-point vertex function, N yields n, it counts the number of legs of
a respective Feynman diagram. This is fine off-shell, however not satisfactory on-shell, as
we show now.
By Legendre transforming Γ we introduce first Zc(j) – the generating functional for con-
nected Green functions, second by exponentiation the generating functional for general
Green functions:

Zc(j) = Γ(ϕ(j))−
∫
dx j(x)ϕ(j(x))

δΓ

δϕ(x)
= −j(ϕ(x)) (117)

Z(j) = eiZc(j) (118)

Standard perturbation theory proceeds recursively with the number of closed loops in
Feynman diagrams as expansion parameter and in the tree approximation (number of
loops equal to zero) Γ can be identified with the classical action. For its proper definition
one has to refer to a renormalization scheme which we chose her to be the momentum space
subtraction scheme of Bogoliubov, Parašiuk, Hepp, Zimmermann (BPHZ). Within this
scheme the effect of differential operators on the functionals Γ, Zc, Z can be conveniently
expressed with the help of the action principle:

ϕ(x)
δ

δϕ(x)
Γ =

[
ϕ(x)

δ

δϕ(x)
Γeff

]
· Γ (119)

−j(x)
δ

δj(x)
Zc =

[
ϕ(x)

δ

δϕ(x)
Γeff

]
· Zc (120)

ij(x)
δ

δj(x)
Z =

[
ϕ(x)

δ

δϕ(x)
Γeff

]
· Z (121)

(122)

Here Γeff is given by the sum of the classical action and all counter terms.
This version of the action principle holds for all linear field transformations (after assigning
suitable subtraction degrees to the normal products [...]).
Let us now use the action principle in the context of a self-interacting, massive scalar field
with

Γeff =

∫
d4x (

1

2
(∂ϕ∂ϕ−m2ϕ2)− λ

4!
ϕ4) + Γcounter. (123)

Suppressing for simplicity of writing the contribution from the counterterms we find

wN (x)Γ ≡ ϕ(x)
δ

δϕ(x)
Γ =

[
ϕ(x)

(
−(2 +m2)ϕ(x)− λ

3!
ϕ(x)3

)]
· Γ. (124)

Here we have introduced wN (x) which yields upon integration N .
On Z the respective equation reads

wN (x)Z ≡ ij(x)
δ

δj(x
)Z =

[
ϕ(x)

(
−(2 +m2)ϕ(x)− λ

3!
ϕ(x)3

)]
· Z. (125)
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The left hand side of this equation represents contact terms which vanish once we apply
LSZ reduction. It yields the operator equation[

ϕ(x)

(
−(2 +m2)ϕ(x)− λ

3!
ϕ(x)3

)]Op
= 0. (126)

It is quite meaningful: it constitutes the socalled bilinear field equation, but it implies
after integration that on the operator level N vanishes. Hence N is certainly not what
we look for in our search for a coordinate operator.
In order to have some guidance as to how we should proceed we have a glance at the
construction of the energy-momentum operator Pµ. W T

µ reads on Z as follows:

W T
µ Z ≡ −i

∫
d4x ∂µj(x)

δ

δj(x)
Z = 0. (127)

It expresses translation invariance of our system. On the non-integrated level we find

wTµ (x)Z ≡ −i∂µj(x)
δ

δj(x)
Z = [−∂νTµν(x)] · Z. (128)

LSZ reducing this latter result we obtain the operator equation

∂νT opµν(x) = 0, (129)

the energy-momentum tensor (EMT) is conserved as an operator.
Introducing the energy-momentum vector by

Pµ =

∫
d3x Tµ0(x), (130)

the conservation equation of the EMT tells us that, by LSZ reduction, P op
µ is a time

independent operator and furthermore, that it generates the translations on the operator
field ϕop(x): [

P op
µ , ϕ

op(x)
]

= −i∂µϕop(x). (131)

Comparing with the situation for N , the difference clearly originates from the fact that
the conservation equation for the EMT permits the definition of Pµ as a non-trivial op-
erator on-shell ensuing a non-trivial transformation for the field operator ϕop(x). Hence
we conclude that we should search for a replacement of N by a functional differential op-
erator whose unintegrated representative yields a total divergence. The same arguments
apply to the above WX

ν because it also does not lead to field transformation on-shell, ie.
for the field operator.

3.2 Systematic search

In our first trial to find WX ’s we were lead: first by a dimensional argument – the
integrand of WX must have dimension -1, and second by the desire to find ηµν on the
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r.h.s. of the conjugation commutator. Eventually we have indeed to have dimension -1,
but we certainly can admit a more complicated r.h.s. So, in a fairly general ansatz we
assume

w̃TµΓ = ∂µϕ(x)
δ

δϕ(x)
Γ− 1

4
∂µ

(
ϕ(x)

δ

δϕ(x)
Γ

)
, (132)

i.e. add a very specific total derivative to the first term, which integrated generates the
global translations as before, whereas the second term contributes locally to the potential
conservation equations. Clearly the integral of a second x-moment of the second term
produces a contribution of type WX

µ which we had before, so we are on the right track.
The most remarkable property of the contact terms w̃Tµ is however that they close under
commutation [9] (eq. (2.15)):[

w̃Tµ (x), w̃Tν (y)
]

= ∂yνδ(x− y)w̃Tµ (y)− ∂xµδ(x− y)w̃Tν (x). (133)

Hence x-moments of w̃T will have well-defined transformation properties. Since, in fact,
(133) is the algebra for general coordinate transformations and its implementation on the
level of fields generates the diffeomorphisms on fields [10], i.e. general relativity, we are
sure, that we are dealing with the most general possibility of enlarging WX ’s. However,
for extending such properties to operators we have to have recourse to a specific Γ, i.e.
in the tree approximation to specific actions. Acting with w̃Tµ on an action invariant
under translations we certainly obtain ∂νTµν of some EMT Tµν , yielding Pµ as before.
Contracting w̃Tλ with some moment aλµ(x) and integrating we obtain first of all moment
contact terms but secondly by operating on the same action as before we get moments of
the EMT . Let us be specific.
We work in the tree approximation, hence with the action of eq. (11), at m = 0 (the
reason for this restriction will become clear below). The local conservation eq. for the
translations reads

w̃Tµ (x)Γ(0) = −∂λTµλ (134)

with Tµλ ≡ T impr
µλ (135)

= ∂µφ∂λϕ−
1

2
ηµλ∂ϕ∂ϕ−

1

4
ηµλϕ2ϕ−

1

6
(∂µ∂λ − ηµλ2)ϕ2 (136)

Choosing as moments aλµ(x) = 2xµx
λ − ηλµx2 one finds

wKµ Γ(0) ≡ aλµ(x)w̃Tλ(x)Γ(0) = ∂ρKµρ(x) (137)

with Kµρ = aλµTρλ(x) (138)

Hence, these equations give us conserved currents: for the translations T impr
µν and for the

special conformal transformations Kµρ (here m = 0 becomes relevant). The integrated
contact terms are indeed those of translations and special conformal transformations of a
scalar field with canonical dimension 1:

W T
µ ≡ i

∫
d4x ∂µϕ(x)

δ

δϕ(x)
(139)

WK
ν ≡ i

∫
d4x ((2xνx

λ − ηλνx2)∂λϕ
δ

δϕ
+ 2xνϕ

δ

δϕ
) (140)

19



The algebra of these integrated WI operators can either be calculated directly or obtained
from the closure of the local differential operators (133) by multiplying with the moment
function and integrating. It is the well-known conformal algebra[

W T
µ ,W

K
ν

]
= 2i(ηµνW

D −WM
µν ) (141)

with WD ≡ i

∫
d4x (1 + x∂x)ϕ

δ

δϕ
(142)

and WM
µν ≡ i

∫
d4x (xµ∂ν − xν∂µ)ϕ

δ

δϕ
(143)

WD: dilatations; WM
µν : Lorentztransformations.

The first lesson we learn from this example is the following. The choice Xµ = Kµ is cer-
tainly good. The currents are local operators which are conserved. Kµ as the charge of a
conserved current, generates the transformation and is conserved in time. It is a Lorentz
vector. The transition from off-shell to on-shell is possible. However its algebra is not of
the standard canonical (Hamiltonian) form. This problem will be discussed in [5].
For the second lesson we look separately at every term coming from the moment function.
Every one of them has the right dimension, but none of them yields a conserved current
(separately). This is well-known [11]: admitting in (137) for aµ an arbitrary function and
asking for a conserved current one finds that only the first and second x-moments of the
EMT yield conserved currents. They lead to dilatations, Lorentz transformations and
special conformal transformations respectively.
In reference [4] the generators Kµ have been expressed for the free massless scalar field
in terms of particle creation and annihilation operators. Remarkably, it turned out that
they are of pure charge type: they contain only bilinear products of type a†a, but not of
type aa or a†a†. It was found that the origin of this property was the improvement of
the EMT (a consequence of the second term in (133)). Since a mass term would break
the conformal symmetry, only the massless model will deliver a good candidate for the
preconjugate operator Xµ.
Let us summarize this section. The only preconjugate operator Xµ which:
- is local in x-space,
- conserved in time,
- permits a transition off-shell/on-shell,
- is charge-like in Fockspace,
- transforms as a Lorentz vector
is Xµ = Kµ, the charge generating special conformal transformation.
This holds true for the free theory and also for the tree approximation of the interacting
theory. In higher orders the conformal anomaly will cause effects to be understood.
This result implies that all other on-shell operators Xµ(a†, a) which we defined above in
the on-shell section, are non-local in field space and/or lack Lorentz covariance. We re-
mind the reader that we are working on four dimensional flat Minkowski spacetime.
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4 Extension, Applications

4.1 (Anti-)deSitter space

In the previous section the underlying spacetime was ordinary four-dimensional Minkowski
and a preconjugate partner for the translations was found in a generator of the confor-
mal group SO(2, 4). In detail, we chose a representation of SO(2, 4) which contains the
Poincaré group ISO(1, 3) as a subgroup and get Minkowski space M = ISO(1, 3)/SO(1, 3)
by taking the quotient with the Lorentz group SO(1, 3). Then translations are sin-
gled out to be the candidate for finding (pre-)conjugate partners. Now we observe
that we obtain four-dimensional (Anti-)deSitter space dS4 = SO(1, 4)/SO(1, 3) (AdS4 =
SO(2, 3)/SO(1, 3), resp.) again by choosing a subgroup of the of the conformal group
and taking the quotient with the Lorentz group. We will sketch now, how the resulting
four generators of the homogeneous spaces are related with each other and thus previous
considerations can be extended to (Anti-)deSitter space.
In the theory of Lie algebras, it is well known that certain classes of algebras can be ob-
tained from each other by deformation [12] and contraction [13]. For simplicity, we focus
on the latter where a scaling parameter ε is introduced such that in the limit ε → 0 the
simple Lie-algebra is transformed into a semisimple Lie-algebra.
More precisely, we start by specifiying the conformal algebra so(2, 4) with generators Jab
where a, b ∈ {−1, 0, ..., 4}.

−i[Jab, Jcd] = ηadJbc + ηbcJad − ηacJbd − ηbdJac (144)
η = diag(+1,+1,−1,−1,−1,−1) (145)

where µ ∈ {0, ..., 3}.
For the introduction of the parameter ε, we follow the ideas of [14] and assign a physical
parameter to ε, namely the inverse of squared spacetime radius r−2 or equivalently the
scalar curvature R. Regarding the physical dimension of the generators, we have Pµ 7→
2rPµ and Kν 7→ 1

2r
Kν and we use two arguments that enable us to perform the limit in

both spaces simultaneously. In order to obtain a well-defined limit, one has to perform a
compactification of the spaces, which leads to an additional factor 1/r for each generator
J4µ.

I4µ = Pµ −
ε

4
Kµ (146)

Indeed, the contraction limits of deSitter and Anti-deSitter space are opposite, i.e. while
the first requires r2 →∞, the latter requires r2 → 0. Using the automorphism Pµ → Kµ

and Kµ → −Pµ in the conformal algebra so(2, 4), we relate J−1,µ to J4,µ and arrive at

I−1,µ =
ε

4
Pµ +Kµ. (147)

Now performing the limit, we obtain

lim
ε→0

I4µ = Pµ (148)

lim
ε→0

I−1,µ = Kµ (149)
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and in particular

lim
ε→0

[I4µ, I−1,ν ] = 2i(ηµνD −Mµν). (150)

Hence for every spacetime which has an isometry group in SO(2, 4), we may consider the
generators J4,µ and J−1,ν as candidates for (pre-)conjugate partners.

4.2 Applications

In [15] we investigated how to obtain a non-commutative spacetime from coordinate op-
erators. The investigation in this case was guided by physical intuition. On the one hand
we deformed the quantum mechanical coordinate operators by their conjugate momenta
employing some deformation matrix. This resulted into Moyal-Weyl commutation rela-
tions for the deformed coordinates. On the other hand we deformed the free Hamiltonian
with the ordinary coordinates and a respective deformation matrix. By identifying suit-
ably the parameters we obtained a physical interpretation for them. E.g. in the case of
Landau quantization the deformation parameters represent the external magnetic field
applied and the deformed coordinates constitute the guiding center coordinates which are
measurable. Ordinary coordinates together with external magnetic field can be under-
stood as basing a free Hamiltonian on a Moyal spacetime.
In the present context another result derived in [16] is more relevant: even for a precon-
jugate pair like Pµ and Kν , energy-momentum and special conformal operators in QFT,
one can apply the deformation technique in the same spirit. Deforming the coordinates
on which a (scalar) quantum field depends with the special conformal operators and a
deformation matrix one obtains for these coordinates a non-commutative spacetime. The
originally local field becomes a wedge-local field.
In some detail one proceeds as follows. Within the framework of warped convolutions [17],
the deformed associative product ×θ of A,B is defined as

A×θ B = (2π)−d
∫∫

ddvddue−ivuαθv(A)αu(B). (151)

Here α denotes the adjoint action αθv(A) = U(θv)AU−1(θv) with U(v) = exp (ivµG
µ)

and G being the generator of the deformation. Furthermore, the deformed commutator
[A ×θ, B] of A, B reads

[A ×θ, B] := A×θ B −B ×θ A. (152)

In analogy one obtains for A,B being coordinates x and G being special conformal trans-
formations

[xµ ×θ, xν ] = −2i(θµνx
2 + 2 ((θx)µxν − (θx)νxµ)x2

up to third order in the deformation parameter θ. This corresponds to a non-constant,
non-commutative spacetime.
For the other preconjugate operators X(∇), X(<), X(ω) the precisely analogous construc-
tion does not seem to be possible since they act non-locally on a quantum field. For them
other applications have to be found.
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5 Discussion and conclusions

The present search for preconjugate pairs of operators has been guided first by geometry:
identifying tangential derivatives of the mass hyperboloid p2 = m2 we were lead to differ-
ential operators on one-particle wave functions – we obtained X(∇). Since in the massless
limit the hyperboloid degenerates into a double cone, which is only a topological manifold,
tangential derivatives lead to X(<0) and X(ω), also realized as differential operators on
functions. Since the double cone p2 = 0 is invariant under conformal transformations
we found X(p-conformal). The invariance of the massless Klein-Gordon equation under
conformal transformations in x-space which is related to the invariance of x2 = 0 lead us
to the differential operators X(x-conformal) ≡ K again acting on functions. We conclude
that on this level we have found all differential operators which are characterized by in-
trinsic properties of the underlying structures, i.e. the mass hyperboloid, resp. the double
cones (in p- and x-space).
In a second step these differential operators have been represented on Fock-space, here
realized via charge-like operators composed of creation and annihilation operators of a
real scalar field. Whereas the respective algebras are identical, the variations of cre-
ation/annihilation operators do not in all cases agree with the application of the respec-
tive differential operators on functions.

In order to find out which on-shell operators X can be derived as local operators from
insertions into Green functions we studied the appropriate candidates in sect. 3. The
result that the ordinary space-conformal X = K is singled out by this requirement is
important, because in turn this shows that all other X’s are non-local in space, hence
would not qualify as “local observable” in the traditional sense of the word. They would
not appear in the algebra of observables à la [18].

The extension to a more general setting as far as spacetime is concerned seems to be
possible, we examplified this by having a look at (Anti-)deSitter in subsection 4.1. As
an application of the preconjugate operator K we refered to the construction of an non-
constant, non-commutative spacetime in subsection 4.2.

Generalizations to non-zero spin and to gauge theories is in principle straightforward.
Since conformal invariance is well studied in the literature it should be possible to formu-
late that case first and then in analogy to it the example of, say X(∇) and its transition
to Q(∇). Similarly it seems quite feasible to treat supersymmetric models.

One last point to be discussed concerns the effects of interaction. All of our X(a, a†)’s
operate in the asymptotic region. All, but K, are non-local hence would transform the
S-matrix non-trivially and in a controllable way, since they are charge-like. It is however
not obvious how to construct their interacting versions (of which they would have to be
the asymptotic limit). The only one for which this is possible in principle is X = K.
In an interacting Φ4-theory the conformal charge is not conserved, however, due to the
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well-known conformal anomaly. In this case one can control the deviation from symmetry
by introducing an external field given as a local coupling, (s. [19]). It is far from obvious
how one had to incorporate and interpret this phenomenon.
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6 Appendix: Charges of the conformal group

For convenience of the reader we present the generators of the conformal group in terms
of creation and annihilation operators (in covariant normalization) on Fock space.

Pµ =
∫
dµ pµa(p)†a(p) (A.1)

Mj0 = −i
∫
dµ ωpa(p)†∂ja(p) (A.2)

Mjk = i
∫
dµ
(
pj∂ka(p)†a(p)− pk∂ja(p)†a(p)

)
(A.3)

D = −i
∫
dµ

(
a(p)†a(p) + a(p)†pl∂la(p)

)
(A.4)

K0 =
∫
dµ ωp a(p)†∂l∂la(p (A.5)

Kj =
∫
dµ a(p)†

(
pj∂

l∂l − 2pl∂l∂j − 2∂j
)
a(p) (A.6)

Here the measure reads dµ = d3 p/2ωp and the relation to the non-covariant normalization
as used in [3], [4] is given by anon-cov = a/

√
2ωp.
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