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The problem of causal inference is to determine if a given probability distribution on observed
variables is compatible with some causal structure. The difficult case is when the structure includes
latent variables. We here introduce the inflation technique for tackling this problem. An inflation of
a causal structure is a new causal structure that can contain multiple copies of each of the original
variables, but where the ancestry of each copy mirrors that of the original. For every distribution
compatible with the original causal structure we identify a corresponding family of distributions,
over certain subsets of inflation variables, which is compatible with the inflation structure. It follows
that compatibility constraints at the inflation level can be translated to compatibility constraints at
the level of the original causal structure; even if the former are weak, such as observable statistical
independences implied by disjoint causal ancestry, the translated constraints can be strong. In
particular, we can derive inequalities whose violation by a distribution witnesses that distribution’s
incompatibility with the causal structure (of which Bell inequalities and Pearl’s instrumental inequality
are prominent examples). We describe an algorithm for deriving all of the inequalities for the original
causal structure that follow from ancestral independences in the inflation. Applied to an inflation of
the Triangle scenario with binary variables, it yields inequalities that are stronger in at least some
aspects than those obtainable by existing methods. We also describe an algorithm that derives a
weaker set of inequalities but is much more efficient. Finally, we discuss which inflations are such
that the inequalities one obtains from them remain valid even for quantum (and post-quantum)
generalizations of the notion of a causal model.
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I. INTRODUCTION

Given a joint probability distribution of some observed variables, the problem of causal inference is to determine
which hypotheses about the causal mechanism can explain the given distribution. Here, a causal mechanism may
comprise both causal relations among the observed variables, as well as causal relations among these and a number
of unobserved variables. Causal inference problems arise in a wide variety of scientific disciplines, from sussing out
biological pathways to enabling machine learning [1–4]. A closely related type of problem is to determine, for a given
set of causal relations, the set of all distributions on observed variables that can be generated from them. A special
case of both problems is the following decision problem: given a probability distribution and a hypothesis about the
causal relations, determine whether the two are compatible—could the given distribution have been generated by the
hypothesized causal relations? This is the problem that we focus on. We develop necessary conditions for a given
distribution to be compatible with a given hypothesis about the causal relations.

In the simplest setting, the causal hypothesis consists of a directed acyclic graph (DAG) all of whose nodes correspond
to observed variables. In this case, obtaining a verdict on the compatibility of a given distribution with the causal
hypothesis is simple: the compatibility holds if and only if the distribution is Markov with respect to the DAG, which
is to say that the distribution features all of the conditional independence relations that are implied by d-separation
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relations among variables in the DAG. The DAGs that are compatible with the given distribution can be determined
algorithmically [1].

A significantly more difficult case is when one considers a causal hypothesis which consists of a DAG whose nodes
include latent (i.e., unobserved) variables, so that the set of observed variables is a strict subset of the nodes of the
DAG. This case occurs, e.g., in situations where one needs to deal with the possible presence of unobserved confounders,
and thus is particularly relevant for experimental design in statistics. It is useful to distinguish two varieties of this
problem: (i) the causal hypothesis specifies that the latent variables are discrete and of a particular cardinality1, and
(ii) the nature of the latent variables is arbitrary.

Consider the first variety of causal inference problem, where the cardinalities of all the latent variables are finite.
Then the mathematical problem which one must solve to infer the distributions that are compatible with the hypothesis
is a quantifier elimination problem for some finite number of quantifiers, as follows. The probabilities making up the
distribution of the observed variables can all be expressed as functions of the parameters specifying the conditional
probabilities of each node given its parents, many of which involve latent variables. If one can eliminate these
parameters, then one obtains constraints that refer exclusively to the probability distribution of the observed variables.
This is a nonlinear quantifier elimination problem. The Tarski-Seidenberg theorem provides an in principle algorithm
for an exact solution, but unfortunately the computational complexity of such quantifier elimination techniques is too
large to be practical, except in particularly simple scenarios [5].2

The second variety of causal inference problem, where the latent variables are arbitrary, is even more difficult, but it
is the one that has been the focus of most research and that motivates the present work. It is conceivable that inference
problems of this variety can be expressed as quantifier elimination problems as well. This would be the case, for
instance, if one could show that latent variables of a certain finite cardinality (as opposed to arbitrary latent variables)
are sufficient to generate all the distributions compatible with a given DAG3. At present, however, the problem of
finding an algorithm for deciding compatibility in this second case—let alone an efficient algorithm—remains wide
open. Nonetheless, even if it is possible to achieve a reduction to the case of latent variables with finite cardinality,
one would still be faced with a computationally impractical nonlinear quantifier elimination problem, as described
above. As such, a heuristic technique for obtaining nontrivial constraints, such as the one presented in this work, is
arguably more useful.

If one allows for latent variables, then the condition that all of the conditional independence relations among the
observed variables should be explained by the structure of the DAG is still a necessary condition for compatibility of a
DAG with a given distribution, but in general it is no longer a sufficient condition for compatibility, and this is what
makes the problem difficult.

Historically, the insufficiency of the conditional independence relations for causal inference in the presence of latent
variables was first noted by Bell in the context of the hidden variable problem in quantum physics [8]. Bell considered
an experiment for which considerations from relativity theory implied a very particular causal structure, and he derived
an inequality that any distribution compatible with this structure, and compatible with certain constraints imposed
by quantum theory, must satisfy. Bell also showed that this inequality was violated by distributions generated from
entangled quantum states with particular choices of incompatible measurements. Later work, by Clauser, Horne,
Shimony and Holte (CHSH) showed how to derive inequalities directly from the causal structure [9]. The CHSH
inequality was the first example of a compatibility condition that appealed to the strength of the correlations rather
than simply the conditional independence relations inherent therein. Since then, many generalizations of the CHSH
inequality have been derived for the same sort of causal structure [10]. The idea that such work is best understood as a
contribution to the field of causal inference has only recently been put forward [11–14], as has the idea that techniques
developed by researchers in the foundations of quantum theory may be usefully adapted to causal inference4.

Subsequent to Bell’s work, Pearl derived the instrumental inequality [22], which provides a necessary condition
for the compatibility of a distribution with a causal structure known as the instrumental scenario. This causal structure
is applicable, for instance, to certain kinds of noncompliance in drug trials. Later, Steudel and Ay [23] derived an
inequality which must hold whenever a distribution on n variables is compatible with a causal structure where no set
of more than c variables has a common ancestor, for arbitrary n, c ∈ N. More recent work has focused specifically on
the case of n = 3 and c = 2, a causal structure that has been called the Triangle scenario [12, 24] (Fig. 1).

Recently, Henson, Lal and Pusey [13] have investigated those DAGs for which merely confirming that a given
distribution on observed variables satisfies the conditional independence relations implied by the DAG does not
guarantee that this distribution is compatible with the DAG. They coined the term interesting for DAGs that have
this property. They presented a catalogue of all potentially interesting DAGs having six or fewer nodes in [13, App. E],

1 The cardinality of a variable is the number of possible values it can take.
2 Techniques for finding approximate solutions to nonlinear quantifier elimination may help [6].
3 Rosset and Gisin [7] have an unpublished proof purporting to upper bound the cardinality of the latent variables for the Triangle scenario

(Fig. 1) using an observation that may apply to all DAGs. We do not pursue the question here.
4 The current article being another example of the phenomenon [6, 14–21].
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of which all but three were shown to be indeed interesting. The Bell scenario, the Instrumental scenario, and the
Triangle scenario all appear in the catalogue, together with many others. Furthermore, the fraction of DAGs that
are interesting increases as the total number of nodes increases. This highlights the need for moving beyond a
case-by-case consideration of individual DAGs and for developing techniques for deriving constraints beyond conditional
independence relations that can be applied to any interesting DAG. Shannon-type entropic inequalities are an example
of such constraints [12, 16, 23–25]. They can be derived for a given DAG with relative ease, via exclusively linear
quantifier elimination, since conditional independence relations are linear equations at the level of entropies. They
also have the advantage that they apply regardless of the cardinality of the observed variables. Recent work has also
looked at non-Shannon type inequalities, potentially further strengthening the entropic constraints [17, 26]. However,
entropic techniques are still wanting, since the resulting inequalities are often rather weak. For example, they are not
sensitive enough to witness some known incompatibilities, in particular for distributions that only arise in quantum
but not classical models with a given causal structure [12, 17]5.

In order to improve this state of affairs, we here introduce a new technique for deriving necessary conditions
for the compatibility of a distribution over observed variables with a given causal structure, which we term the
inflation technique. Our technique is frequently capable of witnessing incompatibility when many other causal inference
techniques fail. For example, in Example 2 of Sec. III B we prove that the tripartite “W-type” distribution is
incompatible with the Triangle scenario, despite the incompatibility being invisible to other causal inference tools
such as conditional independence relations, Shannon-type [16, 24, 25] or non-Shanon-type entropic inequalities [17], or
covariance matrices [18].

The inflation technique works roughly as follows. For a given DAG under consideration, one can construct many new
DAGs, termed inflations of this DAG. These duplicate one or more of the nodes of the original DAG, while mirroring
the form of the subgraph describing each node’s ancestry. Furthermore, the causal parameters that one adds to the
inflation DAG are constrained to mirror those of the original DAG. We show that if the distributions over certain
subsets of the observed variables are compatible with the original DAG, then the same distributions over certain copies
of those subsets in the inflation DAG are compatible with the inflation DAG (Lemma 3). Similarly, we show that any
necessary condition for compatibility of a distribution with the inflation DAG translates into a necessary condition
for compatibility with the original DAG (Corollary 5). Thus standard techniques for deriving causal compatibility
inequalities, applied to the inflation DAG, can be supplemented with the inflation technique to derive new causal
compatibility inequalities for the original DAG.

Concretely, we consider causal compatibility inequalities for the inflation DAG that are obtained as follows. One
begins by identifying inequalities that are derived from the marginal problem, that is, inequalities for a family of
distributions, defined on various subsets of the variables, which hold if the family can be obtained as the marginals of
a single joint distribution over all the variables. One then identifies instances within the inflation DAG of variables
having disjoint ancestries, and infers the factorization of the distributions over these variables. These factorization
conditions are substituted into the marginal problem inequalities to obtain causal compatibility inequalities for the
inflation DAG. We show how to identify all factorization conditions from the structure of the inflation DAG, and
also how to obtain all marginal problem inequalities by enumerating all facets of the associated marginal polytope
(Sec. IV B). Translating the resulting causal compatibility inequalities on the inflation DAG back to the original DAG,
we obtain causal compatibility conditions in the form of nonlinear polynomial inequalities. As a concrete example
of our technique, we present all the causal compatibility inequalities that can be derived in this manner for the
Triangle scenario (Sec. IV C). We also show how to efficiently obtain a partial set of marginal problem inequalities by
enumerating transversals of a certain hypergraph (Sec. IV D).

Besides the entropic techniques discussed above, our method is the first systematic tool for causal inference with
latent variables that goes beyond observed conditional independence relations while not assuming any bounds on the
cardinality of each latent variable. While our method can be used to systematically generate necessary conditions for
compatibility with a given causal structure, we do not know whether the set of inequalities thus generated are also
sufficient.

While we present our technique primarily as a tool for standard causal inference, we also briefly discuss applications
to quantum causal models and causal models within generalized probabilistic theories (Sec. V C). In particular, we
discuss when our inequalities are also necessary conditions for a distribution over observed variables to be compatible
with a given DAG within any generalized probabilistic theory.

5 It should be noted that non-standard entropic inequalities can be obtained through a fine-graining of the causal scenario, namely by
conditioning on the distinct finite possible outcomes of root variables (“settings”), and these types of inequalities have proven somewhat
sensitive to quantum-classical separations [24, 27, 28]. Such inequalities are still limited, however, in that they are only applicable to
those DAGs which feature observed root nodes. The potential utility of entropic analysis where fine-graining is generalized to non-root
observed nodes is currently being explored by E.W. and Rafael Chaves. Jacques Pienaar has also alluded to similar considerations as a
possible avenue for further research [26].
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II. BASIC DEFINITIONS OF CAUSAL MODELS AND COMPATIBILITY

A causal model consists of a pair of objects: a causal structure and a family of causal parameters. We define
each in turn. First, recall that a directed acyclic graph (DAG) G consists of a finite set of nodes Nodes(G) and a set of
directed edges Edges(G), where a directed edge is an ordered pair of nodes, so that Edges(G) ⊆ Nodes(G)×Nodes(G).
This directed graph is assumed to be acylic, which means that there is no way to start and end at the same node by
traversing edges forward. In the context of a causal model, each node X ∈ Nodes(G) carries a random variable that
we denote by the same letter X. A directed edge X → Y corresponds to the possibility of a direct causal influence
from the variable X to the variable Y . In this way, the edges implement causal relations.

Our terminology for the causal relations between the nodes in a DAG is the standard one. The parents of a node
X in G are defined as those nodes from which an outgoing edge terminates at X, i.e. PaG(X) = { Y | Y → X }.
(When the graph G is clear from the context, we omit the subscript.) Similarly, the children of a node X are
defined as those nodes at which edges originating at X terminate, i.e. ChG(X) = { Y | X → Y }. If U is a set of
nodes, then we put PaG(U) :=

⋃
X∈U PaG(X) and ChG(U) :=

⋃
X∈U ChG(X). The ancestors of a set of nodes U ,

denoted AnG(U), are defined as those nodes which have a directed path to some node in U , including the nodes in
U themselves6. Equivalently, An(U) :=

⋃
n∈N Pan(U), where Pan(U) is inductively defined via Pa0(U) := U and

Pan+1(U) := Pa(Pan(U)).
A causal structure is a DAG G that incorporates a distinction between two types of nodes: the set of observed

nodes ObservedNodes(G), and the set of latent nodes LatentNodes(G). Following [13], we will depict the observed
nodes by triangles and the latent nodes by circles, as in Fig. 1. Henceforth, we will use the terms “DAG” and “causal
structure” interchangeably, so that the specification of which variables are observed is considered to be part of the
DAG. Frequently, we supplement the causal structure by a specification of the cardinalities of the observed variables.
While these are finite in all our examples, the inflation technique applies just as well in the case of continuous variables.

The second component of a causal model is a family of causal parameters. The causal parameters specify, for
each node X, the conditional probability distribution over the values of the random variable X, given the values of the
variables in Pa(X). In the case of root nodes, we have Pa(X) = ∅, and the conditional distribution is an unconditioned
distribution. We write PY |X for the conditional distribution of a variable Y given a variable X, while the particular

conditional probability of the variable Y taking the value y given that the variable X takes the values x is denoted7

PY |X(y|x). Therefore, a family of causal parameters has the form

{PA|PaG(A) : A ∈ Nodes(G)}. (1)

Finally, a causal model M consists of a causal structure together with a family of causal parameters,

M = (G, {PA|PaG(A) : A ∈ Nodes(G)}).

A causal model specifies a joint distribution of all variables in the DAG via

PNodes(G) =
∏

A∈Nodes(G)

PA|PaG(A), (2)

where
∏

denotes the usual product of functions, so that e.g. (PY |X × PY )(x, y) := PY |X(y|x)PX(x). A distribution
PNodes(G) arises in this way if and only if it satisfies the Markov conditions associated to G.

The joint distribution over the observed variables is obtained from the joint distribution over all variables by
marginalization over the latent variables,

PObservedNodes(G) =
∑

{X:X∈LatentNodes(G)}

PNodes(G), (3)

where
∑
X denotes marginalization over the variable X, so that (

∑
X PXY )(y) :=

∑
x PXY (xy).

A given distribution of observed variables is said to be compatible with a given causal structure if there is some
choice of the causal parameters that yields the given distribution via Eqs. (2) and (3). Furthermore, a given set of
marginal distributions on various subsets of observed variables is said to be compatible with a given causal structure if
and only if there exists a joint distribution of observed variables that yields these marginals and is compatible with the
causal structure.

6 The inclusion of a node within the set of its ancestors is contrary to the colloquial use of the term “ancestors”. One uses this definition
so that any correlation between two variables can always be attributed to a common “ancestor”. This includes, for instance, the case
where one variable is a parent of the other.

7 Although our notation suggests that all variables are either discrete or described by densities, we do not make this assumption. All of our
equations can be translated straightforwardly into proper measure-theoretic notation.
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III. THE INFLATION TECHNIQUE FOR CAUSAL INFERENCE

A. Inflations of a causal model

We now introduce the notion of an inflation of a causal model. If a causal model lives on a DAG G, then an
inflation of this model lives on an inflation DAG G′.

There are many possible choices of inflation DAGs G′ for a given G, forming a set Inflations(G). The particular
choice of G′ ∈ Inflations(G) then determines the inflation model completely: the family of causal parameters of the
inflation model M ′ is determined by a function M ′ = InflationG→G′(M) that we define below. We begin by defining
when a DAG G′ is an inflation of G, building on some preliminary definitions.

For a subset of nodes V ⊆ Nodes(G), we denote the induced subgraph on V by SubDAGG(V ). It consists of the
nodes V and those edges of G which have both endpoints in V . Of special importance to us is the ancestral subgraph
AnSubDAGG(V ), which is the subgraph induced by the ancestry of V , AnSubDAGG(V ) := SubDAGG(AnG(V )).

In an inflation DAG G′, every node is also labelled by a node of G. That is, every node of the inflation DAG G′

is a copy of some node of the original DAG G, and the copies of a node A of G in G′ are denoted A1, . . . , Ak. The
subscript that indexes the copies is termed the copy-index. When two objects (e.g. nodes, sets of nodes, DAGs,
etc. . . ) are the same up to copy-indices, then we use ∼ to indicate this, as in Ai ∼ Aj ∼ A. In particular, U ∼ U ′

for sets of nodes U ⊆ Nodes(G) and U ′ ⊆ Nodes(G′) if and only if U ′ contains exactly one copy of every node in U .
Similarly, SubDAGG′(U ′) ∼ SubDAGG(U) means that in addition to U ∼ U ′, an edge is present between two nodes in
U ′ if and only if it is present between the two associated nodes in U .

In order to be an inflation, G′ must locally mirror the causal structure of G:

Definition 1. The DAG G′ is said to be an inflation of G, that is, G′ ∈ Inflations(G), if and only if for every
Ai ∈ Nodes(G′), the ancestral subgraph of Ai in G′ is equivalent, under removal of the copy-index, to the ancestral
subgraph of A in G,

G′ ∈ Inflations(G) iff ∀Ai ∈ Nodes(G′) : AnSubDAGG′(Ai) ∼ AnSubDAGG(A). (4)

To illustrate the notion of inflation, we consider the DAG of Fig. 1, which is called the Triangle scenario (for
obvious reasons) and which has been studied by many authors [13 (Fig. E#8), 11 (Fig. 18b), 12 (Fig. 3), 24 (Fig. 6a),
29 (Fig. 1a), 30 (Fig. 8), 23 (Fig. 1b), 16 (Fig. 4b)]. Different inflations of the Triangle scenario are depicted in Figs. 2
to 6, which, for ease of reference, will be referred to as the Web, Spiral, Capped, and Cut inflations respectively.

X

A

Y

B
Z

C

FIG. 1. The Triangle sce-
nario.

X1

A1

Y1

B1

Z1

C1

X2

A2

Y2

B2

Z2

C2

A3

B3C3

A4

B4C4

FIG. 2. The Web inflation of the Triangle scenario
where each latent node has been duplicated and each
observed node has been quadrupled. The four copies
of each observed node correspond to the four possible
choices of parentage given the pair of copies of each
latent parent of the observed node.
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Y1

B1

Z1

C1

X2

A2

Y2

B2

Z2

C2

FIG. 3. The Spiral inflation of the
Triangle scenario. Notably, this DAG
is the ancestral subgraph of the set
{A1A2B1B2C1C2} in the Web infla-
tion (Fig. 2).
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We now define the function InflationG→G′ , that is, we specify how causal parameters are defined for a given inflation
DAG in terms of causal parameters on the original DAG.

Definition 2. Consider causal models M and M ′ where DAG(M) = G and DAG(M ′) = G′, where G′ is an inflation
of G. Then M ′ is said to be the G → G′ inflation of M , that is, M ′ = InflationG→G′(M), if and only if for every
node Ai in G′, the manner in which Ai depends causally on its parents within G′ is the same as the manner in which
A depends causally on its parents within G. Noting that Ai ∼ A and that PaG′(Ai) ∼ PaG(A) by Eq. (4), one can
formalize this condition as:

∀Ai ∈ Nodes(G′) : PAi|PaG′ (Ai) = PA|PaG(A). (5)

For a given triple G, G′, and M , this definition specifies a unique inflation model M ′, resulting in a well-defined
function InflationG→G′ .

To sum up, the inflation of a causal model is a new causal model where (i) each variable in the original DAG
may have counterparts in the inflation DAG with ancestral subgraphs mirroring those of the originals, and (ii) the
manner in which a variable depends causally on its parents in the inflation DAG is given by the manner in which its
counterpart in the original DAG depends causally on its parents. The operation of modifying a DAG and equipping
the modified version with conditional probability distributions that mirror those of the original also appears in the do
calculus and twin networks of Pearl [1], and moreover bears some resemblance to the adhesivity technique used in
deriving non-Shannon-type entropic inequalities (Appendix E).

We are now in a position to describe the key property of the inflation of a causal model, the one that makes it
useful for causal inference. With notation as in Definition 2, let PU and PU ′ denote marginal distributions on some
U ⊆ Nodes(G) and U ′ ⊆ Nodes(G′), respectively. Then

if U ′ ∼ U and AnSubDAGG′(U ′) ∼ AnSubDAGG(U), then PU ′ = PU . (6)

This follows from the fact that the distributions on U ′ and U depend only on their ancestral subgraphs and the
parameters defined thereon, which by the definition of inflation are the same for U ′ and for U . It is useful to have a
name for those sets of observed nodes in G′ which satisfy the antecedent of Eq. (6), that is, for which one can find
a copy-index-equivalent set in the original DAG G with a copy-index-equivalent ancestral subgraph. We call such
subsets of the observed nodes of G′ injectable sets,

U ′ ∈ InjectableSets(G′)

iff ∃U ⊆ ObservedNodes(G) : U ′ ∼ U and AnSubDAGG′(U ′) ∼ AnSubDAGG(U).
(7)

Similarly, those sets of observed nodes in the original DAG G which satisfy the antecedent of Eq. (6), that is, for
which one can find a corresponding set in the inflation DAG G′ with a copy-index-equivalent ancestral subgraph, we

X1

A1

Y1

B1

Z1

C1

A2

Y2

FIG. 4. The Capped inflation of
the Triangle scenario; notably also
the ancestral subgraph of the set
{A1A2B1C1} in the Spiral inflation
(Fig. 3).

X1 Y1

B1

Z1

C1

A2

Y2

FIG. 5. The Cut inflation of
the Triangle scenario; notably also
the ancestral subgraph of the set
{A2B1C1} in the Capped inflation
(Fig. 4). Unlike the other examples,
this inflation does not contain the
Triangle scenario as a subgraph.

X1

A2

Y2 Y1

B1

Z1

C1

FIG. 6. A different depiction of the Cut
inflation of Fig. 5.
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describe as images of the injectable sets under the dropping of copy-indices,

U ∈ ImagesInjectableSets(G)

iff ∃U ′ ⊆ ObservedNodes(G′) : U ′ ∼ U and AnSubDAGG′(U ′) ∼ AnSubDAGG(U).
(8)

Clearly, U ∈ ImagesInjectableSets(G) iff ∃U ′ ⊆ InjectableSets(G′) such that U ∼ U ′.
For example in the Spiral inflation of the Triangle scenario depicted in Fig. 3, the set {A1B1C1} is injectable because

its ancestral subgraph is equivalent up to copy-indices to the ancestral subgraph of {ABC} in the original DAG, and
the set {A2C1} is injectable because its ancestral subgraph is equivalent to that of {AC} in the original DAG.

A set of nodes in the inflation DAG can only be injectable if it contains at most one copy of any node from the
original DAG. More strongly, it can only be injectable if its ancestral subgraph contains at most one copy of any
observed or latent node from the original DAG. Thus, in Fig. 3, {A1A2C1} is not injectable because it contains two
copies of A, and {A2B1C1} is not injectable because its ancestral subgraph contains two copies of Y .

We can now express Eq. (6) in the language of injectable sets,

PU ′ = PU if U ′ ∼ U and U ′ ∈ InjectableSets(G′). (9)

In the example of Fig. 3, injectability of the sets {A1B1C1} and {A2C1} thus implies that the marginals on each
of these are equal to the marginals on their counterparts, {ABC} and {AC}, in the original causal model, so that
PA1B1C1

= PABC and PA2C1
= PAC .

B. Witnessing incompatibility

Finally, we can explain why inflation is relevant for deciding whether a distribution is compatible with a causal
structure. For a family of marginal distributions {PU : U ∈ ImagesInjectableSets(G)} to be compatible with G,
there must be a causal model M that yields a joint distribution with this family as its marginals. Looking at the
inflation model M ′ = InflationG→G′(M), Eq. (9) implies that M ′ has the corresponding family of marginals given by
{PU ′ : U ′ ∈ InjectableSets(G′)} with PU ′ = PU for U ′ ∼ U , and thus this family is compatible with G′.

The same considerations apply for any collection of injectable sets:

Lemma 3. Let G′ be an inflation DAG of G. Let S′ ⊆ InjectableSets(G′) be a collection of injectable sets, and
let S ⊆ ImagesInjectableSets(G) be the images of this collection under the dropping of copy-indices. If the family of
marginal distributions {PU : U ∈ S} is compatible with G, then the corresponding family of marginal distributions
{PU ′ : U ′ ∈ S′}, defined via PU ′ = PU for U ′ ∼ U , is compatible with G′.

We have thereby related a question about compatibility with the original causal structure to one about compatibility
with the inflated causal structure. If one can show that the new compatibility question on G′ is answered in the
negative, then one can infer that the original question is answered in the negative as well. Some simple examples serve
to illustrate the idea.

Example 1 Incompatibility of perfect three-way correlation with the Triangle scenario

X

A

Y

B
Z

C

FIG. 7. The Triangle scenario. (Repeat of Fig. 1.)

X1 Y1

B1

Z1

C1

A2

Y2

FIG. 8. The Cut inflation of the Triangle scenario. (Repeat
of Fig. 5.)
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Consider the following causal inference problem. We are given a joint distribution of three binary variables, PABC ,
where the marginal on each variable is uniform and the three are perfectly correlated,

PABC =
[000] + [111]

2
, i.e., PABC(abc) =

{
1
2 if a = b = c,

0 otherwise,
(10)

and we would like to determine whether it is compatible with the Triangle scenario (Fig. 7). The notation [abc] in
Eq. (10) is shorthand for the deterministic distribution where A, B, and C take the values a, b, and c respectively; in
terms of the Kronecker delta, [abc] := δA,aδB,bδC,c.

Since there are no conditional independence relations among the observed variables in the Triangle scenario, there
is no opportunity for ruling out the distribution on the grounds that it fails to satisfy the required conditional
independences.

To solve the causal inference problem, we consider the Cut inflation (Fig. 8). The injectable sets include {A2C1}
and {B1C1}. Their images on the original DAG are {AC} and {BC}, respectively.

We will show that the distribution of Eq. (10) is not compatible with the Triangle scenario by demonstrating that
the contrary assumption of compatibility implies a contradiction. If the distribution of Eq. (10) were compatible with
the Triangle scenario, then so too would be its marginals on {AC} and {BC}, which are given by:

PAC = PBC =
[00] + [11]

2
.

By Lemma 3, this compatibility assumption would entail that the marginals

PA2C1
= PB1C1

=
[00] + [11]

2
(11)

are compatible with the Cut inflation of the Triangle scenario. We now show that the latter compatibility cannot
hold, thereby obtaining our contradiction. It suffices to note that (i) the only joint distribution that exhibits perfect
correlation between A2 and C1 and between B1 and C1 also exhibits perfect correlation between A2 and B1, and (ii)
A2 and B1 have no common ancestor in the Cut inflation DAG and hence must be marginally independent in any
distribution that is compatible with it.

We have therefore certified that the distribution PABC of Eq. (10) is not compatible with the Triangle scenario,
recovering a result originally proven by Steudel and Ay [23].

Example 2 Incompatibility of the W-type distribution with the Triangle scenario

X

A

Y

B
Z

C

FIG. 9. The Triangle scenario. (Repeat of Fig. 1.)

X1

A1

Y1

B1

Z1

C1

X2

A2

Y2

B2

Z2

C2

FIG. 10. The Spiral inflation of the Triangle scenario.
(Repeat of Fig. 3.)

Consider another causal inference problem on the Triangle scenario, namely, that of determining whether the
distribution

PABC =
[100] + [010] + [001]

3
, i.e., PABC(abc) =

{
1
3 if a+ b+ c = 1,

0 otherwise.
(12)
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is compatible with it. We call this the W-type distribution8. To settle this compatibility question, we consider the
Spiral inflation of the Triangle scenario (Fig. 10). The injectable sets in this case include {A1B1C1}, {A2C1}, {B2A1},
{C2B1}, {A2}, {B2} and {C2}.

Therefore, we turn our attention to determining whether the marginals of the W-type distribution on the images of
these injectable sets are compatible with the Triangle scenario. These marginals are:

PABC =
[100] + [010] + [001]

3
, (13)

PAC = PBA = PCB =
[10] + [01] + [00]

3
, (14)

PA = PB = PC =
2

3
[0] +

1

3
[1]. (15)

By Lemma 3, this compatibility holds only if the associated marginals for the injectable sets, namely,

PA1B1C1
=

[100] + [010] + [001]

3
, (16)

PA2C1
= PB2A1

= PC2B1
=

[10] + [01] + [00]

3
, (17)

PA2
= PB2

= PC2
=

2

3
[0] +

1

3
[1], (18)

are compatible with the Spiral inflation (Fig. 10). Eq. (17) implies that C1 = 0 whenever A2 = 1. It similarly implies
that A1 = 0 whenever B2 = 1, and that B1 = 0 whenever C2 = 1,

A2 = 1 =⇒ C1 = 0,

B2 = 1 =⇒ A1 = 0,

C2 = 1 =⇒ B1 = 0.

(19)

Our inflation DAG is such that A2, B2 and C2 have no common ancestor and consequently are marginally independent
in any distribution compatible with it. Together with the fact that each value of these variables has a nonzero
probability of occurrence (by Eq. (18)), this implies that

Sometimes A2 = 1 and B2 = 1 and C2 = 1. (20)

Finally, Eq. (19) together with Eq. (20) entails

Sometimes A1 = 0 and B1 = 0 and C1 = 0. (21)

This, however, contradicts Eq. (16). Consequently, the family of marginals described in Eqs. (16-18) is not compatible
with the DAG of Fig. 10. By Lemma 3, this implies that the family of marginals described in Eqs. (13-15)—and
therefore the W-type distribution of which they are marginals—is not compatible with the Triangle scenario.

To our knowledge, this is a new result. In fact, the incompatibility of the W-type distribution with the Triangle
scenario cannot be derived via any of the following existing causal inference techniques:

1. Checking conditional independence relations is not relevant here, as there are no conditional independence
relations implied between any observed variables in the Triangle scenario.

2. The relevant Shannon-type entropic inequalities for the Triangle scenario have been classified, and they do not
witness the incompatibility either [16, 24, 25].

3. Moreover, no entropic inequality can witness the W-type distribution as unrealizable. Weilenmann and Colbeck
[17] have constructed an inner approximation to the entropic cone of the Triangle causal structure, and the
W-distribution lies inside this. In other words, a distribution with the same entropic profile as the W-type
distribution can arise from the Triangle scenario.

8 The name stems from the fact that this distribution is reminiscent of the famous quantum state appearing in [31], called the W state.
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4. The newly-developed method of covariance matrix causal inference due to Åberg et al. [18], which gives tighter
constraints than entropic inequalities for the Triangle scenario, also cannot detect the incompatibility.

Therefore, in this case at least, the inflation technique appears to be more powerful.
We have arrived at our incompatibility verdict by combining inflation with reasoning reminiscent of Hardy’s version

of Bell’s theorem [32, 33]. Sec. IV D will present a generalization of this kind of argument and its applications to
causal inference.

Example 3 Incompatibility of PR-box correlations with the Bell scenario
Bell’s theorem [8–10, 34] concerns the question of whether the distribution obtained in an experiment involving a

pair of systems that are measured at space-like separation is compatible with a causal structure of the form of Fig. 11.
Here, the observed variables are {A,B,X, Y }, and Λ is a latent variable acting as a common cause of A and B. We
shall term this causal structure the Bell scenario. While the causal inference formulation of Bell’s theorem is not the
traditional one, several recent articles have introduced and advocated this perspective [11 (Fig. 19), 13 (Fig. E#2),
14 (Fig. 1), 24 (Fig. 1), 35 (Fig. 2b), 36 (Fig. 2)].

X

A

Λ Y

B

FIG. 11. The causal structure of the bipartite Bell sce-
nario. The local outcomes A and B of Alice’s and Bob’s
measurements is assumed to be a function of some latent
common cause and their independent local experimental
settings X and Y .

Λ

A1 A2 B1 B2

X1 X2 Y1 Y2

FIG. 12. An inflation DAG of the bipartite Bell scenario,
where both local settings and outcome variables have been
duplicated.

We consider the distribution PABXY = PAB|XY PXPY , where PX and PY are arbitrary full-support distributions9

over the binary variables X and Y , and

PAB|XY =
[00|00] + [11|00] + [00|10] + [11|10] + [00|01] + [11|01] + [01|11] + [10|11]

8
,

i.e., PAB|XY (ab|xy) =

{
1
2 if a⊕ b = x · y,
0 otherwise,

(22)

a conditional distribution that was discovered by Tsirelson [37] and later independently by Popescu and Rohrlich [38, 39].
It has become known in the field of quantum foundations as the PR-box after the latter authors.10

The Bell scenario implies nontrivial conditional independences11 among the observed variables, namely, X ⊥⊥ Y ,
A ⊥⊥ Y |X, and12 B ⊥⊥ X|Y , as well as those that can be generated from these by the semi-graphoid axioms [11].
It is straightforward to check that these conditional independence relations are respected by the PABXY resulting
from Eq. (22). It is well-known that this distribution is nonetheless incompatible with the Bell scenario, for example
since it violates the CHSH inequality. Here we prove this incompatibility via the inflation technique, using the inflation
of the Bell scenario depicted in Fig. 12.

We begin by noting that {A1B1X1Y1}, {A2B1X2Y1}, {A1B2X1Y2}, {A2B2X2Y2}, {X1}, {X2}, {Y1}, and {Y2} are
all injectable sets. By Lemma 3, it follows that any causal model that recovers PABXY inflates to a model that results
in marginals

PA1B1X1Y1
= PA2B1X2Y1

= PA1B2X1Y2
= PA2B2X2Y2

= PABXY , (23)

PX1
= PX2

= PX , PY1
= PY2

= PY . (24)

9 In the literature on the Bell scenario, these variables are known as “settings”. Generally, we may think of observed root variables as
settings, coloring them light green in the DAG figures. They are natural candidates for variables to condition on.

10 The PR-box is of interest because it represents a manner in which experimental observations could deviate from the predictions of
quantum theory while still being consistent with relativity.

11 Recall that variables X and Y are conditionally independent given Z if PXY |Z(xy|z) = PX|Z(x|z)PY |Z(y|z) for all z with PZ(z) > 0.
Such a conditional independence is denoted by X ⊥⊥ Y | Z.

12 In the context of a Bell experiment, where {X,A} are space-like separated from {Y,B}, the conditional independences A ⊥⊥ Y |X and
B ⊥⊥ X|Y encode the impossibility of sending signals faster than the speed of light.
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Using the definition of conditional probability, we infer that

PA1B1|X1Y1
= PA2B1|X2Y1

= PA1B2|X1Y2
= PA2B2|X2Y2

= PAB|XY . (25)

Because {X1}, {X2}, {Y1}, and {Y2} have no common ancestor in the inflation DAG, these variables must be marginally
independent in any distribution compatible with the inflation DAG, so that PX1X2Y1Y2

= PX1
PX2

PY1
PY2

. Given the
assumption that the distributions PX and PY have full support, it follows from Eq. (24) that

Sometimes X1 = 0 and X2 = 1 and Y1 = 0 and Y2 = 1. (26)

On the other hand, from Eq. (25) together with the definition of PR-box, Eq. (22), we conclude that

X1 = 0, Y1 = 0 =⇒ A1 = B1,

X1 = 0, Y2 = 1 =⇒ A1 = B2,

X2 = 1, Y1 = 0 =⇒ A2 = B1,

X2 = 1, Y2 = 1 =⇒ A2 6= B2.

(27)

Combining this with Eq. (26), we obtain

Sometimes A1 = B1 and A1 = B2 and A2 = B1 and A2 6= B2. (28)

No values of A1, A2, B1, and B2 can jointly satisfy these conditions. So we have reached a contradiction, showing that
our original assumption of compatibility of PABXY with the Bell scenario must have been false.

The structure of this proof parallels that of standard proofs of the incompatibility of the PR-box with the Bell
scenario. Standard proofs focus on a set of variables {A0A1B0B1} where Ax is the value of A when X = x and
By is the value of B when Y = y. Note that the distribution

∑
λ P (A0|λ)P (A1|λ)P (B0|λ)P (B1|λ)P (λ) is a joint

distribution of these four variables for which the marginals on pairs {A0B0}, {A0B1}, {A1B0} and {A1B1} are those
that can arise in the Bell scenario. The existence of such a joint distribution rules out the possibility of having A1 = B1,
A1 = B2, A2 = B1 but A2 6= B2, and therefore shows that the PR-box distribution is incompatible with the Bell
scenario [40, 41]. In light of our use of Eq. (26), the reasoning based on the inflation DAG of Fig. 12 is really the same
argument in disguise.

Appendix G shows that the inflation of the Bell scenario of the form of Fig. 12 is sufficient to witness the
incompatibility of any distribution that is incompatible with the Bell scenario.

C. Deriving causal compatibility inequalities

The inflation technique can be used not only to witness the incompatibility of a given distribution with a given
causal structure, but also to derive necessary conditions that a distribution must satisfy to be compatible with the
given causal structure. When these conditions are expressed as inequalities, we will refer to them as causal compatibility
inequalities. Formally, we have:

Definition 4. Let G be a causal structure and let S be a family of subsets of the observed variables of G, S ⊆
2ObservedNodes(G). Let IS denote an inequality that operates on the corresponding family of distributions, {PU : U ∈ S}.
Then IS is a causal compatibility inequality for the causal structure G whenever it is satisfied by every family
of distributions {PU : U ∈ S} that is compatible with G.

While violation of a causal compatibility inequality witnesses the incompatibility with the causal structure, satisfaction
of the inequality does not guarantee compatibility. This is the sense in which it merely provides a necessary condition
for compatibility.

The inflation technique is useful for deriving causal compatibility inequalities because of the following consequence
of Lemma 3:

Corollary 5. Suppose that G′ is an inflation of G. Let S′ ⊆ InjectableSets(G′) be a family of injectable sets and
S ⊆ ImagesInjectableSets(G) the images of members of S′ under the dropping of copy-indices. Let IS′ be a causal
compatibility inequality for G′ operating on families {PU ′ : U ′ ∈ S′}. Define an inequality IS as follows: in the
functional form of IS′ , replace every occurrence of a term PU ′ by PU for the unique U ∈ S with U ∼ U ′. Then IS is
a causal compatibility inequality for G operating on families {PU : U ∈ S}.
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The proof is as follows. Suppose that the family {PU : U ∈ S} is compatible with G. By Lemma 3, it follows that
the family {PU ′ : U ′ ∈ S′} where PU ′ := PU for U ′ ∼ U is compatible with G′. Since IS′ is a causal compatibility
inequality for G′, it follows that {PU ′ : U ′ ∈ S′} satisfies IS′ . But by the definition of IS , its evaluation on {PU : U ∈ S}
is equal to IS′ evaluated on {PU ′ : U ′ ∈ S′}. It therefore follows that {PU : U ∈ S} satisfies IS . Since {PU : U ∈ S}
was an arbitrary family compatible with G, we conclude that IS is a causal compatibility inequality for G.

We now present some simple examples of causal compatibility inequalities for the Triangle scenario that one can
derive from the inflation technique via Corollary 5. Some terminology and notation will facilitate their description.
We refer to a pair of nodes which do not share any common ancestor as being ancestrally independent. This is
equivalent to being d-separated by the empty set [1–4]. Given that the conventional notation for X and Y being
d-separated by Z in the DAG G is X ⊥G Y |Z, we denote X and Y being ancestrally independent within G as X ⊥G Y .
Generalizing to sets, U ⊥G V indicates that no node in U shares a common ancestor with any node in V within the
DAG G,

U ⊥G V iff AnG(U) ∩ AnG(V ) = ∅. (29)

Furthermore, the notation U ⊥G V ⊥G W should be understood as indicating that U ⊥G V and V ⊥G W and
U ⊥G W .

Example 4 A causal compatibility inequality in terms of correlators
As in Example 1 of the previous section, consider the Cut inflation of the Triangle scenario (Fig. 8), where all

observed variables are binary. For technical convenience, we assume that they take values in the set {−1,+1}, rather
than taking values in {0, 1} as was presumed in the last section.

The injectable sets that we make use of are {A2C1}, {B1C1}, {A2}, and {B1}. From Corollary 5, any causal
compatibility inequality for the inflation DAG that operates on the marginal distributions of {A2C1}, {B1C1}, {A2},
and {B1} will yield a causal compatibility inequality for the original DAG that can be evaluated on the marginal
distributions on {AC}, {BC}, {A}, and {B}. We begin by noting that for any distribution on three binary variables
{A2B1C1}, that is, regardless of the causal structure in which they are embedded, the marginals on {A2C1}, {B1C1}
and {A2B1} satisfy the following inequality for expectation values [42–46],

〈A2C1〉+ 〈B2C1〉 − 〈A2B1〉 ≤ 1. (30)

This is an example of a constraint on pairwise correlators that arises from the presumption that they are consistent
with a joint distribution. (The problem of deriving such constraints is the marginal constraint problem, discussed in
detail in Sec. IV.)

But in the Cut inflation of the Triangle scenario (Fig. 8) A2 and B1 have no common ancestor and consequently any
distribution compatible with this DAG must make A2 and B1 marginally independent. In terms of correlators, this
can be expressed as

A2 ⊥ B1 =⇒ 〈A2B1〉 = 〈A2〉〈B1〉. (31)

Substituting this into Eq. (30), we have

〈A2C1〉+ 〈B2C1〉 ≤ 1 + 〈A2〉〈B1〉. (32)

This is an example of a simple but nontrivial causal compatibility inequality for the DAG of Fig. 8. Finally, by
Corollary 5, we infer that

〈AC〉+ 〈BC〉 ≤ 1 + 〈A〉〈B〉 (33)

is a causal compatibility inequality for the Triangle scenario. This inequality expresses the fact that as long as A
and B are not completely biased, there is a tradeoff between the strength of AC correlations and the strength of BC
correlations.

Given the symmetry of the Triangle scenario under permutations and sign flips of A, B and C, it is clear that the
image of inequality Eq. (33) under any such symmetry is also a valid causal compatibility inequality. Together, these
inequalities constitute a type of monogamy13 of correlations in the Triangle scenario with binary variables: if any two
observed variables with unbiased marginals are perfectly correlated, then they are both uncorrelated with the third.

13 We are here using the term “monogamy” in the same sort of manner in which it is used in the context of entanglement theory [47].
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Example 5 A causal compatibility inequality in terms of entropic quantities
One way to derive constraints that are independent of the cardinality of the observed variables is to express these

in terms of the mutual information between observed variables rather than in terms of correlators. The inflation
technique can also be applied to achieve this. To see how this works in the case of the Triangle scenario, consider
again the Cut inflation (Fig. 8).

One can follow the same logic as in the preceding example, but starting from a different constraint on marginals.
For any distribution on three variables {A2B1C1} of arbitrary cardinality (again, regardless of the causal structure in
which they are embedded), the marginals on {A2C1}, {B1C1} and {A2B1} satisfy the inequality [25, Eq. (29)]

I(A2 : C1) + I(C1 : B1)− I(A2 : B1) ≤ H(C1), (34)

where H(X) denotes the Shannon entropy of the distribution of X, and I(X : Y ) denotes the mutual information
between X and Y with respect to the marginal on X and Y . The fact that A2 and B1 have no common ancestor in the
inflation DAG implies that in any distribution that is compatible with the inflation DAG, A2 and B1 are marginally
independent. This is expressed entropically as the vanishing of their mutual information,

A2 ⊥ B1 =⇒ I(A2 : B1) = 0. (35)

Substituting the latter equality into Eq. (34), we have

I(A2 : C1) + I(C1 : B1) ≤ H(C1). (36)

This is another example of a nontrivial causal compatibility inequality for the DAG of Fig. 8. By Corollary 5, it follows
that

I(A : C) + I(C : B) ≤ H(C) (37)

is also a causal compatibility inequality for the Triangle scenario. This inequality was originally derived in [12]. Our
rederivation in terms of inflation coincides with the proof found by Henson et al. [13].

Example 6 A causal compatibility inequality in terms of joint probabilities Consider the Spiral inflation of
the Triangle scenario (Fig. 10) with the injectable sets {A1B1C1}, {A1B2}, {B1C2}, {A1, C2}, {A2}, {B2}, and {C2}.
We derive a causal compatibility inequality under the assumption that the observed variables are binary, adopting the
convention that they take values in {0, 1}.

We begin by noting that the following is a constraint that holds for any joint distribution of {A1B1C1A2B2C2},
regardless of the causal structure,

PA2B2C2
(111) ≤ PA1B2C2

(111) + PB1C2A2
(111) + PA2C1B2

(111) + PA1B1C1
(000). (38)

To prove this claim, it suffices to check that the inequality holds for each of the 26 deterministic assignments of
outcomes to {A1B1C1A2B2C2}, from which the general case follows by linearity. A more intuitive proof will be
provided in Sec. IV D.

Next, we note that certain sets of variables have no common ancestors with other sets of variables in the inflation
DAG, which implies the marginal independence of these sets. Such independences are expressed in the language of
joint distributions as factorization,

A1B2 ⊥ C2 =⇒ PA1B2C2
= PA1B2

PC2
,

B1C2 ⊥ A2 =⇒ PB1C2A2 = PB1C2PA2 ,

A2C1 ⊥ B2 =⇒ PA2C1B2
= PA2C1

PB2
,

A2 ⊥ B2 ⊥ C2 =⇒ PA2B2C2
= PA2

PB2
PC2

.

(39)

Substituting these equations into Eq. (38), we obtain the polynomial inequality

PA2
(1)PB2

(1)PC2
(1) ≤ PA1B2

(11)PC2
(1) + PB1C2

(11)PA2
(1) + PA2C1

(11)PB2
(1) + PA1B1C1

(000). (40)

This, therefore, is a causal compatibility inequality for the DAG of Fig. 10. Finally, by Corollary 5, we infer that

PA(1)PB(1)PC(1) ≤ PAB(11)PC(1) + PBC(11)PA(1) + PAC(11)PB(1) + PABC(000) (41)

is a causal compatibility inequality for the Triangle scenario.
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What is distinctive about this inequality is that—through the presence of the term PABC(000)—it takes into account
genuine three-way correlations, while our earlier inequalities only depend on the two-variable marginals. This inequality
is strong enough to demonstrate the incompatibility of the W-type distribution of Eq. (12) with the Triangle scenario:
for this distribution: the right-hand side of the inequality vanishes while the left-hand side does not.

Of the known techniques for witnessing the incompatibility of a distribution with a DAG or deriving necessary
conditions for compatibility, the most straightforward is to consider the constraints implied by ancestral independences
among the observed variables of the DAG. The constraints derived in the last two sections have all made use of this
basic technique, but at the level of the inflation DAG rather than the original DAG. The constraints that one thereby
infers for the original DAG reflect facts about its causal structure that cannot be expressed in terms of ancestral
independences among its observed variables. The inflation technique exposes these facts in the ancestral independences
among observed variables of the inflation DAG.

In the rest of this article, we shall continue to rely only on the ancestral independences among observed variables
within the inflation DAG to infer compatibility constraints on the original DAG. Nonetheless, it seems plausible
that the inflation technique can also amplify the power of other techniques that do not merely consider ancestral
independences among the observed variables. We consider some prospects in Sec. V.

IV. SYSTEMATICALLY WITNESSING INCOMPATIBILITY AND DERIVING INEQUALITIES

This section considers the problem of how to generalize the above examples of causal inference via the inflation
technique to a systematic procedure. We start by introducing the crucial concept of pre-injectable set, which figures
implicitly in our earlier examples. By reformulating Example 1, we sketch our general method and explain why solving
a marginal problem is an essential subroutine of our method. Subsequently, Sec. IV A explains how to systematically
identify all of the pre-injectable sets for a given inflation DAG. Sec. IV B describes how to solve any sort of marginal
problem. This may involve determining all the facets of the marginal polytope, which is computationally costly
(Appendix A). It is therefore useful to also consider relaxations of the marginal problem that are more tractable by
deriving valid linear inequalities which may or may not bound the marginal polytope tightly. We describe one such
approach based on possibilistic Hardy-type paradoxes and the hypergraph transversal problem in Sec. IV D.

As far as causal compatibility inequalities are concerned, we limit ourselves to those expressed in terms of proba-
bilities14, as these are generally the most powerful. However, essentially the same techniques can be used to derive
inequalities expressed in terms of entropies [25], as demonstrated in Example 5.

In the examples from the previous section, the initial inequality—a constraint upon marginals that is independent
of the causal structure—involves sets of observed variables that are not all injectable sets. Each of these sets can,
however, be partitioned into disjoint subsets each of which is injectable such that the partitioning represents ancestral
independence in the inflation DAG. For instance, in Example 4, the set {A2B1} is not injectable, but it can be
partitioned into the singleton sets {A2} and {B1} which are ancestrally independent and each of which is injectable.
It is useful to have a name for such sets of observed variables: we call them pre-injectable. So for any U ′ in the
inflation DAG G′,

U ′ ∈PreInjectableSets(G′)

iff ∃{U ′i ∈ InjectableSets(G′)} s.t. U ′ =
⋃
i

U ′i and ∀i 6= j : U ′i ⊥G′ U ′j .
(42)

Every injectable set is trivially pre-injectable. A pre-injectable set will be termed maximal if it is not a proper subset
of another pre-injectable set.

Because ancestral independence in the DAG implies statistical independence for any distribution compatible with
the DAG, it follows that if U ′ is a pre-injectable set with ancestrally independent components U ′1, . . . ,U

′
n, then we

have the factorization

PU ′ = PU ′
1
· · ·PU ′

n
(43)

for any distribution compatible with G′. The situation, therefore, is this: for any constraint that one can derive for the
marginals on the pre-injectable sets based on the existence of a joint distribution—and hence without reference to the
causal structure—one can infer a constraint that does refer to the causal structure by substituting within the derived
constraint a factorization of the form of Eq. (43).

14 Or, for binary variables, equivalently in terms of correlators, as in the first example of Sec. III C.
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As a build-up to our exposition of a systematic application of the inflation technique, we now revisit Example 1. As
before, to demonstrate the incompatibility of the W distribution of Eq. (10) with the Triangle scenario, we assume
compatability and derive a contradiction. Given the W distribution, Lemma 3 implies that the marginal distributions
on the injectable sets of the Cut inflation of the Triangle scenario are

PA2C1
= PB1C1

=
1

2
[00] +

1

2
[11], (44)

and

PA2
= PB1

=
1

2
[0] +

1

2
[1]. (45)

From the fact that A2 and B1 are ancestrally independent in the Cut inflation, we also infer that the distribution on
the pre-injectable set {A2B1} must be

PA2B1
= PA2

PB1
=

(
1

2
[0] +

1

2
[1]

)
×
(

1

2
[0] +

1

2
[1]

)
=

1

4
[00] +

1

4
[01] +

1

4
[10] +

1

4
[11]. (46)

But there is no three-variable distribution PA2B1C1
that would have as its two-variable marginals the distributions

of Eqs. (44,46). For as we noted in our prior discussion of this example, the perfect correlation between A2 and C1

exhibited by PA2C1
and the perfect correlation between B1 and C1 exhibited by PB1C1

would entail perfect correlation
between A2 and B1 as well, which is at odds with (46). We have therefore derived a contradiction and consequently
can infer the incompatibility of the W distribution with the Triangle scenario.

Generalizing to an arbitrary DAG, therefore, the procedure is as follows:

1. Based on the inflation DAG under consideration, identify the pre-injectable sets and how they each partition
into injectable sets.

2. From the given distribution on the original DAG, infer the family of marginal distributions on the pre-injectable
sets of the inflation DAG as follows: the distribution on any injectable set is equal to the corresponding
distribution on its image in the original DAG; the distribution on any pre-injectable set is the product of the
distributions on the injectable sets into which it is partitioned.

3. Determine whether the family of distributions obtained in step 2 are the marginals of a single joint distribution.
If not, then the original distribution is incompatible with the original DAG; otherwise, it may or may not be
compatible.

The procedure for systematically deriving causal compatibility inequalities is analogous: instead of determining
whether a given family of distributions can arise as marginals of a joint distribution, one rather determines all
constraints that such a family must satisfy in order to arise from a joint distribution. These constraint translate into
causal compatibility inequalities for the inflation DAG via the ancestral independences of Eq. (43), and then into
causal compatibility inequalities for the original DAG via Corollary 5.

The pre-injectable sets play a crucial role in linking the original DAG with the inflation DAG. They are precisely
those sets of variables whose joint distributions in the inflation model are fully specified by the causal model on the
original DAG, as they can be computed using Eq. (43) and Lemma 3. So we begin with the problem of identifying the
pre-injectable sets systematically.

A. Identifying the pre-injectable sets

To identify the pre-injectable sets of an inflation DAG G′, we must first identify the injectable sets. This problem can
be reduced to identifying the injectable pairs of nodes, because if all of the pairs in a set of nodes are injectable, then
so too is the set itself. This can be proven as follows. Let ϕ : G′ → G be the projection map from G′ to the original
DAG G, corresponding to removing copy-indices. Then ϕ has the characteristic feature that it preserves and reflects
edges to edges: if A→ B in G′, then also ϕ(A)→ ϕ(B) in G, and vice versa; this follows from the assumption that
G′ is an inflation of G. A set U ⊆ ObservedNodes(G′) is injectable if and only if the restriction of ϕ to An(U) is an
injective map. But now injectivity of a map means precisely that no two different elements of the domain get mapped
to the same element of the codomain. So if U is injectable, then so is each of its two-element subsets; conversely, if U
is not injectable, then ϕ maps two nodes among the ancestors of U to the same node, which means that there are two
nodes in the ancestry that differ only by copy-index. Each of these two nodes must be an ancestor of at least some
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A1A2

B1

B2

C1

C2

FIG. 13. The injection graph corre-
sponding to the Spiral inflation of the
Triangle scenario (Fig. 3), wherein a
pair of nodes are adjacent iff they are
pairwise injectable.

{A1}

{A2} {B1}

{B2}{C1}

{C2}

{A1, B1}

{A1, B2}

{A1, C1}

{A2, C1}

{B1, C1}

{B1, C2}{A1, B1, C1}

FIG. 14. The pre-injection graph corre-
sponding to the Spiral inflation of the
Triangle scenario (Fig. 3), wherein a
pair of injectable sets are adjacent iff
they are ancestrally independent.

FIG. 15. The simplicial complex
of pre-injectable sets for the Spi-
ral inflation of the Triangle sce-
nario (Fig. 3). The 5 faces corre-
spond to the maximal pre-injectable
sets, namely {A1B1C1}, {A1B2C2},
{A2B1C2}, {A2B2C1} and {A2B2C2}.

node in U ; if one chooses two such descendants, then one gets a two-element subset of U such that ϕ is not injective
on the ancestry of that subset, and therefore this two-element set of observed nodes is not injectable.

To enumerate the injectable sets, it is therefore useful to encode certain features of the inflation DAG in an undirected
graph which we call the injection graph. The nodes of the injection graph are the observed nodes of the inflation
DAG, and a pair of nodes Ai and Bj share an edge if the pair {AiBj} is injectable. For example, Fig. 13 shows the
injection graph of the Spiral inflation of the Triangle scenario (Fig. 3). The property noted above states that the
injectable sets are precisely the cliques15 of the injection graph. While for many other applications only the maximal
cliques are of interest, our application of the inflation technique requires knowledge of all nonempty cliques.

Given a list of the injectable sets, the pre-injectable sets can be read off from the pre-injection graph. The nodes of
the pre-injection graph are taken to be the injectable sets in G′, and two nodes share an edge if the associated injectable
sets are ancestrally independent. Fig. 14 depicts an example. The pre-injectable sets correspond to the cliques of the
pre-injection graph: the union of all the injectable sets that make up the nodes of a clique is a pre-injectable set, while
the individual nodes already give us the partition into injectable sets relevant for the factorization relation of Eq. (43).
For our purposes, it is sufficient to enumerate the maximal pre-injectable sets, so that one only needs to consider the
maximal cliques of the pre-injection graph.

From Figs. 13 and 14, we easily infer the injectable sets and the maximal pre-injectable sets, as well as the partition
of the maximal pre-injectable sets into ancestrally independent subsets. For the Spiral example, this results in:

{A1}, {B1}, {C1},
{A2}, {B2}, {C2},

{A1B1}, {A1C1}, {B1C1},
{A1B2}. {A2C1}, {B1C2},

{A1B1C1}︸ ︷︷ ︸
injectable sets

{A1B1C1}
{A1B2C2}
{B1C2A2}
{C1A2B2}
{A2B2C2}︸ ︷︷ ︸

maximal
pre-injectable sets

{A1B2} ⊥ {C2}
{B1C2} ⊥ {A2}
{C1A2} ⊥ {B2}

{A2} ⊥ {B2} ⊥ {C2}︸ ︷︷ ︸
relevant

ancestral independences

(47)

Having identified the pre-injectable sets and how they partition into injectable sets, we now infer the factorization
relations implied by ancestral independences, which is Eq. (39) in the Spiral example. Next, we discuss the other
ingredient of our systematic procedure: the marginal problem.

B. The marginal problem and its solution

The third step in our procedure is determining whether the given distributions on pre-injectable sets can arise as
marginals of one joint distribution on all observed nodes of the inflation DAG. In general, the problem of determining
whether a given family of distributions can arise as marginals of some joint distribution is known as the marginal

15 A clique is a set of nodes in an undirected graph any two of which share an edge.
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problem16. In order to derive causal compatibility inequalities, one must solve the closely related problem of determining
necessary and sufficient constraints that a family of marginal distributions must satisfy in order for the marginal
problem to have a solution. For better clarity, we distinguish these two variants of the marginal problem as the
marginal satisfiability problem and the marginal constraint problem. The generic marginal problem will
be used as an umbrella term referring to both types.

To specify either sort of marginal problem, one must specify the full set of variables to be considered, denoted
X, together with a family of subsets of X, denoted (U1, . . . ,Un) and called contexts. The family of contexts can
be visualized through the simplicial complex that it generates, as illustrated in Fig. 15. A marginal scenario
consists of a specification of contexts together with a specification of the cardinality of each variable. Every joint
distribution PX defines a family of marginal distributions (PU1 , . . . , PUn) through marginalization, PUi :=

∑
X\Ui

PX .

The marginal problem concerns the converse inference. In the marginal satisfiability problem, a concrete family of
distributions (PU1 , . . . , PUn) is given, and one wants to decide whether there exists a joint distribution P̂X such

that PUi =
∑

X\Ui
P̂X for all i. In the marginal constraint problem, one seeks to find conditions on the family of

distributions (PU1
, . . . , PUn

), considered as parameters, for when a joint distribution P̂X exists which reproduces these

as marginals, PUi =
∑

X\Ui
P̂X for all i.

In order for P̂X to exist, distributions on different contexts must be consistent on the intersection of contexts, that
is, marginalizing PUi

to the variables in Ui ∩Uj must result in the same distribution as marginalizing PUj
to those

variables. In many cases, this is not sufficient17; indeed, we have already seen examples of additional constraints,
namely, the inequalities (30), (34) and (38) from Sec. III C. So what are the necessary and sufficient conditions? To
answer this question, it helps to realize two things:

• The set of possibilities for the distribution PX is the convex hull of the deterministic assignments of values to X
(the deterministic distributions), and

• The map PX 7→ (PU1
, . . . , PUn

), describing marginalization to each of the contexts in (U1, . . . ,Un), is linear.

Hence the image of the set of possibilities for the distribution PX under the map PX 7→ (PU1
, . . . , PUn

) is exactly
the convex hull of the deterministic assignments of values to (U1, . . . ,Un) which are consistent where these contexts
overlap. Since there are only finitely many such deterministic assignments, this convex hull is a polytope; it is called
the marginal polytope [50]. Together with the above equations on coinciding submarginals, the facet inequalities of
this polytope solve the marginal constraint problem. The marginal satisfiability problem asks about membership in
the polytope; by the above, this becomes a linear program with the joint probabilities PX as the unknowns.

To express this more concretely, we write the marginal satisfiability problem in the form of a generic linear program.
Let the joint distribution vector x be the vector associated with the joint probability distribution PX , that is, the

vector whose components are the probabilities PX(x). Let the marginal distribution vector b be the vector that is
the concatenation over i of the vectors associated with the distributions PUi

. Finally, let the marginal description
matrix M be the matrix representation of the linear map corresponding to marginalization on each of the contexts,
that is, PX → (PU1

, . . . , PUn
) where PUi

=
∑

X\Ui
PX . The components of M all take the value zero or one.

In this notation, the marginal satisfiability problem consists of determining whether, for a given vector b, the
following constraints are feasible:

∃x : x ≥ 0, Mx = b, (48)

where the component-wise inequality x ≥ 0 enforces the constraint that PX is a probability distribution. This is
clearly a linear program.

In the example of Fig. 15 with binary variables, M is a 48× 64 matrix, so that Mx = b represents 48 equations and
x ≥ 0 represents 64 inequalities; explicit representations of M , x, and b for this example can be found in Appendix B.
A single linear program can then assess whether there is a solution in x for a given marginal distribution vector b. If
this is not the case, then the marginal satisfiability problem has a negative answer.

Since linear programming is quite easy, probing specific distributions for compatibility for a given inflation DAG is
computationally inexpensive. For instance, using the Web inflation of the Triangle scenario (Fig. 2), which contains a
large number of observed variables, our numerical computations have reproduced the result of [12, Theorem 2.16], that
a certain distribution considered therein is incompatible with the Triangle scenario18.

16 For further references and an outline of the long history of the marginal problem, see [25]. An alternative account using the language of
presheaves can also be found in [48].

17 Depending on how the contexts intersect with one another, this may be sufficient. A precise characterization for when this occurs has
been found by Vorob’ev [49].

18 This distribution is, however, quantum-compatible with the Triangle scenario (Sec. V C).
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In the case of the marginal constraint problem, the vector b is not given, but one rather wants to find conditions on
b that hold if and only if Eq. (48) has a solution. As per the above, this is a problem of facet enumeration19 for the
marginal polytope. Equivalently, it is the problem of linear quantifier elimination20 for the system of Eq. (48):
one tries to find a system of linear equations and inequalities in b such that some b satisfies the system if and only
if Eq. (48) has a solution. There is a unique minimal system achieving this, and it consists of the constraints of
consistency on the intersections of contexts (mentioned above), together with the facet inequalities of the marginal
polytope. Taken together, these form a system of linear equations and inequalities that is equivalent to Eq. (48),
but does not contain any quantifiers. In our application, the equations expressing consistency on the intersections of
contexts are guaranteed to hold automatically, so that only the facet inequalities are of interest to us.

In terms of Eq. (48), a valid inequality for the marginal distribution vector b—such as a facet inequality of the
marginal polytope—can always be expressed as yT b ≥ 0 for some vector y. Validity of an inequality yT b ≥ 0 means
precisely that yTM ≥ 0, since the columns of M are the vertices of the marginal polytope. The marginal satisfiability
problem for a given vector b0 has no solution if and only if there is a vector y that yields a valid inequality but for
which yT b0 < 0. Necessity follows by noting that if Eq. (48) does have a solution x for a given vector b0, then the
fact that yTM ≥ 0 and the fact that x ≥ 0 implies that yT b0 = yTMx ≥ 0. Sufficiency follows from Farkas’ lemma.
Most linear programming tools are capable of returning a Farkas infeasibility certificate [51] whenever a linear program
has no solution. In our case, if the marginal problem is infeasible for a vector b0, then the certificate is a vector y that
yields a valid inequality but for which yT b0 < 0.21.

Upon substituting the factorization relations of Eq. (43) and deleting copy indices, any valid inequality for the
marginal problem turns into a causal compatibility inequality. This applies both to facet inequalities of the marginal
polytope, and to Farkas infeasibility certificates. In the latter case, one obtains an explicit causal compatibility
inequality which witnesses the given distribution as incompatible with the given DAG. In other words, if a given
distribution is witnessed as incompatible with a DAG using the technique we have described, then with little additional
numerical effort, one can also obtain a causal compatibility inequality that exhibits the incompatibility. This may have
applications to problems where the facet enumeration is computationally intractable.

Summarizing, we have shown how to leverage the marginal satisfiability problem to witness causal incompatibility of
particular distributions, and how to leverage the marginal constraint problem to derive causal compatibility inequalities.

C. A list of causal compatibility inequalities for the Triangle scenario

As an example of the above method, we present all of the causal compatibility inequalities that one can derive for
the Triangle scenario with binary observed variables using ancestral independences in the Spiral inflation (Fig. 3).
To present these in an efficient manner, we leverage symmetries of the set of inequalities. Clearly, a permutation of
the observed variables is a symmetry whenever it extends to a graph automorphism, which is a permutation of all
nodes that takes edges to edges. Furthermore, any permutation among the values assigned to an individual observed
variable (i.e., the sample space of that variable) is a symmetry of the set of inequalities, as is any composition of such
permutations. In the case of the Triangle DAG, all 6 permutations of the three observed variables are symmetries,
and there are 23 permutations of the triple of the values of these three variables (the products of local permutations)
that are symmetries. A given inequality, therefore, can lead to at most 48 distinct inequalities under the action of
the symmetry operations. We have found numerically that there are 37 classes of nontrivial inequalities that are
inequivalent relative to these symmetry operations.22 We here present a single representative inequality from each of
these classes. The full set can be obtained by closing under the symmetry operations. We have here chosen to express
these inequalities in terms of correlators (where the two possible values of each variables to be {−1,+1}), rather than

19 In Appendix A, we provide an overview of techniques for facet enumeration.
20 Linear quantifier elimination has already been used in causal inference for deriving entropic causal compatibility inequalities [16, 24]. In

that task, however, the unknowns being eliminated are entropies on sets of variables of which one or more is latent. By contrast, the
unknowns being eliminated above are all probabilities on sets of variables all of which are observed—but on the inflation DAG rather
than the original DAG.

21 Farkas infeasibility certificates are available, for example, in Mosek , Gurobi , and CPLEX , as well as by accessing dual variables in
cvxr/cvxopt .

22 An inequality is nontrivial if it is violated by at least one distribution.

http://docs.mosek.com/8.0/pythonapi/optimizer-task-gety.html
https://www.gurobi.com/documentation/6.5/refman/farkasdual.html
http://www-01.ibm.com/support/docview.wss?uid=swg21400058
http://cvxr.com/cvx/doc/basics.html#dual-variables
http://cvxopt.org/userguide/coneprog.html#linear-cone-programs
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in terms of joint probabilities, because such a presentation is more compact.

(#1∗): 0 ≤ 1 + 〈B〉〈C〉+ 〈AB〉+ 〈AC〉
(#2): 0 ≤ 2 + 〈A〉〈B〉〈C〉 − 〈C〉〈AB〉 − 2〈AC〉
(#3∗): 0 ≤ 3 + 〈A〉 − 〈B〉+ 〈C〉+ 〈B〉〈C〉+ 〈A〉〈B〉〈C〉+ 〈AB〉 − 〈C〉〈AB〉+ 3〈AC〉 − 〈B〉〈AC〉
(#4∗): 0 ≤ 3 + 〈A〉 − 〈B〉+ 〈C〉+ 〈B〉〈C〉 − 〈A〉〈B〉〈C〉+ 〈AB〉+ 〈C〉〈AB〉+ 3〈AC〉 − 〈B〉〈AC〉
(#5): 0 ≤ 3 + 〈B〉 − 〈A〉〈B〉+ 〈A〉〈C〉+ 〈A〉〈B〉〈C〉+ 〈AB〉+ 〈C〉〈AB〉 − 〈B〉〈AC〉 − 2〈BC〉
(#6): 0 ≤ 3 + 〈B〉+ 〈A〉〈C〉+ 〈A〉〈B〉〈C〉 − 〈C〉〈AB〉 − 2〈AC〉 − 〈B〉〈AC〉 − 2〈BC〉
(#7): 0 ≤ 3 + 〈B〉+ 〈A〉〈B〉 − 〈A〉〈C〉 − 〈A〉〈B〉〈C〉+ 〈AB〉+ 〈C〉〈AB〉+ 〈B〉〈AC〉 − 2〈BC〉
(#8∗): 0 ≤ 3 + 〈A〉+ 〈B〉+ 〈A〉〈B〉+ 〈C〉+ 〈A〉〈C〉+ 〈B〉〈C〉 − 〈A〉〈B〉〈C〉+ 2〈AB〉+ 〈C〉〈AB〉+ 2〈AC〉+ 〈B〉〈AC〉+ 2〈BC〉+ 〈A〉〈BC〉 − 〈ABC〉
(#9∗): 0 ≤ 3 + 〈A〉+ 〈B〉 − 〈A〉〈B〉+ 〈C〉+ 〈A〉〈C〉+ 〈B〉〈C〉 − 〈A〉〈B〉〈C〉+ 〈C〉〈AB〉+ 2〈AC〉+ 〈B〉〈AC〉 − 2〈BC〉 − 〈A〉〈BC〉+ 〈ABC〉
(#10∗): 0 ≤ 4 + 2〈A〉〈B〉+ 2〈C〉+ 2〈B〉〈C〉 − 2〈AB〉+ 〈C〉〈AB〉 − 2〈AC〉+ 〈B〉〈AC〉+ 〈A〉〈BC〉 − 〈ABC〉
(#11∗): 0 ≤ 4− 2〈B〉+ 〈B〉〈C〉+ 〈A〉〈B〉〈C〉 − 2〈AB〉+ 〈C〉〈AB〉 − 〈B〉〈AC〉 − 3〈BC〉+ 〈ABC〉
(#12∗): 0 ≤ 4− 2〈B〉+ 2〈A〉〈C〉+ 〈B〉〈C〉 − 〈A〉〈B〉〈C〉 − 2〈AB〉+ 〈C〉〈AB〉 − 2〈AC〉+ 〈B〉〈AC〉 − 3〈BC〉+ 〈ABC〉
(#13∗): 0 ≤ 4− 2〈A〉〈B〉 − 2〈A〉〈C〉 − 〈B〉〈C〉 − 〈A〉〈B〉〈C〉+ 2〈AB〉 − 〈C〉〈AB〉 − 2〈AC〉+ 〈B〉〈AC〉+ 〈BC〉+ 〈ABC〉
(#14∗): 0 ≤ 4− 2〈A〉〈B〉+ 2〈A〉〈C〉 − 〈B〉〈C〉+ 〈A〉〈B〉〈C〉+ 2〈AB〉+ 〈C〉〈AB〉 − 2〈AC〉+ 〈B〉〈AC〉+ 〈BC〉+ 〈ABC〉
(#15∗): 0 ≤ 4 + 2〈A〉〈C〉+ 〈B〉〈C〉+ 〈A〉〈B〉〈C〉 − 〈C〉〈AB〉 − 2〈AC〉 − 〈B〉〈AC〉+ 3〈BC〉+ 〈ABC〉
(#16∗): 0 ≤ 4− 2〈B〉+ 2〈A〉〈C〉 − 2〈AB〉+ 〈C〉〈AB〉 − 2〈AC〉+ 〈B〉〈AC〉 − 2〈BC〉 − 〈A〉〈BC〉+ 〈ABC〉
(#17∗): 0 ≤ 4 + 2〈A〉〈B〉+ 2〈A〉〈C〉+ 2〈B〉〈C〉 − 2〈AB〉+ 〈C〉〈AB〉 − 2〈AC〉+ 〈B〉〈AC〉 − 2〈BC〉+ 〈A〉〈BC〉+ 〈ABC〉
(#18): 0 ≤ 5 + 〈A〉+ 〈B〉 − 2〈A〉〈B〉+ 〈C〉+ 〈B〉〈C〉+ 〈A〉〈B〉〈C〉+ 3〈AB〉+ 〈C〉〈AB〉+ 〈AC〉 − 〈B〉〈AC〉 − 4〈BC〉
(#19∗): 0 ≤ 5 + 〈A〉+ 〈B〉+ 2〈A〉〈B〉+ 〈C〉 − 2〈A〉〈C〉+ 〈B〉〈C〉 − 〈A〉〈B〉〈C〉+ 3〈AB〉+ 〈C〉〈AB〉 − 〈AC〉+ 〈B〉〈AC〉 − 4〈BC〉
(#20∗): 0 ≤ 5 + 〈A〉 − 〈B〉 − 2〈A〉〈B〉+ 〈C〉 − 〈A〉〈C〉+ 〈B〉〈C〉+ 〈AB〉+ 〈C〉〈AB〉+ 2〈AC〉 − 2〈B〉〈AC〉 − 2〈BC〉 − 2〈A〉〈BC〉 − 2〈ABC〉
(#21∗): 0 ≤ 5 + 〈A〉+ 〈B〉+ 〈C〉 − 〈A〉〈C〉 − 〈B〉〈C〉 − 2〈A〉〈B〉〈C〉+ 〈AB〉+ 2〈C〉〈AB〉+ 2〈AC〉+ 〈B〉〈AC〉 − 2〈BC〉+ 〈A〉〈BC〉 − 〈ABC〉
(#22∗): 0 ≤ 5− 〈A〉+ 〈B〉 − 2〈A〉〈B〉+ 〈C〉 − 2〈A〉〈C〉+ 2〈B〉〈C〉+ 〈AB〉 − 2〈C〉〈AB〉+ 〈AC〉 − 2〈B〉〈AC〉 − 〈BC〉 − 2〈A〉〈BC〉+ 〈ABC〉
(#23∗): 0 ≤ 5 + 〈A〉+ 〈B〉 − 〈A〉〈B〉+ 〈C〉+ 2〈B〉〈C〉+ 〈A〉〈B〉〈C〉+ 2〈AB〉 − 〈C〉〈AB〉+ 〈AC〉 − 2〈B〉〈AC〉 − 〈BC〉 − 2〈A〉〈BC〉+ 〈ABC〉
(#24∗): 0 ≤ 5 + 〈A〉+ 〈B〉 − 2〈A〉〈B〉+ 〈C〉 − 〈A〉〈C〉 − 〈B〉〈C〉 − 2〈A〉〈B〉〈C〉 − 〈AB〉+ 2〈C〉〈AB〉+ 2〈AC〉+ 〈B〉〈AC〉+ 2〈BC〉 − 〈A〉〈BC〉+ 〈ABC〉
(#25): 0 ≤ 6 + 2〈A〉〈B〉+ 〈A〉〈C〉+ 2〈B〉〈C〉+ 〈A〉〈B〉〈C〉 − 4〈AB〉 − 2〈C〉〈AB〉 − 3〈AC〉 − 〈B〉〈AC〉 − 2〈A〉〈BC〉
(#26): 0 ≤ 6− 2〈A〉+ 〈A〉〈B〉+ 2〈C〉+ 〈A〉〈C〉+ 2〈A〉〈B〉〈C〉 − 5〈AB〉 − 〈C〉〈AB〉 − 3〈AC〉+ 〈B〉〈AC〉 − 2〈A〉〈BC〉
(#27): 0 ≤ 6 + 2〈A〉〈B〉+ 2〈C〉+ 〈A〉〈C〉+ 〈A〉〈B〉〈C〉 − 4〈AB〉 − 2〈C〉〈AB〉+ 3〈AC〉+ 〈B〉〈AC〉 − 2〈A〉〈BC〉
(#28): 0 ≤ 6 + 〈A〉〈B〉+ 〈A〉〈C〉 − 4〈B〉〈C〉 − 2〈A〉〈B〉〈C〉+ 〈AB〉+ 〈C〉〈AB〉 − 3〈AC〉 − 〈B〉〈AC〉+ 2〈BC〉 − 2〈A〉〈BC〉
(#29): 0 ≤ 6 + 2〈B〉+ 〈A〉〈B〉 − 2〈A〉〈C〉+ 〈B〉〈C〉 − 2〈A〉〈B〉〈C〉+ 3〈AB〉+ 〈C〉〈AB〉+ 2〈B〉〈AC〉 − 5〈BC〉+ 〈A〉〈BC〉
(#30): 0 ≤ 6 + 2〈B〉 − 2〈A〉〈B〉+ 4〈A〉〈C〉 − 〈B〉〈C〉+ 〈A〉〈B〉〈C〉+ 2〈AB〉+ 2〈C〉〈AB〉 − 2〈AC〉+ 2〈B〉〈AC〉+ 〈BC〉+ 〈A〉〈BC〉
(#31): 0 ≤ 6 + 〈A〉〈C〉+ 4〈B〉〈C〉+ 〈A〉〈B〉〈C〉 − 2〈AB〉 − 2〈C〉〈AB〉 − 3〈AC〉 − 〈B〉〈AC〉 − 2〈BC〉 − 2〈ABC〉
(#32): 0 ≤ 7 + 〈A〉+ 〈B〉+ 〈A〉〈B〉+ 〈C〉 − 2〈A〉〈C〉+ 2〈B〉〈C〉 − 〈A〉〈B〉〈C〉+ 2〈AB〉+ 3〈C〉〈AB〉+ 〈AC〉+ 2〈B〉〈AC〉 − 3〈BC〉 − 2〈A〉〈BC〉+ 3〈ABC〉
(#33): 0 ≤ 8 + 2〈A〉〈B〉+ 4〈A〉〈C〉 − 2〈B〉〈C〉+ 2〈A〉〈B〉〈C〉 − 2〈AB〉 − 〈C〉〈AB〉 − 4〈AC〉+ 〈B〉〈AC〉 − 2〈BC〉 − 3〈A〉〈BC〉 − 3〈ABC〉
(#34): 0 ≤ 8 + 2〈A〉 − 2〈C〉 − 〈A〉〈C〉+ 2〈B〉〈C〉+ 3〈A〉〈B〉〈C〉 − 6〈AB〉+ 〈C〉〈AB〉+ 〈AC〉+ 2〈B〉〈AC〉 − 3〈A〉〈BC〉+ 〈ABC〉
(#35): 0 ≤ 8 + 2〈A〉+ 〈A〉〈C〉+ 2〈B〉〈C〉+ 3〈A〉〈B〉〈C〉+ 6〈AB〉 − 〈C〉〈AB〉+ 〈AC〉 − 2〈B〉〈AC〉 − 2〈BC〉 − 3〈A〉〈BC〉+ 〈ABC〉
(#36): 0 ≤ 8− 2〈B〉+ 2〈A〉〈B〉 − 2〈C〉 − 〈B〉〈C〉 − 3〈A〉〈B〉〈C〉+ 3〈C〉〈AB〉 − 6〈AC〉+ 〈B〉〈AC〉+ 〈BC〉 − 2〈A〉〈BC〉+ 〈ABC〉
(#37): 0 ≤ 8 + 2〈B〉+ 〈A〉〈B〉 − 2〈A〉〈C〉 − 3〈A〉〈B〉〈C〉+ 〈AB〉+ 2〈C〉〈AB〉+ 2〈AC〉+ 3〈B〉〈AC〉 − 6〈BC〉 − 〈A〉〈BC〉+ 〈ABC〉

A star next to the index of an inequality indicates that the inequality can also be derived by considering the possibilistic
constraints per Sec. IV D. It is likely that this list of inequalities contains redundant ones; a minimal list would be one
where, for every inequality, there is a distribution that violates it while satisfying all of the others. A machine-readable
version of this list of inequalities may be found in Appendix F.

D. Causal compatibility inequalities via Hardy-type inferences from logical tautologies

Enumerating all the facets of the marginal polytope is computationally feasible only for small examples. But our
method transforms every inequality that bounds the marginal polytope into a causal compatibility inequality. We now
present a general approach for deriving a special type of such inequalities very quickly.

In the literature on Bell inequalities, it has been noticed that incompatibility with the Bell DAG can sometimes be
witnessed by merely looking at which joint outcomes have zero probability and which ones have nonzero probability.
In other words, instead of considering the probability of an outcome, the inconsistency of some marginal distributions
can be evident from considering only the possibility or impossibility of each outcome. This insight is originally due
to Hardy [32], and versions of Bell’s theorem that are based on the violation of such possibilistic constraints are
known as Hardy-type paradoxes [40, 52–55]; a partial classification of these can be found in [33]. The method
that we describe in the second half of this section can be used to compute a complete classification of possibilistic
constraints for any marginal problem.

Possibilistic constraints follow from a consideration of logical relations that can hold among deterministic assignments
to the observed variables. Such logical constraints can also be leveraged to derive probabilistic constraints instead of
possibilistic ones, as shown in [43, 56]. This results in a partial solution to any given (probabilistic) marginal problem.
Essentially, we solve a possibilistic marginal problem [33], then upgrade the possibilistic constraints into probabilistic
inequalities, resulting in a set of probabilistic inequalities whose satisfaction is a necessary but insufficient condition
for satisfying the corresponding probabilistic marginal problem. We now demonstrate how to systematically derive all
inequalities of this type.

We have already provided a simple example of a Hardy-type argument in Example 2, in the logic used to demonstrate
that the family of distributions of Eqs. (16-18) cannot arise as the marginals of a single joint distribution. For our
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present purposes, it is useful to recast that argument into a new but manifestly equivalent form. First, for the family
of distributions in question, we have

A2 = 1 =⇒ C1 = 0,

B2 = 1 =⇒ A1 = 0,

C2 = 1 =⇒ B1 = 0,

Never A1 = 0 and B1 = 0 and C1 = 0.

(49)

From the last constraint one infers that at least one of A1, B1 and C1 must be 1, which from the three other constraints
implies that at least one of A2, B2 and C2 must be 0, so that it is not the case that all of A2, B2 and C2 are 1.
Thus Eq. (49) implies

Never A2 = 1 and B2 = 1 and C2 = 1. (50)

However, the Spiral inflation (Fig. 10) is such that A2, B2, and C2 have no common ancestor and consequently the
distribution on the pre-injectable set {A2B2C2} is the product of the distributions on A2, B2 and C2. Since each
of the latter has full support (Eq. (18)), it follows that the distribution on {A2B2C2} also has full support, which
contradicts Eq. (50).

We are here interested in recasting the argument in a manner amenable to systematic generalization. This is done as
follows. We work in a marginal scenario where the contexts are {A2B2C2}, {A2C1}, {B2A1}, {C2B1}, and {A1B1C1},
and all variables are binary. The first step of the argument is to note that23

¬[A2=1, C1=1]
∧
¬[B2=1, A1=1]

∧
¬[C2=1, B1=1]

∧
¬[A1=0, B1=0, C1=0]

=⇒ ¬[A2=1, B2=1, C2=1].
(51)

is a logical tautology for binary variables. It can be understood as a constraint on marginal deterministic assignments,
which can be thought of as a logical counterpart of a linear inequality bounding the marginal polytope. The second
and final step of the argument notes that the given marginal distributions are such that the antecedent is always true,
while the consequent is sometimes false.

To see how to translate this into a constraint on marginal distributions, we rewrite Eq. (51) in its contrapositive
form,

[A2=1,B2=1,C2=1] =⇒ [A2=1, C1=1] ∨ [B2=1, A1=1] ∨ [C2=1, B1=1] ∨ [A1=0, B1=0, C1=0]. (52)

Next, we note that if a logical tautology can be expressed as

E0 =⇒ E1 ∨ . . . ∨ En, (53)

then by applying the union bound—which asserts that the probability of at least one of a set of events occuring is no
greater than the sum of the probabilities of each event occuring—one obtains

P(E0) ≤
n∑
j=1

P(Ej). (54)

Applying this to Eq. (52) in particular yields

PA2B2C2
(111) ≤ PA1B2

(11) + PB1C2
(11) + PA2C1

(11) + PA1B1C1
(000), (55)

which is a constraint on the marginal distributions.
This inequality allows one to demonstrate the incompatibility of the family of distributions of Eqs. (16-18) with the

Spiral inflation just as easily as one can with the tautology of Eq. (51). The fact that A2, B2 and C2 are ancestrally
independent in the Spiral inflation implies that PA2B2C2 = PA2PB2PC2 . It then suffices to note that for the given
family of distributions, the probability on the left-hand side of Eq. (55) is nonzero (which corresponds to the consequent
of Eq. (51) being sometimes false) while every probability on the right-hand side is zero (which corresponds to the

23 Here, ∧, ∨ and ¬ denote conjunction, disjunction and negation respectively.
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antecedent of Eq. (51) being always true). But, of course, the inequality can witness many other incompatibilities in
addition to this one.

As another example, consider the marginal problem where the variables are A, B and C, with each being binary,
and the contexts are the pairs {AB}, {AC}, and {BC}. The following tautology provides a constraint on marginal
deterministic assignments:24

[A=0,C=0] =⇒ [A=0, B=0] ∨ [B=1,C=0]. (56)

Applying the union bound, one obtains a constraint on marginal distributions,25

PAC(00) ≤ PAB(00) + PBC(10).

In this section, we seek to determine, for any marginal scenario, the set of all inequalities that can be derived in this
manner. We do so by enumerating the full set of tautologies of the form of Eqs. (51,56). This boils down to solving
the possibilistic version of the marginal constraint problem.

We outline the general procedure using the marginal scenario of Fig. 15, where the full set of variables is
{A1A2B1B2C1C2} and the contexts are the maximal pre-injectable sets of the Sprial inflation (specified in Eq. (47)),
namely, {A1B1C1}, {A1B2C2}, {A2B1C2}, {A2B2C1} and {A2B2C2}. As before, we will express the constraints on
marginal deterministic assignments as logical implications with a valuation (assignment of outcomes) on one of the
contexts as the antecedent and a disjunction over valuations on contexts as the consequent. In the following, we
explain how to generate all such implications which are tight in the sense that the consequent is minimal, i.e., involves
as few terms as possible in the disjunction.

First, we fix the antecedent by choosing some context and a joint valuation of its variables. In order to generate
all constraints on marginal deterministic assignments, one will have to perform this procedure for every context as
the antecedent and every choice of valuation thereon. For the sake of concreteness, we take the above example with
[A2=1,B2=1,C2=1] as the antecedent. Each logical implication we consider is required to have the property that
any variable that appears in both the antecendent and the consequent must be given the same value in both.

To formally determine all valid consequents, it is useful to introduce two hypergraphs associated to the problem.
Recall the definition of the incidence matrix of a hypergraph: if vertex i is contained in edge j of the hypergraph, the
component in the ith row and jth colum of the matrix is 1; otherwise it is 0.

The first hypergraph we consider is the one whose incidence matrix is the marginal description matrix M for
the marginal problem being considered (this matrix was introduced near Eq. (48)). Each vertex in this hypergraph
corresponds to a valuation on some particular context. Each hyperedge corresponds to a possible joint valuation of
all the variables. A hyperedge contains a vertex if the valuation represented by the hyperedge is an extension of the
valuation represented by the vertex. For example, the hyperedge [A1=0,A2=1, B1=0,B2=1, C1=1,C2=1] contains
the vertex [A1=0,B2=1,C2=1]. In our example following Fig. 15, this initial hypergraph has 5 · 23 = 40 vertices and
26 = 64 hyperedges.

The second hypergraph is a subhypergraph of the first one. We delete from the first hypergraph all vertices
and hyperedges which contradict the outcomes supposed by the antecedent. In our example, because the vertex
[A2=1,B2=0, C1=1] contradicts the antecedent [A2=1,B2=1,C2=0], we delete it. We also delete the vertex
corresponding to the antecedent itself. In our example, this second hypergraph has 23 + 3 · 21 = 14 vertices and 23 = 8
hyperedges.

All valid (minimal) consequents are (minimal) transversals of this latter hypergraph. A transversal is a set of
vertices which has the property that it intersects every hyperedge in at least one vertex. In order to get implications
which are as tight as possible, it is sufficient to enumerate only the minimal transversals. Doing so is a well-studied
problem in computer science with various natural reformulations and for which manifold algorithms have been
developed [57].

In our example, it is not hard to check that the consequent of

[A2=1,B2=1,C2=1] =⇒ [A1=1,B2=1,C2=1] ∨ [A2=1, B1=1,C2=1]

∨[A2=1,B2=1, C1=1] ∨ [A1=0, B1=0, C1=0]
(57)

is such a minimal transversal: every assignment of values to all variables which extends the assignment on the left-hand
side satisfies at least one of the terms on the right, but this ceases to hold as soon as one removes any one term on the
right.

24 This is a tautology since E ∧ F =⇒ E ∧ F ∧ (G ∨ ¬G) = (E ∧ F ∧G) ∨ (E ∧ F ∧ ¬G) =⇒ (E ∧G) ∨ (F ∧ ¬G).
25 This inequality is equivalent to Eq. (30).
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We convert these implications into inequalities in the usual way via the union bound (i.e., replacing “⇒” by “≤”
at the level of probabilities and the disjunctions by sums). For example Eq. (57) translates into the constraint on
marginal distributions

PA2B2C2(111) ≤ PA1B2C2(111) + PA2B1C2(111) + PA2B2C1(111) + PA1B1C1(000). (58)

This inequality is a strengthening of Eq. (55). Eq. (58) was used earlier in this article as the starting point of our third
example of how to derive a causal compatibility inequality for the Triangle scenario, Eq. (38). Because Eq. (57) is the
progenitor of this inequality, it can be thought of as the progenitor of the causal compatibility inequality that one
derives from it, namely, Eq. (41).

Inequalities that one derives from hypergraph transversals are generally weaker than those that result from a
complete solution of the marginal problem. Nevertheless, many Bell inequalities are of this form, the CHSH inequality
among them [56]. So it seems that this method is still sufficiently powerful to generate plenty of interesting inequalities.
At the same time, the method should be significantly easier to implement in practice than the full-fledged facet
enumeration, even if one does it for every possible antecedent.

In conclusion, facet enumeration is the preferred method for deriving inequalities for the marginal problem when it
is computationally tractable. When it is not, enumerating hypergraph transversals presents a good alternative.

V. FURTHER PROSPECTS FOR THE INFLATION TECHNIQUE

Lemma 3 and Corollary 5 state that any causal inference technique on an inflation DAG G′ can be transferred to
the original DAG G. In the previous section, we have found that even extremely weak techniques on G′—namely
the existence of a joint distribution plus ancestral independences—can lead to significant and new results for causal
inference on G. In the following two subsections, we consider two additional possibilities for constraints that might be
exploited in this way to enhance the power of inflation further.

A. Using d-separation relations on the inflation DAG

In Sec. IV, we considered causal inference by studying the existence of a joint distribution on observed nodes of
the inflation DAG, and then making use of the ancestral independences to factorize the joint distributions on the
pre-injectable sets into those on the injectable sets.

It is natural to wonder whether one can sometimes make use of facts about the causal structure that go beyond
ancestral independences. It is standard practice, when deriving compatibility conditions for a DAG, to make use
of arbitrary d-separation relations among variables: if, in a given DAG, X and Y are d-separated26 by Z, then a
distribution is compatible with that DAG only if it satisfies the conditional independence relation X ⊥⊥ Y |Z. For
Z = ∅, this specializes to ancestral independence of X and Y . Thus it is natural to ask: can the inflation technique
also sensibly make use of other d-separation relations among sets of observed variables?

Every conditional independence relation X ⊥⊥ Y |Z can be expressed as a polynomial equation in terms of probabilities:
while it is most commonly written as PXY |Z(xy|z) = PX|Z(x|z)PY |Z(y|z) for all x, y, and z, it can also be written
in terms of unconditional probabilities, where it takes the form

∀xyz : PXY Z(xyz)PZ(z) = PXZ(xz)PY Z(yz)

Such a nonlinear constraint can be incorporated as a further restriction on the joint distributions compatible with the
inflation DAG, supplementing the basic constraints of nonnegativity of probabilities for the joint distribution of the
observed variables and the constraints implied by ancestral independences.

For example, in the Spiral inflation of the Triangle scenario (Fig. 3), A1 and C2 are d-separated by {A2B2}, in
addition to being ancestrally independent. Hence one can try to incorporate the constraint that

∀a1a2b2c2 : PA1A2B2C2(a1a2b2c2)PA2B2(a2b2) = PA1A2B2(a1a2b2)PA2B2C2(a2b2c2) (59)

Every probability that appears in such an equation, though not defined on an injectable set, can still be expressed as a
marginal of the joint distribution of all observed variables. For instance, we can express PA2B2 as

∀a2b2 : PA2B2(a2b2) =
∑

a1b1c1c2
PA1A2B1B2C1C2(a1a2b1b2c1c2). (60)

26 The notion of d-separation is treated at length in [1, 3, 11, 13], so we elect not to review it here.
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Upon substituting such relations into Eq. (59), one obtains a system of polynomial equations and inequalities in
terms of the joint probabilities. We can then proceed with quantifier elimination as we did before, eliminating the
unknowns PA1A2B1B2C1C2

(a1a2b1b2c1c2) from this system. The additional difficulty now is that some of the equations
are nonlinear. This idea even applies to some ancestral independences between sets that are not pre-injectable: for
example, A1A2B2 ⊥⊥ C2 is also guaranteed in the Spiral inflation of the Triangle scenario (Fig. 3), and results in a
polynomial equation closely related to Eq. (59).

Many modern computer algebra systems have functions capable of tackling nonlinear quantifier elimination symboli-
cally27. Currently, however, it is generally not practical to perform nonlinear quantifier elimination on large polynomial
systems with many unknowns to be eliminated. It may help to exploit results on the concrete algebraic-geometric
structure of these particular systems [58].

If one is seeking merely to assess the compatibility of a given distribution with the causal structure, then one can
avoid the quantifier elimination problem and simply try and solve an existence problem: after substituting the values
that the given distribution prescribes for the outcomes on pre-injectable sets into the polynomial system in terms of
the unknown global joint probabilities, one must only determine whether that system has a solution. Most computer
algebra systems can resolve such satisfiability questions quite easily28.

It is also possible to use a mixed strategy of linear and nonlinear quantifier elimination, such as Chaves [6] advocates.
The explicit results of [6] are directly causal implications of the original DAG, achieved by applying a mixed quantifier
elimination strategy. Perhaps further causal compatibility inequalities will be derivable by applying such a mixed
quantifier elimination strategy to inflation DAGs.

B. Using copy-index equivalence on the inflation DAG

By the definition of an inflation model (Definition 2), if two variables in the inflation DAG G′ are copy-index-
equivalent, Ai ∼ Aj , then each depends on its parents in the same fashion as A depends on its parents in the original
DAG G. By transitivity, also Ai and Aj have the same dependence on their parents. Formally, from Ai ∼ A and
Aj ∼ A and the definition of inflation, we infer that PAi|PaG′ (Ai) = PA|PaG(A) and PAj |PaG′ (Aj) = PA|PaG(A), which
implies

PAi|PaG′ (Ai) = PAj |PaG′ (Aj). (61)

The ancestral subgraphs of Ai and Aj are also equivalent, and consequently equations like Eq. (61) also hold for
all of the ancestors of Ai and Aj . We conclude that the marginal distributions of Ai and Aj must also be equal,
PAi

= PAj
. More generally, it may be possible to find pairs of contexts in G′ of any size such that constraints of the

form of Eq. (61) imply that the marginal distributions on these two contexts must be equal.
For example, consider the pair of contexts {A1A2B1} and {A1A2B2} for the marginal scenario defined by the Spiral

inflation (Fig. 3). Neither of these two contexts is an injectable set. Nonetheless, because of Eq. (61), we can conclude
that their marginal distributions coincide in any inflation model,

∀aa′b : PA1A2B1(aa′b) = PA1A2B2(aa′b). (62)

We can also conclude that in the inflation model these marginal distributions satisfy PA1A2B1
= PA2A1B2

—where now
the order of A1 and A2 is opposite on the two sides of the equation—or equivalently,

∀aa′b : PA1A2B1(aa′b) = PA1A2B2(a′ab). (63)

These constraints entail that PA1A2B2
must be symmetric under exchange of A1 and A2, which in itself is another

equation of the type above.
Parameters such as PA1A2B1

(a1a2b), PA1A2B2
(a1a2b) and PA1A2

(a1a2) can each be expressed as sums of the unknowns
PA1A2B1B2C1C2

(a1a2b1b2c1c2), so that relations such as Eqs. (62,63) each constitute an additional equation that can be
added to the system of equations and inequalities that constitute the starting point of the satisfiability problem (if one
is seeking to test the compatibility of a given distribution with the inflation DAG) or the quantifier elimination problem
(if one is seeking to derive causal compatibility inequalities for the inflation DAG). If any such additional constraints
yield stronger constraints at the level of the inflation DAG, then they may translate into stronger constraints at the
level of the original DAG.

The general problem of finding pairs of marginal contexts in the inflation DAG for which relations of copy-index-
equivalence imply equality of the marginal distributions, and the conditions under which such equalities may yield
tighter inequalities, are discussed in Appendix C.

27 For example MathematicaTM ’s Resolve command, Redlog’s rlposqe, or MapleTM ’s RepresentingQuantifierFreeFormula.
28 For example MathematicaTM ’s Reduce`ExistsRealQ function. Specialized satisfiability software such as SMT-LIB’s check-sat [59] are

particularly apt for this purpose.

http://reference.wolfram.com/language/ref/Resolve.html
http://www.redlog.eu/documentation/reals/rlqe.php
http://maplesoft.com/support/help/Maple/view.aspx?path=RegularChains/SemiAlgebraicSetTools/RepresentingQuantifierFreeFormula
http://reference.wolfram.com/language/Experimental/ref/ExistsRealQ.html
http://smtlib.cs.uiowa.edu/solvers.shtml
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C. Causal inference in quantum theory and in generalized probabilistic theories

Recent work has sought to explore quantum generalizations of the notion of a causal model, termed quantum causal
models [13, 14, 29, 60, 61]. We here use the quantum generalization that is implied by the approach of [13].

The causal structures are still represented by DAGs, with a distinction between observed and latent nodes. However,
the latent nodes are now associated with sets of quantum channels and the observed nodes are now associated with
sets of quantum measurements. Observed nodes are still labelled by random variables, which represent the outcome of
the associated measurement. One also makes a distinction between edges in the DAG that carry classical information
and edges that carry quantum information.29 An observed node can have incoming edges of either type: those that
come from other observed nodes carry classical information, while those that come from latent nodes carry quantum
information. Each quantum measurement in the set that is associated to an observed node acts on the collection of
quantum systems received by this node (i.e., on the tensor product of the Hilbert spaces associated to the incoming
edges). The classical variables that are received by the node act collectively as a control variable, determining which
measurement in the set is implemented. Finally, the random variable that is associated to the node encodes the
outcome of the measurement. All of the outgoing edges of an observed node are classical and simply broadcast the
outcome of the measurement to the children nodes. A latent node can also have incoming edges that carry classical
variables as well as incoming edges that carry quantum systems. Each quantum channel in the set that is associated to
a latent node takes the collection of quantum systems associated to the incoming edges as its quantum input and the
collection of quantum systems associated to the outgoing edges as its quantum output (the input and output spaces
need not have the same dimension). The classical variables that are received by the node act collectively as a control
variable, determining which channel in the set is implemented.

A quantum causal model is still ultimately in the service of explaining joint distributions over observed classical
variables. The joint distribution of these variables is the only experimental data with which one can confront a given
quantum causal model. The basic problem of causal inference for quantum causal models, therefore, concerns the
compatibility of a joint distribution of observed classical variables with a given DAG, where the model supplementing
the DAG is allowed to be quantum, in the sense defined above. If this happens, we say that the distribution is
quantumly compatible with the DAG.

One motivation for studying quantum causal models is that they offer a new perspective on an old problem in
the field of quantum foundations: that of establishing precisely which of the principles of classical physics must be
abandoned in quantum physics. It was noticed by Fritz [12] and Wood and Spekkens [11] that Bell’s theorem [34] states
that there are distributions on observed nodes of the Bell DAG that are quantumly compatible but not classically
compatible with the DAG. Moreover, it was shown in [11] that these distributions cannot be explained by any causal
structure while complying with the additional principle that conditional independences should not be fine-tuned,
i.e., while demanding that any observed conditional independence should be accounted for by the DAG. These results
suggest that quantum theory is perhaps best understood as revising our notions of the nature of unobserved entities,
and of how one represents causal dependences thereon and incomplete knowledge thereof, while nonetheless preserving
the spirit of causality and the principle of no fine-tuning [60, 62, 63].

Another motivation for studying quantum causal models is a practical one. Violations of Bell inequalities have been
shown to constitute resources for information processing [64–66]. Hence it seems plausible that if one can find DAGs
that are different from the Bell scenario but for which their exist distributions that are quantumly compatible with the
DAG but not classically compatible, then this quantum-classical separation may also find applications to information
processing. For example, it has been shown that in addition to the Bell scenario, such a quantum-classical separation
also exists in the bilocality scenario [30] and the Triangle scenario [12], and it is likely that many more DAGs with
this property will be found. The hope is that on any DAG supporting a quantum-classical separation, some of the
separating distributions may constitute a resource for information processing.

So for both foundational and practical reasons, there is good reason to find examples of DAGs that exhibit a
quantum-classical separation. However, this is by no means an easy task. The set of distributions that are quantumly
compatible with a given DAG is quite hard to separate from the set of distributions that are classically compatible with
that DAG [12, 13]. For example, both the classical and quantum sets respect the conditional independence relations
among observed nodes that are implied by the d-separation relations of the DAG [13], and entropic inequalities are only
of very limited use [12, 67]. We hope that the inflation technique will provide better tools for finding such separations.

In addition to quantum generalizations of causal models, one can define generalizations for other operational theories
that are neither classical nor quantum [13, 14]. Such generalizations are formalized using the framework of generalized
probabilistic theories (GPTs) [68, 69], which is sufficiently general to describe any operational theory that makes

29 In many cases this notion of quantum causal model can also be formulated in a manner that does not require a distinction between two
kinds of edges [14].
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statistical predictions about the outcomes of experiments and passes some basic sanity checks. Some constraints on
compatibility can be proven to be theory-independent in that they apply not only to classical and quantum causal
models, but to any kind of generalized probabilistic causal model [13]. For example, the classically-valid conditional
independence relations implied between observed variables in a DAG are all also valid in the GPT framework. Another
example is the entropic monogamy inequality Eq. (37), which was proven in [13] to be GPT valid as well. These kinds
of constraints are of interest because they clarify what any conceivable theory of physics must satisfy on a given causal
structure.

The essential element in deriving such constraints is to only make reference to the observed nodes, as done in [13].
In fact, we now understand the argument of [13] to be an instance of the inflation technique. Nonetheless, we have
seen that the inflation technique often yields inequalities that hold for the classical notion of compatibility, while
having quantum and GPT violations, such as the Bell inequalities of Example 3 of Sec. III B and Appendix G. In fact,
inflation can be used to derive inequalities with quantum violations for the Triangle scenario as well [70].

So what distinguishes applications of the inflation technique that yield inequalities for GPT compatibility from those
that yield inequalities for classical compatibility? The distinction rests on a structural feature of the inflation DAG:

Definition 6. In G′ ∈ Inflations(G), an inflationary fan-out is a latent node that has two or more children that
are copy-index equivalent.

The Web and Spiral inflations of the Triangle scenario, depicted in Fig. 2 and Fig. 3 respectively, contain one or
more inflationary fan-outs, as does the inflation of the Bell DAG that is depicted in Fig. 12. On the other hand, the
simplest inflation of the Triangle scenario that we consider in this article, the Cut inflation depicted in Fig. 5, does not
contain any inflationary fan-outs.

Our main observation is that if one uses an inflation DAG without an inflationary fan-out, then the resulting
inequalities derived by the inflation technique will all be GPT valid. In other words, one can only hope to detect a
GPT-classical separation if one uses an inflation DAG that has at least one inflationary fan-out. We now explain
the intuition for why this is the case. In the classical causal model obtained by inflation, the copy-index-equivalent
children of an inflationary fan-out causally depend on their parent node in precisely the same way as their counterparts
in the original DAG do. For example, this dependence may be such that these two children are exact copies of the
inflationary fan-out node. So when one tries to write down a quantum or GPT version of our notion of inflation, one
quickly runs into trouble: in quantum theory, the no-broadcasting theorem shows that such duplication is impossible in
a strong sense [71], and an analogous theorem holds for GPTs [72]. This is why in the presence of an inflationary
fan-out, one cannot expect our inequalities to hold in the quantum or GPT case, which is consistent with the fact that
they often do have quantum and GPT violations.

On the other hand, for any inflation DAG that does not contain an inflationary fan-out, the notion of an inflation
model generalizes to the quantum case, as follows. By the definition of inflation, any node in G′ has an equivalent
set of incoming edges to its counterpart in G, while by the assumption that the inflation DAG does not contain any
inflationary fan-outs, any node in G′ has either the equivalent set of outgoing edges as its counterpart in G, or some
pruning of this set. In the former case, one associates to this node the same set of quantum channels (if it is a latent
node) or measurements (if it is an observed node) that are associated to its counterpart. In the latter case, one simply
applies the partial trace operation on the pruned edges (if it is a latent node) or a marginalization on the pruned edges
(if it is an observed node). That these prescriptions make sense depends crucially on the assumption that G′ is an
inflation of G, so that the ancestries of any node in G′ mirrors the ancestry of the corresponding node in G perfectly.
Hence for inflation DAGs G′ without inflationary fan-outs, we have quantum analogues of Lemma 3 and Corollary 5.
The problem of quantum causal inference on G therefore translates into the corresponding problem on G′, and any
constraint that we can derive on G′ translates back to G. In particular, our Examples 1, 4 and 5 also hold for quantum
causal inference: perfect correlation is not only classically incompatible with the Triangle scenario, it is quantumly
incompatible as well, and the inequalities Eqs. (33,37) have no quantum violations.

All of these assertions about inflation DAGs that do not contain any inflationary fan-outs apply not only to quantum
causal models, but to GPT causal models as well, using the definition of the latter provided in [13].

In the remainder of this section, we discuss the relation between the quantum and the GPT case. Since quantum
theory is a particular generalized probabilistic theory, quantum compatibility trivially implies GPT compatibility.
Through the work of Tsirelson [37] and Popescu and Rohrlich [38], it is known that the converse is not true: the Bell
scenario manifests a GPT-quantum separation. The identification of distributions witnessing this difference, and the
derivation of quantum causal compatibility inequalities with GPT violations, has been a focus of much foundational
research in recent years. Traditionally, the foundational question has always been: why does quantum theory predict
correlations that are stronger than one would expect classically? But now there is a new question being asked: why
does quantum theory only allow correlations that are weaker than those predicted by other GPTs? There has been
some interesting progress in identifying physical principles that can pick out the precise correlations that are exhibited
by quantum theory [73–81]. Further opportunities for identifying such principles would be useful. This motivates the
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problem of classifying DAGs into those which have a quantum-classical separation, those which have a GPT-quantum
separation and those which have both. Similarly, one can try to classify causal compatibility inequalities into those
which are GPT-valid, those which are GPT-violable but quantumly valid, and those which are quantum-violable but
classically valid.

The problem of deriving inequalities that are GPT-violable but quantumly valid is particularly interesting. Chaves
et al. [29] have derived some entropic inequalities that can do so. At present, however, we do not see a way of applying
the inflation technique to this problem.

VI. CONCLUSIONS

We have described the inflation technique for causal inference in the presence of latent variables.
We have shown how many existing techniques for witnessing incompatibility and for deriving causal compatibility

inequalities can be enhanced by the inflation technique, independently of whether these pertain to entropic quantities,
correlators or probabilities. The computational difficulty of achieving this enhancement depends on the seed technique.
We summarize the computational difficulty of the approaches that we have considered in Table I. A similar table
could be drawn for the satisfiability problem, with relative difficulties preserved, but where none of the variants of the
problem are computationally hard.

TABLE I. A comparison of different approaches for deriving constraints on compatibility at the level of the inflation DAG,
which then translate into constraints on compatibility at the level of the original DAG.

Input from causal structure General problem → Standard algorithm(s) Difficulty

Only ancestral independences
among the observed variables

Facet enumeration of mar-
ginal polytope (Sec. IV B)

→ see Appendix A Hard

Finding possibilistic constraints
by identifying hypergraph

transversals (Sec. IV D)

→ see Eiter et al. [57] Very easy

All d-separation conditions on the
observed variables (Sec. V A)

Real quantifier elimination → Cylindrical algebraic
decomposition [6]

Very hard

Ancestral independences among the
observed variables + copy-index

equivalences (Appendix C)
Linear quantifier elimination → Fourier-Motzkin elimination [82–86],

Equality set projection [87, 88]
Hard

Especially in Sec. IV, we have focused on one particular seed technique: the existence of a joint distribution on
all observed nodes together with ancestral independences. We have shown how a complete or partial solution of
the marginal problem for the pre-injectable sets of the inflation DAG can be leveraged to obtain criteria for causal
compatibility, both at the level of witnessing particular distributions as incompatible and deriving causal compatibility
inequalities. These inequalities are polynomial in the joint probabilities of the observed variables. They are capable of
exhibiting the incompatibility of the W-type distribution with the Triangle scenario, while entropic techniques cannot,
so that our polynomial inequalities are stronger than entropic inequalities in at least some cases (see Example 2 of
Sec. III B). As far as we can tell, our inequalities are not related to the nonlinear causal compatibility inequalities
which have been derived specifically to constrain classical networks [19–21], nor to the nonlinear inequalities which
account for interventions to a given causal structure [36, 89].

We have shown that some of the causal compatibility inequalities we derive by the inflation technique are necessary
conditions not only for compatibility with a classical causal model, but also for compatibility with a causal model in
any generalized probabilistic theory, which includes quantum causal models as a special case. It would be enlightening
to understand the general extent to which our polynomial inequalities for a given DAG can be violated by a distribution
arising in a quantum causal model for that DAG. A variety of techniques exist for estimating the amount by which a
Bell inequality [90, 91] is violated in quantum theory, but even finding a quantum violation of one of our polynomial
inequalities for causal structures other than the Bell scenario presents a new task for which we currently lack a
systematic approach. Nevertheless, we know that there exists a difference between classical and quantum also beyond
Bell scenarios [12, Theorem 2.16], and we hope that our polynomial inequalities will perform better in probing this
separation than entropic inequalities do [13, 29].

We have shown that the inflation technique can also be used to derive causal compatibility inequalities that hold for
arbitrary generalized probabilistic theories, a significant generalization of the results of [13]. Such inequalities are also
very significant insofar as they constitute a restriction on the sorts of statistical correlations that could arise in a given
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causal scenario even if quantum theory is superceded by some alternative physical theory. As long as the successor
theory falls within the framework of generalized probabilistic theories, the restriction will hold.

Finally, an interesting open question is whether it might be possible to modify our methods somehow to derive
causal compatibility inequalities that hold for quantum theory and are violated by some GPT. If it is possible, then
this technique might provide an alternative approach to understanding the Tsirelson bound [10].

A single causal structure has an unlimited number of potential inflations. Selecting a good inflation from which strong
polynomial inequalities can be derived is an interesting challenge. To this end, it would be desirable to understand
how particular features of the original causal structure are exposed when different nodes in the DAG are duplicated.
By isolating which features are exposed in each inflation, we could conceivably quantify the utility for causal inference
of each inflation. In so doing, we might find that inflation DAGs beyond a certain level of variable duplication need
not be considered. The multiplicity beyond which further inflation is irrelevant may be related to the maximum degree
of those polynomials which tightly characterize a causal scenario. Presently, however, it is not clear how to upper
bound either number, or whether finite upper bounds can even be expected.

Causal compatibility inequalities are, by definition, merely necessary conditions for compatibility. Depending on
what kind of causal inference methods one uses at the level of an inflation DAG G′, one may or may not obtain
sufficient conditions. An interesting question is: if one only uses the existence of a joint distribution and ancestral
independences at the level of G′, then does one obtain sufficient conditions as G′ varies? In other words: if a given
distribution is such that for every inflation DAG G′, the marginal problem of Sec. IV is solvable, then is the distribution
compatible with the original DAG? This occurs for the Bell scenario, where it is enough to consider only one particular
inflation (Appendix G). Some evidence against sufficiency in the general case is that we have not seen a way to use the
inflation technique to rederive Pearl’s instrumental inequality.
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Appendix A: Algorithms for solving the marginal constraint problem

By solving the marginal constraint problem, what we mean is to determine all the facets of the marginal polytope
for a given marginal scenario. Since the vertices of this polytope are precisely the deterministic assignments of values
to all variables, which are easy to enumerate, solving the marginal problem is an instance of a facet enumeration
problem: given the vertices of a convex polytope, determine its facets. This is a well-studied problem in combinatorial
optimization for which a variety of algorithms are available [92].

A generic facet enumeration problem takes a matrix V ∈ Rd×n, which lists the vertices as its columns, and asks for
an inequality description of the set of vectors b ∈ Rd that can be written as a convex combination of the vertices using
weights x ∈ Rn that are nonnegative and normalized,{

b ∈ Rd
∣∣∣∣ ∃x ∈ Rn : b = V x, x ≥ 0,

∑
i

xi = 1

}
. (A.1)

To solve the marginal problem one uses the marginal description matrix introduced in Sec. IV B as the input to the
facet enumeration algorithm, i.e. V = M , see Eq. (48).

The oldest-known method for facet enumeration relies on linear quantifier elimination in the form of Fourier-
Motzkin (FM) elimination [82, 83]. This refers to the fact that one starts with the system b = V x, x ≥ 0 and

∑
ixi = 1,

which is the half-space representation of a convex polytope (a simplex), and then one needs to project onto b-space by
eliminating the variables x to which the existential quantifier ∃x refers. The Fourier-Motzkin algorithm is a particular
method for performing this quantifier elimination one variable at a time; when applied to Eq. (A.1), it is equivalent to
the double description method [83, 93]. Linear quantifier elimination routines are available in many software tools30.
The authors found it convenient to custom-code a linear quantifier elimination routine in MathematicaTM .

Other algorithms for facet enumeration that are not based on linear quantifier elimination include the following.
Lexicographic reverse search (LRS) [95] explores the entire polytope by repeatedly pivoting from one facet to an
adjacent one, and is implemented in lrs. Equality Set Projection (ESP) [87, 88] is also based on pivoting from facet
to facet, though its implementation is less stable31. These algorithms could be interesting to use in practice, since each
pivoting step churns out a new facet; by contrast, Fourier-Motzkin type algorithms only generate the entire list of
facets at once, after all the quantifiers have been eliminated one by one.

It may also be possible to exploit special features of marginal polytopes in order to facilitate their facet enumeration,
such as their high degree of symmetry: permuting the outcomes of each variable maps the polytope to itself, which
already generates a sizeable symmetry group, and oftentimes there are additional symmetries given by permuting
some of the variables. This simplifies the problem of facet enumeration [96, 97], and it may be interesting to apply
dedicated software32 to the facet enumeration problem of marginal polytopes [98–100].

30 For example MATLABTM ’s MPT2/MPT3, Maxima’s fourier elim, lrs’s fourier, or MapleTM ’s (v17+) LinearSolve and Projection. The
efficiency of most of these software tools, however, drops off markedly when the dimension of the final projection is much smaller than
the initial space of the inequalities. Fast facet enumeration aided by Chernikov rules [84, 94] is implemented in cdd , PORTA, qskeleton ,
and skeleton. In the authors experience skeleton seemed to be the most efficient. Additionally, the package polymake offers multiple
algorithms as options for computing convex hulls.

31 ESP [86–88] is supported by MPT2 but not MPT3, and by the (undocumented) option of projection in the polytope (v0.1.2 2016-07-13)
python module.

32 Such as PANDA, Polyhedral , or SymPol . The authors found SymPol to be rather effective for some small test problems, using the
options “./sympol -a --cdd”.

http://cgm.cs.mcgill.ca/~avis/C/lrslib/USERGUIDE.html#Installation%20Section
http://people.ee.ethz.ch/~mpt/2/docs/refguide/mpt/@polytope/projection.html
http://ellipsoids.googlecode.com/svn-history/r2740/branches/issue_119_vrozova/tbxmanager/toolboxes/mpt/3.0.14/all/mpt3-3_0_14/mpt/modules/geometry/sets/@Polyhedron/projection.m
http://maxima.sourceforge.net/docs/manual/de/maxima_75.html
http://cgm.cs.mcgill.ca/~avis/C/lrslib/USERGUIDE.html#fourier
http://www.maplesoft.com/support/help/maple/view.aspx?path=RegularChains/SemiAlgebraicSetTools/LinearSolve
http://www.maplesoft.com/support/help/Maple/view.aspx?path=RegularChains/SemiAlgebraicSetTools/Projection
https://www.inf.ethz.ch/personal/fukudak/cdd_home/
http://comopt.ifi.uni-heidelberg.de/software/PORTA/
http://sbastrakov.github.io/qskeleton/
http://www.uic.unn.ru/~zny/skeleton/
http://www.uic.unn.ru/~zny/skeleton/
https://polymake.org/doku.php/researchdata/polymakeilp
http://people.ee.ethz.ch/~mpt/2/docs/refguide/mpt/@polytope/projection.html
http://people.ee.ethz.ch/~mpt/3/
https://github.com/tulip-control/polytope/blob/master/polytope/polytope.py#L1412
https://pypi.python.org/pypi/polytope
http://comopt.ifi.uni-heidelberg.de/software/PANDA/
http://mathieudutour.altervista.org/Polyhedral/
http://www.math.uni-rostock.de/~rehn/software/sympol.html
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Appendix B: Explicit marginal description matrix of the Spiral inflation with binary observed variables

Recall that the five maximal pre-injectable sets of the Spiral inflation DAG are {A1B1C1}, {A1B2C2}, {A2B1C2},
{A2B2C1} and {A2B2C2}, as illustrated in Fig. 15. Taking the variables to be binary, each pre-injectable set
corresponds to 23 = 8 equations pertinent to the marginal problem. The five sets of equations which relate the
marginal probabilities to a posited joint distribution are given by

∀a1b1c1 : PA1B1C1
(a1b1c1) =

∑
a2b2b2

PA1A2B1B2C1C2
(a1a2b1b2c1c2),

∀a1b2c2 : PA1B2C2
(a1b2c2) =

∑
a2b1c1

PA1A2B1B2C1C2
(a1a2b1b2c1c2),

∀a2b1c2 : PA2B1C2(a2b1c2) =
∑

a1b2c1
PA1A2B1B2C1C2(a1a2b1b2c1c2),

∀a2b2c1 : PA2B2C1
(a2b2c1) =

∑
a1b1c2

PA1A2B1B2C1C2
(a1a2b1b2c1c2),

∀a2b2c2 : PA2B2C2
(a2b2c2) =

∑
a1b1c1

PA1A2B1B2C1C2
(a1a2b1b2c1c2).

(B.1)

As we noted in the main text, such conditions can be expressed in terms of a single matrix equality, Mx = b where
x is the joint distribution vector, b is the marginal distribution vector and M is the marginal description
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matrix. In the Sprial example, we have:

the joint
distribution
vector x of
length 64 is



PA1A2B1B2C1C2
(000000)

PA1A2B1B2C1C2
(000001)

PA1A2B1B2C1C2
(000010)

PA1A2B1B2C1C2
(000011)

PA1A2B1B2C1C2
(000100)

PA1A2B1B2C1C2
(000101)

PA1A2B1B2C1C2
(000110)

PA1A2B1B2C1C2
(000111)

PA1A2B1B2C1C2(001000)
PA1A2B1B2C1C2(001001)
PA1A2B1B2C1C2(001010)
PA1A2B1B2C1C2(001011)
PA1A2B1B2C1C2(001100)
PA1A2B1B2C1C2(001101)
PA1A2B1B2C1C2(001110)
PA1A2B1B2C1C2(001111)
PA1A2B1B2C1C2(010000)
PA1A2B1B2C1C2(010001)
PA1A2B1B2C1C2(010010)
PA1A2B1B2C1C2(010011)
PA1A2B1B2C1C2(010100)
PA1A2B1B2C1C2(010101)
PA1A2B1B2C1C2(010110)
PA1A2B1B2C1C2(010111)
PA1A2B1B2C1C2(011000)
PA1A2B1B2C1C2(011001)
PA1A2B1B2C1C2(011010)
PA1A2B1B2C1C2(011011)
PA1A2B1B2C1C2(011100)
PA1A2B1B2C1C2(011101)
PA1A2B1B2C1C2(011110)
PA1A2B1B2C1C2(011111)
PA1A2B1B2C1C2(100000)
PA1A2B1B2C1C2(100001)
PA1A2B1B2C1C2(100010)
PA1A2B1B2C1C2(100011)
PA1A2B1B2C1C2(100100)
PA1A2B1B2C1C2(100101)
PA1A2B1B2C1C2(100110)
PA1A2B1B2C1C2(100111)
PA1A2B1B2C1C2(101000)
PA1A2B1B2C1C2(101001)
PA1A2B1B2C1C2(101010)
PA1A2B1B2C1C2(101011)
PA1A2B1B2C1C2(101100)
PA1A2B1B2C1C2(101101)
PA1A2B1B2C1C2(101110)
PA1A2B1B2C1C2(101111)
PA1A2B1B2C1C2(110000)
PA1A2B1B2C1C2(110001)
PA1A2B1B2C1C2(110010)
PA1A2B1B2C1C2(110011)
PA1A2B1B2C1C2(110100)
PA1A2B1B2C1C2(110101)
PA1A2B1B2C1C2(110110)
PA1A2B1B2C1C2(110111)
PA1A2B1B2C1C2(111000)
PA1A2B1B2C1C2(111001)
PA1A2B1B2C1C2(111010)
PA1A2B1B2C1C2(111011)
PA1A2B1B2C1C2(111100)
PA1A2B1B2C1C2(111101)
PA1A2B1B2C1C2(111110)
PA1A2B1B2C1C2(111111)



,

and the
marginal
distribution
vector b of
length 40 is



PA1B1C1
(0, 0, 0)

PA1B1C1
(0, 0, 1)

PA1B1C1
(0, 1, 0)

PA1B1C1
(0, 1, 1)

PA1B1C1
(1, 0, 0)

PA1B1C1
(1, 0, 1)

PA1B1C1(1, 1, 0)
PA1B1C1(1, 1, 1)
PA1B2C2(0, 0, 0)
PA1B2C2(0, 0, 1)
PA1B2C2(0, 1, 0)
PA1B2C2(0, 1, 1)
PA1B2C2(1, 0, 0)
PA1B2C2(1, 0, 1)
PA1B2C2(1, 1, 0)
PA1B2C2(1, 1, 1)
PA2B1C2(0, 0, 0)
PA2B1C2(0, 0, 1)
PA2B1C2(0, 1, 0)
PA2B1C2(0, 1, 1)
PA2B1C2(1, 0, 0)
PA2B1C2(1, 0, 1)
PA2B1C2(1, 1, 0)
PA2B1C2(1, 1, 1)
PA2B2C1(0, 0, 0)
PA2B2C1(0, 0, 1)
PA2B2C1(0, 1, 0)
PA2B2C1(0, 1, 1)
PA2B2C1(1, 0, 0)
PA2B2C1(1, 0, 1)
PA2B2C1(1, 1, 0)
PA2B2C1(1, 1, 1)
PA2B2C2(0, 0, 0)
PA2B2C2(0, 0, 1)
PA2B2C2(0, 1, 0)
PA2B2C2(0, 1, 1)
PA2B2C2(1, 0, 0)
PA2B2C2(1, 0, 1)
PA2B2C2(1, 1, 0)
PA2B2C2(1, 1, 1)



, i.e.



PA1A2B1B2C1C2(0, , 0, , 0, )
PA1A2B1B2C1C2(0, , 0, , 1, )
PA1A2B1B2C1C2(0, , 1, , 0, )
PA1A2B1B2C1C2

(0, , 1, , 1, )
PA1A2B1B2C1C2

(1, , 0, , 0, )
PA1A2B1B2C1C2

(1, , 0, , 1, )
PA1A2B1B2C1C2

(1, , 1, , 0, )
PA1A2B1B2C1C2

(1, , 1, , 1, )
PA1A2B1B2C1C2

(0, , , 0, , 0)
PA1A2B1B2C1C2

(0, , , 0, , 1)
PA1A2B1B2C1C2

(0, , , 1, , 0)
PA1A2B1B2C1C2

(0, , , 1, , 1)
PA1A2B1B2C1C2

(1, , , 0, , 0)
PA1A2B1B2C1C2

(1, , , 0, , 1)
PA1A2B1B2C1C2

(1, , , 1, , 0)
PA1A2B1B2C1C2

(1, , , 1, , 1)
PA1A2B1B2C1C2

( , 0, 0, , , 0)
PA1A2B1B2C1C2

( , 0, 0, , , 1)
PA1A2B1B2C1C2

( , 0, 1, , , 0)
PA1A2B1B2C1C2

( , 0, 1, , , 1)
PA1A2B1B2C1C2

( , 1, 0, , , 0)
PA1A2B1B2C1C2

( , 1, 0, , , 1)
PA1A2B1B2C1C2

( , 1, 1, , , 0)
PA1A2B1B2C1C2

( , 1, 1, , , 1)
PA1A2B1B2C1C2

( , 0, , 0, 0, )
PA1A2B1B2C1C2

( , 0, , 0, 1, )
PA1A2B1B2C1C2

( , 0, , 1, 0, )
PA1A2B1B2C1C2

( , 0, , 1, 1, )
PA1A2B1B2C1C2

( , 1, , 0, 0, )
PA1A2B1B2C1C2

( , 1, , 0, 1, )
PA1A2B1B2C1C2

( , 1, , 1, 0, )
PA1A2B1B2C1C2

( , 1, , 1, 1, )
PA1A2B1B2C1C2

( , 0, , 0, , 0)
PA1A2B1B2C1C2

( , 0, , 0, , 1)
PA1A2B1B2C1C2

( , 0, , 1, , 0)
PA1A2B1B2C1C2( , 0, , 1, , 1)
PA1A2B1B2C1C2( , 1, , 0, , 0)
PA1A2B1B2C1C2( , 1, , 0, , 1)
PA1A2B1B2C1C2( , 1, , 1, , 0)
PA1A2B1B2C1C2( , 1, , 1, , 1)



, (B.2)
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and the marginal description matrix M is



1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1



. (B.3)
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Appendix C: Constraints on marginal distributions from copy-index equivalence relations

In Eq. (61), we noted that every copy of a variable in an inflation model has the same probabilistic dependence on
its parents as every other copy. It followed that for certain pairs of marginal contexts, the marginal distributions in
any inflation model are necessarily equal. We now describe how to identify such pairs of contexts.

Given U ,V ⊆ Nodes(G′) in an inflation DAG G′, let us say that a map ϕ : U → V is a copy isomorphism if it is
a graph isomorphism33 between SubDAG(U) and SubDAG(V ) such that ϕ(X) ∼ X for all X ∈ U , meaning that ϕ
maps every node X ∈ U to a node ϕ(X) ∈ V that is equivalent to X under dropping the copy-index.

Furthermore, we say that a copy isomorphism ϕ : U → V is an inflationary isomorphism whenever it can
be extended to a copy isomorphism on the ancestral subgraphs, Φ : An(U) → An(V ). A copy isomorphism
Φ : An(U)→ An(V ) defines an inflationary isomorphism ϕ : U → V if and only if Φ(U) = V . So in practice, one can
either start with ϕ : U → V and try to extend it to Φ : An(U)→ An(V ), or start with such a Φ and see whether it
maps U to V and thereby restricts to a ϕ.

For given U and V , a sufficient condition for equality of their marginal distributions in an inflation model is that
there exists an inflationary isomorphism between them. Because U and V might themselves contain several variables
that are copy-index equivalent (recall the examples of Sec. V B), equating the distribution PU with the distribution
PV in an unambiguous fashion requires one to specify a correspondence between the variables that make up U and
those that make up V . This is exactly the data provided by the inflationary isomorphism ϕ. This result is summarized
in the following lemma.

Lemma 7. Let G′ be an inflation of G, and let U ,V ⊆ Nodes(G′). Then every inflationary isomorphism ϕ : U → V
induces an equality PU = PV for inflation models, where the variables in U are identified with those in V according to
ϕ.

This applies in particular when V = U , in which case the statement is that the distribution PU is invariant under
permuting the variables according to ϕ.

Lemma 7 is best illustrated by returning to our example from Sec. V B which considered the Spiral inflation of Fig. 3
and the pair of contexts U = {A1A2B1} and V = {A1A2B2}. The map

ϕ : A1 7→ A1, A2 7→ A2, B1 7→ B2 (C.1)

is a copy isomorphism between U and V because it trivially implements a graph isomorphism (both subgraphs are
edgeless), and it maps each variable in U to a variable in V that is copy-index equivalent. There is a unique choice to
extend ϕ to a copy isomorphism Φ : An(U)→ An(V ), namely, by extending Eq. (C.1) to the ancestors via

Φ : X1 7→ X1, Y1 7→ Y1, Y2 7→ Y2, Z1 7→ Z2, (C.2)

which is again a copy isomorphism. Therefore ϕ is indeed an inflationary isomorphism. From Lemma 7, we then
conclude that any inflation model satisfies PA1A2B1 = PA1A2B2 .

Similarly, the map

ϕ′ : A1 7→ A2, A2 7→ A1, B1 7→ B2 (C.3)

is easily verified to be a copy isomorphism between SubDAG(U) and SubDAG(V ), and there is again a unique choice
to extend ϕ′ to a copy isomorphism Φ′ : AnSubDAG(U)→ AnSubDAG(V ), by extending Eq. (C.3) with

Φ′ : X1 7→ X1, Y1 7→ Y2, Y2 7→ Y1, Z1 7→ Z2, (C.4)

so that ϕ′ is verified to be an inflationary isomorphism. From Lemma 7, we then conclude that any inflation model
also satisfies PA1A2B1

= PA2A1B2
. (And this in turn implies that for the context {A1A2}, the marginal distribution

satisfies PA1A2
= PA2A1

.)
In order to avoid any possibility of confusion, we emphasize that it is not a plain copy isomorphism between the

subgraphs of U and V themselves which results in coinciding marginal distributions, nor a copy isomorphism between
the ancestral subgraphs of U and V . It is rather an inflationary isomorphism between the subgraphs, i.e., a copy
isomorphism between the ancestral subgraphs that restricts to a copy isomorphism between the subgraphs. To see
why a copy isomorphism between ancestral subgraphs by itself may not be sufficient for deriving equality of marginal

33 A graph isomorphism is a bijective map between the nodes of one graph and the nodes of another, such that both the map and its
inverse take edges to edges.
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distributions, we offer the following example. Take as the original DAG the instrumental scenario of Pearl [22], and
consider the inflation depicted in Fig. 17. Consider the pair of contexts U = {X1Y2Z1} and V = {X1Y2Z2} on the
inflation DAG. Since SubDAG(U) and SubDAG(V ) are not isomorphic, there is no copy isomorphism between the two.
On the other hand, the ancestral subgraphs are both given by the DAG of Fig. 18, so that the identity map is a copy
isomorphism between AnSubDAG(X1Y2Z1) and AnSubDAG(X1Y2Z2).

One can try to make use of Lemma 7 when deriving polynomial inequalities with inflation via solving the marginal
problem, by imposing the resulting equation PU = PV as an additional constraint for every inflationary isomorphism
ϕ : U → V between sets of observed nodes. This is advantageous to speed up to the linear quantifier elimination, since
one can solve each of the resulting equations for one of the unknown joint probabilities and thereby eliminate that
probability directly without Fourier-Motzkin elimination. Moreover, one could hope that these additional equations
also result in tighter constraints on the marginal problem, which would in turn yielder tighter causal compatibility
inequalities. Our computations have so far not revealed any example of such a tightening.

In some cases, this lack of impact can be explained as follows. Suppose that ϕ : U → V is an inflationary
isomorphism which is not just the restriction of a copy isomorphism between the ancestral subgraphs, but even the
restriction of a copy automorphism Φ′ : G′ → G′ of the entire inflation DAG onto itself; in particular, this assumption
implies that Φ′ also restricts to a copy isomorphism Φ : An(U)→ An(V ) between the ancestral subgraphs. In this case,
the irrelevance of the additional constraint PU = PV to the marginal problem for inflation models can be explained by
the following argument.

Suppose that some joint distribution PObservedNodes(G′) solves the unconstrained marginal problem, i.e., without
requiring PU = PV . Now apply Φ′ to the variables in PObservedNodes(G′), switching the variables around, to generate a
new distribution P ′ObservedNodes(G′) := PΦ′(ObservedNodes(G′)). Because the set of marginal distributions that arise from

inflation models is invariant under this switching of variables, we conclude that P ′ is also a solution to the unconstrained
marginal problem. Taking the uniform mixture of P and P ′ is therefore still a solution of the unconstrained marginal
problem. But this uniform mixture also satisfies the supplementary constraint PU = PV . Hence the supplementary
constraint is satisfiable whenever the unconstrained marginal problem is solvable, which makes adding the constraint
irrelevant.

This argument does not apply when the inflationary isomorphism ϕ : U → V cannot be extended to a copy
automorphism of the entire inflation DAG. It also does not apply if one uses d-separation conditions beyond ancestral
independence on the inflation DAG as additional constraints (Sec. V A), because in this case the set of compatible
distributions is not necessarily convex. In either of these cases, it is unclear whether or not constraints arising from
copy-index equivalence could yield tighter inequalities.

UZ

X

Y

FIG. 16. The instrumen-
tal scenario of Pearl [22].

UZ1 Z2

X1 X2

Y1 Y2

FIG. 17. An inflation DAG of the in-
strumental scenario which illustrates
why coinciding ancestral subgraphs
doesn’t necessarily imply coinciding
marginal distributions.

UZ1 Z2

X1 X2

Y2

FIG. 18. The ancestral subgraph
of Fig. 17 for either {X1Y2Z1} or
{X1Y2Z2}.
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Appendix D: Using the inflation technique to certify a DAG as “interesting”

By considering all possible d-separation conditions implied by a given DAG, one can infer the set of all conditional
independence (CI) relations that must hold in any joint distribution over the observed variables that is compatible
with the given DAG. In the presence of latent nodes, satisfying the CI relations among observed variables is generally
not sufficient for compatibility with the DAG. Henson et al. [13] were concerned with identifying the interesting
DAGs, by which they mean precisely those DAGs that exhibit a discrepancy between the set of observed distributions
genuinely compatible with it and the set of observed distributions that merely satisfy its observed CI relations.

Henson et al. [13] derived necessary criteria on the structure of a DAG in order for it to be interesting, and they
conjectured that their criteria may also be sufficient. As evidence in favour of this conjecture, they enumerated
all possible DAGs with no more than six nodes satisfying their criteria, resulting in only 21 equivalence classes of
potentially interesting DAGs. Of those 21, they further proved that 18 were unambiguously interesting by writing
down explicit distributions which are incompatible despite satisfying the observed CI relations. Incompatibility was
certified by means of entropic inequalities.

That left three classes of DAGs as potentially interesting. For each of these, Henson et al. [13] derived all Shannon-
type entropic inequalities in two different ways, once by accounting for non-observed CI relations (that is, CI relations
that do not refer exclusively to observed variables) and once without. The existence of novel Shannon-type inequalities
upon accounting for non-observed CI relations is evidence for the DAG being interesting. The only loophole is that
perhaps those novel Shannon-type inequalities are actually non-novel non-Shannon-type inequalities implied by the
observed CI relations alone [13].

One way to close this loophole would be to show that the novel Shannon-type inequalities imply constraints beyond
some inner approximation to the genuine entropy cone absent non-observed CI relations, perhaps along the lines of [17].
Another is to use causal compatibility inequalities beyond entropic inequalities to identify some CI-respecting but
incompatible distributions. Pienaar [26] accomplished precisely this, and should be credited with the original insight to
explicitly consider the different values that an observed root variable may take. In the following, we demonstrate how
the inflation technique can be used for this purpose. So far, we have only considered one of the three enigmatic causal
structures, namely, the one depicted in Fig. 19, which differs from the Triangle scenario by virtue of the variable Y
being observed rather than latent.

We consider the inflation DAG of Fig. 20, which is analogous to the Cut inflation of the Triangle scenario. Using
Hardy-type tautologies, as described in Sec. IV D, we obtain causal compatibility inequalities for the inflation DAG,
which in turn, via Corollary 5, yield the following causal compatibility inequalities for the DAG of Fig. 19:

PY (0)PYAC(000) ≤ PYA(00)PYB(00) + PY (0)PYBC(010), (D.1)

PY (0)PYAC(100) ≤ PYA(10)PYB(00) + PY (1)PYBC(010). (D.2)

For example, the second inequality is derived as follows. A Hardy-type tautology on the variables of the inflation DAG
implies the following constraint on marginals:

PY1Y2A2C1
(0100) ≤ PY1Y2A2B1

(0100) + PY1Y2B1C1
(0110). (D.3)

Applying factorization as per the ancestral independence relations of the inflation DAG, we obtain

PY1
(0)PY2C1A2

(100) ≤ PY2A2
(10)PY1B1

(00) + PY2
(1)PY1B1C1

(010), (D.4)

X

A

Y

B
Z

C

FIG. 19. DAG #15 in Ref. [13].

X1 Y1

B1

Z1

C1

A2

Y2

FIG. 20. A useful inflation of Fig. 19.
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and finally translating this into a causal compatibility inequality on the original DAG using Corollary 5, we obtain
Eq. (D.2).

In Pienaar [26], it was shown that the following distribution, which is easily verified to satisfy the CI relations among
the observed variables in the DAG of Fig. 19, namely, Y ⊥⊥ C and A ⊥⊥ B|Y [13], is nonetheless incompatible with the
DAG of Fig. 19:

PPien
YABC :=

[0000] + [0011] + [1000] + [1101]

4
, i.e., PPien

YABC(yabc) :=

{
1
4 if y · c = a and (y ⊕ 1) · c = b,

0 otherwise.

(D.5)

It is easily verified that this distribution violates the causal compatibility inequality of Eq. (D.2). It is in this sense
that the inflation technique can show that the DAG of Fig. 19 is interesting.

There is an alternative way to see that this distribution is not compatible with the DAG of Fig. 19 using our results
from the main text. We consider the marginal on ABC of PPien

YABC , which is

PPien
ABC :=

1

2
[000] +

1

4
[011] +

1

4
[101]. (D.6)

First, we note that any marginal distribution on ABC that is compatible with the DAG of Fig. 19 is necessarily also
compatible the Triangle scenario. Second, we note that PPien

ABC is incompatible with the Triangle scenario. This follows
from the fact that it violates one of the inequalities we derived in Sec. IV C. This inequality is in the symmetry class of
#8 from our table, but we express it here in terms of joint probabilities:

PA(1)PB(1)PC(0) ≤ PAB(11)PC(0) + PBC(10)PA(1) + PAC(10)PB(1) + PABC(001). (D.7)

Clearly, this can be obtained from the inequality of Eq. (41) (the one that rejected the W-distribution of Eq. (12)) by
the symmetry operation which flips the value assigned to C.

Just as the incompatibility of the W-distribution with the Triangle scenario was not detectable by entropic inequalities,
as we noted in our discussion of Example 2 from Sec. III B, the same is true for the incompatibility of the distribution
PPien
Y ABC with the DAG of Fig. 19. PPien

Y ABC not only satisfies all Shannon-type entropic inequalities pertinent to the
DAG of Fig. 19, but lies within an inner approximation to the genuine entropy cone for that scenario34. In other
words, there exists a distribution with the same joint and marginal entropies as PPien

Y ABC which is compatible with the
DAG of Fig. 19.

Finally, it may be worth noting that the inflation DAG depicted in Fig. 20 is precisely the “bilocality scenario”
investigated by Branciard et al. [30]. Therefore, the inflation technique permits us to translate every causal compatibility
inequality for the bilocality scenario into a causal compatibility inequality for the DAG of Fig. 19.

34 This is due to Weilenmann and Colbeck (personal communication).
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Appendix E: The copy lemma and non-Shannon type entropic inequalities

As it turns out, the inflation technique is also useful outside of the problem of causal inference. As we argue in
the following, inflation is secretly what underlies the Copy Lemma in the derivation of non-Shannon type entropic
inequalities [101, Chapter 15]. The following formulation of the Copy Lemma is the one of Kaced [102].

Lemma 8. Let A, B and C be random variables with distribution PABC . Then there exists a fourth random variable
A′ and joint distribution PAA′BC such that:

1. PAB = PA′B,

2. A′ ⊥⊥ AC |B.

The proof via inflation is as follows.

Proof. Every joint distribution PABC is compatible with a DAG of the form of Fig. 21. This follows from the fact
that one may take X to be any sufficient statistic for the joint variable (A,C) given B, such as X := (A,B,C).
Next, we consider the inflation of Fig. 21 depicted in Fig. 22. The maximal injectable sets are {A1B1C1} and {A2B1}.
By Lemma 3, because PABC is assumed to be compatible with Fig. 21, it follows that the family of marginals
{PA1B1C1 , PA2B1}, where PA1B1C1 := PABC and PA2B1 := PAB, is compatible with the inflation of Fig. 22. The
resulting joint distribution PA1A2B1C1 has marginals PA1B1 = PA2B1 = PAB and satisfies the conditional independence
relation A2 ⊥⊥ A1C1 |B1, since A2 is d-separated from A1C1 by B1 in Fig. 22.

While it is also not hard to write down the distribution constructed in the proof explicitly as PA1A2B1C1 :=
PA1B1C1

PA2B1
P−1
B1

[101, Lemma 15.8], the fact that one can rederive it using the inflation technique is significant.
For one, all the non-Shannon type inequalities derived by Dougherty et al. [103] are obtained by applying some
Shannon-type inequality to the distribution that is implied to exist by the Copy Lemma. Our result shows, therefore,
that one can understand these non-Shannon type inequalities for a DAG as arising from Shannon-type inequalities
applied to an inflation DAG. Indeed, it may be that the inflation technique may be a more general-purpose tool for
deriving non-Shannon-type entropic inequalities. A natural direction for future research is to explore whether more
sophisticated applications of the inflation technique might result in new examples of such inequalities.

B

X

A C

FIG. 21. A causal structure that is compatible with
any distribution PABC .

B1

X1

A1 C1

X2

A2

FIG. 22. An inflation of Fig. 21.
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Appendix F: Causal compatibility inequalities for the Triangle scenario in machine-readable format

We here present the 37 distinct symmetry classes of causal compatibility inequalities for the Triangle scenario
derived in Sec. IV C in a machine-readable format. Each row in the table specifies the coefficient of each correlator
that appears in the inequality. As noted previously, inequalities #1, #3–4, #8–17 and #19–24 in the table are also
implied by the hypergraph transversals technique per Sec. IV D.

TABLE II. Machine-readable version of the table in Sec. IV C, where each inequality is specified by the coefficients of the
correlators appearing within it.

constant 〈A〉 〈B〉 〈C〉 〈AB〉 〈AC〉 〈BC〉 〈ABC〉 〈A〉〈B〉 〈A〉〈C〉 〈B〉〈C〉 〈C〉〈AB〉 〈B〉〈AC〉 〈A〉〈BC〉 〈A〉〈B〉〈C〉
(#1): 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0
(#2): 2 0 0 0 0 -2 0 0 0 0 0 -1 0 0 1
(#3): 3 1 -1 1 1 3 0 0 0 0 1 -1 -1 0 1
(#4): 3 1 -1 1 1 3 0 0 0 0 1 1 -1 0 -1
(#5): 3 0 1 0 1 0 -2 0 -1 1 0 1 -1 0 1
(#6): 3 0 1 0 0 -2 -2 0 0 1 0 -1 -1 0 1
(#7): 3 0 1 0 1 0 -2 0 1 -1 0 1 1 0 -1
(#8): 3 1 1 1 2 2 2 -1 1 1 1 1 1 1 -1
(#9): 3 1 1 1 0 2 -2 1 -1 1 1 1 1 -1 -1
(#10): 4 0 0 2 -2 -2 0 -1 2 0 2 1 1 1 0
(#11): 4 0 -2 0 -2 0 -3 1 0 0 1 1 -1 0 1
(#12): 4 0 -2 0 -2 -2 -3 1 0 2 1 1 1 0 -1
(#13): 4 0 0 0 2 -2 1 1 -2 -2 -1 -1 1 0 -1
(#14): 4 0 0 0 2 -2 1 1 -2 2 -1 1 1 0 1
(#15): 4 0 0 0 0 -2 3 1 0 2 1 -1 -1 0 1
(#16): 4 0 -2 0 -2 -2 -2 1 0 2 0 1 1 -1 0
(#17): 4 0 0 0 -2 -2 -2 1 2 2 2 1 1 1 0
(#18): 5 1 1 1 3 1 -4 0 -2 0 1 1 -1 0 1
(#19): 5 1 1 1 3 -1 -4 0 2 -2 1 1 1 0 -1
(#20): 5 1 -1 1 1 2 -2 -2 -2 -1 1 1 -2 -2 0
(#21): 5 1 1 1 1 2 -2 -1 0 -1 -1 2 1 1 -2
(#22): 5 -1 1 1 1 1 -1 1 -2 -2 2 -2 -2 -2 0
(#23): 5 1 1 1 2 1 -1 1 -1 0 2 -1 -2 -2 1
(#24): 5 1 1 1 -1 2 2 1 -2 -1 -1 2 1 -1 -2
(#25): 6 0 0 0 -4 -3 0 0 2 1 2 -2 -1 -2 1
(#26): 6 -2 0 2 -5 -3 0 0 1 1 0 -1 1 -2 2
(#27): 6 0 0 2 -4 3 0 0 2 1 0 -2 1 -2 1
(#28): 6 0 0 0 1 -3 2 0 1 1 -4 1 -1 -2 -2
(#29): 6 0 2 0 3 0 -5 0 1 -2 1 1 2 1 -2
(#30): 6 0 2 0 2 -2 1 0 -2 4 -1 2 2 1 1
(#31): 6 0 0 0 -2 -3 -2 -2 0 1 4 -2 -1 0 1
(#32): 7 1 1 1 2 1 -3 3 1 -2 2 3 2 -2 -1
(#33): 8 0 0 0 -2 -4 -2 -3 2 4 -2 -1 1 -3 2
(#34): 8 2 0 -2 -6 1 0 1 0 -1 2 1 2 -3 3
(#35): 8 2 0 0 6 1 -2 1 0 1 2 -1 -2 -3 3
(#36): 8 0 -2 -2 0 -6 1 1 2 0 -1 3 1 -2 -3
(#37): 8 0 2 0 1 2 -6 1 1 -2 0 2 3 -1 -3
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Appendix G: Recovering the Bell inequalities from the inflation technique

To further illustrate the power of our inflation DAG approach, we now demonstrate how to recover all Bell
inequalities [9, 10, 34] via our method. To keep things simple we only discuss the case of a bipartite Bell scenario with
two values for both “settings” and “outcome” variables here, but the case of more parties and/or more values per
variable is totally analogous.

The causal structure associated to the Bell [8–10, 34] experiment [13 (Fig. E#2), 11 (Fig. 19), 24 (Fig. 1), 14 (Fig. 1),
35 (Fig. 2b), 36 (Fig. 2)] is depicted in Fig. 11. The observed variables are A,B,X, Y , and Λ is the latent common cause
of A and B. In a Bell scenario, one traditionally works with the conditional distribution PAB|XY , to be understood as
an array of distributions indexed by the possible values of X and Y , instead of with the original distribution PABXY ,
which is what we do.

In the inflation DAG of Fig. 12, the maximal pre-injectable sets are

{A1B1X1X2Y1Y2},

{A1B2X1X2Y2Y2},

{A2B1X1X2Y2Y2},

{A2B2X1X2Y2Y2},

(G.1)

where notably every maximal pre-injectable set contains all “settings” variables X1 to Y2. The marginal distributions
on these pre-injectable sets are then specified by the original observed distribution via

∀abx1x2y1y2 :



PA1B1X1X2Y1Y2
(abx1x2y1y2) = PABXY (abx1y1)PX(x2)PY (y2),

PA1B2X1X2Y1Y2(abx1x2y1y2) = PABXY (abx1y2)PX(x2)PY (y1),

PA2B1X1X2Y1Y2
(abx1x2y1y2) = PABXY (abx2y1)PX(x1)PY (y2),

PA2B2X1X2Y1Y2
(abx1x2y1y2) = PABXY (abx2y2)PX(x1)PY (y1),

PX1X2Y1Y2(x1x2y1y2) = PX(x1)PX(x2)PY (y1)PY (y2).

(G.2)

By dividing each of the first four equations by the fifth, we obtain

∀abx1x2y1y2 :


PA1B1|X1X2Y1Y2

(ab|x1x2y1y2) = PAB|XY (ab|x1y1),

PA1B2|X1X2Y1Y2
(ab|x1x2y1y2) = PAB|XY (ab|x1y2),

PA2B1|X1X2Y1Y2
(ab|x1x2y1y2) = PAB|XY (ab|x2y1),

PA2B2|X1X2Y1Y2
(ab|x1x2y1y2) = PAB|XY (ab|x2y2).

(G.3)

The existence of a joint distribution over all six variables—i.e. the existence of a solution to the marginal problem—
implies in particular

∀abx1x2y1y2 : PA1B1|X1X2Y1Y2
(ab|x1x2y1y2) =

∑
a′,b′

PA1A2B1B2|X1X2Y1Y2
(aa′bb′|x1x2y1y2), (G.4)

and similarly for the other three conditional distributions under consideration. For compatibility with the Bell scenario,
Eq. (G.3) therefore implies that the original distribution must satisfy in particular

∀ab :


PAB|XY (ab|00) =

∑
a′,b′ PA1A2B1B2|X1X2Y1Y2

(aa′bb′|0101)

PAB|XY (ab|10) =
∑
a′,b′ PA1A2B1B2|X1X2Y1Y2

(a′abb′|0101)

PAB|XY (ab|01) =
∑
a′,b′ PA1A2B1B2|X1X2Y1Y2

(aa′b′b|0101)

PAB|XY (ab|11) =
∑
a′,b′ PA1A2B1B2|X1X2Y1Y2

(a′ab′b|0101)

(G.5)

The possibility to write the conditional probabilities in the Bell scenario in this form is equivalent to the existence of a
latent variable model, as noted in Fine’s theorem [104]. Thus, the existence of a solution to our marginal problem
implies the existence of a latent variable model for the original distribution; the converse follows from our Lemma 3.
Hence the inflation DAG of Fig. 12 provides necessary and sufficient conditions for the compatibility of the original
distribution with the Bell scenario causal structure.

Moreover, it is possible to describe the marginal polytope over the pre-injectable sets of Eq. (G.1), resulting in
a concrete correspondence between tight Bell inequalities and the facets of our marginal polytope. This is based
on the observation that the “settings” variables X1 to Y2 occur in all four contexts. The marginal polytope lives in
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⊕4
i=1R26

= ⊕4
i=1(R2)⊗6, where each tensor factor has basis vectors corresponding to the two possible outcomes of each

variable, and the direct summands enumerate the four contexts. It is given by the convex hull of the points

(eA1 ⊗ eB1 ⊗ eX1 ⊗ eX2 ⊗ eY1 ⊗ eY2)

⊕ (eA1
⊗ eB2

⊗ eX1
⊗ eX2

⊗ eY1
⊗ eY2

)

⊕ (eA2
⊗ eB1

⊗ eX1
⊗ eX2

⊗ eY1
⊗ eY2

)

⊕ (eA2 ⊗ eB2 ⊗ eX1 ⊗ eX2 ⊗ eY1 ⊗ eY2),

where all six variables range over their possible values. Since the last four tensor factors occur in every direct summand
in exactly the same way, we can also write the point as

[(eA1
⊗ eB1

)⊕ (eA1
⊗ eB2

)⊕ (eA2
⊗ eB1

)⊕ (eA2
⊗ eB2

)]⊗ [eX1
⊗ eX2

⊗ eY1
⊗ eY2

]

in
(
⊕4
i=1 R22)⊗ R24

. Now since the first four variables in the first tensor factor vary completely independently of the
latter four variables in the second tensor factor, the resulting polytope will be precisely the tensor product [105, 106]
of two polytopes: first, the convex hull of all points of the form

(eA1
⊗ eB1

)⊕ (eA1
⊗ eB2

)⊕ (eA2
⊗ eB1

)⊕ (eA2
⊗ eB2

),

and second the convex hull of all eX1 ⊗ eX2 ⊗ eY1 ⊗ eY2 . While the latter polytope is just the standard probability
simplex in R8, the former cone is precisely the “local polytope” or “Bell polytope” that is traditionally used in the
context of Bell scenarios [10, Sec. II.B]. This implies that the facets of our marginal polytope are precisely the pairs
consisting of a facet of the Bell polytope and a facet of the simplex, the latter of which are only the nonnegativity
of probability inequalities like PX1X2Y1Y2(0101) ≥ 0. For example, in this way we obtain one version of the CHSH
inequality as a facet of our marginal polytope,∑

a,b,x,y

(−1)a+b+xyPAxByX1X2Y1Y2
(ab0101) ≤ 2PX1X2Y1Y2

(0101).

This translates into the standard form of the CHSH inequality as follows. Upon using Eq. (G.3), the inequality becomes∑
a,b

(−1)a+b
(
PABXY (ab00)PX(1)PY (1) + PABXY (ab01)PX(1)PY (0)

+ PABXY (ab10)PX(0)PY (1)− PABXY (ab11)PX(0)PY (0)
)
≤ PX(0)PX(1)PY (0)PY (1),

so that dividing by the right-hand side results in one of the conventional forms of the CHSH inequality,∑
a,b

(−1)a+b
(
PAB|XY (ab|00) + PAB|XY (ab|01) + PAB|XY (ab|10)− PAB|XY (ab|11)

)
≤ 2.

In conclusion, the inflation technique is powerful enough to get a precise characterization of all distributions compatible
with the Bell causal structure, and our technique for generating polynomial inequalities through solving the marginal
constraint problem recovers all Bell inequalities.

Some Bell inequalities may also be derived using the hypergraph transversals technique discussed in Sec. IV D. For
example, the inequality

PA1B1X1Y1(0000)PX2(1)PY2(1)

≤ PA1B2X1Y2
(0001)PX2

(1)PY1
(0) + PA2B1X2Y1

(0010)PX1
(0)PY2

(1) + PA2B2X2Y2
(1111)PX1

(0)PY1
(0)

(G.6)

is the inflationary precursor of the Bell inequality

PAB|XY (00|00) ≤ PAB|XY (00|01) + PAB|XY (00|10) + PAB|XY (11|11), (G.7)

as Eq. (G.7) is obtained from Eq. (G.6) by dividing both sides by PX1Y1X2Y2
(0011) = PX1

(0)PY2
(0)PX2

(1)PY2
(1) and

then dropping copy indices. On the other hand, Eq. (G.6) follows directly from factorization relations on pre-injectable
sets and the tautology

[A1=0,B1=0,X1=0,Y1=0,X2=1,Y2=1]

=⇒ [A1=0, B2=0,X1=0,Y1=0,X2=1,Y2=1]

∨ [A2=0,B1=0,X1=0,Y1=0,X2=1,Y2=1]

∨ [A2=1, B2=1,X1=0,Y1=0,X2=1,Y2=1].

(G.8)
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which corresponds to the original “Hardy paradox” [32] in our notation.
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