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BUBBLING ANALYSIS NEAR THE DIRICHLET BOUNDARY FOR APPROXIMATE
HARMONIC MAPS FROM SURFACES

JÜRGEN JOST, LEI LIU, AND MIAOMIAO ZHU

Abstract. For a sequence of maps with a Dirichlet boundary condition from a compact Riemann
surface with smooth boundary to a general compact Riemannian manifold, with uniformly bounded
energy and with uniformly L2-bounded tension field, we show that the energy identity and the no
neck property hold during a blow-up process near the Dirichlet boundary. We apply these results to
the two dimensional harmonic map flow with Dirichlet boundary and prove the energy identity at
finite and infinite singular time. Also, the no neck property holds at infinite time.

1. introduction

Let (M, g) be a compact Riemannian manifold with smooth boundary and (N, h) be a compact
Riemannian manifold of dimension n. The energy of the mapping u is defined as

E(u) =

∫
M

e(u)dvolg,

where e(u) is the energy density defined by

e(u) =
1
2
|∇u|2 = Tracegu∗h,

where u∗h is the pull-back of the metric tensor h.
A smooth critical point of the energy E is called a harmonic map.
By Nash’s embedding theorem, (N, h) can be isometrically embedded into some Euclidean space
RN . This brings the Euler-Lagrange equation into the form

∆gu = A(u)(∇u,∇u),

where A is the second fundamental form of N ⊂ RN and ∆g is the Laplace-Beltrami operator on M
which is defined by

∆g := −
1
√

g
∂

∂xβ
(
√

ggαβ
∂

∂xα
).

The tension field τ(u) of u is defined by

τ(u(x)) = −∆gu(x) + A(u(x))(∇u(x),∇u(x)).(1.1)

Then u is a harmonic map if and only if τ(u) = 0.
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In this paper, we shall study the blow-up analysis for a sequence of maps {un} from a com-
pact Riemann surface M with smooth boundary ∂M to a compact Riemannian manifold N with
uniformly L2-bounded tension fields τ(un), uniformly bounded energy and with Dirichlet boundary

un(x) = ϕ(x), x ∈ ∂M.(1.2)

In particular, the maps {un} are not necessarily harmonic, as their tension fields need not vanish,
but are only in L2. Such sequences of maps frequently arise in schemes that have the purpose of
proving the existence of harmonic maps, for instance by the heat flow method discussed below, but
also in other schemes. Therefore, in this paper we shall systematically study their possible blow-up
behavior.

When M is a closed surface, the compactness problem and the blow-up theory (energy identity
and no neck property) for a sequence of maps {un} from M to N with uniformly L2-bounded tension
fields and with uniformly bounded energy have been extensively studied (see e.g. [30, 9, 26, 27,
6, 34, 28, 17, 18, 23, 21]). For corresponding results about harmonic map flows, we refer to
[32, 21, 33, 27, 28]. For some other related works, see [20, 12, 8, 15, 13].

When M is a compact Riemann surface with smooth boundary, Laurain-Petrides [14] considered
a sequence of harmonic maps {un} from M to the unit ball Bn+1 ⊂ Rn+1 with free boundary un(∂M)
on S n and with uniformly bounded energy and proved the energy identity. The blow-up theory
(including the energy identity and the no neck property) of the more general case of a sequence
of maps into a general compact target manifold with free boundary on a general closed supporting
submanifold with uniformly L2 bounded tension fields and with uniformly bounded energy was
completed in [11].

Since the interior blow-up case is already well understood, we shall focus on the case where
the energy concentration occurs near the Dirichlet boundary and complete the blow-up theory near
the Dirichlet boundary for a bubbling sequence. We should point that as a consequence of an old
result of Lemâire, it is not possible that a blow-up occurs at the boundary itself, in view of the
Dirichlet condition (1.2). It is, however, conceivable that there is a sequence of interior points (xn)
converging to a boundary point x0 such that the maps blow up along that sequence and that in the
limit we have a boundary bubble. This, therefore, is the situation investigated in this paper.

Here is our first main result for the local problem:

Theorem 1.1. Let un ∈ W2,2(D+
1 (0),N) be a sequence of maps with tension fields τ(un) and with

Dirichlet boundary data un|∂0D+
1 (0) = ϕ ∈ C2+α(∂0D+

1 (0)) for some 0 < α < 1, satisfying

(a) ‖un‖W1,2(D+
1 (0)) + ‖τ(un)‖L2(D+

1 (0)) ≤ Λ,

(b) un → u strongly in W1,2
loc (D+

1 (0) \ {0},RN) as n→ ∞,

where D+
1 (0) := {(x, y) ∈ R2||x|2 + |y|2 ≤ 1, y ≥ 0} and ∂0D+

1 (0) := {(x, y) ∈ D+
1 (0)|y = 0}.

Then there exist a subsequence of un (still denoted by un) and a nonnegative integer L such
that, for any i = 1, ..., L, there exist points xi

n, positive numbers λi
n and a bubble, i.e. a nontrivial

harmonic sphere wi (which we view as a map from R2 ∪ {∞} to N), such that

(1) xi
n → 0, λi

n → 0, as n→ ∞;
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(2) dist(xi
n,∂

0D+
1 (0))

λi
n

→ ∞, as n→ ∞;

(3) limn→∞
(λi

n

λ
j
n

+
λ

j
n
λi

n
+
|xi

n−x j
n |

λi
n+λ

j
n

)
= ∞ for any i , j;

(4) wi is the weak limit of un(xi
n + λi

nx) in W1,2
loc (R2);

(5) Energy identity: we have

(1.3) lim
n→∞

E(un,D+
1 (0)) = E(u,D+

1 (0)) +

L∑
i=1

E(wi).

(6) No neck property: The image

u(D+
1 (0)) ∪

L⋃
i=1

wi(R2)(1.4)

is a connected set.

In the free boundary case [11], in general, both harmonic spheres and harmonic disks with free
boundary can split off at a boundary energy concentration point. In contrast to the free boundary
case, the case that dist(xi

n,∂
0D+

1 (0))
λi

n
is uniformly bounded cannot occur in the Dirichlet boundary case,

as we have already explained before the statement of the theorem. Otherwise, one will get a
nontrivial harmonic disk with constant boundary data, which is impossible by Lemaire’result [16]
(see section 3). Thus, when the energy of the maps concentrates near the Dirichlet boundary, only
some harmonic spheres can split off as is described in the above theorem. On the other hand, since
the neck domains appearing near the Dirichlet boundary are in general not simply half annuli, we
need to apply some finer decomposition of the neck domains (see Section 3) as is done in the free
boundary case [11]. This is the main technical achievement of this paper.

Our results complete the blow-up analysis that is needed in the various existence schemes
for harmonic maps. In fact, combining Theorem 1.1 and the classical interior blow-up theory of
harmonic maps, we have

Theorem 1.2. Let un : M → N be a sequence of W2,2 maps with Dirichlet boundary un|∂M =

ϕ(x) ∈ C2+α(∂M,N) and with tension fields τ(un) satisfying

E(un) + ‖τ(un)‖L2(M) ≤ Λ < ∞.

We define the blow-up set

(1.5) S := ∩r>0

{
x ∈ M| lim inf

n→∞

∫
DM

r (x)
|dun|

2dvol ≥ ε2
}
,

where DM
r (x) = {y ∈ M| dist(x, y) ≤ r} denotes the geodesic ball in M and ε > 0 is a constant

whose value will be given in (3.1). Then S is a finite set {p1, ..., pI}. By taking subsequences, {un}

converges in W2,2
loc (M \S) to some limit map u0 ∈ W2,2(M,N) with Dirichlet boundary u0|∂M = ϕ(x)
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and there are finitely many bubbles: a finite set of nontrivial harmonic spheres wl
i : S 2 → N,

l = 1, ..., li, i = 1, ..., I, such that

lim
n→∞

E(un) = E(u0) +

I∑
i=1

li∑
l=1

E(wl
i),(1.6)

and the image u0(M) ∪I
i=1 ∪

li
l=1(wl

i(S
2)) is a connected set.

As promised, we shall apply the results in Theorem 1.2 to one of the most important and suc-
cessful existence schemes, the heat flow for harmonic maps with Dirichlet boundary:

∂tu(x, t) = τ(u(x)) (x, t) ∈ M × (0,T );(1.7)
u(·, 0) = u0(x) x ∈ M;(1.8)
u(x, t) = ϕ(x) ∈ C2+α(∂M,N), x ∈ ∂M, ∀ t ≥ 0;(1.9)

The existence of a global weak solution of (1.7-1.8) from a closed Riemannian surface with finitely
many singularities was first considered by Struwe [32]. Later, Chang [1] considered the harmonic
map flow with Dirichlet boundary (1.9) and obtained a global regular solution under some small
initial energy assumption. In fact, by combining the results by Struwe [32] and Chang [1], one can
get a global weak solution of (1.7-1.8) from a compact Riemann surface with Dirichlet boundary
condition (1.9), which is C2 except at finitely many singularities. For other results for the harmonic
map flow with Dirichlet boundary, see [7, 2, 4]. For results of other harmonic map type flows with
Dirichlet boundary, we mention [3, 10]. The existence of a global weak solution of the harmonic
map flow (1.7-1.8) with free boundary was studied by Ma [24] and the corresponding blow-up
theory was further explored in [11].

Let u : M × (0,∞) → N be a global weak solution to (1.7-1.9), which is C2 away from a finite
number of singular points {(xi, ti)} ⊂ M × (0,∞). In fact, there holds

(1.10) u(x, t) ∈ C2,1,α
loc (M × (0,∞) \ {(xi, ti)}) ∩C∞((M \ ∂M) × (0,∞) \ {(xi, ti)}).

Similarly to the closed surface case (see e.g. [21, 27, 28]) and the free boundary case [11], we shall
complete the qualitative picture at the singularities of this flow, where bubbles (nontrivial harmonic
spheres) split off.

At infinite time, we have the following

Theorem 1.3. There exist a harmonic map u∞ : M → N with Dirichlet boundary u∞|∂M = ϕ, a
finite number of harmonic spheres {ωi}

m
i=1 and sequences {xi

n}
m
i=1 ⊂ M, {λi

n}
m
i=1 ⊂ R+ and {tn} ⊂ R+

such that

lim
t↗∞

E(u(·, t),M) = E(u∞,M) +

m∑
i=1

E(ωi)(1.11)

and

‖u(·, tn) − u∞(·) −
m∑

i=1

ωi
n(·)‖L∞(M) → 0(1.12)
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as n→ ∞, where ωi
n(·) = ωi

(
·−xi

n
λi

n

)
− ωi(∞).

For finite time blow-ups, we have

Theorem 1.4. Let T0 < ∞ and u ∈ C2,1,α
loc (M × (0,T0),N) be a solution to (1.7-1.9) with T0 as its

singular time. Then there exist finitely many harmonic spheres {ωi}
l
i=1 such that

lim
t↗T0

E(u(·, t),M) = E(u(·,T0),M) +

l∑
i=1

E(ωi).(1.13)

This paper is organized as follows. In Section 2, we recall some well-known results which will
be used in this paper. Moreover, we prove some basic lemmas, such as the small energy regularity,
removable singularity theorem, Pohozaev’s identity in the Dirichlet boundary case. In Section 3,
we prove Theorem 1.1 by decomposing the neck domain into several parts including some annulus
and some half annulus centered at the boundary, which is similar to the idea in [11]. Combining
Theorem 1.1 with the classical interior blow-up theory of harmonic maps, we can then complete
the proof of Theorem 1.2. In Section 4, we apply Theorem 1.2 to the harmonic map flow with
Dirichlet boundary and prove Theorem 1.3 and Theorem 1.4.

Notation: Dr(x0) denotes the closed ball in R2 of radius r and center x0. Denote

D+
r (x0) := {x = (x1, x2) ∈ Dr(x0)|x2 ≥ 0},D−r (x0) := {x = (x1, x2) ∈ Dr(x0)|x2 ≤ 0},

∂+Dr(x0) := {x = (x1, x2) ∈ ∂Dr(x0)|x2 ≥ 0}, ∂−Dr(x0) := {x = (x1, x2) ∈ ∂Dr(x0)|x2 ≤ 0},

∂0D+
r (x0) = ∂0D−r (x0) := ∂D+

r (x0) \ ∂+Dr(x0).

Suppose a ≥ 0 is a constant, denote

R2
a := {(x1, x2)|x2 ≥ −a} and R2+

a := {(x1, x2)|x2 > −a}.

For simplicity, we denote Dr = Dr(0), D = D1(0), D+
r = D+

r (0), D+ = D+
1 (0), and R2

+ = R2
a when

a = 0.
In this paper, ∆g denotes the Laplace-Beltrami operator on the Riemannian manifold (M, g) and

∆ := ∂2
x + ∂2

y denotes the usual Laplace operator on R2.

2. Some basic lemmas

In this section, we will first recall some well known results that are useful for our problem. Then
we will prove some basic lemmas for the Dirichlet boundary case, such as small energy regularity,
removable singularity and Pohozaev’s identity.

First, we recall the interior small energy regularity result (see [6, 17]).

Lemma 2.1. Let u ∈ W2,p(D,N), 1 < p ≤ 2 be a map with tension field τ(u) ∈ Lp(D). There exist
constants ε1 = ε1(p,N) > 0 and C = C(p,N) > 0, such that if ‖∇u‖L2(D) ≤ ε1, then

(2.1) ‖u − u(0)‖W2,p(D1/2) ≤ C(p,N)(‖∇u‖Lp(D) + ‖τ(u)‖Lp(D)).
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Moreover, by the Sobolev embedding W2,p(R2) ⊂ C0(R2), we have

(2.2) ‖u‖Osc(D1/2) = sup
x,y∈D1/2

|u(x) − u(y)| ≤ C(p,N)(‖∇u‖Lp(D) + ‖τ(u)‖Lp(D)).

Secondly, we recall a gap theorem for the case of a closed domain.

Lemma 2.2 ([5]). There exists a constant ε0 = ε0(M,N) > 0 such that if u is a smooth harmonic
map from a closed Riemann surface M to a compact Riemannian manifold N, satisfying∫

M
|∇u|2dvol ≤ ε0,

then u is a constant map.

Thirdly, we state a removable singularity result.

Theorem 2.3. If u : D \ {0} → N is a W2,p
loc (D \ {0}) map for some 1 < p ≤ 2 with finite energy and

satisfies

(2.3) τ(u) = g ∈ Lp(D,T N), in D \ {0},

then u can be extended to a map in W2,p(D,N).
Moreover, if u : D+ \ {0} → N is a W2,p

loc (D+ \ {0}) map for some 1 < p ≤ 2 with finite energy and
with Dirichlet boundary u|∂0D+ = ϕ ∈ W1,p(∂0D+), satisfying

(2.4) τ(u) = g ∈ Lp(D+,T N), in D+ \ {0},

then u can be extended to a map in W2,p(D+,N).

Proof. For the interior case, one can refer to [19]. For the boundary case, one can also use a similar
method as in [19] to get the conclusion. Here, we use the regularity theory to prove it.

In fact, on one hand, it is easy to see that u is a weak solution of (2.4) in D+. On the other hand,
it is well known that the equation (2.4) can be written as an elliptic system with an anti-symmetric
potential (see [29])

∆u = Ω · ∇u + g
with Ω ∈ L2(D+, so(N) ⊗ R2) and g ∈ Lp(D+,T N) for 1 < p ≤ 2. By taking pure Dirichlet
conditions in the boundary regularity Theorem 1.2 in [31] (or see Remark 1.3 in [25]), we know
u ∈ W2,p(D+

r ,N) for some small r > 0 and hence u ∈ W2,p(D+,N). �

Fourthly, we prove a small energy regularity lemma near the boundary. Here and in the sequel,
we shall view ϕ as the restriction of some C2+α(M,N) map on ∂M and for simplicity, we still denote
this map by ϕ.

Lemma 2.4. Let u ∈ W2,p(D+,N), 1 < p ≤ 2 be a map with tension field τ(u) ∈ Lp(D+) and with
Dirichlet boundary u|∂0D+ = ϕ(x), where ϕ ∈ C2+α(D). There exists ε2 = ε2(p,N) > 0, such that if
‖∇u‖L2(D+

1 ) ≤ ε2, then

(2.5) ‖u −
1
2

∫
∂0D+

ϕ‖W2,p(D+
1/2) ≤ C(p,N)(‖∇u‖Lp(D+) + ‖∇ϕ‖W1,p(D+) + ‖τ(u)‖Lp(D+)).
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Moreover, by the Sobolev embedding W2,p(R2) ⊂ C0(R2), we have

(2.6) ‖u‖Osc(D+
1/2) = sup

x,y∈D+
1/2

|u(x) − u(y)| ≤ C(p,N)(‖∇u‖Lp(D+) + ‖∇ϕ‖W1,p(D+) + ‖τ(u)‖Lp(D+)).

Proof. Without loss of generality, we assume 1
2

∫
∂0D+

1
ϕdx = 0.

Choosing a cut-off function η ∈ C∞0 (D+) satisfying 0 ≤ η ≤ 1, η|D+
3/4
≡ 1, |∇η| + |∇2η| ≤ C and

computing directly, we get

|∆(ηφ)| = |η∆φ + 2∇η∇φ + φ∆η|

≤ C (|φ| + |dφ| + |dφ||ηdφ| + |τ|)
≤ C|dφ||d(ηφ)| + C (|φ| + |dφ| + |τ|) .(2.7)

Assume first that 1 < p < 2, by standard elliptic estimates and Poincare’s inequality, we obtain

‖ηφ‖W2,p(D) ≤ C‖|dφ||d(ηφ)|‖Lp(D) + C(‖φ‖W1,p(D) + ‖|ϕ|‖W2,p(D) + ‖|τ|‖Lp(D))
≤ C‖d(ηφ)‖

L
2p

2−p (D)
‖dφ‖L2(D) + C(‖dφ‖Lp(D) + ‖∇ϕ‖W1,p(D) + ‖|τ|‖Lp(D))

≤ Cε2‖d(ηφ)‖
L

2p
2−p (D)

+ C(‖dφ‖Lp(D) + ‖∇ϕ‖W1,p(D) + ‖|τ|‖Lp(D)).

Taking ε2 > 0 sufficiently small, we have

‖φ‖W2,p(D3/4) ≤ ‖ηφ‖W2,p(D) ≤ C(‖dφ‖Lp(D) + ‖∇ϕ‖W1,p(D) + ‖τ‖Lp(D)).(2.8)

So, we have proved the lemma in the case 1 < p < 2.
Next, if p = 2, one can first derive the above estimate with p = 4

3 . Such an estimate gives a
L4(D+

3/4)− bound for ∇u. Then one can apply the W2,2−boundary estimate to the equation and get
the conclusion of the lemma with p = 2. �

Next, we compute the Pohozaev identity near the Dirichlet boundary.

Lemma 2.5. For x0 ∈ ∂
0D+, let u(x) ∈ W2,2(D+(x0)) be a map with tension field τ(u) ∈ L2(D+(x0))

and with Dirichlet boundary data ϕ(x) on ∂0D+(x0). Then, for any 0 < t < 1, there holds∫
∂+D+

t (x0)
r(|
∂u
∂r
|2 −

1
2
|∇u|2) =

∫
∂+(D+

t (x0))

∂u
∂r
· rϕr +

∫
D+

t (x0)
r
∂(u − ϕ)
∂r

τdx −
∫

D+
t (x0)
∇eαu · ∇eα(rϕr)dx

+

∫
D+

t (x0)
A(u)(∇u,∇u) · (rϕr)dx(2.9)

where (r, θ) ∈ (0, 1) × (0, π) are the polar coordinates at x0.

Proof. Multiplying (x − x0)∇(u − ϕ) to both sides of the equation

τ = ∆u + A(u)(∇u,∇u) a.e. x ∈ D+(x0)
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and integrating by parts, for any 0 < t < 1, we get∫
D+

t (x0)
τ · ((x − x0)∇(u − ϕ))dx

=

∫
D+

t (x0)
∆u · ((x − x0)∇(u − ϕ))dx −

∫
D+

t (x0)
A(u)(∇u,∇u) · ((x − x0)∇ϕ)dx

=

∫
∂(D+

t (x0))

∂u
∂n
· ((x − x0)∇(u − ϕ)) −

∫
D+

t (x0)
∇eαu · ∇eα((x − x0)∇(u − ϕ))dx

−

∫
D+

t (x0)
A(u)(∇u,∇u) · ((x − x0)∇ϕ)dx

:=I + II + III,(2.10)

where −→n (x) is the outward unite normal vector field for a.e. x ∈ ∂(D+
t (x0)).

Since u(x) satisfies the Dirichlet boundary condition u|∂0D+ = ϕ, we have

I =

∫
∂+(D+

t (x0))

∂u
∂n
· ((x − x0)∇(u − ϕ))

=

∫
∂+(D+

t (x0))
r|
∂u
∂r
|2 −

∫
∂+(D+

t (x0))
r
∂u
∂r
·
∂ϕ

∂r
.(2.11)

Computing directly and integrating by parts, we get

II = −

∫
D+

t (x0)
|∇u|2dx −

1
2

∫
D+

t (x0)
(x − x0) · ∇|∇u|2dx +

∫
D+

t (x0)
∇eαu · ∇eα((x − x0)∇ϕ)dx

= −
1
2

∫
∂(D+

t (x0))
〈x − x0,

−→n 〉|∇u|2 +

∫
D+

t (x0)
∇eαu · ∇eα((x − x0)∇ϕ)dx

= −

∫
∂+(D+

t (x0))
r

1
2
|∇u|2 +

∫
D+

t (x0)
∇eαu · ∇eα(rϕr)dx,(2.12)

where the last equality follows from the fact that 〈x− x0,
−→n 〉 = 0 on ∂0D+

t (x0). Then the conclusion
of the lemma immediately follows from (2.10), (2.11) and (2.12). �

Corollary 2.6. Under the assumptions of Lemma 2.5, we have∫
D+

2t(x0)\D+
t (x0)

(|
∂u
∂r
|2 −

1
2
|∇u|2)dx ≤ Ct,

where C = C(‖∇ϕ‖C1 , ‖∇u‖L2(D+), ‖τ(u)‖L2(D+)) is a positive constant.
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Proof. From Lemma 2.5, we have∫
∂+D+

t (x0)
(|
∂u
∂r
|2 −

1
2
|∇u|2)

=
1
t
( ∫

∂+(D+
t (x0))

∂u
∂r
· rϕr +

∫
D+

t (x0)
r
∂(u − ϕ)
∂r

τdx −
∫

D+
t (x0)
∇eαu · ∇eα(rϕr)dx

+

∫
D+

t (x0)
A(u)(∇u,∇u) · (rϕr)dx

)
≤ C

( ∫
∂+(D+

t (x0))
|∇u| + ‖∇(u − ϕ)‖L2(D+

t (x0))‖τ‖L2(D+
t (x0)) +

1
t

∫
D+

t (x0)
|∇u|dx +

∫
D+

t (x0)
|∇u|2dx

)
≤ C

∫
∂+(D+

t (x0))
|∇u| + C.

Integrating from t to 2t, we will get the conclusion of the corollary from Hölder’s inequality. �

3. Energy identity and no neck property

In this section, we shall use the idea of [11] to prove Theorem 1.1 and Theorem 1.2. Due to the
pointwise constraint of the Dirichlet boundary condition and Theorem 3.2 in [16], a harmonic disk
cannot occur in the blow-up process which is different from the free boundary case in [11]. The
key point is that we decompose the neck domain into some interior annulus and some half annulus
centered at the points on the boundary (see section 5 in [11]).

Proof of Theorem 1.1. By the assumption of Theorem 1.1, we may assume that 0 is the only blow-
up point (energy concentration point) of the sequence {un} in D+, i.e.

(3.1) lim inf
n→∞

E(un; D+
r ) ≥

ε2

4
for all r > 0

where ε = min{ε1, ε2}. According to the standard argument of blow-up analysis, for any n, there
exist sequences xn → 0 and rn → 0 such that

(3.2) E(un; D+
rn

(xn)) = sup
x∈D+,r≤rn
D+

r (x)⊂D+

E(un; D+
r (x)) =

ε2

8
.

Denoting dn = dist(xn, ∂
0D+), firstly we make the following

Claim 1: lim supn→∞
dn
rn

= ∞.

In fact, if not, then we have lim supn→∞
dn
rn
< ∞ and by taking a subsequence, we may assume

limn→∞
dn
rn

= a ≥ 0. Define
vn(x) := un(xn + rnx)
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and
Bn := {x ∈ R2|xn + rnx ∈ D+}.

Then we know
Bn → R

2
a := {(x1, x2)|x2 ≥ −a}

and for any x ∈ {x2 = −a} on the boundary, xn + rnx→ 0 as n→ ∞.
It is easy to see that vn(x) lives in Bn and satisfies

τ(vn(x)) = ∆vn(x) + A(vn(x))(∇vn(x),∇vn(x)) in Bn;(3.3)

vn(x) = ϕ(xn + rnx), if xn + rnx ∈ ∂0D+,(3.4)

where τ(vn(x)) = r2
nτ(un(x)).

By (3.2), Lemma 2.1 and Lemma 2.4, we get

(3.5) ‖vn‖W2,2(DR(0)∩Bn) ≤ C(R,N)

for any DR(0) ⊂ R2. Then there exist a subsequence of vn (also denoted by vn) and a harmonic map
v ∈ W2,2(R2

a) with constant boundary v|∂R2
a

= ϕ(0) such that

lim
n→∞
‖vn(x) − v(x)‖W1,2(Dn(0)∩Bn) = 0.

In addition, by 3.2, we have E(v; D1(0)∩R2
a) = ε2

8 . However by [16], we know v is a constant map.
This is a contradiction. Thus, we proved our Claim 1.

Under the condition that lim supn→∞
dn
rn

= ∞, we can see that vn(x) lives in Bn which tends to R2

as n→ ∞. Moreover, for any x ∈ R2, when n is sufficiently large, by (3.2), we have

(3.6) E(vn; D1(x)) ≤
ε2

8
.

By Lemma 2.1, we get
‖vn‖W2,2(DR(0)) ≤ C(R,N).

Thus, there exist a subsequence of vn (we still denote it by vn) and a harmonic map v1(x) ∈
W1,2(R2,N) such that, as n→ ∞,

(3.7) vn(x) ⇀ v1(x) weakly in W2,2
loc (R2), and vn(x)→ v1(x) strongly in W1,2

loc (R2).

Besides, we know E(v1; D1(0)) = ε2

8 . By a standard property of harmonic maps, v1(x) can be
extended to a nontrivial harmonic sphere. We call the above harmonic sphere v1(x) the first bubble.

Noting that xn → 0 and the assumption of Theorem 1.1, we have

lim
δ→0

lim
n→∞

E(un; D+ \ D+
δ (xn)) = E(u; D+).

So, by (3.7), the energy identity is equivalent to

(3.8) lim
R→∞

lim
δ→0

lim
n→∞

E(un; D+
δ (xn) \ D+

rnR(xn)) = 0.

To prove the no neck property, i.e. the image of the sets u(D+) and v(R2 ∪∞) are connected in the
target manifold, it is enough to show that

(3.9) lim
R→∞

lim
δ→0

lim
n→∞
‖un‖Osc

(
D+
δ (xn)\D+

rnR(xn)
) = 0.
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We will split the proof of Theorem 1.1 into two parts, energy identity and no neck property.
Now, we begin to prove the energy identity.

Energy identity : By the standard induction argument in [6], we just need to prove the theorem in
the case where there is only one bubble v(x) which is the strong limit of un(xn + rnx) in W1,2

loc (R2).

Under the “one bubble” assumption, we first make the following:

Claim 2: for any ε > 0, there exist δ > 0 and R > 0 such that

(3.10)
∫

D+
8t(xn)\D+

t (xn)
|∇un|

2dx ≤ ε2 for any t ∈ (
1
2

rnR, 2δ)

when n is large enough.
In fact, if (3.10) is not true, then there exist a positive constant ε3 and a sequence tn → 0, such

that limn→∞
tn
rn

= ∞ and

(3.11)
∫

D+
8tn

(xn)\D+
tn (xn)
|∇un|

2dx ≥ ε3 > 0.

Passing to a subsequence, we may assume

lim
n→∞

dn

tn
= b ∈ [0,∞].

Set
wn(x) := un(xn + tnx)

and
B′n := {x ∈ R2|xn + tnx ∈ D+}.

It is easy to see that wn(x) lives in B′n and 0 is also an energy concentration point for wn. We need
to consider the following two cases:

(a) b < ∞.

Then B′n tends to R2
b as n→ ∞. Here, we also need to consider two cases.

(a-1) wn has no other energy concentration points except 0.

By Lemma 2.1, Lemma 2.4 and Theorem 2.3, passing to a subsequence, we may assume that wn

converges to a harmonic map w(x) : R2
b → N with constant boundary data w|∂R2

+
= ϕ(0) satisfying

sup
λ>0

lim
n→∞
‖wn(x) − w(x)‖

W1,2
(

(Dn(0)∩B′n)\Dλ(0)
) = 0.

According to [16], w(x) ia a constant map. However, (3.11) implies

(3.12)
∫

(D8\D1)∩B′n

|∇w|2dx = lim
n→∞

∫
(D8\D1)∩B′n

|∇wn|
2dx ≥ ε3 > 0.
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This is a contradiction.

(a-2) wn has another energy concentration point p , 0.

Without loss of generality, we may assume p is the only energy concentration point in Dr0(p)
for some r0 > 0. By the process of constructing the first bubble, there exist sequences x′n → p and
r′n → 0 such that

(3.13) E(wn; D+
r′n

(x′n) ∩ B′n) = sup
x∈D+

r0
(p),r≤r′n

D+
r (x)⊂D+

r0
(p)

E(wn; D+
r (x) ∩ B′n) =

ε2

8
.

By (3.2), we have r′ntn ≥ rn. Then, by taking a subsequence, we may assume limn→∞
dn

r′ntn
= d ∈

[0,∞]. Furthermore, we know d must be∞ (the proof is the same as for Claim 1). Then similar to
the process of constructing the first bubble, there exists a nontrivial harmonic map v2(x) : R2 → N
such that, passing to a subsequence,

lim
n→∞
‖wn(x′n + r′nx) − v2(x)‖W1,2(DR(0)) = 0

for any R > 0. This is

lim
n→∞
‖un(xn + tnx′n + tnr′nx) − v2(x)‖W1,2(DR(0) = 0.(3.14)

So, v2(x) is also a bubble for the sequence un. This also contradicts the “one bubble” assumption.

(b) b = ∞.

In this case, B′n will tend to R2 as n→ ∞. Again, we need to consider the following two cases.

(b-1) wn has no other energy concentration points except 0.

According to (3.11), Lemma 2.1 and Theorem 2.3, we know that there exists v2(x) : R2 → N
which is a nontrivial harmonic map such that, passing to a subsequence,

wn(x)→ v2(x) in W1,2
loc (R2 \ {0}).

Then, we get the second bubble v2(x) which contradicts the “one bubble” assumption.

(b-2) wn has another energy concentration point p , 0.

Similar to Case (a-2), there exist sequences x′n → p and r′n → 0 satisfying (3.13) and

lim
n→∞

dn

r′ntn
= ∞.

Moreover, by the process of constructing the first bubble, there exists a nontrivial harmonic map
v2(x) : R2 → N such that

wn(x′n + r′nx)→ v2(x) strongly in W1,2
loc (R2),
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that is
un(xn + tnx′n + tnr′nx)→ v2(x) strongly in W1,2

loc (R2).
So, we get the second bubble v2(x). This also contradicts the “one bubble” assumption. Thus, we
proved Claim 2.

Suppose x′n ∈ ∂0D+ is the projection of xn, i.e. dn = dist(xn, ∂
0D+) = |xn − x′n|. Then, we

decompose the neck domain D+
δ (xn) \ D+

rnR(xn) as in [11] as follows

D+
δ (xn) \ D+

rnR(xn) = D+
δ (xn) \ D+

δ
2
(x′n) ∪ D+

δ
2
(x′n) \ D+

2dn
(x′n)

∪ D+
2dn

(x′n) \ D+
dn

(xn) ∪ D+
dn

(xn) \ D+
rnR(xn)

:= Ω1 ∪Ω2 ∪Ω3 ∪Ω4,(3.15)

when n and R are large.
Noting that limn→∞ dn = 0 and limn→∞

dn
rn

= ∞, then we have

Ω1 ⊂ D+
δ (xn) \ D+

δ
4
(xn), and Ω3 ⊂ D+

4dn
(xn) \ D+

dn
(xn)

when n is large enough. Moreover, for any 2dn ≤ t ≤ 1
2δ, there holds

D+
2t(x′n) \ D+

t (x′n) ⊂ D+
4t(xn) \ D+

t/2(xn).

According to assumption (3.10), we have

(3.16) E(un; Ω1) + E(un; Ω3) ≤ ε2

and

(3.17)
∫

D+
2t(x′n)\D+

t (x′n)
|∇un|

2dx ≤ ε2 for any t ∈ (2dn,
1
2
δ).

By Lemma 2.1, Lemma 2.4 and the standard scaling argument, we have

OscD+
2t(x′n)\D+

t (x′n)un ≤ C(‖∇un‖L2(D+
4t(x′n)\D+

t/2(x′n)) + ‖∇ϕ‖L2(D+
4t(x′n)\D+

t/2(x′n))

+ t‖∇2ϕ‖L2(D+
4t(x′n)\D+

t/2(x′n)) + t‖τ(un)‖L2(D+
4t(x′n)\D+

t/2(x′n)))(3.18)

for any t ∈ (2rnR, 1
2δ).

Since Ω4 = D+
dn

(xn) \ D+
rnR(xn) = Ddn(xn) \ DrnR(xn), by the standard blow-up analysis theory of

harmonic maps with interior blow-up points, we have

(3.19) lim
R→∞

lim
n→0

E(un; Ddn(xn) \ DrnR(xn)) = 0.

and

(3.20) lim
R→∞

lim
n→0

Osc(un)Ddn (xn)\DrnR(xn) = 0.

See [6, 17, 28] for details.
Thus, we just need to estimate the energy concentration in Ω2.
Define Ω̂2 := D δ

2
(x′n) \ D2dn(x′n), µn(x) := un(x) − ϕ(x), x ∈ Ω2 and

µ̂n(x) :=

µn(x), x ∈ Ω2,

−µn(x′), x ∈ Ω̂2 \Ω2,
(3.21)



14 JOST, LIU, AND ZHU

where x = (x1, x2) and x′ = (x1,−x2). It is easy to see that µ̂n(x) ∈ W2,2(Ω̂2) and satisfies the
following equation

∆µ̂n(x) =

A(un(x))(∇un(x),∇un(x)) + τ(un)(x) − ∆ϕ(x), x ∈ Ω2,

−A(un(x′))(∇un(x′),∇un(x′)) − τ(un)(x′) + ∆ϕ(x′), x ∈ Ω̂2 \Ω2.
(3.22)

Set

µ̂n
∗(r) :=

1
2π

∫ 2π

0
µ̂n(r, θ)dθ,

where (r, θ) is the polar coordinates at x′n. By (3.18) and (3.21), we have

(3.23) ‖µ̂n(x) − µ̂n
∗(x)‖L∞(Ω̂2) ≤ ‖µ̂n(x)‖Osc(Ω̂2) ≤ 2‖µn(x)‖Osc(Ω2) ≤ C(N,Λ, ‖ϕ‖C2)(ε + δ).

Without loss of generality, we may assume 1
2δ = 2mn(2dn), where mn is a positive integer which

tends to∞ as n→ ∞. Setting Pi := D+

2i+1dn
(x′n) \ D+

2idn
(x′n) and P̂i := D2i+1dn(x′n) \ D2idn(x′n), then we

have ∫
P̂i

∇µ̂n∇(µ̂n − µ̂n
∗) =

∫
∂P̂i

(µ̂n − µ̂n
∗)
∂µ̂n

∂r
−

∫
P̂i

(un − u∗n)∆µ̂n.

On the one hand, by Jessen’s inequality, we get∫
P̂i

∇µ̂n∇(µ̂n − µ̂n
∗) =

∫
P̂i

|∇µ̂n|
2 −

∫
P̂i

∂µ̂n

∂r
∂µ̂n

∗

∂r

≥

∫
P̂i

|∇µ̂n|
2 − (

∫
P̂i

|
∂µ̂n

∂r
|2)

1
2 (
∫

P̂i

|
∂µ̂n

∗

∂r
|2)

1
2

≥

∫
P̂i

|∇µ̂n|
2 −

∫
P̂i

|
∂µ̂n

∂r
|2

=
1
2

∫
P̂i

|∇µ̂n|
2 −

∫
P̂i

(|
∂µ̂n

∂r
|2 −

1
2
|∇µ̂n|

2)

=

∫
Pi

|∇µn|
2 − 2

∫
Pi

(|
∂µn

∂r
|2 −

1
2
|∇µn|

2).

By direct computation, we obtain∫
Pi

|∇µn|
2 − 2

∫
Pi

(|
∂µn

∂r
|2 −

1
2
|∇µn|

2) =

∫
Pi

|∇un|
2 − 2

∫
Pi

(|
∂un

∂r
|2 −

1
2
|∇un|

2)

+ 4
∫

Pi

(
∂un

∂r
∂ϕ

∂r
− ∇un∇ϕ) + 2

∫
Pi

(|∇ϕ|2 − |
∂ϕ

∂r
|2)

≥

∫
Pi

|∇un|
2 − 2

∫
Pi

(|
∂un

∂r
|2 −

1
2
|∇un|

2) −C2idn.

On the other hand, according to (3.23) and equation (3.22), we have

−

∫
P̂i

∆µ̂n(µ̂n − µ̂n
∗)dx ≤ C(ε + δ)

∫
Pi

|∇un|
2dx + C(ε + δ)

∫
Pi

(|τ(un)| + |∆ϕ|)dx

≤ C(ε + δ)
∫

Pi

|∇un|
2dx + C(ε + δ)(‖τn‖L2(Pi) + ‖ϕ‖C2)2idn.
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Therefore,

(1 −C(ε + δ))
∫

Pi

|∇un|
2dx

≤

∫
∂P̂i

∂µ̂n

∂n
(µ̂n − µ̂n

∗) + 2
∫

Pi

(|
∂un

∂r
|2 −

1
2
|∇un|

2)dx + C2idn

≤

∫
∂P̂i

∂µ̂n

∂n
(µ̂n − µ̂n

∗) + C2idn,(3.24)

where the last inequality follows from Corollary 2.6.
Summing i from 1 to mn, we obtain

(1 −C(ε + δ))
∫

Ω2

|∇un|
2 ≤

∫
∂Dδ/2(x′n)

(µ̂n − µ̂n
∗)
∂µ̂n

∂r
−

∫
∂D2dn (x′n)

(µ̂n − µ̂n
∗)
∂µ̂n

∂r
+ Cδ.(3.25)

As for the boundary term, using (3.23) and the trace theory, we get∫
∂Dδ/2(x′n)

(µ̂n − µ̂n
∗)
∂µ̂n

∂r
≤ C(ε + δ)

∫
∂Dδ/2(x′n)

|∇µ̂n| ≤ C(ε + δ)
∫
∂+Dδ/2(x′n)

|∇µn|

≤ C(ε + δ)
∫
∂+Dδ/2(x′n)

(|∇un| + |∇ϕ|)

≤ C(ε + δ)
(
‖∇un‖L2(D+

δ (x′n)\D+
1
4 δ

(x′n)) + δ‖∇2un‖L2(D+
δ (x′n)\D+

1
4 δ

(x′n)) + 1
)

≤ C(ε + δ)
(
‖∇un‖L2(D+

4
3 δ

(xn)\D+
1
6 δ

(xn)) + ‖∇ϕ‖L2(D+
4
3 δ

(xn)\D+
1
6 δ

(xn))

+ δ‖∇2ϕ‖L2(D+
4
3 δ

(xn)\D+
1
6 δ

(xn)) + δ‖τn‖L2(D+
4
3 δ

(xn)\D+
1
6 δ

(xn)) + 1
)

≤ C(ε + δ),

where the second to last inequality follows from Lemma 2.1 and Lemma 2.4.
Also, there holds ∫

∂+D2dn (x′n)
(un − u∗n)

∂un

∂r
≤ C(ε + δ).

Combining these results and taking ε and δ in (3.25) sufficiently small, we have∫
Ω2

|∇un|
2dx ≤ C(δ + ε).(3.26)

By (3.16), (3.19) and (3.26), we get (3.8) and we proved the energy identity.

Next, we will show that the base map and the bubbles are connected in the target manifold, i.e.,
the no neck property in Theorem 1.1.

No neck property: Following the same argument as in the energy identity part, we can decompose
the neck domain D+

δ (xn) \ D+
rnR(xn) = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 as in (3.15), when n and R are large.

Then, thanks to the no neck results (3.20) (see [28, 17]), we just need to prove that (3.9) holds in
Ω1 ∪Ω2 ∪Ω3.
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By assumption (3.10), Lemma 2.1 and Lemma 2.4, we have

‖un‖Osc(D+
δ (xn)\D+

δ
4

(x′n)) ≤ ‖un‖Osc(D+
δ (xn)\D+

δ
5

(xn))

≤ C
(
‖∇un‖L2(D+

4δ
3

(xn)\D+
δ
6

(xn)) + δ‖τn‖L2(D+
4δ
3

(xn)\D+
δ
6

(xn))

+ ‖∇ϕ‖L2(D+
4δ
3

(xn)\D+
δ
6

(xn)) + δ‖∇2ϕ‖L2(D+
4δ
3

(xn)\D+
δ
6

(xn))
)

≤ C(ε + δ)(3.27)

and

‖un‖Osc(D+
4dn

(x′n)\D+
dn

(xn)) ≤ ‖un‖Osc(D+
5dn

(xn)\D+
dn

(xn))

≤ C
(
‖∇un‖L2(D+

6dn
(xn)\D+

3dn
4

(xn)) + dn‖τn‖L2(D+
6dn

(xn)\D+
3dn

4
(xn))

+ ‖∇ϕ‖L2(D+
6dn

(xn)\D+
3dn

4
(xn)) + dn‖∇

2ϕ‖L2(D+
6dn

(xn)\D+
3dn

4
(xn))

)
≤ C(ε + δ),(3.28)

when n, R are large and δ is small.
Similarly, we may assume 1

2δ = 2mn2dn. Define Q(t) := D+
2t0+t2dn

(x′n) \ D+
2t0−t2dn

(x′n), Q̂(t) :=
D2t0+t2dn(x′n) \ D2t0−t2dn(x′n) and

f (t) :=
∫

Q(t)
|∇un|

2dx,

where 0 ≤ t0 ≤ mn and 0 ≤ t ≤ min{t0,mn − t0}.
Similar to the proof of (3.24) and (3.25), we get

(1 −C(ε + δ))
∫

Q(t)
|∇un|

2dx ≤
∫
∂Q̂(t)

∂µ̂n

∂n
(µ̂n − µ̂n

∗) + C2t0+tdn.(3.29)

As for the boundary, by Hölder’s inequality and Poincare’s inequality, we have∫
∂D2t0+t2dn

(x′n)

∂µ̂n

∂n
(µ̂n − µ̂n

∗) ≤ (
∫
∂D2t0+t2dn

(x′n)
|
∂µ̂n

∂r
|2)

1
2 (
∫
∂+D2t0+t2dn

(x′n)
|µ̂n − µ̂n

∗
|2)

1
2

≤ C(
∫
∂D2t0+t2dn

(x′n)
|
∂µ̂n

∂r
|2)

1
2 (2t0+tdn

∫ 2π

0
|
∂µ̂n

∂θ
|2)

1
2

≤ C2t0+tdn

∫
∂D+

2t0+t2dn
(x′n)
|∇µ̂n|

2

≤ C2t0+tdn

∫
∂+D+

2t0+t2dn
(x′n)
|∇µn|

2

≤ C2t0+tdn

∫
∂+D+

2t0+t2dn
(x′n)
|∇un|

2 + C(2t0+tdn)2.

Similarly, ∫
∂D2t0−t2dn

(x′n)

∂µ̂n

∂n
(µ̂n − µ̂n

∗) ≤ C2t0−tdn

∫
∂+D+

2t0−t2dn
(x′n)
|∇un|

2 + C(2t0−tdn)2.
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Combining these, we obtain

(1 −C(ε + δ))
∫

Q(t)
|∇un|

2dx

≤ C2t0+t2dn

∫
∂+(D+

2t0+t2dn
(x′n))
|∇un|

2 + C2t0−t2dn

∫
∂+(D+

2t0−t2dn
(x′n))
|∇un|

2 + C2t0+tdn.(3.30)

Taking ε and δ sufficiently small, then we have∫
Q(t)
|∇un|

2dx ≤ C2t0+t2dn

∫
∂+(D+

2t0+t2dn
(x′n))
|∇un|

2 + C2t0−t2dn

∫
∂+(D+

2t0−t2dn
(x′n))
|∇un|

2 + C2t0+tdn.

So, we get

(3.31) f (t) ≤
C

log 2
f ′(t) + C2t0+tdn.

Therefore,

(2−
1
C t f (t))′ ≥ −C2t0+(1−1/C)tdn.

Integrating from 2 to L, we arrive at

f (2) ≤ C2−
1
C L f (L) + C2t0dn

∫ L

2
2(1−1/C)tdt ≤ C2−

1
C L f (L) + C2t0dn2(1−1/C)L.

Let t0 = i and L = Li := min{i,mn−i}. Noting that Q(Li) ⊂ D+
δ/2(x′n)\D+

2dn
(x′n) ⊂ D+

δ (xn)\D+
rnR(xn),

we have ∫
D+

2i+22dn
(x′n)\D+

2i−22dn
(x′n)
|∇un|

2dx

≤ CE(un,D+
δ (xn) \ D+

rnR(xn))2−
1
C Li + C2idn2(1−1/C)Li

≤ CE(un,D+
δ (xn) \ D+

rnR(xn))2−
1
C Li + C2idn2(1−1/C)(mn−i)

≤ CE(un,D+
δ (xn) \ D+

rnR(xn))2−
1
C Li + Cδ2(−1/C)(mn−i)

≤ Cε2−
1
C Li + Cδ2(−1/C)(mn−i),

where the last inequality follows from the energy identity (3.8).
By Lemma 2.1 and Lemma 2.4, we obtain

OscD+

2i+12dn
(x′n)\D+

2i−12dn
(x′n)un ≤ C

(
‖∇un‖L2(D+

2i+22dn
(x′n)\D+

2i−22dn
(x′n)) + ‖∇ϕ‖L2(D+

2i+22dn
(x′n)\D+

2i−22dn
(x′n))

+ 2i+2dn‖∇
2ϕ‖L2(D+

2i+22dn
(x′n)\D+

2i−22dn
(x′n)) + 2i+2dn‖τn‖L2(D+

2i+22dn
(x′n)\D+

2i−22dn
(x′n))

)
≤ C

(
‖∇un‖L2(D+

2i+22dn
(x′n)\D+

2i−22dn
(x′n)) + 2idn

)
.



18 JOST, LIU, AND ZHU

Summing over i from 2 to mn − 2, we get

‖un‖Osc(D+
δ/4(x′n)\D+

4dn
(x′n)) ≤

mn−2∑
i=2

‖un‖Osc(D+

2i+12dn
(x′n)\D+

2i−12dn
(x′n))

≤ C
mn−2∑
i=2

(
ε2−

1
C Li + δ2(−1/C)(mn−i) + 2idn

)
≤ C

mn−2∑
i=2

2−
1
C i(ε + δ) + Cδ ≤ C(ε + δ).

Combining this inequality with (3.27), (3.28), we get (3.9). Thus, we have proved that there is no
neck during the blow-up process and finished the proof of Theorem 1.1. �

Now, we can prove Theorem 1.2.

Proof of Theorem 1.2. By the blow-up theory of a sequence of maps from a closed Riemann sur-
face with uniformly L2 bounded tension fields and with uniformly bounded energy developed in
[6, 17, 21, 28, 23] and Theorem 1.1, the conclusion of Theorem 1.2 follows from applying the
standard blow-up scheme as in [6]. �

4. Application to the harmonic map flow with Dirichlet boundary

With the help of the results in Theorem 1.2, we will study the qualitative behavior near the sin-
gularities of the harmonic map flow with Dirichlet boundary and prove Theorem 1.3 and Theorem
1.4 in this section.

Firstly, we have

Lemma 4.1. Let u : M × (0,∞) → N be a global weak solution to (1.7-1.9), which is C2−smooth
away from a finite number of singular points. Then we have the following estimate

(4.1)
∫ ∞

0

∫
M
|∂tu|2dxdt ≤ E(u0).

Moreover, E(u(·, t)) is continuous on [0,∞) and non-increasing.

Proof. The proof is similar to Lemma 3.4 in [32] for the closed case and Lemma 6.1 in [11] for the
free boundary case. For any 0 ≤ t1 ≤ t2 ≤ ∞, multiplying the equation (1.7) by ∂tu and integrating
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by parts, using the boundary condition that ∂tu|∂M ≡ 0, we get∫ t2

t1

∫
M
|∂tu|2dxdt =

∫ t2

t1

∫
M
−∆gu · ∂tudxdt

=

∫ t2

t1

∫
∂M

∂u

∂−→n
· ∂tu −

∫ t2

t1

∫
M
∇u · ∇(∂tu)dxdt

= −

∫ t2

t1

∫
M

1
2
∂t|∇u|2dxdt = E(u(·, t1)) − E(u(·, t2)),

where −→n is the outward unit normal vector field on ∂M. Then the conclusion of the lemma follows
immediately. �

Similarly to the closed surface case (Lemma 2.5 in [21]) and the free boundary case (Lemma
6.2 in [11]), we have

Lemma 4.2. Let u ∈ C2(M × (0,T0),N) be a solution to (1.7-1.9). There exists a positive constant
R0 such that, for any x0 ∈ M, 0 < t ≤ s < T0 and 0 < R ≤ R0, there hold:

E(u(s); BM
R (x0)) ≤ E(u(t); BM

2R(x0)) + C
s − t
R2 E(u0),(4.2)

and

E(u(t); BM
R (x0)) ≤ E(u(s); BM

2R(x0)) + C
∫ s

t

∫
M
|∂tu|2dxdt + C

s − t
R2 E(u0).(4.3)

Proof. Let η ∈ C∞0 (BM
2R(x0)) be a cut-off function such that 0 ≤ η ≤ 1, η|BM

R (x0) ≡ 1 and |∇η| ≤ C
R .

Multiplying (1.7) by η2∂tu and integrating by parts, we have∫
M
|∂tu|2η2dx +

d
dt

(
1
2

∫
M
|∇u|2η2dx) =

∫
∂M

∂u

∂−→n
· ∂tuη2 − 2

∫
M
∂tu∇uη∇ηdx

= −2
∫

M
∂tu∇uη∇ηdx,

where the last equality follows from the boundary condition that ∂tu|∂M ≡ 0.
Noting that

|2
∫

M
∂tu∇uη∇ηdx| ≤

1
2

∫
M
|∂tu|2η2dx + 2

∫
M
|∇u|2|∇η|2dx,

we get

−
3
2

∫
M
|∂tu|2η2dx − 2

∫
M
|∇u|2|∇η|2dx ≤

d
dt

(
1
2

∫
M
|∇u|2η2dx) ≤ 2

∫
M
|∇u|2|∇η|2dx.

Integrating this inequality from t to s, we will get the conclusion of the lemma. �

By Lemma 4.2 and the standard argument in the closed surface case (Lemma 4.1 in [21]), we
obtain the following:
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Lemma 4.3. Let u ∈ C2(M × (0,T0),N) be a solution to (1.7-1.9) and x0 ∈ M be the only singular
point at the time T0. Then there exists a positive number m > 0 such that

|∇u|2(x, t)dx→ mδx0 + |∇u|2(x,T0)dx,(4.4)

for t ↑ T0, as Radon measures. Here, δx0 denotes the δ−mass at x0.

Now, we begin to prove Theorem 1.3 and Theorem 1.4. Firstly, it is easy to see that Lemma 4.1,
Lemma 4.3 and Theorem 1.2 imply Theorem 1.3. In fact,

Proof of Theorem 1.3. By Lemma 4.1, we can find a sequence tn ↑ ∞ such that

lim
n→∞

∫
M
|∂tu|2(·, tn)dx = 0 and E(u(·, tn)) ≤ E(u0).

Take the sequence un = u(·, tn), τ(un) = ∂tu(·, tn) in Theorem 1.2. Combining this with Lemma 4.3,
the conclusion of Theorem 1.3 follows immediately. �

Proof of Theorem 1.4. By Lemma 4.1, Lemma 4.2, Lemma 4.3 and Theorem 1.2, the proof of
Theorem 1.4 is almost the same as the proof of Theorem 1.3 in [11] (Page 32). Here, we omit the
details. �
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