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Algebraic Identifiability of Gaussian Mixtures

Carlos Améndola, Kristian Ranestad and Bernd Sturmfels

Abstract

We prove that all moment varieties of univariate Gaussian mixtures have the expected
dimension. Our approach rests on intersection theory and Terracini’s classification of
defective surfaces. The analogous identifiability result is shown to be false for mixtures
of Gaussians in dimension three and higher. Their moments up to third order define
projective varieties that are defective. Our geometric study suggests an extension of
the Alexander-Hirschowitz Theorem for Veronese varieties to the Gaussian setting.

1 Introduction

The Gaussian moment variety Gn,d is a subvariety of PN , where N =
(
n+d
d

)
− 1. Following

[2], its points are the vectors of all moments of order ≤ d of an n-dimensional Gaussian
distribution, parametrized birationally by the entries of the mean vector µ = (µ1, . . . , µn)
and the covariance matrix Σ = (σij). The variety Gn,d is rational of dimension n(n + 3)/2
for d ≥ 2. Its kth secant variety Seck(Gn,d) is the Zariski closure in PN of the set of vectors
of moments of order ≤ d of any probability distribution on Rn that is the mixture of k
Gaussians, for k ≥ 2. Our aim is to determine the dimension of the secant variety Seck(Gn,d).

That dimension is always bounded above by the number of parameters, so we have

dim
(
Seck(Gn,d)

)
≤ min {N , kn(n+ 3)/2 + k − 1 } . (1)

The right hand side is the expected dimension. If equality holds in (1) then Seck
(
Gn,d) is

nondefective. If this holds, and N ≥ 1
2
kn(n + 3) + k − 1, then the Gaussian mixtures are

algebraically identifiable from their N moments of order ≤ d. Here algebraically identifiable
means that the map from the model parameters to the moments is finite-to-one, so the
parameters can be recovered by solving a zero-dimensional system of polynomial equations.

In this article we prove the following result that contrasts the cases n = 1 and n ≥ 3.

Theorem 1. Equality holds in (1) for n = 1 and all values of d and k. Hence all moment
varieties of mixtures of univariate Gaussians are algebraically identifiable. The same is false
for n ≥ 3, d = 3 and k = 2: here the right hand side of (1) exceeds the left hand side by two.

Defective Veronese varieties are classified by the celebrated Alexander-Hirschowitz The-
orem [4]. This is relevant for our discussion because each Veronese variety is naturally
contained in a corresponding Gaussian moment variety. The latter is a noisy version of
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the former, since the Veronese variety consists of the points on Gn,d where the covariance
matrix is zero. We refer to the discussion in [2, Sec. 6]. Theorem 1 proves the first part of
Conjecture 15 in [2], and it disproves the “natural conjecture” stated after Problem 17 in [2].

Our result for d = 3 is a Gaussian analogue to the infinite family (d = 2) in the Alexander-
Hirschowitz classification [4] of defective Veronese varieties. Many further defective cases for
d = 4 are exhibited in Table 2 and Conjecture 20. Extensive computer experiments (up to
d = 24) suggest that moment varieties are never defective for bivariate Gaussians (n = 2).

Conjecture 2. Equality holds in (1) for n = 2 and all values of d and k. In particular, all
moment varieties of mixtures of bivariate Gaussians are algebraically identifiable.

Our presentation is organized as follows. In Section 2 we focus on the case n = 1.
We review basics on the Gaussian moment surfaces G1,d, and what is known classically on
defectivity of surfaces. Based on this, we then prove the first part of Theorem 1. In Section 3
study our problem for n ≥ 2. We begin with the parametric representation of Seck(Gn,d),
we next establish the second part of Theorem 1, and thereafter we study the defect and
we examine higher moments. Section 4 discusses what little we know about the degree and
equations of the varieties Seck(Gn,d). Both Sections 3 and 4 feature many open problems.

2 One-dimensional Gaussians

The moments m0,m1,m2, . . . ,md of a Gaussian distribution on the real line are polynomial
expressions in the mean µ and the covariance σ2. These expressions will be reviewed in
Remark 5. They give a parametric representation of the Gaussian moment surface G1,d in
Pd. The following implicit representation of that surface was derived in [2, Proposition 2].

Proposition 3. Let d ≥ 3. The homogeneous prime ideal of the Gaussian moment surface
G1,d is minimally generated by

(
d
3

)
cubics. These are the 3× 3-minors of the 3× d-matrix

Gd =

 0 m0 2m1 3m2 4m3 · · · (d− 1)md−2
m0 m1 m2 m3 m4 · · · md−1
m1 m2 m3 m4 m5 · · · md

 .

The 3 × 3-minors of the matrix Gd form a Gröbner basis for the prime ideal of G1,d with
respect to the reverse lexicographic term order. This implies that G1,d has degree

(
d
2

)
in Pd.

Our first new result concerns the singular locus on the Gaussian moment surface.

Lemma 4. The singular locus of the surface G1,d is the line defined by 〈m0,m1, . . . ,md−2〉.

Proof. Let L be the line defined by 〈m0,m1, . . . ,md−2〉 and S = Sing(G1,d). We claim L = S.
We first show that S ⊆ L. Consider the affine open chart {m0 = 1} of G1,d. On that chart,

the coordinates mi are polynomial functions in the earlier unknowns m0, . . . ,mi−1. Indeed,
the 3 × 3-minor of Gd with column indices 1, 2 and i has the form mi − h(m0, . . . ,mi−1).
Hence G1,d ∩ {m0 = 1} ' A2, and therefore S ⊂ {m0 = 0}. Next suppose m0 = 0. The
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leftmost 3× 3-minor of Gd implies m1 = 0. Now, the minor with columns 2, 3, 4 implies that
m2 = 0, the minor with columns 3, 4, 5 implies that m3 = 0, etc. From the rightmost minor
we conclude md−2 = 0. This shows that G1,d ∩ {m0 = 0} = L, and we conclude S ⊆ L.

For the reverse inclusion L ⊆ S, we consider the Jacobian matrix of the cubics that define
G1,d. That matrix has d+ 1 rows and

(
d
3

)
columns. We claim that it has rank ≤ d− 3 on L.

To see this, note that the term mim
2
d−1 appears in the minor of Gd with columns i, d− 1, d

for i = 2, . . . , d− 2, and that all other occurrences of md−1 or md in any of the 3× 3-minors
of Gd is linear. Therefore the Jacobian matrix restricted to L has only d−3 non-zero entries,
and so its rank is at most d− 3. This is less than d− 2 = codim(G1,d). We conclude that all
points on the line L are singular points in the Gaussian moment surface G1,d.

The 3×d-matrix Gd has entries that are linear forms in d+1 unknowns m0, . . . ,md. That
matrix may be interpreted as a 3-dimensional tensor of format 3× d× (d+ 1). That tensor
can be turned into a d × (d + 1) matrix whose entries are linear forms in three unknowns
x, y, z. The result is what we call the Hilbert-Burch matrix of our surface G1,d. It equals

Bd =



y z 0 0 · · · 0
x y z 0 · · · 0
0 2x y z · · · 0
0 0 3x y · · · 0
...

...
...

...
...

0 0 · · · (d− 1)x y z


. (2)

This tridiagonal matrix has x, 2x, . . . , (d − 1)x as subdiagonal, y throughout the diagonal,
and z along the superdiagonal. Let φ : P2 99K Pd be the map defined by the maximal minors
of Bd. The base locus of the map φ is the point (1 : 0 : 0), and its image is the surface G1,d.

Remark 5. The parametrization φ is birational. It coincides with the familiar affine
parametrization, as in (9), of the Gaussian moments in terms of mean and variance if we set

x = −σ2 , y = µ and z = 1. (3)

We now come to our main question, namely whether there exist d and k such that G1,d is
k-defective in Pd. Theorem 1 asserts that this is not the case. Equivalently, the dimension of
Seck(G1,d) is always equal to the minimum of d and 3k− 1, which is the upper bound in (1).

Curves can never be defective, but surfaces can. The prototypical example is the Veronese
surface S in the space P5 of symmetric 3 × 3-matrices. Points on S are matrices of rank 1.
The secant variety Sec2(S) consists of matrices of rank ≤ 2. Its expected dimension is five
whereas the true dimension of S is only four. This means that S is k-defective for k = 2.

The following well-known result on higher secant varieties of a variety X allows us to
show that X is not k-defective for any k by proving this for one particular k (see [1]):

Proposition 6. Let X be a k′-defective subvariety of Pd and k > k′. Then X is k-defective
as long as Seck(X) is a proper subvariety of Pd. In fact, the defectivity increases with k:

(dim(X) + 1) · k − 1− dim(Seck(X)) > (dim(X) + 1) · k′ − 1− dim(Seck′(X)). (4)
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Proof. By Terracini’s Lemma, the dimension of the secant variety Seck(X) is the dimension
of the span of the tangent spaces to X at k general points. Since X is k′-defective and k′ < k,
the linear span of k− k′ general tangent spaces to the affine cone over X must intersect the
span of k′ such general tangent spaces in a positive-dimensional linear space. The dimension
of that intersection is the difference of the left hand side minus the right hand side in (4).

Corollary 7. If a surface X ⊂ Pd is defective then X is k-defective for some k ≥ (d− 2)/3.

Proof. We proceed by induction on k. If the surface X is (k−1)-defective and k < (d−2)/3,
then dim(Seck(X)) < 3k + 2 < d. So X is also k-defective, by Proposition 6.

Our main geometric tool is Terracini’s 1921 classification of all k-defective surfaces:

Theorem 8. (Classification of k-defective surfaces) Let X ⊂ PN be a reduced, irreducible,
non-degenerate projective surface that is k-defective. Then k ≥ 2 and either

(1) X is the quadratic Veronese embedding of a rational normal surface Y in Pk; or

(2) X is contained in a cone over a curve, with apex a linear space of dimension ≤ k − 2.

Furthermore, for general points x1, . . . , xk on X there is a hyperplane section tangent along
a curve C that passes through these points. In case (1), the curve C is irreducible; in case
(2), the curve C decomposes into k algebraically equivalent curves C1, . . . , Ck with xi ∈ Ci.

Proof. See [6, Theorem 1.3 (i),(ii)] and cases (i) and (ii) of the proof given there.

Chiantini and Ciliberto offer a nice historical account of this theorem in the introduction
to their article [6]. A modern proof follows from the more general result in [6, Theorem 1.1].

Corollary 9. If the surface X = G1,d is k-defective then statement (2) in Theorem 8 holds.

Proof. We need to rule out case (1) in Theorem 8. A rational normal surface is either a
Hirzebruch surface or it is the cone over a rational curve. The former is smooth and the
latter is singular at only one point. The same is true for the quadratic Veronese embedding
of such a surface. By contrast, our surface G1,d is singular along a line, by Lemma 4.

Our goal is now to rule out case (2) in Theorem 8. That proof will be much more involved.
Our strategy is to set up a system of surfaces and morphisms between them, like this:

Sd → S̄d ⊂ PNd

↓ ↓
P2 G1,d ⊂ Pd

(5)

The second row in (5) represents the rational map φ : P2 99K G1,d that is given by the
maximal minors of Bd. Above P2 sits a smooth surface Sd which we shall construct by a
sequence of blow-ups from P2. It will have the property that φ lifts to a morphism on Sd.
Curves of degree d in P2 specify a divisor class Hd on Sd. The complete linear system |Hd|
maps Sd onto a rational surface S̄d in PNd where Nd = dim(|Hd|). The subsystem of |Hd|
given by the d + 1 maximal minors of Bd then defines the vertical map from S̄d onto G1,d.
Our plan is to use the intersection theory on Sd to rule out the possibility (2) in Theorem 8.

4



Lemma 10. Suppose that we have a diagram as in (5) and X = G1,d satisfies statement
(2) in Theorem 8. Then, for any k general points x1, . . . , xk on the surface Sd, there exist
linearly equivalent divisors D1 3 x1, . . . , Dk 3 xk and there exists a hyperplane section of
G1,d in Pd, with pullback Hd to Sd, such that Hd − 2D1 − 2D2 − · · · − 2Dk is effective on Sd.

Proof. By part (2) of Theorem 8, there exist algebraically equivalent curves C1, . . . , Ck on X
that contain the images of the respective points x1, . . . , xk, and there is a hyperplane section
HX of X which contains and is singular along each Ci. Let H ⊂ Sd be the preimage of HX ,
and let Di ⊂ Sd be the preimage of Ci. Then xi ∈ Di for i = 1, . . . , k. Furthermore, the
divisor H has multiplicity at least 2 along each Di. Finally, since Sd is a rational surface,
linear and algebraic equivalence of divisors coincide, and the lemma follows.

We now construct the smooth surface Sd. Let Vd denote the (d + 1)-dimensional vector
space spanned by the maximal minors of the matrix Bd in (2). When d is odd these minors are

bd,0 = zd,
bd,1 = yzd−1,
bd,2 = y2zd−2 − xzd−1,
bd,3 = y3zd−3 − 3xyzd−2,

· · · · · · · · · · · · · · · · · ·
bd,d−1 = yd−1z −

(
d−1
2

)
xyd−3z2 + . . .+ a( d−3

2
,d−1)x

d−3
2 y2z

d−1
2 + a( d−1

2
,d−1)x

d−1
2 z

d+1
2 ,

bd,d = yd −
(
d
2

)
xyd−2z + a(2,d)x

2yd−4z2 + . . . + a( d−1
2

,d)x
d−1
2 yz

d−1
2 .

When d is even, the maximal minors of the Hilbert-Burch matrix Bd are

bd,0 = zd,
bd,1 = yzd−1,
bd,2 = y2zd−2 − xzd−1,
bd,3 = y3zd−3 − 3xyzd−2,

· · · · · · · · · · · · · · · · · ·
bd,d−1 = yd−1z −

(
d−1
2

)
xyd−3z2 + . . .+ a( d−4

2
,d−1)x

d−4
2 y3z

d−2
2 + a( d−2

2
,d−1)x

d−2
2 yz

d
2 ,

bd,d = yd −
(
d
2

)
xyd−2z + a(2,d)x

2yd−4z2 + . . . + a( d
2
,d)x

d
2 z

d
2 .

Here the a(i,j) are rational constants. The point p = (1 : 0 : 0) is the only common zero of
the forms bd,0, . . . , bd,d. All forms are singular at p, with the following lowest degree terms:

zd, yzd−1, zd−1, yzd−2, . . . , z(d+1)/2, yz(d−1)/2 when d is odd; (6)

zd, yzd−1, zd−1, yzd−2, . . . , yzd/2, zd/2 when d is even. (7)

Consider a general form in Vd. Then its lowest degree term at p is a linear combination of
z(d+1)/2 and yz(d−1)/2 when d is odd, and it is a scalar multiple of zd/2 when d is even.

The forms bd,0, . . . , bd,d define a morphism φ : P2\{p} → Pd that does not extend to p.
Consider any map π : S ′ → P2 that is obtained by a sequence of blow-ups at smooth points,
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starting with the blow-up of P2 at p. Let E ⊂ S ′ be the preimage of p. The restriction of π
to S ′\E is an isomorphism onto P2\{p}, and so φ naturally defines a morphism S ′\E → Pd.

We now define our surface Sd in (5). It is the minimal surface S ′ such that S ′\E → Pd

extends to a morphism φ̃ : S ′ → Pd. Here “minimal” refers to the number of blow-ups.
Let Hd be the strict transform on Sd of a curve in P2 defined by a general form in Vd.

The complete linear system |Hd| on Sd defines a morphism Sd → PNd , where Nd = dim|Hd|.
Let S̄d ⊂ PN be the image. Then φ̃ : Sd → Pd is the composition of Sd → PN and a linear
projection to Pd whose restriction to S̄d is finite. Thus we now have the diagram in (5).

Relevant for proving Theorem 1 are the first two among the blow-ups that lead to Sd.
The map φ is not defined at p. More precisely, φ is undefined at p and at its tangent direction
{z = 0}. Let Sp → P2 be the blow-up at p, with exceptional divisor Ep. Let Sp,z → Sp be
the blow-up at the point on Ep corresponding to the tangent direction {z = 0} at p, with
exceptional divisor Ez. To obtain Sd we need to blow up Sp,z in s further points for some s.

Now, Sd is a smooth rational surface. Let L be the class of a line pulled back to Sd, and
let Ep, Ez, F1, . . . , Fs, be the classes of the exceptional divisors of each blow-up, pulled back
to Sd. The divisor class group of Sd is the free abelian group with basis L,Ep, Ez, F1, . . . , Fs.
The intersection pairing on this group is diagonal for this basis, with

L2 = −E2
p = −E2

z = −F 2
1 = · · · = −F 2

s = 1. (8)

The intersection of two curves on the smooth surface Sd, having no common components, is
a nonnegative integer. It is computed as the intersection pairing of their classes using (8).

Lemma 11. Consider the linear system |Hd| on Sd that represents hyperplane sections of
G1,d ⊂ Pd, pulled back via the morphism φ̃. Its class in the Picard group of Sd is given by

Hd = dL− d
2
Ep − d

2
Ez − c1F1 − c2F2 − · · · − csFs when d is even,

Hd = dL− d+1
2
Ep − d−1

2
Ez − c1F1 − c2F2 − · · · − csFs when d is odd.

Here c1, c2, . . . , cs are positive integers whose precise value will not matter to us.

Proof. The forms in Vd define the preimages in P2 of curves in |Hd|. The first three coefficients
are seen from the analysis in (6) and (7). The general hyperplane in Pd intersects the image
of the exceptional curve Fi in finitely many points. Their number is the coefficient ci.

Proof of the first part of Theorem 1. Suppose that X = G1,d is k-defective for some k. By
Corollary 7, we may assume that 3k + 2 ≥ d. By Corollary 9 and Lemma 10, the class of
the linear system |Hd| in the Picard group of the smooth surface Sd can be written as

Hd = A + 2kD

where A is effective and D is the class of a curve that moves on Sd. This means that

D = aL− bpEp − bzEz −
s∑

i=1

c′iFi,
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where a = D · L is a positive integer and bp, bz, c
′
1, . . . , c

′
s are nonnegative integers.

Assume first that a ≥ 2. We have the following chain of inequalities:

0 ≤ L · A = L ·Hd − 2k(L ·D) = d− 2ka ≤ d− 4k ≤ 2− k.

This implies k ≤ 2. The case k = 1 being vacuous, we conclude that k = 2 and hence d ≤ 8.
If d ≤ 5 then Sec2(G1,d) = Pd is easily checked. For d = 6, we know from [2, Theorem 1]
that Sec2(G1,6) is a hypersurface of degree 39 in P6. If d ∈ {7, 8} then the secant variety
Sec2(G1,d) is also 5-dimensional, by the computation with cumulants in [2, Proposition 13].

Next, suppose a = D ·L = 1. The divisor D is the strict transform on Sd of a line in P2.
The multiplicity of this line at p is at most 1, i.e. 0 ≤ D · Ep ≤ 1. Furthermore, D · Ez = 0
because D moves. Suppose that D · Ep = 0 and d is even. Then we have d ≥ 4k because

d/2 = Hd · Ep = A · Ep ≤ A · L ≤ d− 2k.

Since d ≤ 3k + 2, this implies k = 2 and d = 8. This case has already been ruled out above.
If D ·Ep = 0 and d is odd, then the same reasoning yields (d+ 1)/2 = A ·Ep ≤ d− 2k. This
implies 3k + 2 ≥ d ≥ 4k + 1, which is impossible for k ≥ 2.

It remains to examine the case D · Ep = 1. Here, any curve linearly equivalent to D on
Sd is the strict transform of a line in P2 passing through p = (1 : 0 : 0). Through a general
point in the plane there is a unique such line, so it suffices to show that the doubling of any
line through p is not a component of any curve defined by a linear combination of the bd,i.
In particular, it suffices to show that y2 is not a factor of any form in the vector space Vd.

To see this, we note that no monomial xryszt appears in more than one of the forms
bd,0, bd,1, . . . , bd,d. Hence, in order for y2 to divide a linear combination of bd,0, bd,1, . . . , bd,d, it
must already divide one of the bd,i. However, from the explicit expansions we see that y2 is
not a factor of bd,i for any i. This completes the proof of the first part in Theorem 1.

3 Higher-dimensional Gaussians

We begin with the general definition of the moment variety for Gaussian mixtures. The
coordinates on PN are the moments mi1i2···in . The variety Seck(Gn,d) has the parametrization

∑
i1,i2,...,in≥0

mi1i2···in
i1!i2! · · · in!

ti11 t
i2
2 · · · tinn =

k∑
`=1

λ` · exp(t1µ`1+· · ·+tnµ`n)·exp

(
1

2

n∑
i,j=1

σ`ijtitj

)
. (9)

This is a formal identity of generating functions in n unknowns t1, . . . , tn. The model param-
eters are the kn coordinates µ`i of the mean vectors, the k

(
n+1
2

)
entries σ`ij of the covariance

matrices, and the k mixture parameters λ`. The latter satisfy λ1 + · · · + λk = 1. This is
a map from the space of model parameters into the affine space AN that sits inside PN as
{m00···0 = 1}. We define Seck(Gn,d) ⊂ PN as the projective closure of the image of this map.

In this section we focus on the case d = 3, that is, we examine the varieties defined by
first, second and third moments of Gaussian distributions. The following is our main result.
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Theorem 12. The moment variety Gn,3 is k-defective for k ≥ 2 unless Seck(Gn,3) fills PN .
In particular, for k = 2, the model has two more parameters than the dimension of the secant
variety, i.e. n(n+3)+1 − dim

(
Sec2(Gn,3)

)
= 2. If n ≥ 3 and we fix distinct first coordinates

µ11 and µ21 for the two mean vectors, then the remaining parameters are identified uniquely.

This proves the second part of Theorem 1. We begin by studying the first interesting case.

Example 13. Let n = d = 3 and k = 2. In words, we consider moments up to order
three for the mixture of two Gaussians in R3. This case is special because the number of
parameters coincides with the dimension of the ambient space: N = 1

2
kn(n+3)+k−1 = 19.

The variety Sec2(G3,3) is the closure of the image of the map A19 → P19 that is given by (9):

m100 = λµ11 + (1− λ)µ21

m010 = λµ12 + (1− λ)µ22

m001 = λµ13 + (1− λ)µ23

m200 = λ(µ2
11 + σ111) + (1− λ)(µ2

21 + σ211)
m020 = λ(µ2

12 + σ122) + (1− λ)(µ2
22 + σ222)

m002 = λ(µ2
13 + σ133) + (1− λ)(µ2

23 + σ233)
m110 = λ(µ11µ12 + σ112) + (1− λ)(µ21µ22 + σ212)
m101 = λ(µ11µ13 + σ113) + (1− λ)(µ21µ23 + σ213)
m011 = λ(µ12µ13 + σ123) + (1− λ)(µ22µ23 + σ223)
m300 = λ(µ3

11 + 3σ111µ11) + (1− λ)(µ3
21 + 3σ211µ21)

m030 = λ(µ3
12 + 3σ122µ12) + (1− λ)(µ3

22 + 3σ222µ22)
m003 = λ(µ3

13 + 3σ133µ13) + (1− λ)(µ3
23 + 3σ233µ23)

m210 = λ(µ2
11µ12 + σ111µ12 + 2σ112µ11) + (1− λ)(µ2

21µ22 + σ211µ22 + 2σ212µ21)
m201 = λ(µ2

11µ13 + σ111µ13 + 2σ113µ11) + (1− λ)(µ2
21µ23 + σ211µ23 + 2σ213µ21)

m120 = λ(µ11µ
2
12 + σ122µ11 + 2σ112µ12) + (1− λ)(µ21µ

2
22 + σ222µ21 + 2σ212µ22)

m102 = λ(µ11µ
2
13 + σ133µ11 + 2σ113µ13) + (1− λ)(µ21µ

2
23 + σ233µ21 + 2σ213µ23)

m021 = λ(µ2
12µ13 + σ122µ13 + 2σ123µ12) + (1− λ)(µ2

22µ23 + σ222µ23 + 2σ223µ22)
m012 = λ(µ12µ

2
13 + σ133µ12 + 2σ123µ13) + (1− λ)(µ22µ

2
23 + σ233µ22 + 2σ223µ23)

m111 = λ (µ11µ12µ13 + σ112µ13 + σ113µ12 + σ123µ11)
+ (1− λ)(µ21µ22µ23 + σ212µ23 + σ213µ22 + σ223µ21)

A direct computation shows that the 19 × 19-Jacobian matrix of this map has rank 17 for
generic parameter values. Hence the dimension of Sec2(G3,3) equals 17. This is two less than
the expected dimension of 19. We have here identified the smallest instance of defectivity.

Let m = (mijk) be a valid vector of moments. Thus m is a point in Sec2(G3,3). We
assume that m 6∈ G3,3. Choose arbitrary but distinct complex numbers for µ11 and µ21, while
the other 17 model parameters remain unknowns. What we see above is a system of 19
polynomial equations in 17 unknowns. We claim that this system has a unique solution over
C. Hence, if m has its coordinates in Q then that unique solution has its coordinates in Q.

By solving the first equation, we obtain the mixture parameter λ. From the second and
third equation we can eliminate µ12 and µ13. Next, we observe that all 12 covariances σijk
appear linearly in our equations, so we can solve for these as well. We are left with a system
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of truly non-linear equations in only two unknowns, µ22 and µ23. A direct computation now
reveals that this system has a unique solution that is rational expression in the given mijk.

Our computational argument shows that each general fiber of the natural parametrization
of Sec2(G3,3) is birational to the affine plane A2 whose coordinates are µ11 and µ21. This
establishes all assertions in Theorem 12 for the special case of trivariate Gaussians (n = 3).

Remark 14. The second assertion in Theorem 12 holds for n = 2 because there are 11
parameters and Sec2(G2,3) = P9. However, the third assertion is not true for n = 2 because
the general fiber of the parametrization map A11 → P9 is the union of three irreducible
components. When µ11 and µ21 are fixed then the fiber consists of three points and not one.

Proof of Theorem 12. Suppose n ≥ 4 and let m ∈ Sec2(Gn,3)\Gn,3. Each moment mi1i2···in
has at most three non-zero indices. Hence, its expression in the model parameters involves at
most three coordinates of the mean vectors and a block of size at most three in the covariance
matrices. Let µ11 and µ21 be arbitrary distinct complex numbers. Then we can apply the
rational solution in Example 13 for any 3-element subset of {1, 2, . . . , n} that contains 1.
This leads to unique expressions for all model parameters in terms of the moments mi1i2···in .
In this manner, at most one system of parameters is recovered. This shows the third sentence
in Theorem 12 is implied by the first two sentences. It is these two we shall now prove.

In the affine space AN = {m000 = 1} ⊂ PN , we consider the affine moment variety
GA

n := Gn,3 ∩ AN . This has dimension M = 1
2
n(n+ 3). The map from (9) that parametrizes

the Gaussian moments is denoted ρ : AM → AN . It is an isomorphism onto its image GA
n .

Fix two points p = (µ, σ) and p′ = (µ′, σ′) in AM . They determine the affine plane

A(p, p′) =
{

(sµ+ (1− s)µ′, tσ + (1− t)σ′) | s, t ∈ R
}
⊂ AM .

Its image ρ(A(p, p′)) is a surface in GA
n ⊂ AN . The restrictions mi1...in(s, t) of the mo-

ments to this surface are polynomials in s, t with coefficients that depend on the points p, p′.
Since i1 + · · ·+ in ≤ 3, every moment mi1...in(s, t) is a linear combination of the monomials
1, s, t, st, s2, s3. Linearly eliminating these monomials, we obtain N−5 linear relations among
the moments when restricted to the plane A(p, p′). These relations define the affine span of
the surface ρ(A(p, p′)). This affine space is therefore 5-dimensional. We denote it by A5

p,p′ .
The monomials (b1, b2, b3, b4, b5) = (s, t, st, s2, s3) serve as coordinates on A5

p,p′ , modulo the
affine-linear relations that define A5

p,p′ , The image surface ρ(A(p, p′)) is therefore contained
in the subvariety of A5

p,p′ that is defined by the 2× 2-minors of the 2× 4-matrix(
1 b2 b1 b4
b1 b3 b4 b5

)
=

(
1 t s s2

s st s2 s3

)
. (10)

This variety is an irreducible surface, namely a scroll of degree 4. It hence equals ρ(A(p, p′)).
Let σ̄ denote the covariance matrix with entries σ̄ij = (µi − µ′i)(µj − µ′j). We define

A3
p,p′ =

{
(µ′ + s(µ− µ′), σ′ + t(σ − σ′) + uσ̄) | s, t, u ∈ R

}
.

Setting u = 0 shows that this 3-space contains the plane A(p, p′). We claim that

ρ(A3
p,p′) ⊆ A5

p,p′ . (11)

9



On the image ρ(A3
p,p′), each moment is a linear combination of the eight monomials

1, s, s2, s3, t, st, u, su. A key observation is that, by our choice of σ̄, these expressions are
actually linear combinations of the six expressions 1, s, s2+u, s3+3su, t, st. Indeed, the coef-
ficient of s2 in the expansion of (µ′i + s(µi − µ′i))(µ′j + s(µj − µ′j)) matches the coefficient σ̄ij
of u in the expansion of second order moments. Likewise, s2 and u have equal coefficients in
the third order moments. Analogously, the coefficient of the monomial s3 in the expansion of

(µ′i + s(µi − µ′i))(µ′j + s(µj − µ′j))(µ′k + s(µk − µ′k))

is (µi−µ′i)σ̄jk = (µj−µ′j)σ̄ik = (µk−µ′k)σ̄ij, which coincides with the corresponding coefficient
of 3su in the expansion of third order moments. From this we conclude that (11) holds.

Since ρ is birational, ρ(A3
p,p′) is a threefold in A5

p,p′ . Since p and p′ are arbitrary, these

threefolds cover GA
n . Through any point outside ρ(A3

p,p′) there is a 2-dimensional family of

secant lines to ρ(A3
p,p′). The same holds for GA

n . Hence the 2-defectivity of Gn,3 is at least two.
To see that it is at most two, it suffices to find a point q in Sec2(Gn,3) such that the

variety of secant lines to Gn,3 through q is 2-dimensional. Let G2,3(1, 2) denote the subvariety
of Gn,3 defined by setting all parameters other than µ1, µ2, σ11, σ12, σ22 to zero. The span of
G2,3(1, 2)∩AN is an affine 9-space A9(1, 2) inside AN . Consider a general point q ∈ A9(1, 2).
Then q 6∈ GA

n . We claim that any secant to GA
n through q is contained in A9(1, 2). A

computation with Macaulay2 [8] shows that this is the case when n = 3. Explicitly, if q is any
point whose moment coordinates vanish except those that involve only µ1, µ2, σ11, σ12, σ22,
then µ3 = σ13 = σ23 = σ33 = 0. In general, we may project any secant line through q to
the span of any GA

3 ⊂ GA
n defined by three indices 1, 2, k. In each case, the secant lands in

A9(1, 2), so it must already lie in this subspace before any of the projections. This argument
proves the claim. In conclusion, we have shown that the 2-defectivity of the third order
Gaussian moment variety Gn,3 is precisely two. This completes the proof of Theorem 12.

We offer some remarks on the geometry underlying the proof of Theorem 12. Computa-
tions suggest that the inclusion (11) can be strengthened to the equality ρ−1(A5

p,p′) = A3
p,p′ .

To better understand the threefold ρ(A3
p,p′), we consider the maps

τ : A3
p,p′ → A6 : (s, t, u) 7→ (s, t, st, s2, s3 + 3su, u),

π : A6 → A5
p,p′ : (a1, . . . , a6) 7→ (a1, a2, a3, a4 + a6, a5).

The image τ(A3
p,p′) in A6 is the 3-fold scroll defined by the 2× 2 minors of the matrix(

1 a2 a1 a4 + 3a6
a1 a3 a4 a5

)
. (12)

The composition π ◦τ is the restriction of ρ to A3
p,p′ . Hence ρ(A3

p,p′) is also a quartic threefold
scroll. To find its equations in A5

p,p′ , we set a4 = b4 − a6 and ai = bi for i ∈ {1, 2, 3, 5}, and
then we eliminate a6 from the ideal of 2× 2-minors of (12). The result is the system

b1b2 − b3 = 2b1b
2
3 + b22b5 − 3b2b3b4 = 2b21b3 + b2b5 − 3b3b4 = 2b31 − 3b1b4 + b5 = 0.

10



Remark 15. Fix a point q in the affine secant variety Sec2(G
A
n ). The entry locus Σq is the

closure of the set of points p ∈ GA
n such that q lies on a secant line through p. Its preimage

ρ−1(Σq) ⊂ AM is the parameter entry locus at q. Since the defectivity is 2, the entry locus Σq

is a surface. The same holds for the parameter entry locus ρ−1(Σq). Using computations, we
found that, if q is on the secant spanned by p, p′ ∈ GA

n , then the entry locus Σq is a surface
of degree 6 in ρ(A3

p,p′) ⊂ A5
p,p′ while the parameter entry locus is a cubic surface in A3

p,p′

We now come to the higher secant varieties of the Gaussian moment variety Gn,3.

Corollary 16. Let k ≥ 2 and n ≥ 3k − 3. Then Gn,3 is k-defective.

Proof. This is immediate from Theorem 12 and Proposition 6.

n k d par N exp dim δ par-dim
5 3 3 62 55 55 51 4 11
6 3 3 83 83 83 71 12 12
6 4 3 111 83 83 82 1 29
7 3 3 107 119 107 94 13 13
7 4 3 143 119 119 111 8 32
8 3 3 134 164 134 120 14 14
8 4 3 179 164 164 144 20 35
8 5 3 224 164 164 160 4 64
9 3 3 164 219 164 149 15 15
9 4 3 219 219 219 181 38 38
9 5 3 274 219 219 204 15 70
10 3 3 197 285 197 181 16 16
10 4 3 263 285 263 222 41 41
10 5 3 329 285 285 253 32 76
10 6 3 395 285 285 275 10 120

Table 1: Moment varieties of order d = 3 for mixtures of k ≥ 3 Gaussians

Based on computations, like those in Table 1, we propose the following conjecture.

Conjecture 17. For any n ≥ 2 and k ≥ 1, we have

dim(Seck(Gn,3)) =
1

6
k
[
k2 − 3(n+ 4)k + 3n(n+ 6) + 23

]
− (n+ 2), (13)

for k = 1, 2, . . . , K, where K + 1 is the smallest integer such that the right hand side in (13)
is larger than the ambient dimension

(
n+3
3

)
− 1.

For k = 1 this formula evaluates to dim(Gn,3) = n(n + 3)/2, as desired. Conjecture 17
also holds for k = 2. This is best seen by rewriting the identity (13) as follows:

1

2
kn(n+ 3) + k − 1 − dim

(
Seck(Gn,3)

)
=

1

2
(k − 1)(k − 2)n − 1

6
(k − 1)(k2 − 11k + 6).

11



This is the difference between the expected dimension and the true dimension of the kth
secant variety. For k = 2 this equals 2, independently of n, in accordance with Theorem 12.

Conjecture 17 was verified computationally for n ≤ 15. Table 1 illustrates all cases for
n ≤ 10. Here, exp = min(par, N) is the expected dimension, and δ = exp−dim is the defect.

We also undertook a comprehensive experimental study for higher moments of multivari-
ate Gaussians. The following two examples are the two smallest defective cases for d = 4.

Example 18. Let n = 8 and d = 4. The Gaussian moment variety G8,4 is 11-defective. The
expected dimension of Sec11(G8,4) equals the ambient dimension N = 494, but this secant
variety is actually a hypersurface in P494. It would be very nice to know its degree.

Example 19. Let n = 9 and d = 4. The moment variety G9,4 is 12-defective but it is not
11-defective. Thus the situation is much more complicated than that in Theorem 12, where
defectivity always starts at k = 2. We do not yet have any theoretical explanation for this.

Table 2 shows the first few defective cases for Gaussian moments of order d = 4. It
suggests a clear pattern, resulting in the following conjecture. We verified this for n ≤ 14.

n k d par N exp dim δ par-dim
8 11 4 494 494 494 493 1 1
9 12 4 659 714 659 658 1 1
9 13 4 714 714 714 711 3 3
10 13 4 857 1000 857 856 1 1
10 14 4 923 1000 923 920 3 3
10 15 4 989 1000 989 983 6 6
11 14 4 1091 1364 1091 1090 1 1
11 15 4 1169 1364 1169 1166 3 3
11 16 4 1247 1364 1247 1241 6 6
11 17 4 1325 1364 1325 1315 10 10
12 15 4 1364 1819 1364 1363 1 1
12 16 4 1455 1819 1455 1452 3 3
12 17 4 1546 1819 1546 1540 6 6
12 18 4 1637 1819 1637 1627 10 10
12 19 4 1728 1819 1728 1713 15 15
12 20 4 1819 1819 1819 1798 21 21

Table 2: A census of defective Gaussian moment varieties d = 4

Conjecture 20. The Gaussian moment variety Gn,4 is (n+3)-defective with defect δn+3 = 1
for n ≥ 8. Furthermore, for all r ≥ 3, the (n + r)-defect of Gn,4 is equal to δn+r =

(
r−1
2

)
,

unless the number of model parameters exceeds the ambient dimension
(
n+4
4

)
− 1.
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4 Towards Equations and Degrees

We begin Section 4 by reminding the reader that the Veronese variety Vn,d is a subvariety
of Gn,d. It is obtained by setting the covariance matrix in the parametrization equal to zero.
The Gaussian moment variety can be thought of as a noisy version of the Veronese variety.
Indeed, points on Vn,d represent moments of order ≤ d of Dirac measures, and points on its
secant variety Seck(Vn,d) represent moments of finitely supported signed measures on Rn.

The celebrated Alexander-Hirschowitz Theorem [4] characterizes defective Veronese va-
rieties. It identifies all triples (n, d, k) such that a mixture of k Dirac measures on Rn is not
algebraically identifiable from its moments of order ≤ d. This section is a first step towards
a similar characterization for mixtures of k Gaussian measures on Rn. The cases d = 3 and
d = 4 for Gaussians, featured in Theorem 12 and Conjecture 20, are reminiscent of the case
d = 2 for Veronese varieties. At present we do not know any isolated deficient examples that
would be analogous to the exceptional cases in the Alexander-Hirschowitz Theorem.

We wish to reiterate that the Gaussian moment varieties Gn,d are much more complicated
than the Veronese varieties Vn,d. Beyond Proposition 3, their ideals are essentially unknown.

A well-known result in statistics states that, under reasonable hypotheses, probability
distributions are determined by their moments. In addition, it is known (e.g. from [11]) that
Gaussian mixtures are identifiable. Since their moments are polynomials in their parameters,
Belkin and Sinha [3] concluded that (for k and n fixed) a finite set of moments is enough to
recover the model parameters uniquely. In particular, the secant variety Seck(Gn,d) has the
expected dimension for d� 0 when k and n are fixed. This raises the following question:

Problem 21. Let D(k, n) be the smallest integer such that the k-th mixtures of Gaussians
on Rn are algebraically identifiable from their moments of order ≤ d. Find good upper bounds
on D(k, n). What are the best bounds that can be derived using algebraic geometry methods?

For n ≥ 2 it is difficult to compute the prime ideal of the Gaussian moment variety Gn,d
in PN . One approach is to work on the affine open set AN = {m00···0 = 1}. On that affine
space, Gn,d is a complete intersection defined by the vanishing of all cumulants ki1i2···in whose
order i1 + i2 + · · · + in is between 3 and d; see [2, Remark 6]. Each such cumulant is a
polynomial in the moments. Explicit formulas are obtained from the identity K = log(M)
of generating functions; see [2, eqn (8)]. The ideal of Gn,d is then obtained from the ideal of
cumulants by saturating with respect to m00···0. One example is featured in [2, eqn (7)].

We next exhibit an alternative representation of Gn,d ∩ AN as a determinantal variety.
This is derived from Willink’s recursion in [10]. It generalizes the matrix Gd in Proposition 3.
We define the Willink matrix Wn,d as follows. Its rows are indexed by vectors u ∈ Nn with
|u| ≤ d − 1. The matrix Wd,n has 2n + 1 columns. The first entry in the row u is the
corresponding moment mu. The next n entries in the row u are mu+e1 , mu+e2 , . . . , mu+en .
The last n entries in the row u are u1mu−e1 , u2mu−e2 , . . . , unmu−en . Thus the Willink matrix
Wn,d has format

(
n+d−1
d−1

)
× (2n+1) and each entry is a scalar multiple of one of the moments.

For n = 1, the d×3-matrix W1,d equals the transpose of the matrix Gd after permuting rows.

Proposition 22. The affine Gaussian moment variety Gn,d ∩AN is defined by the vanishing
of the (n+ 2)× (n+ 2)-minors of the Willink matrix Wn,d.
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Proof. Suppose that the matrix Wn,d is filled with the moments of a Gaussian distribution
on Rn, and consider the n linearly independent vectors(

µi, 0, . . . , 0,−1, 0, . . . , 0, σ1i, σ2i, . . . , σni
)T

for i = 1, 2, . . . , n. (14)

Here the entry −1 appears in the (i+ 1)st coordinate. By [10, eqn (13)], these n vectors are
in the kernel of Wn,d. Hence the rank of Wn,d is ≤ n+ 1, and the (n+ 2)-minors are zero.

Conversely, let m be an arbitrary point in AN for which the matrix Wn,d has rank ≤ n+1.
The square submatrix indexed by the rows 1, 2, . . . , n+1 and the columns 1, n+2, . . . , 2n+1
has determinant equal to mn+1

00···0 = 1. Hence the rank of Wn,d is exactly n+ 1. The kernel of
the submatrix given by the first n+1 rows is an n-dimensional space for which we can pick a
basis of the form (14). The entries can be interpreted as the mean and the covariance matrix
of a Gaussian distribution. The rank hypothesis on Wn,d now ensures that the n vectors in
(14) are in the kernel of the full matrix Wn,d. This means that the higher moments satisfy
the recurrences in [10, eqn (13)], and hence the chosen point m lies in Gn,d.

Example 23. Consider the moments of order at most four for a bivariate Gaussian. The
variety G2,4 has dimension 5 and degree 102 in P14. Its Willink matrix has format 10× 5:

W2,4 =



m00 m01 m10 0 0
m01 m02 m11 0 m00

m10 m11 m20 m00 0
m02 m03 m12 0 2m01

m11 m12 m21 m01 m10

m20 m21 m30 2m10 0
m03 m04 m13 0 3m02

m12 m13 m22 m02 2m11

m21 m22 m31 2m11 m20

m30 m31 m40 3m20 0


The ideal of 4 × 4-minors of W2,4 is minimally generated by 657 quartics. Saturation with
respect to the coordinate m00 yields the prime ideal of G2,4, as described in [2, Proposition 7].

One would expect that it is even more difficult to describe the prime ideals of the secant
varieties Seck(Gn,d) for n ≥ 2, k > 1. Actually, it is already an open problem to find these
ideals when n = 1, k = 2 and d ≥ 8. We found in [2, Theorem 1] that Sec2(G1,6) is a
hypersurface of degree 39 in P6. Its defining polynomial is the sum of 31154 monomials.

Example 24. Let n = 1, k = 2 and d = 7. The following results were obtained using
methods from numerical algebraic geometry. The 5-dimensional variety Sec2(G1,7) has degree
105 in P7. The eight coordinate projections, defined algebraically by eliminating each one
of m07,m16, . . . ,m70 from the ideal of Sec2(G1,7), are hypersurfaces in P6. Their degrees
are 85, 99, 104, 95, 78, 66, 48 and 39 respectively. This suggests that there are no low degree
generators in the ideal of Sec2(G1,7). In fact, a state-of-the-art Gröbner basis computation
by Jean-Charles Faugère shows that the smallest degree of such a minimal generator is 25.
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With ideal generators out of reach, we first ask for the degrees of our secant varieties.

Conjecture 25. For fixed k and n, the function d 7→ deg Seck(Gn,d) is a polynomial in d,
starting from the smallest value of d where the secant variety does not fill the ambient space.

The numerical Macaulay2 [8] package NumericalImplicitization.m2, developed by
Chen and Kileel [5], was very useful for us. It was able to compute the desired degrees in
some interesting cases. These data points led us to Conjecture 25 and to the following result.

Proposition 26. Suppose that Conjecture 25 holds for k = 2 and n = 1. Then, for all
d ≥ 6, the degree of the dth moment variety for mixtures of two univariate Gaussians equals

deg Sec2(G1,d) =
(d+ 7)(d− 4)(d− 3)(d− 2)

8
. (15)

Proof. Let Xd be a general variety defined by a Hilbert-Burch matrix Bd as in (2). Here ‘gen-
eral’ means that the entries in Bd are generic linear forms in x, y, z. Using the double point
formula in intersection theory [7, Sec. 9.3] for a general projection Xd → P4, we compute

deg Sec2(Xd) =
(d− 4)(d− 3)(d2 + 5d− 2)

8
. (16)

Since G1,d is singular, the degrees of its secant varieties are lower than (16), with a correction
term accounting for the singular line in Lemma 4. The assumption that Conjecture 25 holds
in our case implies that d 7→ Sec2(G1,d) is a polynomial function of degree at most 4. Our
numerical computation shows that the degrees of Sec2(G1,d) for d = 6, . . . , 10 are 39, 105, 225,
420 and 714. These are enough to interpolate, and we obtain the polynomial in (15).

Remark 27. The zeroes of (15) at d = 2, 3, 4 were not part of the interpolation but they
are not unexpected. Also, substituting d = 5 into (15) recovers the famous degree 9 that was
found by Pearson in 1894 for identifying mixtures of two univariate Gaussians [2, Sec. 3].
Using NumericalImplicitization.m2, we verified the correctness of (15) up to d = 11.

Following this train of thought, and using the Le Barz classification formulas in [9], we
compute an analogous formula to (16) for trisecants, k = 3, of a general smooth surface Xd:

deg(Sec3(Xd)) =
(d− 6)(d5 + 3d4 − 57d3 − 43d2 + 752d− 512)

48
.

Conjecture 25 now suggests that d 7→ deg Sec3(G1,d) is a polynomial function of degree 6.
Unfortunately, we do not yet have numerical evidence for this. For instance, we do not even
know the degree of Sec3(G1,9). The formula yields the upper bound deg(Sec3(X9)) = 2497.

We close with two more cases with n ≥ 2 for which we were able to compute the degrees.

Example 28. Let n = 2 and d = 4. The 5-dimensional moment variety G2,4 has degree 102
in P14. It is not defective. Its secant variety Sec2(G2,4) has dimension 11 and degree 538.
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Example 29. We return to Example 13, so n = d = 3. The Gaussian moment variety G3,3
has dimension 9 and degree 130 in P19. The number 130 was reported in [2, Sec. 2]. This
variety is 2-defective. Its secant variety Sec2(G3,3) has dimension 17 and degree 79. We do
not know its ideal generators. As in Example 24, we studied the degrees of its coordinate
projections. The 20 coordinates on P19 come in seven symmetry classes. Representatives
are m000,m100,m200,m110,m300,m201,m111. By omitting these coordinates, one at a time, we
obtain hypersurfaces in P18 whose degrees are 58, 63, 34, 42, 25, 34 and 40 respectively.
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Bernd Sturmfels were supported by the Einstein Foundation Berlin. Bernd Sturmfels also
acknowledges funding from the US National Science Foundation (DMS-1419018). Kristian
Ranestad acknowledges funding from the Research Council of Norway (RNC grant 239015).

References
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