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Abstract

Various tensor formats are used for the data-sparse representation of large-scale tensors. Here we
investigate how symmetric or antiymmetric tensors can be represented. The analysis leads to several
open questions.
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1 Introduction

We consider tensor spaces of huge dimension exceeding the capacity of computers. Therefore the numerical
treatment of such tensors requires a special representation technique which characterises the tensor by data
of moderate size. These representations (or formats) should also support operations with tensors. Examples
of operations are the addition, the scalar product, the componentwise product (Hadamard product), and
the matrix-vector multiplication. In the latter case, the �matrix�belongs to the tensor space of Kronecker
matrices, while the �vector�is a usual tensor.
In certain applications the subspaces of symmetric or antisymmetric tensors are of interest. For instance,

fermionic states in quantum chemistry require antisymmetry, whereas bosonic systems are described by
symmetric tensors. The appropriate representation of (anti)symmetric tensors is seldom discussed in the
literature. Of course, all formats are able to represent these tensors since they are particular examples of
general tensors. However, the special (anti)symmetric format should exclusively produce (anti)symmetric
tensors. For instance, the truncation procedure must preserve the symmetry properties.
The formats in use are the r-term format (also called the canonical format), the subspace (or Tucker)

format, and the hierarchical representation including the TT format. In the general case, the last format has
turned out to be very e¢ cient and �exible. We discuss all formats concerning application to (anti)symmetric
tensors.
The r-term format is seemingly the simplest one, but has several numerical disadvantages. In §2 we discuss

two di¤erent approaches to representing (anti)symmetric tensors. However, they inherit the mentioned
disadvantages.
As explained in §3, the subspace (or Tucker) format is not helpful.
The main part of the paper discusses the question how the TT format can be adapted to the symmetry

requirements. The analysis leads to unexpected di¢ culties. In contrast to the general case, the subspaces
Uj involved in the TT format (see §4.3) have to satisfy conditions which are not easy to check. We can
distinguish the following two di¤erent situations.
In the �rst case we want to construct the TT format with subspaces Uj not knowing the tensor v to

be represented in advance. For instance we change Uj to obtain a variation of v; or the dimension of Uj

is reduced to obtain a truncation. In these examples, v is obtained as a result on the chosen Uj : It turns
out that the choice of Uj is delicate. If Uj is too small, no nontrivial tensors can be represented. On the
other hand, Uj may contain a useless nontrivial part, i.e., Uj may be larger than necessary. The algebraic
characterisation of the appropriate Uj is rather involved.
In the second case, we start from v and know the minimal subspacesUmin

j (v) (cf. (1.9)). ThenUmin
j (v) �

Uj is a su¢ cient condition. However, as soon as we want to truncate the tensor v; its result v0 must be
determined from modi�ed subspaces U0

j so that we return to the di¢ culties of the �rst case.
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In Section 8 we describe the combination of the TT format and the ANOVA technique for symmetric
tensors. This leads to a favourable method as long as the ANOVA degree is moderate.

Quite another approach for antisymmetric tensors is the so-called �second quantisation�(cf. Legeza et al.
[12, §2.3]) which does not �t into the following schemes.

1.1 Tensor Notation

1.1.1 Tensors Spaces

In the general case, vector spaces Vj (1 � j � d) are given which determine the algebraic tensor space
V :=

Nd
j=1 Vj : The common underlying �eld of the vector spaces Vj is either R or C: In the following we

write K for either of the �elds. In the particular case of

Vj = V for all 1 � j � d (1.1)

we write V := 
dV: Set
D := f1; : : : ; dg (1.2)

and consider any nonempty subset � � D: We set

V� :=
O

j2�
Vj : (1.3)

Note that V = VD is isomorphic to V� 
VDn� :
We assume that V is a pre-Hilbert space with the scalar product h�; �i : Then V and each V� is de�ned

as a pre-Hilbert space with the induced scalar product uniquely de�ned by (cf. [9, Lemma 4.124])DO
j2�

v(j);
O

j2�
w(j)

E
=
Y

j2�

D
v(j); w(j)

E
: (1.4)

1.1.2 Functionals

Let '� 2 V0
� be a linear functional. The same symbol '� is used for the linear map '� : V! VDn� de�ned

by

'�

�Od

j=1
v(j)
�
= '�

�O
j2�

v(j)
�O

j2Dn�
v(j) (1.5)

(it is su¢ cient to de�ne a linear map by its action on elementary tensors, cf. [9, Remark 3.55]). In the
case of (1.1) and ' 2 V 0 we introduce the following notation. The linear mapping '(k) : 
dV ! 
d�1V is
de�ned by

'(k)
�Od

j=1
v(j)
�
= '

�
v(k)

�O
j 6=k

v(j): (1.6)

1.1.3 Permutations and (Anti)symmetric Tensor Spaces

A permutation � 2 Pd is a bijection of D onto itself. For �; � 2 D, the permutation ��� is the transposition
swapping the positions � and �: If � = �; ��� is the identity id: Let V = 
dV . Then the symbol of the
permutation � is also used for the linear map � : V! V de�ned by

�

�Od

j=1
v(j)
�
=
Od

j=1
v(�

�1(j)):

Each permutation � is a (possibly empty) product of transpositions: � = ��1�1 � ��2�2 � : : : � ��k�k with
�i 6= �i (1 � i � k). The number k determines the parity �1 of the permutation: sign(�) = (�1)k :
A tensor v 2 
dV is called symmetric if �(v) = v for all permutations, and antisymmetric if

�(v) = sign(�)v: This de�nes the (anti)symmetric tensor space:

Vsym :=
�
v 2 
dV : �(v) = v

	
; (1.7a)

Vanti :=
�
v 2 
dV : �(v) = sign(�)v

	
: (1.7b)
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If the parameter d should be emphasised, we also write V(d)
sym and V(d)

anti. Correspondingly, if U � V is a
subspace, the (anti)symmetric tensors in 
dU are denoted by U(d)

sym, resp. U
(d)
anti: Another notation for V

(d)
anti

is
Vd
V using the exterior product ^.

Besides the well-known applications in physics (cf. [2]), symmetric and antisymmetric tensors occur in
di¤erent mathematical �elds.
The symmetric tensor space is related to multivariate polynomials which are homogenous of degree d,

i.e., p(�x) = �dp(x): These polynomials are called quantics by Cayley [6]. If n = dim(V ); the symmetric
tensor space V(d)

sym is isomorphic to the vector space of n-variate quantics of degree d (cf. [9, §3.5.2]).
The antisymmetric spaces are connected with the Cli¤ord algebra C`d of Rn, which is isomorphic to the

direct sum
Ld

j=1

Vj Rn (cf. Lounesto [13, Chap. 22]).
1.1.4 Properties

Since all permutations are products of transpositions �i;i+1; the next remark follows.

Remark 1.1 A tensor v 2 
dV is symmetric (resp. antisymmetric) if and only if �(v) = �i;i+1(v) (resp.
�(v) = ��i;i+1(v)) holds for all transpositions with 1 � i < d:

Let V := 
dV . The linear maps

S = Sd :=
1

d!

X
�2Pd

� : V! V; A = Ad :=
1

d!

X
�2Pd

sign(�)� : V! V (1.8)

are projections onto Vsym and Vanti; respectively (For a proof note that S = S� and A = sign(�)A� so
that the application of 1

d!

P
�2Pd

yields S = SS and A�= AA). S and A are called the symmetrisation and
alternation, respectively.

Remark 1.2 Let 'Dn� 2 V0
Dn� be a functional1 (no symmetry condition assumed). If v 2 V

(D)
sym or

v 2 V(D)
anti, then 'Dn�(v) 2 V

(�)
sym or 'Dn�(v) 2 V(�)

anti; respectively.

The following expansion lemma will be used in the following.

Lemma 1.3 Let fu1; : : : ; urg be a basis of the subspace U � V: Any tensor v 2 
kU can be written in the
form

v =

rX
`=1

v[`] 
 u` with v[`] 2 
k�1U:

Let f'1; : : : ; 'rg � U 0 be a dual basis of fu1; : : : ; urg; i.e., 'i(uj) = �ij : Then the tensors v[`] are de�ned by
v[`] = '`(v):

A consequence of the last equation and Remark 1.2 is the following.

Remark 1.4 If v 2 
kU is (anti-)symmetric, then so is v[`] 2 
k�1U .

1.2 Minimal Subspaces

Given a tensor v 2 V =
N

j2D Vj and a subset � � D; the corresponding minimal subspace is de�ned by

Umin
� (v) :=

n
'Dn�v : 'Dn� 2 V0

Dn�

o
2 V� (1.9)

(cf. (1.5); [9, §6]). Umin
� (v) is the subspace of smallest dimension with the property v 2 Umin

� (v) 
VDn�.
The dual space V0

Dn� in (1.9) may be replaced by
N

j2Dn� V
0
j :

For a subset V0 � V we de�ne Umin
� (V0) := spanfUmin

� (v) : v 2 V0g:

Remark 1.5 Let ; 6= � $ � � D be nonempty subsets. Then Umin
� (v) = Umin

� (Umin
� (v)):

A conclusion from Remark 1.2 is the following statement.

Conclusion 1.6 If v 2 Vsym [or Vanti], then Umin
� (v) � V(�)

sym [or Umin
� (v) � V(�)

anti].

1Compare the de�nition (1.5) with interchanged subsets � and Dn�:
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2 r-Term Format for (Anti)symmetric Tensors

Let r 2 N0 := N [ f0g. A tensor v 2 V = 
dV can be represented in the r-term format (or canonical
format) if there are v(j)� 2 V for 1 � j � d and 1 � � � r such that

v =
rX

�=1

Od

j=1
v(j)� :

We recall that the smallest possible r in the above representation is called the rank of v and denoted by
rank(v): The number r used above is called the representation rank. Since the determination of rank(v) is
NP hard (cf. Håstad [10]) we cannot expect that r � rank(v) holds with an equal sign.
Two approaches to representing (anti)symmetric tensors by the r-term format are described in §2.1 and

§2.2.

2.1 Indirect Representation

A symmetric tensor v 2 Vsym may be represented by a general tensor w 2 V with the property S(w) = v;
where S (A) is the symmetrisation (alternation) de�ned in (1.8). The representation of w 2 V uses the
r-term format: w =

Pr
i=1

Nd
j=1 w

(j)
i : This approach is proposed by Mohlenkamp, e.g., in [3]. For instance,

v = a
 a
 b+ a
 b
 a+ b
 a
 a 2 Vsym is represented by w = 3a
 a
 b: This example indicates that
w may be of a much simpler form than the symmetric tensor v = S(w):
However, the cost (storage size) of the representation is only one aspect. Another question concerns

the tensor operations. In the following we discuss the addition, the scalar product, and the matrix-vector
multiplication.
The addition is easy to perform. By linearity of S; the sum of v0 = S(w0) and v00 = S(w00) is represented

by w0 +w00: Similar in the antisymmetric case.
The summation within the r-term format does not require computational work, but increases the repres-

entation rank r: This leads to the question how to truncate w = w0+w00 to a smaller rank. It is known that
truncation within the r-term format is not an easy task. However, if one succeeds to split w into ŵ + �w;
where ŵ has smaller rank and �w is small, this leads to a suitable truncation of v = v̂+ �v with v̂ = S(ŵ);
�v = S(�w); since k�vk � k�wk with respect to the Euclidean norm.
The computation of the scalar product hv0;v00i of v0;v00 in Vsym or Vanti is more involved. In the

antisymmetric case, hv0;v00i with v0 = A(w0); v00 = A(w00) and

w0 =
X

i0

Od

j=1
w
0(j)
i0 ; w00 =

X
i00

Od

j=1
w
00(j)
i00

can be written as the sum hv0;v00i =
P

i0;i00 si0i00 with the terms

si0i00 :=

*
A

0@ dO
j=1

w
0(j)
i0

1A ;A
0@ dO
j=1

w
00(j)
i00

1A+ :
The latter product coincides with the determinant

si0i00 = det

��
hw0(�)i0 ; w

00(�)
i00 i

�
1��;��d

�
(cf. Löwdin [14, (35)]). If the respective representation ranks of v0 and v00 are r0 and r00; the cost amounts
to O(r0r00d3):
While in the antisymmetric case the determinant can be computed in polynomial time, this does not hold

for the analogue in the symmetric case. Instead of the determinant one has to compute the permanent.2 As
proved by Valiant [17], its computation is NP hard. Hence the computation of the scalar product is only
feasible for small d or in special situations.

2The permanent of A 2 Rd�d is Perm(A) =
P
�2Pd

Qd
i=1 ai;�(i):
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Next we consider the multiplication of a symmetric Kronecker matrix A 2 Lsym � 
dL(V ) (cf. §9) by
a tensor v 2 Vsym=anti � 
dV: A is represented by B 2 
dL(V ) via A = S(B) and B =

P
�

Nd
j=1B

(j)
� ;

while v = S(w) or v = A(w) is represented by w =
P

�

Nd
j=1 w

(j)
� : The property v 2 Vsym=anti implies the

respective property Av 2 Vsym=anti. Unfortunately, Av is not the (anti)symmetrisation of Bw. Instead
one may use (cf. Lemma 9.1)

Av = S(Aw) = S(Bv) or Av = A(Aw) = A(Bv); resp.

However, this requires that either the symmetric tensor A or the (anti)symmetric tensor v must be con-
structed explicitly, which contradicts the intention of the indirect representation. Similarly, the Hadamard
product v0 � v00 and the convolution v0 ? v00 are hard to perform within this format.

Conclusion 2.1 The indirect representation is suited to antisymmetric tensors if only the addition and the
scalar product is required. In the case of symmetric tensors, the computation of the scalar product is restricted
to small d:

Let v 2 Vsym=anti be a tensor of rank rv: The indirect representation uses the rw-term representation of
some w 2 V: The gain is characterised by the ratio rv=rw where rw is the smallest possible rank. According
to Seigal [16], the generic reduction factor rv=rw is

(dim(V )�1)d+1
dim(V ) which approaches d for large dim(V ): The

proof uses the results of Abo�Vannieuwenhoven [1]. The conclusion for symmetric tensors is negative: For
larger d the computation of the permanent causes di¢ culties, while for smaller d the gain is only moderate.

2.2 Direct Symmetric r-Term Representation

While the previous approach uses general (nonsymmetric) tensors, we now represent the symmetric tensors
by an r-term representation involving only symmetric rank-1 tensors:

v =
rX
i=1

�i 
d vi for suitable r 2 N0 and vi 2 V; �i 2 K (2.1)

(cf. [9, p. 65]).3 The minimal r in this representation is called the symmetric rank of v 2 Vsym and is
denoted by ranksym(v): Details about symmetric tensors and the symmetric tensor rank are described, e.g.,
by Comon�Golub�Lim�Mourrain [7].

Since the symmetric rank is at least as large as the standard tensor rank, the required r may be large. A
di¢ culty of the r-term format is caused by the fact that, in general, the set

�
v 2 
dV : rank(v) � r

	
is not

closed. The simplest counterexamples are symmetric tensors of the form lim"!0
1
"

�

3(v + "w)�
3v

�
:4

Therefore also the subset of the symmetric tensors (2.1) is not closed.

3 Subspace (Tucker) Format

Let v 2 V be the tensor to be represented. The subspace format (Tucker format) uses subspaces Uj � Vj
with the property v 2

Nd
j=1 Uj : In the (anti)symmetric case one can choose equal subspaces U � V (set,

e.g., U =
Td
j=1 Uj): Let fu1; : : : ; urg be a basis of U: Then the explicit Tucker representation of v takes the

form

v =
rX

i1;:::;id=1

ci1;:::;id

dO
j=1

uij (3.1)

with the so-called core tensor c 2
Nd

j=1Kr: Obviously, v is (anti)symmetric if and only if c is so. Therefore
the di¢ culty is shifted into the treatment of the core tensor. The representation (3.1) itself does not help to
represent (anti)symmetric tensors. One may construct hybrid formats, using one of the other representations
for c:

3 If K = C or if d is odd, the factor �i can be avoided since its d-th root can be combined with vi:
4The described limit x satis�es ranksym(x) � rank(x) = d (cf. Buczyński�Landsberg [5]), although it is the limit of tensors

with symmetric rank 2.
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4 Hierarchical Format

In the general case the hierarchical format is a very e¢ cient and �exible representation (cf. [9, §§11�12]).
Here we brie�y describe the general setting, the TT variant, and �rst consequences for its application to
(anti)symmetric tensors.

4.1 General Case

The recursive partition of the set D = f1; : : : ; dg is described by a binary partition tree TD. It is de�ned by
the following properties: (a) D 2 TD is the root; (b) the singletons f1g; : : : ; fdg are the leaves; (c) if � 2 TD
is not a leaf, the sons �0; �00 2 TD are disjoint sets with � = �0 [ �00:
The hierarchical representation of a tensor v 2 V =

Nd
j=1 Vj is algebraically characterised by subspaces

U� � V� (V� de�ned in (1.3)) for all � 2 TD with

v 2 UD; (4.1a)

U� � U�0 
U�00 (�0; �00 sons of �); if � is not a leaf. (4.1b)

Let the dimensions of U� be r� := dim(U�): Since UD = span(v) is su¢ cient, rD = 1 is the general value.

4.2 Implementation

The subspaces U� are described by bases fb(�)k : k = 1; : : : ; r�g. For leaves � 2 TD; the basis is stored
explicitly. Otherwise, condition (4.1b) ensures that

b
(�)
` =

r�0X
i=1

r�00X
j=1

c
(�;`)
ij b

(�0)
i 
 b(�

00)
j (�0; �00 sons of �): (4.2)

Therefore it is su¢ cient to store the coe¢ cients matrices (c(�;`)ij )1�i�r�0 ;1�j�r�00 ; as well as the vector c
D 2

KrD for the �nal representation v =
P

i c
D
i b

(D)
i (cf. (4.1a)).

4.3 TT Variant

The TT format is introduced in Oseledets [15] (cf. [9, §12]). It is characterised by a linear tree TD. That
means that the non-leaf vertices � 2 TD are of the form � = f1; : : : ; jg with the sons �0 = f1; : : : ; j� 1g and
�00 = fjg: The embedding (4.1b) is Uf1;:::;j+1g � Uf1;:::;jg 
 Ufjg:
Below we shall consider the case V = 
dV; i.e., Vj = V is independent of j: Also their subspaces are

independent of j and denoted by Ufjg = U: We abbreviate Uf1;:::;jg by Uj and denote its dimension by
rj := dim(Uj); r := r1 = dim(U) (note that U = U1). Now the nested inclusion (4.1b) becomes

Uj+1 � Uj 
 U: (4.3)

Similarly, we rewrite Umin
f1;:::;jg(v) as U

min
j (v):

4.4 (Anti)symmetric Case

Conclusion 1.6 proves that (anti)symmetric tensors v lead to (anti)symmetric minimal subspaces: Umin
� (v) �

V
(�)
sym or Umin

� (v) 2 V(�)
anti; respectively.

The hierarchical representation (4.1a,b) of v 2 V
(D)
sym should also use subspaces with the property

U� � V(�)
sym (similar in the antisymmetric case).

The basic task is the determination of a basis b(�)` 2 U� � V(�)
sym (1 � ` � r� := dim(U�)) by suitable

linear combinations of the tensors b(�
0)

i 
 b(�
00)

j . The assumptions b(�
0)

i 2 V(�0)
sym and b(�

00)
j 2 V(�00)

sym lead to

a partial symmetry, but, in general, ���(b
(�)
` ) = b

(�)
` is not satis�ed for � 2 �0 and � 2 �00.

Using (4.3) and symmetry, we conclude that

Uj �
�

jU

�
\V(j)

sym = U
(j)
sym: (4.4)
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Remark 4.1 (a) Because of (4.4) we can restrict the vector space V in (1.7a,b) to U:
(b) If we want to represent the tensor v, the subspace Uj must satisfy

Umin
j (v) � Uj :

4.5 Dimensions of Umin
j in the (Anti)symmetric Case

The following statement shows that, in the case of antisymmetric tensors, the hierarchical approach becomes
costly for high dimensions d: The simplest antisymmetric tensor is the antisymmetrisation of an elementary
tensor:

a := A
�Od

j=1
u(j)

�
:

To ensure a 6= 0; the vectors u(j) must be linearly independent. In that case the minimal subspace Umin
k (v)

is spanned by all tensors A
�Nk

j=1 u
(ij)
�
with 1 � i1 < i2 < : : : < ik � d. There are

�
k
d

�
tensors of this

form. Since they are linearly independent, dimUmin
k (a) =

�
k
d

�
follows. The sum

Pd
k=1 dimU

min
k (a) is 2d�1:

Hence, this approach cannot be recommended for large d.

The situation is di¤erent in the symmetric case, since the vectors in S(
Nd

j=1 u
(j)) need not be linearly

independent. The next lemma uses the symmetric rank de�ned in §2.2.

Lemma 4.2 All symmetric tensors v satisfy dimUmin
k (v) � ranksym(v):

Proof. Let v =
Pr

i=1 �i 
d vi with r = ranksym(v): Then all minimal subspaces Umin
k (v) are contained in

the r-dimensional space span
�

kvi : 1 � i � r

	
:

The following symmetric tensor describes, e.g., the structure of the Laplace operator (a; b of the next
example are the identity map and one-dimensional Laplacian, respectively).

Example 4.3 An important example is the symmetric tensor v := S(
d�1a
b), where a; b 2 V are linearly
independent. In this case we have

dim(Umin
k (v)) = 2 for 1 � k < d:

More precisely, Umin
k (v) is spanned by 
ka and Sk

�
b


�

k�1a

��
:

5 TT Format for Symmetric Tensors

In the following we focus on the representation of symmetric tensors in the TT format (cf. §4.3). In principle,
the same technique can be used for antisymmetric tensors (but compare §4.5).

In §5.4 we try to construct the space Uj+1 from Uj . This will lead to open questions in §5.4.6. If we
start from v and the related minimal subspace Umin

j (v); then an appropriate choice is Uj = U
min
j (v) (see

§5.5).

5.1 The Space (Uj 
 U) \ S(Uj 
 U) and the Principal Idea
We want to repeat the same construction of nested spaces as in (4.3). In contrast to the general case, we
also have to ensure symmetry. By induction, we assume that Uj contains only symmetric tensors:

Uj � V(j)
sym: (5.1)

On the one hand, the new space Uj+1 should satisfy Uj+1 � Uj 
 U ; on the other hand, symmetry
Uj+1 � V(j+1)

sym is required. Together, Uj+1 � (Uj 
 U) \V(j+1)
sym must be ensured.

Remark 5.1 (Uj 
 U)\V(j+1)
sym = (Uj 
 U)\Sj+1 (Uj 
 U) holds with the symmetrisation Sj+1 in (1.8).
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Proof. Let v 2 (Uj 
 U) \ V(j+1)
sym : Since v 2 V(j+1)

sym ; S(v) = v holds. Since v 2 Uj 
 U; v = S(v) 2
S (Uj 
 U) follows. This proves (Uj 
 U)\V(j+1)

sym � (Uj 
 U)\S (Uj 
 U) : The reverse inclusion follows
from S (Uj 
 U) � V(j+1)

sym :

This leads us to the condition

Uj+1 � Ûj+1 := (Uj 
 U) \ S (Uj 
 U) (5.2)

for the choice of the next subspace Uj+1:

It must be emphasised that, in general, S (Uj 
 U) is not a subspace of Uj 
U: Example 5.14 will show
nontrivial subspaces Uj ; U that may even lead to Ûj+1 = f0g.
To repeat the construction (4.2), we assume that there is a basis fb(j)1 ; : : : ;b

(j)
rj g of Uj and the basis

fu1; : : : ; urg of U . Then the basis fb(j+1)1 ; : : : ;b
(j+1)
rj+1 g of Uj+1 can be constructed by (4.2) which now takes

the form

b
(j+1)
k =

rjX
�=1

rX
�=1

c(k)��b
(j)
� 
 u� (1 � k � rj+1): (5.3)

In order to check linear independence and to construct orthonormal bases, we also have to require that we are
able to determine scalar products. Assuming by induction that the scalar products hb(j)�0 ;b

(j)
�00 i and hu�0 ; u�00i

are known, the value of hb(j+1)k0 ;b
(j+1)
k00 i follows from (1.4). Therefore, we are able to form an orthonormal

basis of Uj+1:

To avoid di¢ culties with a too small intersection Ûj+1; an alternative idea could be to choose the
subspace Uj+1 in S (Uj 
 U) and not necessarily in Uj 
 U . Then, instead of (5.3), we have b(j+1)k =P

�;� c
(k)
�� S(b(j)� 
u�): This would be a very �exible approach, were it not for the fact that we need knowledge

of the scalar products
D
s
(j)
�� ; s

(j)
�0�0

E
for s(j)�� := S(b(j)� 
u�) (otherwise, an orthonormal basis fb(j+1)k g cannot

be constructed). One �nds thatD
s(j)�� ; s

(j)
�0�0

E
=
���0

j + 1

D
b(j)� ;b

(j)
�0

E
+

j

j + 1

D
b
(j)
�;[�0];b

(j)
�0;[�]

E
where the expression b(j)�;[�0] is de�ned in Lemma 1.3. The scalar products

D
b
(j)
�;[�0];b

(j)
�0;[�]

E
can be derived fromD

s
(j)
��;[`]; s

(j)
�0�0;[`0]

E
: This expression, however, requires the knowledge of

D
b
(j�1)
�;[`;�0];b

(j�1)
�0;[`0;�]

E
(concerning the

subscript [`; �0] compare (5.7)). Finally, we need scalar products of the systems fb(d)� g; fb(d�1)� g; fb(d�1)�;[�] g;
fb(d�2)�;[`m]g; : : : ; fb

(j)
�;[`1;`2;:::;`j� ]

g with j� = minfj; d�jg; : : : . This leads to a data size increasing exponentially
in d:

5.2 The Spaces (Uj 
 U) \ S (Uj 
 U) and Umin
j+1(v)

Let v 2 (
dV )\V(d)
sym be the symmetric tensor which we want to represent. We recall the minimal subspaces

de�ned in §1.2. According to the notation of the TT format, Umin
j (v) is the spaceUmin

f1;:::;jg(v) � 
jV de�ned
in (1.9). The minimality property of Umin

j (v) (cf. [9, §6]) implies that the subspaces U and Uj must satisfy

U � Umin1 (v); Uj � Umin
j (v); (5.4)

otherwise v cannot be represented by the TT format.

The next theorem states that (5.4) guarantees that there is a suitable subspace Uj with Ûj � Uj �
Umin
j (v); so that the requirement (5.4) is also valid for j + 1:

Theorem 5.2 Let (5.4) be valid for v 2 U(d)
sym and let j < d: Then Ûj+1 in (5.2) satis�es Ûj+1 � Umin

j+1(v):
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Proof. We have Uj 
 U � Umin
j (v)
 Umin1 (v): A general property of the minimal subspace is

Umin
j (v)
 Umin1 (v) � Umin

j+1(v)

(cf. [9, Proposition 6.17]). Since Umin
j+1(v) is symmetric (cf. Conclusion 1.6), it follows that

S (Uj 
 U) � S(Umin
j (v)
 Umin1 (v)) � S(Umin

j+1(v)) = U
min
j+1(v):

This inclusion together with the previous inclusion Uj 
 U � Umin
j+1(v) yields the statement.

So far, we could ensure that there exists a suitable subspace Uj+1 � Umin
j+1(v). Concerning the practical

implementation, two questions remain:

(a) How can we �nd the subspace Ûj+1 � Uj 
 U?

(b) Given Ûj+1; how can we ensure Uj+1 � Umin
j+1(v)?

The next subsection yields a partial answer to the �rst question.

5.3 Criterion for Symmetry

According to Lemma 1.3, any v 2 Uj 
 U is of the form

v =
rX
`=1

v[`] 
 u` (v[`] 2 Uj): (5.5)

The mapping v 2 V(j+1) 7! v[`] 2 V(j) can be iterated:

v[`] 2 V(j) 7! (v[`])[m] = v[`][m] = v[`;m] 2 V
(j�1):

In the case of j = 1; the empty product 
j�1V is de�ned as the �eld K, i.e., v[`;m] is a scalar.

Lemma 5.3 A necessary and su¢ cient condition for v 2 V(j+1)
sym is

v[`] 2 V(j)
sym and v[`;m] = v[m;`] for all 1 � `;m � r: (5.6)

Here, v[`] refers to (5.5), and v[`;m] is the expansion term of v[`] 2 
jV:

Proof. (a) Assume v 2 V(j+1)
sym : v[`] 2 V(j)

sym is stated in Remark 1.4. Applying the expansion to v[`] in (5.5),
we obtain

v =
rX

`;m=1

v[`;m] 
 um 
 u`: (5.7)

Note that the tensors fum 
 u` : 1 � `;m � rg are linearly independent. Therefore, transposition
um 
 u` 7! u` 
 um and symmetry of v imply that v[`;m] = v[m;`]:

(b) Assume (5.6). Because of v[`] 2 V(j)
sym; v is invariant under all transpositions �i;i+1 for 1 � i < j:

Condition v[`;m] = v[m;`] ensures that v is also invariant under the transposition �j;j+1: This proves the
symmetry of v (cf. Remark 1.1).
To apply this criterion to the construction of Ûj+1 := (Uj 
 U)\S (Uj 
 U) ; we search for a symmetric

tensor (5.3) of the form

b =

rjX
�=1

rX
�=1

c��b
(j)
� 
 u�: (5.8)

The tensor b corresponds to v[`] :=
Prj

�=1 c�`b
(j)
� in (5.5). v[`] 2 V(j)

sym is satis�ed because of (5.1). The
condition v[`;m] = v[m;`] in (5.6) becomes

rjX
�=1

c�`b
(j)
�;[m] =

rjX
�=1

c�mb
(j)
�;[`]: (5.9)

The tensors b(j)�;[m] and b
(j)
�;[`] belong to Uj�1: The new (nontrivial) algebraic task is to �nd the set of

coe¢ cients c�� satisfying (5.9) for all 1 � `;m � r:
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Remark 5.4 The ansatz (5.8) has rrj�1 free parameters (one has to be subtracted because of the nor-
malisation). Condition (5.9) describes r(r�1)

2 equations in the space Uj�1 equivalent to
r(r�1)
2 rj�1 scalar

equations.

5.4 TT Symmetrisation

In the following approach we obtain a symmetric tensor in S (Uj 
 U) ; but not necessarily in Uj 
 U:

5.4.1 Symmetrisation Operator Sj+1
In the present approach we directly symmetrise the tensors. The general symmetrisation map S consists
of d! terms. However, since Uj is already symmetric, tensors in Uj 
 U can be symmetrised by only j + 1
transpositions � i;j+1.

Theorem 5.5 Let v(j) 2 V(j)
sym and w 2 V: Applying

Ŝj+1 :=
1

j + 1

j+1X
i=1

�i;j+1

to v(j) 
 w 2 V(j+1) yields a symmetric tensor:

s := Ŝj+1
�
v(j) 
 w

�
2 V(j+1)

sym :

Proof. According to Remark 1.1, we have to show that �k;k+1s = s for all 1� k� j: First we consider the
case of k < j: If i =2 fk; k + 1g; we have �k;k+1�i;j+1 = �i;j+1�k;k+1: For i 2 fk; k + 1g we obtain

�k;k+1�k;j+1 = �k+1;j+1�k;k+1; �k;k+1�k+1;j+1 = �k;j+1�k;k+1:

This proves �k;k+1Ŝj+1 = Ŝj+1�k;k+1 and

�k;k+1s = Ŝj+1�k;k+1
�
v(j) 
 w

�
= Ŝj+1

�
�k;k+1v

(j) 
 w
�
:

Symmetry of v(j) implies �k;k+1v(j) = v(j) so that �k;k+1s = s is proved.
The remaining case is k = j: For i < j; the identity �j;j+1�i;j+1 = �i;j+1�i;j together with �i;jv(j) = v(j)

implies �j;j+1�i;j+1(v(j) 
 w) = �i;j+1(v(j) 
 w): For i 2 fj; j + 1g we obtain

�j;j+1�j;j+1 = id = �j+1;j+1; �j;j+1�j+1;j+1 = �j;j+1 � id = �j;j+1;

i.e., �j;j+1 (�i;j+1 + �j+1;j+1) = �i;j+1 + �j+1;j+1: Hence, also �j;j+1s = s is proved.

Corollary 5.6 The corresponding antisymmetrisation is obtained by

Âd :=
1

d

dX
i=1

(�1)d�i �id:

Although the symmetrisation ensures that s 2 S (Uj 
 U) ; there is no guaranty that s 2 Uj
U: Hence,
whether s 2 Ûj+1 holds or not is still open.

5.4.2 Expansion of s

Since v(j)
w 2 
j+1U; the symmetrisation s = Ŝj+1(v(j)
w) also belongs to 
j+1U: By Lemma 1.3 there
is a representation s =

Pr
`=1 s[`] 
 u` with s[`] 2 U

(j)
sym:
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Lemma 5.7 Let w =
Pr

`=1 c`u` and v
(j) 2 U(j)

sym: Then s := Ŝj+1(v(j) 
 w) satis�es

s =
rX
`=1

s[`] 
 u` with s[`] :=
1

j + 1

 
c`v

(j) +

jX
i=1

�i;j (v
(j)
[`] 
 w)

!
: (5.10)

The latter sum
Pj

i=1 �i;j(v
(j)
[`] 
 w) can be written as jŜj(v

(j)
[`] 
 w):

Proof. Using �j+1;j+1 = id; we obtain

(j + 1) s = v(j) 
 w +
jX
i=1

�i;j+1(v
(j) 
 w) =

rX
`=1

c`v
(j) 
 u` +

jX
i=1

�i;j+1(v
(j) 
 w):

Since �i;j+1 = �i;j�j;j+1�i;j for i � j and v(j) =
Pr

`=1 v
(j)
[`] 
 u` 2 U

(j)
sym, we have

�i;j+1(v
(j) 
 w) = �i;j�j;j+1

�
(�i;jv

(j))
 w
�
= �i;j�j;j+1

�
v(j) 
 w

�
= �i;j�j;j+1

rX
`=1

v
(j)
[`] 
 u` 
 w = �i;j

rX
`=1

v
(j)
[`] 
 w 
 u` =

rX
`=1

�
�i;j(v

(j)
[`] 
 w)

�

 u`:

Together we obtain (j + 1) s =
Pr

`=1

�
c`v

(j) +
Pr

`=1

�
�i;j(v

(j)
[`] 
 w)

��

 u`:

The last equation explicitly provides the expansion of s de�ned in Lemma 1.3.

5.4.3 Scalar Products

The de�nition of s := Ŝj+1(v(j)
w) seems a bit abstract, since (5.10) contains the permuted tensor which not
necessarily belongs to Uj 
U . Even in that case it is possible to determine the scalar products hs;b(j)� 
u�i
with the basis vectors b(j)� 
 u� of Uj 
 U: The �rst term in (5.10) yieldsD

v(j) 
 u`;b(j)� 
 u�
E
=
D
v(j);b(j)�

E
hu`; u�i :

By induction, we assume that the scalar product of v(j) 2 Uj and b
(j)
� is known. Usually, the basis fu`g is

chosen orthonormal so that hu`; u�i = �`�: The other terms yield the productsD
�i;j

�
v
(j)
[`] 
 w 
 u`

�
;b(j)� 
 u�

E
=
D
�i;j

�
v
(j)
[`] 
 w

�
;b(j)�

E
hu`; u�i :

Using the selfadjointness of �i;j and b
(j)
� 2 V(j)

sym; we obtainD
�i;j

�
v
(j)
[`] 
 w

�
;b(j)�

E
=
D
v
(j)
[`] 
 w; �i;jb

(j)
�

E
=
D
v
(j)
[`] 
 w;b

(j)
�

E
=

�
v
(j)
[`] 
 w;

rX
k=1

b
(j)
�;[k] 
 uk

�
=

rX
k=1

D
v
(j)
[`] ;b

(j)
�;[k]

E
hw; uki :

If fu`g is an orthogonal basis, hw; uki = ck holds (cf. Lemma 5.7).

Remark 5.8 Let the bases fb(j)� : 1 � � � rjg and fu` : 1 � ` � rg be orthonormal. If s := Ŝj+1(v(j)
w) 2
Uj 
 U; the explicit representation is given by

s =

rjX
�=1

rX
�=1

c��b
(j)
� 
 u� (5.11)

with coe¢ cients c�� = hs;b(j)� 
 u�i, which are computable as explained above.
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Even if s =2 Uj 
 U; the right-hand side in (5.11) is computable and describes the orthogonal projection
PUj
Us of s onto the space Uj 
 U:
The check whether s belongs to Uj 
 U is equivalent to the check whether PUj
Us is symmetric (cf.

§5.3), as stated next.

Criterion 5.9 s 2 Uj
U [and therefore also s 2 Ûj+1; cf. (5.2)] holds if and only if PUj
Us = s 2 V
(j+1)
sym

(implying PUj
Us 2 Ûj+1 in the positive case).

Proof. (a) Abbreviate PUj
U by P . Let s 2 Uj 
 U: This implies P s = s: Since, by construction, s is
symmetric, P s 2 V(j+1)

sym holds.

(b) Assume P s 2 V(j+1)
sym : Because of s = P s+ (I � P )s; also s? := (I � P )s 2 (Uj 
 U)? is symmetric.

The properties of projections show

hs?; s?i = h(I � P )s; (I � P )si = hs; (I � P )si = hSj+1(v(j) 
 w); s?i:

Since Sj+1 is selfadjoint and s? is symmetric, we have

hs?; s?i = hv(j) 
 w;Sj+1s?i = hv(j) 
 w; s?i = 0

because of v(j) 
w 2 Uj 
 U and s? 2 (Uj 
 U)? : This proves s? = 0 and s = PUj
Us; i.e., s 2 Uj 
 U:

5.4.4 Geometric Characterisation

Let fb(j)� : 1 � � � rjg and fu� : 1 � � � rg be orthonormal bases of Uj � U(j)
sym and U; respectively. b

(j)
�;[`]

are the expansion terms: b(j)� =
P

` b
(j)
�;[`] 
 u`: They give rise to the scalar products

B(�;�);(�0;�0) :=
D
b
(j)
�;[�0];b

(j)
�0;[�]

E
(1 � �; �0 � rj ; 1 � �; �0 � r):

Let B 2 KI�I be the corresponding matrix, where I = f1; : : : ; rjg�f1; : : : ; rg: The orthonormality of fb(j)� g
is equivalent to

P
`B(�;`);(�0;`) = ��;�0 : Note that B = B

H.

Consider the tensor v =
Prj

�=1

Pr
�=1 c��b

(j)
� 
u�: The normalisation kvk = 1 gives

P
�;� jc��j2 = 1: The

entries c�� de�ne the vector c 2 KI :

Theorem 5.10 The spectrum of B is bounded by 1: The above de�ned tensor v is symmetric if and only if
c is an eigenvector of B corresponding to the eigenvalue 1.

Proof. Let s = Sj+1v: The projection property of Sj+1 implies that hv; si � 1: Criterion 5.9 states that v
is symmetric (i.e., v = s) if and only if hv; si = 1: Calculating the scalar product according to §5.4.3 yields
(j+1) hv; si = 1+ j (Bc; c) ; where (�; �) is the Euclidean product of KI : The inequality hv; si � 1 shows that
all eigenvalues of B are bounded by 1. The equality hv; si = 1 requires that (Bc; c) = 1 = maxf(Bc0; c0) :
kc0k = 1g; i.e., c is the eigenvector with eigenvalue � = 1.
The questions from above take now the following form: (a) How can we ensure that 1 belongs to the

spectrum of B; (b) what is the dimension of the corresponding eigenspace?

5.4.5 Examples

The following examples use tensors of order d = 3. The case d = 2 is too easy since tensors of 
2U correspond
to matrices via v =

Pr
�;�=1 c��u� 
 u� 7! C := (c��)

r
�;�=1: Hence symmetric tensors v are characterised by

symmetric matrices C:

In the following examples u1 = a; u2 = b 2 V are orthonormal vectors. A possible choice is V = K2:

Example 5.11 We want to represent the symmetric tensor s := a 
 a 
 a: We use U = spanfa; bg and
the symmetric subspace U2 := spanfb(2)1 g � S(U 
 U) � U 
 U with b(2)1 := a 
 a: Symmetrisation of
U2
U = spanfa
a
a; a
a
bg yields S (U2 
 U) = spanfa
a
a; 13 (a
 a
 b+ a
 b
 a+ b
 a
 a)g:
Obviously, S (U2 
 U) is not a subspace of U2 
 U .
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The reason for S (U2 
 U) 6� U2
U in Example 5.11 may be seen in the choice of U = spanfa; bg: This
space is larger than necessary: U = Umin1 (s) = spanfag is su¢ cient and this choice leads to S(U2 
 U) =
U2 
 U:
In the next example, U is chosen as Umin1 (s):

Example 5.12 We want to represent the symmetric tensor s := a
a
a+b
b
b: We use U = spanfa; bg
and the symmetric subspace U2 := spanfb(2)1 ;b

(2)
2 g � S(U
U) � U
U with b(2)1 := a
a and b(2)2 := b
b:

The tensor space U2 
 U is spanned by a
 a
 a; b
 b
 b; a
 a
 b; b
 b
 a: The �rst two tensors are
already symmetric. The symmetrisation of a 
 a 
 b leads to a tensor which is not contained in U2 
 U:
The same holds for the last tensor. Hence, S (U2 
 U) 6� U2 
 U .
In Examples 5.11 and 5.12, we can omit the tensors b(2)i 
 uj whose symmetrisation does not belong to

U2 
 U; and still obtain a subspace containing the tensor s to be represented. The latter statement is not
true in the third example.

Example 5.13 We want to represent the symmetric tensor s := 
3 (a+ b) + 
3 (a� b) : We use U =

spanfa; bg and the symmetric subspace U2 := spanfb(2)1 ;b
(2)
2 g � S(U 
 U) � U 
 U with b(2)1 := 
2 (a+ b)

and b(2)2 := 
2 (a� b) : The tensor space U2 
 U is spanned by four tensors b(2)i 
 uj. For i = j = 1; we
have b(2)1 
 a = (a+ b)
 (a+ b)
 a; whose symmetrisation does not belong to U2 
 U: The same holds for
the other three tensors. Hence, S (U2 
 U) 6� U2 
 U .
Note that the setting of Example 5.13 coincides with Example 5.12 when we replace the orthonormal

basis fu1 = a; u2 = bg with fu1 = (a+ b)=
p
2; u2 = (a� b)=

p
2g:

The next example underlines the important role of condition Umin
j (v) � Uj .

Example 5.14 Let U2 := spanfb(2)1 g with b(2)1 := a
 b+ b
 a: A general tensor in U2 
 U has the form
b
(2)
1 
 (�a+ �b): There is no symmetric tensor of this form, except the zero tensor (�+ � = 0). This shows
that U2 is too small: there is no nontrivial symmetric tensor v with Umin

2 (v) � U2:

5.4.6 Open Questions About S(Uj 
 U) \ (Uj 
 U)

We repeat the de�nition Ûj+1 := S(Uj 
 U) \ (Uj 
 U) : The main questions are:

� What is the dimension of Ûj+1; in particular, compared with dim(Umin
j (v)), if v is the tensor to be

represented?

� Is there a constructive description of Ûj+1?

The minimal set, which is needed for the construction of the tensors in Ûj+1; is

�Uj :=
X

v2Ûj+1

Umin
j (v):

By de�nition, �Uj � Uj holds, but it is not obvious whether �Uj = Ûj : This yields the next question:

� Does �Uj = Uj hold?

In the negative case, there is a direct sum Uj = �Uj �Zj ; where Zj 6= f0g contains symmetric tensors in
V
(j)
sym which cannot be continued to symmetric tensors inV

(j+1)
sym : UsingUj instead of �Uj would be ine¢ cient.

5.4.7 Answers for d = 3 and r = 2

The questions from above can be answered for the simple case of d = 3 (transfer from d = 2 to d = 3) and
r = 2: Hence we have

dim(U) = 2; U1 = U; U2 � U(2)
sym

and have to investigate the space Û3 := S3(U2
U)\(U2 
 U) :We recall that �U2 =
P

w2Û3
Umin
2 (w) � U2

is the smallest subspace ofU2 with the property S3(�U2
U)\
�
�U2 
 U

�
= Û3: Hence, if dim(U2) > dim(�U2);

U2 contains tensor which are useless for the construction of symmetric tensor in Û3:

The symmetric tensors v 2 U2 correspond to symmetric 2 � 2 matrices. Since dim(U(2)
sym) = 3, the

following list of cases is complete. The general assumption of the following theorems is dim(U) = 2:
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Theorem 5.15 (Case dim(U2) = 1) Let dim(U2) = 1 and U2 = spanfb1g � U(2)
sym. If rank(b1) = 1 then

�U2 = U2; dim(Û3) = 1;

otherwise we have rank(b1) = 2 and

�U2 = f0g � U2; Û3 = f0g:

Proof. Note that rank(b1) � dim(U) = 2. rank(b1)= 0 is excluded because of b1=0 and the assumption
that U2 = spanfb1g is one-dimensional. Hence, rank(b1) only takes the values 1 and 2.
If rank(b1) = 1; b1 = a 
 a0 follows. Symmetry shows that b1 = a 
 a (possibly after changing the

sign5). Then
Û3 = spanfb1 
 ag = spanfa
 a
 ag:

If rank(b1) = 2; the general form of w 2 U2 
 U is w = b1 
 (�a + �b). Assume (�; �) 6= 0: Then the
only symmetric tensor of this form is w = 
3(�a + �b); i.e., b1 = (�a + �b) 
 (�a + �b): The contradiction
follows from rank(b1) = 1: Hence � = � = 0 leads to the assertion.

The statements about �U2 follow from the de�nition �U2 = U
min
2 (Û3):

Theorem 5.16 (dim(U2) = 2) Let dim(U2) = 2: Then

�U2 = U2; dim(Û3) = 2:

The precise characterisation of Û3 � U(3)
sym is given in the proof.

Proof. (i) There are two linearly independent and symmetric tensors b1, b2 with U2 = spanfb1;b2g: Fixing
linearly independent vectors a; b 2 U = spanfa; bg; the tensors have the form

b1 = �a
 a+ � b
 b+  (a
 b+ b
 a) ;
b2 = �

0a
 a+ �0b
 b+ 0 (a
 b+ b
 a)

In part (vi) we shall prove that dim(Û3) � 2: The discussion of the cases 1�3 will show that dim(Û3) � 2;
so that dim(Û3) = 2 follows.
(ii) Case 1:  = 0 = 0: One concludes that U2 = spanfa
 a; b
 bg: Then the �rst case in Theorem 5.15

shows that a
 a
 a and b
 b
 b belong to Û3 so that dim(Û3) � 2 and part (vi) prove

Û3 = spanfa
 a
 a; b
 b
 bg: (5.12)

(iii) Case 2: (; 0) 6= 0: W.l.o.g. assume  6= 0: We introduce the matrices

M� :=

�
� �0

 0

�
; M� :=

�
 0

� �0

�
:

Since  6= 0; both matrices have a rank � 1: If rank(M�) = rank(M�) = 1; (�; �; ) and (�0; �0; 0) would be
linearly dependent in contradiction to the linear independence of fb1;b2g: Hence, at least one matrix has
rank 2 and is regular. W.l.o.g. we assume that rank(M�) = 2 (otherwise interchange the roles of a and b).
(iv) For any (A;B) 2 K2 the system

M�

�
�
�

�
=M�

�
A
B

�
(5.13)

can be solved for (�; �) 2 K2: Then the tensor

w := (Ab1 +Bb2)
 a+ (�b1 + �b2)
 b
5 If K = C; the representation b1 = a 
 a holds in the strict sense, If K = R; either b1 = a 
 a or b1 = �a 
 a can be

obtained. Since the purpose of b1 is to span the subspace, we may w.l.o.g. replace b1 = �a
 a by b1 = a
 a:
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is symmetric and belongs to Û3: For a proof apply Lemma 5.3: w 2 U(3)
sym is equivalent to 'b (Ab1 +Bb2) =

'a (�b1 + �b2) ; where the functionals de�ned by 'a(a) = 'b(b) = 1; 'a(b) = 'b(a) = 0 apply to the last
argument. The latter equation is equivalent to (5.13).

Let (�; �) be the solution of (5.13) for (A;B) = (1; 0) ; while (�0; �0) is the solution for (A;B) = (0; 1) :
Hence we have found a two-dimensional subspace

spanfb1 
 a+ (�b1 + �b2)
 b; b2 
 a+ (�0b1 + �0b2)
 bg � Û3: (5.14)

(v) In both cases (5.12) and (5.14) the minimal subspace �U2 = U
min
2 (Û3) coincides with U2:

(vi) For an indirect proof of dim(Û3) � 2 assume dim(Û3) � 3: Let 'a : Û3 ! Umin
2 (Û3)=U2 be the

mapping w=v1
a+v2
b 7! v1: Since dim(Û3) > dim(U2); there is some w 2 Û3;w 6= 0 with 'a(w) = 0:
This implies w = v2 
 b and therefore, by symmetry, w = b
 b
 b up to a nonzero factor: Similarly, there
are an analogously de�ned functional 'b and w 2 Û3;w 6= 0 with 'b(w) = 0 proving a
 a
 a 2 Û3: From
a 
 a 
 a; b 
 b 
 b 2 Û3 we conclude that �U2 := Umin

2 (Û3) � spanfa 
 a; b 
 bg: Then �U2 � U2 and
dim(U2) = 2 prove dim(Û3) � 2:

Theorem 5.17 (dim(U2) = 3) If dim(U2) = 3; U2 coincides with space U
(2)
sym of all symmetric tensors in

U 
 U and generates all tensors in U(3)
sym:

�U2 = U2 = U
(2)
sym; Û3 = U

(3)
sym with dim(Û3) = 4:

Proof. The statements follow from dim(U
(2)
sym) = 3:

5.5 Direct Use of Umin
j (v)

Statement (5.4) emphasises the important role of the minimal subspace Umin
j (v):

5.5.1 Case of Known Umin
j (v)

If the minimal subspaces Umin
j (v) of a symmetric tensor v 2 U(d)

sym are given, the above problems disappear.
In this case we may de�ne Uj := U

min
j (v): This ensures that

�Uj = Uj and Ûj+1 � Umin
j+1(v)

(cf. Theorem 5.4).

If we want to be able to represent all tensors of a subspace V0 = spanfv1; : : : ;vkg � U(d)
sym; we may use

Uj := U
min
j (V0) =

kX
�=1

Umin
j (v�):

Lemma 6.1 shows that Uj satis�es (6.2).

Next we consider the case that Umin
j (v) is not given explicitly, but can be determined by symmetrisation.

5.5.2 Case of v = S(w)

As in §2.1 we assume that the symmetric tensor 0 6= v 2 U(d)
sym is the symmetrisation S(w) of a known tensor

w 2 
dV: Unlike in §2.1, we assume that w is given in the TT format with minimal subspaces6 Umin
j (w):

The obvious task is to transfer Umin
j (w) into Umin

j (v) = Umin
j (S(w)):

We solve this problem by induction on d = 1; : : : : The proof also de�nes an recursive algorithm.

For d = 1 nothing is to be done since v = S(w) = w: Formally, Umin
0 (v) is the �eld K and U1 � K
U

corresponds to (4.3).

The essential part of the proof and of the algorithm is the step from d� 1 to d:
6 In the case of hierarchical tensor representations it is easy to reduce the subspaces to the minimal ones by introducing the

HOSVD bases (cf. Hackbusch [9, §11.3.3]).
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Lemma 5.18 Let S[j] : 
dV ! 
dV (1 � j � d) be the symmetrisation operator Sd�1 in (1.8) applied to
the directions Dnfjg (cf. (1.2)). Using the transpositions �1j ; �j1; the explicit de�nition is

S[j] = �1j (id
 Sd�1) �j1 :

Then the symmetrisation operator Sd is equal to

Sd =
1

d

dX
j=1

S[j] �dj :

This lemma proves the next result.

Conclusion 5.19 Let w 2 
dU and ' 2 U 0: Then

'(d)(Sdw) =
1

d
Sd�1

dX
j=1

'(j)(w)

holds with '(j) de�ned in (1.6).

The f1; : : : ; d � 1g-plex rank rd�1 of x 2 
dU introduced by Hitchcock [11] is the smallest rd�1 with
x =

Prd�1
�=1 x� 
 y� (x� 2 
d�1U; y� 2 U): For instance, this representation is the result of the HOSVD

representation (cf. [9, §11.3.3]). The minimal subspace Umin
d�1(x) is the span of fx� : 1 � � � rd�1g :

Alternatively, choose the standard basis fu� : 1 � � � rg of U and the representation x =
Pr

�=1 z� 
 u�
together with the dual basis f'�g of fu�g: Then the tensors z� = '�(x) may be linearly dependent so that
some of them may be omitted. Let x� (1 � � � rd�1) be the remaining ones: Umin

d�1(x) = spanfx� : 1 � � �
rd�1g:

Remark 1.5 states that

Umin
d�2(x) = U

min
d�2(U

min
d�1(x)) =

rd�1X
�=1

Umin
d�2(x�): (5.15)

This allows us to determine the minimal subspaces recursively.

Let the TT representation of w 2 
dU be given. The TT format is also called the matrix product
representation since w 2 
dU can be written as

w =
X

k1;k2;:::;kd�1

v
(1)
1;k1


 v(2)k1;k2 
 v
(3)
k2;k3


 � � � 
 v(d)kd�1;1 ;

where the vectors v(j)kj ;kj+1 2 U are data available from the TT representation. kj varies in an index set Ij
with #Ij = dim(Umin

j (w)). The tensor '(j)(w) 2 
d�1U takes the matrix product form

'(j)(w) =
X

kj�1;kj

'(v
(j)
kj�1;kj

)
X

k1;:::;kj�2;
kj+1;:::;kd�1

v
(1)
1;k1


 � � � 
 v(j�1)kj�2;kj�1

 v(j+1)kj ;kj+1


 � � � 
 v(d)kd�1;1:

These tensors can be added within the TT format: w� :=
Pd

=1 '
(j)
� (w) 2 
d�1U: We conclude that

Umin
d�1(v) = U

min
d�1(Sdw) = spanfSd�1w� : 1 � � � rd�1g:

According to (5.15) the next minimal subspace Umin
d�2(v) can be written as

P
�U

min
d�2(Sd�1w�) so that we

can apply the inductive hypothesis.
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6 Operations

The computation of scalar products is already discussed. Next we investigate the tensor addition.

Assume that v0 and v00 are two symmetric tensors represented by subspacesU0
k andU

00
k and corresponding

bases. For k = 1; we use the notation U 0 := U0
1 and U

00 := U00
1 : By assumption, we have

Umin
k+1(v

0) � U0
k+1 � Sk+1(U0

k 
 U 0) \ (U0
k 
 U 0) ; (6.1a)

Umin
k+1(v

00) � U00
k+1 � Sk+1(U00

k 
 U 00) \ (U00
k 
 U 00) : (6.1b)

Lemma 6.1 The sum s := v0 + v00 can be represented by the subspaces

Uk := U
0
k +U

00
k ; U := U 0 + U 00:

These spaces satisfy again the conditions

Umin
k+1(s) � Uk+1 � Sk+1(Uk 
 U) \ (Uk 
 U) : (6.2)

Proof. The inclusions (6.1a,b) imply

Umin
k+1(v

0) +Umin
k+1(v

00) � Uk+1 = U
0
k+1 +U

00
k+1

� (Sk+1(U0
k 
 U 0) \ (U0

k 
 U 0)) + (Sk+1(U00
k 
 U 00) \ (U00

k 
 U 00)) :

Since Umin
k+1(s) � Umin

k+1(v
0) + Umin

k+1(v
00); the �rst part of (6.2) follows: Umin

k+1(s) � Uk+1. The inclusion
U0
k 
 U 0 � Uk 
 U implies that

Sk+1(U0
k 
 U 0) \ (U0

k 
 U 0) � Sk+1(Uk 
 U) \ (Uk 
 U) :

The analogous statement for Sk+1(U00
k 
 U 00) \ (U00

k 
 U 00) yields

(Sk+1(U0
k 
 U 0) \ (U0

k 
 U 0)) + (Sk+1(U00
k 
 U 00) \ (U00

k 
 U 00))
� Sk+1(Uk 
 U) \ (Uk 
 U) :

Hence also the second part of (6.2) is proved.

The computation of the orthonormal basis of Uk is performed in the order k = 1; 2; : : : . As soon as
orthonormal bases of Uk and U are given, the orthonormal basis of Uk+1 can be determined.

Since the spaces Uk = U
0
k +U

00
k may be larger than necessary, a truncation is advisable.

7 Truncation

The standard truncation procedure uses the SVD. Formally, we have for any tensor u 2 V and any k 2
f1; : : : ; d� 1g a singular value decomposition

u =

ruX
�=1

��v� 
w� ; (7.1)

where fv� : 1 � � � rug � 
kV and fw� : 1 � � � rug � 
d�kV are orthonormal systems and
f�1 � �2 � : : :g are the singular values. The usual approach is to choose some s < ru and to de�ne the
tensor

û =
sX

�=1

��v� 
w�

which can be represented with subspaces of lower dimension.

In the case of symmetric tensors u 2 V(d)
sym, we have v� 2 V(k)

sym and w� 2 V(d�k)
sym : However, the standard

truncation cannot be used since there is no guarantee that the truncated tensor û =
Ps

�=1 ��v� 
w� again
belongs to V(d)

sym:
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7.1 Truncation for k = 1 and k = d� 1
In the cases k = 1 and k = d � 1; the truncation can be performed as follows. For k = 1; the standard
truncation u 7! û can be written as û = (P 
 I)u; where P : V ! V is the orthogonal projection onto the
subspace

Û := spanfv� : 1 � � � sg � V;

while I = 
d�1I is the identity on 
d�1V:
In the symmetric case, we need a symmetric mapping. If we delete the components fv� : � > sg in the

�rst direction, the same must be done in the other directions. The corresponding mapping is the orthogonal
projection

P := 
dP

onto the subspace Û(d)
sym � V

(d)
sym: Note that the error u � Pu does not only consist of the omitted termsPru

�=s+1 ��v� 
w� ; but also of
Ps

�=1 ��v� 

�
I�
d�1P

�
w� :

In the case of k = d � 1; w� belongs to V and the analogous construction can be performed. If d = 3;
the cases k = 1 and k = d� 1 cover all possible ones.

7.2 Open Problem for 1 < k < d� 1
If d > 3; there are integers k with 1 < k < d � 1: Then both v� and w� in (7.1) are tensors of order
� 2: It is not obvious how the analogue of the previous mapping P could look like. The advantage of a
symmetric projection P would be the existence of a tensor v0 = Pv 2 Usym: De�ne w0 :=

Ps
�=1 ��v� 
w�

and w00 :=
Pru

�=s+1 ��v� 
w� by SVD. Assume that Pw
0 6= 0 while Pw00 = 0: Then

Pv = PS(w0 +w00) = S(Pw0 +Pw00) = S(Pw0)

(cf. Lemma 9.1) does not vanish, i.e., v0 6= 0 ensures the existence of a nontrivial subspaces Umin
j (v0) (1 �

j � d):
Let Pk : V

(k)
sym ! V

(k)
sym be the orthogonal projection onto spanfv� : 1 � � � sg; so that Pk :=

Pk 
 (
d�kI) maps u to the SVD truncation û =
Ps

�=1 ��v� 
w� : The symmetrisation P = S(Pk) de�nes
u0 := Pu 2 U(d)

sym: Since

hu;u0i = hu;Pui = hu;S(Pk)ui = hu;S(Pku)i = hS(u);Pkui = hu;Pkui = hû; ûi ;

the tensor u0 does not vanish. However, it is not obvious that dim(Umin
k (u0)) � s holds, as intended by the

truncation.

A remedy is a follows. Assume that the (not truncated) tensor uses the subspaces Uj satisfying (5.2).
Let the SVD for index k reduce Uk to U0

k: Since U
0
k � Uk; U

0
k still belongs to U

(k)
sym: Moreover

Û0
k+1 := (U

0
k 
 U) \ S (U0

k 
 U) � (Uk 
 U) \ S (Uk 
 U) = Ûk+1

guarantees the existence of a subspace U0
k+1 � Û0

k+1 so that the construction can be continued. However,
may it happen that U0

k is too small and Û
0
k+1 = f0g holds?

8 Combination with ANOVA

As already mentioned in [9, §17.4.4] the ANOVA7 representation has favourable properties in connection
with symmetric tensors. The ANOVA technique is brie�y described in §8.1 (see also Bohn�Griebel [4, §4.3]).
The ANOVA approximation uses terms with low-dimensional minimal subspaces. Therefore the combination
with the TT format is an e¢ cient approach.

7ANOVA abbreviates �analysis of variance�.
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8.1 ANOVA Technique

Let 0 6= e 2 V be a special element. In the case of multivariate functions, e may be the constant function
e(x) = 1: In the case of mappings, e is the identity mapping. De�ne

E := spanfeg; �V := E?: (8.1)

The choice of the orthogonal complement E? simpli�es later computations. Theoretically, it would be
su¢ cient to choose �V such that there is a direct sum

V = E � �V :

The space �V gives rise to the symmetric tensor space �V(d)
sym:

We introduce the following notation of symmetric tensors in V(d)
sym generated by tensors from �V

(k)
sym:

S(v; d) := Sd(v 
 (
d�ke)) for v 2 �V(k)
sym with 1 � k � d: (8.2)

The tensors in (8.2) form the following subspaces of V(d)
sym:

�V0 := 
dE; �Vk := Sd(�V(k)
sym 
 (
d�kE)) for 1 � k � d:

Lemma 8.1 If (8.1) holds, there is an orthogonal decomposition V(d)
sym =

Ld
j=0

�Vj :

Proof. Let k > `; v 2 �Vk; w 2 �V`: Tensor v can be written as a sum of elementary tensors v� =
Nd

j=0 v
(j)
�

containing k vectors v(j)� 2 �V . Correspondingly, w is a sum of w� =
Nd

j=0 w
(j)
� with d� ` vectors w(j)� = e:

Because of ` < k; there must be some j with v(j)� 2 �V orthogonal to w(j)� = e: Hence hv� ;w�i = 0 holds for
all pairs implying hv;wi = 0:

The ANOVA representation of a (symmetric) tensor v 2 V(d)
sym is the sum

v =
LX
k=0

vk with vk 2 �Vk for some 0 � L � d: (8.3)

We call L the ANOVA degree.

Remark 8.2 (a) The motivation of ANOVA is to obtain an approximation (8.3) for a relative small degree
L:
(b) Let vex =

Pd
k=0 vk be the exact tensor. In order to approximate vex by v from (8.3) we have to assume

that the terms vk are (rapidly) decreasing.

8.2 Representation

We assume that (8.3) holds with vk = S(xk; d). The tensors xk 2 �V
(k)
sym are given together with their

minimal subspaces Umin
k (xk) as described in §5.5.

We generalise the notation S(�; d) in (8.2) to subspaces:

S(X; d) = spanfS(x; d) : x 2 Xg for X � �V(k)
sym:

If X = spanfx� : 1 � � � Ng; we have S(X; d) = spanfS(x� ; d) : 1 � � � Ng:
We remark that Umin

d (v) = spanfvg for v 2 
dV:

Lemma 8.3 Let vk 2 �Vk. Then

Uminj (S(vk; d)) =

maxfk;d�jgX
�=minfj;k�jg

S(Umin� (vk); j): (8.4)
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Proof. By de�nition of Uminj (�); functionals in d � j directions are to be applied. Let � be associated with
vk and d� j � � with 
d�ke: This leads to the inequalities 0 � � � k and 0 � d� j � � � d� k: Together
they imply minfj; k � jg � � � maxfk; d� jg:
Consider the case of j = d � 1: Applying ' with '(e) = 1 and '(v) = 0 (v 2 �V ), we obtain

'(d)(S(vk; d)) = S(vk; d � 1); provided that k < d. On the other hand, ' with '(e) = 0 yields
'(d)(S(vk; d)) = S('(vk); d� 1): This proves

Umin
d�1(S(vk; d)) = S(vk; d� 1) + S(Umin

k�1(vk); d� 1):

Since spanfS(vk; d� 1)g = S(Umin
k (vk); d� 1); this coincides with (8.4) for j = d� 1: For the other j apply

Remark 1.5 recursively.

The ANOVA tensor is the sum v =
P

k vk: As U
min
j (a+b) � Umin

j (a) +Umin
j (b); we obtain from (8.4)

that
Umin
j

�
S
�X

k
vk; d

��
�
X

k;�
S(Umin

� (vk); j):

The dimension of the right-hand side may be larger than Umin
j (v); but here we want to separate the spaces

E and �U � �V : For instance, the tensor v = (a+ e) 
 (a+ e) has the one-dimensional minimal subspace
Umin1 (v) = spanfa+ eg; but here we use E + �U with �U = spanfag:

8.3 Example

Consider an expression of the form
P

i S(a
0
i; d) + S(b; d); where a

0
i 2 V and b 2 V(2)

sym: We assume that b
can be approximated by

P
k (b

0
k 
 c0k + c0k 
 b0k). Orthogonalisation of a0i; b0k; c0k with respect to some e yields

the vectors ai; bk; ck and the ANOVA form

v = �S(1; d) +

N1X
i=1

S(xi; d) +

N2X
k=1

S(ak 
 bk + bk 
 ak; d); (8.5)

where xi represents ai and multiples of bk and ck. Note that S(1; d) = 
de: In the following we give the
details for

v = �S(1; d) + S(x; d) + S(a
 b+ b
 a; d):

The combined ANOVA-TT format uses the spaces

j = 1 : U1 = spanfe; x; a; bg; (8.6)

j = 2 : U2 = spanfS(1; 2); S(x; 2); S(a; 2); S(b; 2); S(a
 b+ b
 a; 2)g;
...

j < d : Uj = spanfS(1; j); S(x; j); S(a; j); S(b; j); S(a
 b+ b
 a; j)g;
j = d : Ud = spanfvg:

The essential recursive de�nition (5.3) of the basis reads as follows:

S(1; j) = S(1; j � 1)
 e;
S(x; j) = S(x; j � 1)
 e+ S(1; j � 1)
 x;

S(a; j); S(b; j) : analogously,

S(a
 b+ b
 a; j) = S(a
 b+ b
 a; j � 1)
 e
+ S(a; j � 1)
 b+ S(b; j � 1)
 a:

The �nal step follows from

v =�S(1; d� 1) + S(x; d� 1)
 e+ S(1; d� 1)
 x
+ S(a
 b+ b
 a; d� 1)
 e+ S(a; d� 1)
 b+ S(b; d� 1)
 a:
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Remark 8.4 The terms

�S(1; d) and
N2X
k=1

S(ak 
 bk + bk 
 ak; d)

in (8.5) lead to 3N2 + 1 basis vectors in Uj : Let N0 vectors xi be linearly independent of spanfak; bk : 1 �
k � N2g: Then

PN1

i=1 S(xi; d) requires N0 additional basis vectors in Uj :

8.4 Operations

Concerning scalar product one can exploit Lemma 8.1: hS(v; d); S(w; d)i = 0 for v 2 �Vk; w 2 �V` with
k 6= `: If the basis of Uj should be orthonormalised, it is su¢ cient to orthonormalise only the contributions
S(v� ; j) for all v� 2 �Vk separately (cf. (8.6)).

One can possibly use that for tensors v� ;w� 2 �Vk; k � j; the scalar product hS(v; j); S(w; j)i is a �xed
multiple of hv;wi ; provided that he; ei = 1:

hS(v; j); S(w; j)i = j!

k!
hv;wi :

In principle, the operations within the TT format are as usual. However, one has to take care that the
result is again of the ANOVA form.

As an example we consider the Hadamard product � (pointwise product) for multivariate functions. For
the standard choice that e is the constant function with value 1, we have e� e = e (and a� e = e� a = a
for any a). If v is of the form (8.3) with L = Lv; while w corresponds to L = Lw, the product z := v �w
satis�es (8.3) with degree Lz = minfd; Lv + Lwg: Enlarging L increases the storage cost and the arithmetic
cost of operations involving z. A truncation Lz 7! L0z < Lz could be helpful, provided that omitted terms
are small. Here we need that z satis�es the assumption of Remark 8.2b.

Let Z = L(V ) be the space of linear maps of V into V: Another example is the multiplication of an
operator (Kronecker matrix) A =

PLA
k=0Ak 2 Z(d)sym and a tensor v =

PLv
k=0 vk 2 V

(d)
sym: Let the identity be

the special element I of Z (replacing e in the general description). This guarantees Ie = e: Again w := Av is
of the form (8.3) with Lw = minfd; LA+Lvg: Only under the assumption that all maps in Umin1 (A) possess
e as an eigenvector, we have Lw = Lv:

9 Operators, Kronecker Matrices

If V is a matrix space, the corresponding tensor space contains Kronecker matrices. More generally, linear
operators on multivariate functions can be described by tensors. In this case, there is an operator A and a
vector v as well as the productAv. For completeness we list the relations between (anti)symmetric operators
and (anti)symmetric tensors v. The proofs are obvious and therefore omitted.

The expression �A used below means the application of the permutation � to the tensor A 2
d L(V ) �
L(V); where L(V ) are the linear maps from V into itself. Concerning 
dL(V ) � L(V) compare [9, Propos-
ition 3.49].

Lemma 9.1 Let V = 
dV; A : V ! V a linear map and � a permutation. Then the action of �A can be
expressed by the action of A:

(�A)u = �
�
A
�
��1u

��
for all u 2 V:

If A is symmetric then �(Au) = A(�u): If u 2 Vsym then (S(A))u = S(Au): If A : V! V is symmetric
then AS(u) = S(Au):

The last statement implies that ifA : V! V is symmetric, thenA : Vsym! Vsym andA : Vanti! Vanti:

The adjoint of A is denoted by A�; i.e., hAu;vi = hu;A�vi : Any permutation satis�es �� = ��1 and
(�A)

�
= �A�: In particular, permutations of selfadjoint operators are again selfadjoint.
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