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ENERGY IDENTITY FOR A CLASS OF APPROXIMATE
DIRAC-HARMONIC MAPS FROM SURFACES WITH BOUNDARY

JÜRGEN JOST, LEI LIU, AND MIAOMIAO ZHU

Abstract. For a sequence of coupled fields {(φn, ψn)} from a compact Riemann surface M
with smooth boundary to a general compact Riemannian manifold with uniformly bounded
energy and satisfying the Dirac-harmonic system up to some uniformly controlled error
terms, we show that the energy identity holds during a blow-up process near the boundary.
As an application to the heat flow of Dirac-harmonic maps from surfaces with boundary,
when such a flow blows up at infinite time, we obtain an energy identity.

1. introduction

This paper is a contribution to the study of coupled field equations on Riemann surfaces,
merging the theory of harmonic maps from surfaces with a mathematical version of the non-
linear supersymmetric of quantum field theory. The corresponding action functional couples
a term involving what is called the energy of a map from a surface to some Riemannian
manifold with a Dirac action for a nonlinear spinor field. The solutions of the resulting
Euler-Lagrange equations are called Dirac-harmonic maps [2]. While they share many prop-
erties with harmonic maps, their analysis is much more subtle, because the Dirac action is
not bounded from below. Therefore, standard variational methods do not apply to show
the existence of solutions under general conditions. As an alternative, a new type of mixed
parabolic-elliptic has been introduced [3] and further investigated [11] in order to develop
new tools for the existence problem. The existence problem is still not fully solved. In order
to make progress, results about the behavior at singularities that are known and classical for
harmonic maps need to be extended to the Dirac-harmonic case. This is where the contri-
bution of the present paper lies. We study the blow-up process and show a so-called energy
identity, that is, all the energy that is removed from the map gets transferred to the bubbles
that represent the singularity. In fact, we study this at the boundary, because boundary
value problems currently offer the situation where the existence theory is best developed and
most promising. In order that our results be applicable to the parabolic case, we have to
consider approximate solutions, that is, fields that satisfy the Euler-Lagrange equations up
to some controlled error term. This naturally makes the bubbling analysis more difficult.

We now fix the technical setting to describe our results in more precise terms. Let (M,h)
be a compact Riemann surface with smooth boundary ∂M , equipped with a Riemannian
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metric h and with a fixed spin structure, ΣM be the spinor bundle over M and 〈·, ·〉ΣM be
the metric on ΣM induced by the Riemannian metric h. Choosing a local orthonormal basis
eα, α = 1, 2 on TM , the usual Dirac operator is defined as /∂ := eα · ∇eα , where ∇ is the
spin connection on ΣM , · is the Clifford multiplication, which satisfies the skew-adjointness
property

〈X · ψ1, ψ2〉ΣM = −〈ψ1, X · ψ2〉ΣM
for any X ∈ Γ(TM), ψi ∈ Γ(ΣM), i = 1, 2.

Let φ be a smooth map from M to another compact Riemannian manifold (N, g) with
dimension n ≥ 2. Let φ∗TN be the pull-back bundle of TN by φ and then we get the
twisted bundle ΣM ⊗ φ∗TN . Naturally, there is a metric 〈·, ·〉ΣM⊗φ∗TN on ΣM ⊗ φ∗TN
which is induced from the metrics on ΣM and φ∗TN . Also we have a natural connection

∇̃ on ΣM ⊗ φ∗TN which is induced from the connections on ΣM and φ∗TN . Let ψ be a
section of the bundle ΣM ⊗ φ∗TN . In local coordinates, it can be written as

ψ = ψi ⊗ ∂yi(φ),

where each ψi is a usual spinor on M and ∂yi is the nature local basis on N . Then ∇̃ becomes

∇̃ψ = ∇ψi ⊗ ∂yi(φ) + (Γijk∇φj)ψk ⊗ ∂yi(φ),(1.1)

where Γijk are the Christoffel symbols of the Levi-Civita connection of (N, g). The Dirac

operator along the map φ is defined by /Dψ := eα · ∇̃eαψ.
An important factor that will enable us to utilize tools from complex analysis is that the

usual Dirac operator /∂ on a surface can be seen as the Cauchy-Riemann operator. Consider
R2 with the Euclidean metric dx2+dy2. Let e1 = ∂

∂x
and e2 = ∂

∂y
be the standard orthonormal

frame. A spinor field is simply a map ψ : R2 → ∆2 = C2, and the action of e1 and e2 on
spinors can be identified with multiplication with matrices

e1 =

(
0 1
−1 0

)
, e2 =

(
0 i
i 0

)
.

If ψ :=

(
ψ1

ψ2

)
: R2 → C2 is a spinor field, then the Dirac operator is

/∂ψ =

(
0 1
−1 0

)(
∂ψ1

∂x
∂ψ2

∂x

)
+

(
0 i
i 0

)(∂ψ1

∂y
∂ψ2

∂y

)
= 2

(
∂ψ2

∂z

−∂ψ1

∂z

)
,(1.2)

where
∂

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
),

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
).

For more details on spin geometry and Dirac operators, one can refer to [15].
We consider the following functional

L(φ, ψ) =

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ∗TN

)
dvol

=

∫
M

(
gij(φ)hαβ

∂φi

∂xα
∂φj

∂xβ
+ gij(φ)〈ψi, /Dψj〉ΣM

)
dvol.
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The functional L(φ, ψ) is conformally invariant (see [2]). That is, for any conformal
diffeomorphism f : M →M , setting

φ̃ = φ ◦ f and ψ̃ = λ−1/2ψ ◦ f,

here λ is the conformal factor of the conformal map f , i.e. f ∗h = λ2h. Then L(φ̃, ψ̃) =
L(φ, ψ). Critical points (φ, ψ) of L are called Dirac-harmonic maps from M to N .

The Euler-Lagrange equations of the functional L are(
∆φi + Γijkh

αβφjαφ
k
β

) ∂

∂yi
(φ(x)) = R(φ, ψ),(1.3)

/Dψ = 0,(1.4)

where R(φ, ψ) is defined by

R(φ, ψ) =
1

2
Rm
lij(φ(x))〈ψi,∇φl · ψj〉 ∂

∂ym
(φ(x)).

Here Rm
lij stands for the Riemann curvature tensor of the target manifold (N, g). One can

refer to [1, 2].
By Nash’s embedding theorem, we embed N isometrically into some Euclidean space RK .

Then, the critical points (φ, ψ) satisfy the Euler-Lagrange equations

−∆φ = A(φ)(dφ, dφ)−Re(P (A(dφ(eα), eα · ψ);ψ)),(1.5)

/∂ψ = A(dφ(eα), eα · ψ),(1.6)

where /∂ is the usual Dirac operator, A is the second fundamental form of N in RK , and

A(dφ(eα), eα · ψ) := (∇φi · ψj)⊗ A(∂yi , ∂yj),

Re(P (A(dφ(eα), eα · ψ);ψ)) := P (A(∂yl , ∂yj); ∂yi)Re(〈ψi, dφl · ψj〉).

Here P (ξ; ·) denotes the shape operator satisfying 〈P (ξ;X), Y 〉 = 〈A(X, Y ), ξ〉 for anyX, Y ∈
Γ(TN) and Re(z) denotes the real part of z ∈ C. We refer to [1, 2, 32, 4, 26, 10] for more
details.

Before we state our main results, let us recall a definition of approximate Dirac-harmonic
map in [14]. Denote

W 2,2(M,N) :=
{
φ ∈ W 2,2(M,RK) with φ(x) ∈ N for a.e. x ∈M

}
,

W 1,4/3(M,ΣM ⊗ φ∗TN) :=
{
ψ ∈ W 1,4/3(M,ΣM ⊗ RK) with ψ(x) ∈ ΣM ⊗ φ∗TN
for a.e. x ∈M

}
.

A pair of fields (φ, ψ) ∈ W 2,2(M,N) ×W 1, 4
3 (M,ΣM × φ∗TN) is called an approximate

Dirac-harmonic map from M to N with boundary data (ϕ(x), χ(x)), if there exists a pair of
fields (τ(φ, ψ), h(φ, ψ)) ∈ L1(M) such that

τ(φ, ψ) = ∆φ+ A(dφ, dφ)−Re (P (A(dφ(eα), eα · ψ);ψ)) ,(1.7)

h(φ, ψ) = /∂ψ −A(dφ(eα), eα · ψ),(1.8)
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with the boundary data {
φ(x) = ϕ(x), on ∂M ;

Bψ(x) = Bχ(x), on ∂M,
(1.9)

where B = B± is the chiral boundary operator defined by

B± : L2(∂M,ΣM ⊗ φ∗TN |∂M)→ L2(∂M,ΣM ⊗ φ∗TN |∂M)(1.10)

ψ 7→ 1

2
(Id±−→n ·G) · ψ,(1.11)

where −→n is the outward unit normal vector field on ∂M , G = ie1 · e2 is the chiral operator
defined using a local orthonormal frame {eα}2

α=1 on TM and satisfying:

G2 = Id, G∗ = G, ∇G = 0, G ·X = −X ·G,(1.12)

for any X ∈ Γ(TM). See e.g. [4, 3] for the notion of chiral boundary condition.
Therefore, (φ, ψ) is a Dirac-harmonic map if and only if τ(φ, ψ) = h(φ, ψ) = 0.

Dirac-harmonic maps were introduced in [1, 2]. They are motivated by a model from
quantum field theory, the supersymmetric sigma model [5, 9]. This subject generalizes the
theory of harmonic maps and harmonic spinors. Similarly to the case of two dimensional
harmonic maps, the conformal invariance of the energy functional L leads to non-compactness
of Dirac-harmonic maps in dimension 2 and hence one needs to study their blow-up theory,
as in [1, 30, 31, 21]. For the blow-up theory of a more general model, whose critical points
are called Dirac-harmonic maps with curvature terms, see [10]. For approximate harmonic
maps in dimension two, one can refer to e.g. [25, 8, 22, 23, 6, 24, 19, 20, 16, 28, 27] for the
interior blow-up case and [12, 13, 7] for the boundary blow-up cases under various boundary
constraints.

In order to study the blow-up behavior of the Dirac-harmonic map flow from surfaces with
boundary considered in [3, 11], we introduced the notion of approximate Dirac-harmonic
maps in [14] and proved the energy identity and no neck result in the interior blow-up case
for a sequence of such maps. In general, this sequence might blow up at a boundary point.
In this paper, we shall consider the case that the sequence blows up at the boundary and
hence complete the blow-up picture of the Dirac-harmonic map flow.

Denote the energy of φ on Ω ⊂M by

E(φ; Ω) =

∫
Ω

|∇φ|2dM,

the energy of ψ on Ω ⊂M by

E(ψ; Ω) =

∫
Ω

|ψ|4dM,

and the energy of the pair (φ, ψ) on Ω ⊂M by

E(φ, ψ; Ω) =

∫
Ω

(|∇φ|2 + |ψ|4)dM.

We shall often omit the domain M from the notation and simply write E(φ) = E(φ;M),
E(ψ) = E(ψ;M) and E(φ, ψ) = E(φ, ψ;M).
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Based on the interior blow-up results for approximate Dirac-harmonic maps studied in
[14], we state our first main result in this paper concerning the boundary blow-up case:

Theorem 1.1. Consider a sequence of approximate Dirac-harmonic maps (φn, ψn) ∈ C2(M,N)×
C1(M,ΣM ⊗ φ∗TN) from a compact Riemann surface M with smooth boundary ∂M to a
compact Riemannian manifold N satisfying

E(φn, ψn) + ‖τ(φn, ψn)‖L2 + ‖h(φn, ψn)‖L4 ≤ Λ,

and with boundary data
φn|∂M = ϕ, Bψn|∂M = Bχ,

where ϕ ∈ C2+α(∂M,N), χ ∈ C1+α(∂M,ΣM ⊗ φ∗TN) for some 0 < α < 1. We assume
(φn, ψn) ⇀ (φ, ψ) weakly in W 1,2(M,N)× L4(M,ΣM ⊗ φ∗TN). Define the blow-up set

(1.13) S := ∩r>0

{
x ∈M | lim inf

n→∞

∫
D(x,r)

(|dφn|2 + |ψn|4) ≥ ε2

2

}
,

where ε > 0 is some constant depending on N . Then S is a (possibly empty) finite set
{p1, ..., pq, ..., pI}, where 1 ≤ q ≤ I, {p1, ..., pq} ∈M \ ∂M , {pq+1, ..., pI} ∈ ∂M . Moreover, a

subsequence, still denoted by {(φk, ψk)}, converges weakly in W 2,2
loc (M \ S)×W 1,2

loc (M \ S) to
(φ, ψ) and for each i = 1, ..., I, there is a finite set of Dirac-harmonic spheres (σli, ξ

l
i) : S2 →

N , l = 1, ..., Li, such that

lim
k→∞

E(φk) = E(φ) +
I∑
i=1

Li∑
l=1

E(σli),(1.14)

lim
k→∞

E(ψk) = E(ψ) +
I∑
i=1

Li∑
l=1

E(ξli),(1.15)

and the image φ(M \ ∂M) ∪qi=1 ∪
Li
l=1(σli(S

2)) is a connected set.

Remark 1.2. In Theorem 1.1, for those Dirac-harmonic spheres splitting off at the interior
blow-up points, i.e. (σli, ξ

l
i) : S2 → N , i = 1, ..., q; l = 1, ..., Li, we know that the image

of the map parts σli, i = 1, ..., q; l = 1, ..., Li, are connected to the map part φ of the base
field (φ, ψ) in the target manifold; this is proved in [14]. However, for those Dirac-harmonic
spheres splitting off at the boundary blow-up points, i.e. (σli, ξ

l
i) : S2 → N , i = q + 1, ..., I;

l = 1, ..., Li, it is not clear whether the images of the map parts σli, i = q+1, ..., I; l = 1, ..., Li
have the same property.

To prove the energy quantization result near the boundary in Theorem 1.1, we shall follow
the general blow-up scheme developed for harmonic map type problems, however, the proofs
in this case are subtle and there are new difficulties arising when carrying out the neck
analysis. Firstly, the method of the three circle type theorem used in the interior case in [14]
can not be applied to the boundary case and we need to apply certain integration argument
to show the no neck energy property. Secondly, we need to establish a new Pohozaev type
identity for approximate Dirac-harmonic maps from surfaces with boundary (see Lemma 2.2)
which requires some algebraic property for the spinors, see (2.10). Moreover, we succeed in
driving a new Pohozaev type estimate (see Corollary 2.5) by showing that some terms in
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the Pohozaev type identity are actually having exponential decay, which are crucial in the
proof of the above theorem. Finally, we would like to remark that the bubbling analysis at
the boundary is more complicated than in the interior case and here we follow the scheme
developed for approximate harmonic maps in [12, 13].

With the help of Theorem 1.1, we can now study the asymptotic behavior at infinite time
for the Dirac-harmonic map flow in dimension 2.

The notion of Dirac-harmonic map flow was introduced in [3]. In this flow, one seeks a
pair of fields (φ, ψ) : M × [0,∞)→ N × (ΣM ⊗ φ∗TN) that solves{

∂tφ = τ(φ)−Re(P (A(dφ(eα), eα · ψ);ψ)), in M × (0,∞);

/∂ψ = A(dφ(eα), eα · ψ), in M × (0,∞).
(1.16)

with the following boundary-initial data:
φ(x, t) = ϕ(x), on ∂M × [0,∞);

φ(x, 0) = φ0(x), in M ;

Bψ(x, t) = Bχ(x), on ∂M × [0,∞);

φ0(x) = ϕ(x), on ∂M,

(1.17)

where τ(φ) := ∆φ+A(φ)(∇φ,∇φ) is the tension field of φ, M is a compact spin Riemannian
manifold with smooth boundary ∂M and of dimension dim M ≥ 2 and φ0 ∈ W 1,2(M,N),
ϕ ∈ C2+α(∂M,N), χ ∈ C1+α(∂M,ΣM ⊗ ϕ∗TN) are given data. The short-time existence
for the above flow (1.16) (1.17) was proved in [3].

When M is a surface, it was shown in [11] that there exists a unique global weak solution
to (1.16) with initial-boundary data (1.17) under some smallness assumption for ‖φ0‖H1 +
‖Bχ‖L2 , which has at most finitely many singular times and enjoys the following property:

E(φ(t), ψ(t);M) +

∫
Mt

|∂tφ|2dxdt ≤ C(M,E(φ0), ‖Bχ‖L2(∂M)), ∀ 0 ≤ t <∞.(1.18)

It follows from (1.18) that there exists a sequence tn ↑ ∞ such that

(φn, ψn) := (φ(·, tn), ψ(·, tn)) ∈ C2+α(M,N)× C1+α(M,ΣM × φ∗TN)

is a sequence of approximate Dirac-harmonic maps with boundary-data (ϕ, χ) and satisfying

h(φn, ψn) = 0

and

τ(φn, ψn) := ∂tφ(·, tn) with ‖τ(φn, ψn)‖L2 → 0.

When such a flow blows up at infinite time and at interior points, it was proved in [14]
that an energy identity and no neck property hold during the blow-up process. In this paper,
as an immediate corollary of Theorem 1.1 and as a complement of the blow-up picture at
infinite time of such a flow given in [14], we obtain

Theorem 1.3. Let M be a compact spin Riemann surface with smooth boundary ∂M . Let
φ0 ∈ H1(M,N), ϕ ∈ C2+α(∂M,N), χ ∈ C1+α(∂M,ΣM ⊗ ϕ∗TN). Let (φ, ψ) : M ×
[0,∞) → N × (ΣM ⊗ φ∗TN) be a global weak solution of (1.16) and (1.17), which has
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finitely many singular times and satisfies (1.18). Then there exist tn ↑ ∞, a Dirac-harmonic
map (φ∞, ψ∞) ∈ C2+α(M,N)×C1+α(M,ΣM ⊗φ∗∞TN) with boundary data φ∞|∂M = ϕ and
Bψ∞|∂M = Bχ, nonnegative integer I and a possibly empty set with at most finitely many
points {p1, ..., pq, ..., pI} ⊂ M , where 1 ≤ q ≤ I, {p1, ..., pq} ∈ M \ ∂M , {pq+1, ..., pI} ∈ ∂M
such that

(1) (φn, ψn) := (φ(·, tn), ψ(·, tn)) ⇀ (φ∞, ψ∞) in W 1,2(M,N)× L4(M,ΣM × φ∗∞TN);

(2) (φn, ψn)→ (φ∞, ψ∞) in W 1,2
loc (M \ {p1, ..., pI})× L4

loc(M \ {p1, ..., pI});

(3) For 1 ≤ i ≤ I, there exist a positive integer Li and Li nontrivial Dirac-harmonic
spheres (σli, ξ

l
i) : S2 → N , i = 1, ..., I; l = 1, ..., Li such that

lim
n→∞

E(φn) = E(φ∞) +
I∑
i=1

Li∑
l=1

E(σli),(1.19)

lim
n→∞

E(ψn) = E(ψ∞) +
I∑
i=1

Li∑
l=1

E(ξli).(1.20)

and the image φ∞(M \ ∂M) ∪qi=1 ∪
Li
l=1(σli(S

2)) is a connected set.

This paper is organized as follows. In Section 2, we extend some basic lemmas to the
boundary case, such as small energy regularity, Pohozaev’s identity and removable singular-
ity. Then, we recall some known results which will be used in this paper. In Section 3, we
prove our main Theorem 1.1.

Notations: We denote R2
+ = {(x, y) ∈ R2|y ≥ 0}, Dr(x) = {y ∈ R2||y − x| ≤ r},

D+
r (x) = Dr(x) ∩ R2

+, ∂+D+
r (x) = ∂Dr(x) ∩ R2

+, ∂0D+
r (x) = Dr(x) ∩ ∂R2

+.
For simplicity, we also denote Dr(0), D+

r (0), D1(0), D+
1 (0) as Dr, D

+
r , D, D+ respectively.

2. Some basic lemmas

In this section, we will prove some basic lemmas and recall some known results which will
be used in this paper.

By the standard elliptic theory, there exists a unique solution u ∈ C2+α(M,RK) of{
∆u = 0, in M,

u = ϕ, on ∂M,

satisfying

‖u‖C2+α(M) ≤ C(α,M)‖ϕ‖C2+α(∂M).

For simplicity of notation, in the sequel, we will also denote this solution as ϕ.
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Firstly, we prove a small energy regularity theorem for the boundary case. For similar
results for approximate harmonic maps, one can refer to the main estimate 3.2 in [25] and
Lemma 2.1 in [6] for the interior case and one can also refer to Lemma 4.1 in [12], Lemma
2.4 in [13] for various boundary cases.

Theorem 2.1. There is a small constant ε0 > 0 depending only on p, q and N , such that if
(φ, ψ) ∈ W 2,p(D+, N)×W 1,q(D+,ΣD+⊗φ∗TN) is an approximate Dirac-harmonic map from
the upper unit disc D+ ⊂ R2 to a compact Riemannian manifold (N, g) with τ(φ, ψ) ∈ Lp
and h(φ, ψ) ∈ Lq for some 1 < p ≤ 2 and some 4

3
< q ≤ 2, and with boundary data (1.9),

satisfying

E(φ, ψ;D+) =

∫
D+

(|dφ|2 + |ψ|4)dx < (ε0)2,(2.1)

then

‖φ− ϕ‖W 2,p(D+
1
2

) ≤ C(‖dφ‖Lp(D+) + ‖ψ‖L2p(D+) + ‖|τ |‖Lp(D+) + ‖∇ϕ‖W 1,p(D+)),

‖ψ‖W 1,q(D+
1
2

) ≤ C(‖ψ‖Lq(D+) + ‖h‖Lq(D+) + ‖Bχ‖W 1−1/q,q(∂0D+)),

where ϕ :=
∫
∂0D+

1/2
ϕ and C > 0 is a constant depending only on p, q, N, ‖ϕ‖C2 , ‖χ‖C1.

Moreover, by the Sobolev embedding W 2,p(R2) ⊂ C0(R2), we have

‖φ‖Osc(D+
1/2

) = sup
x,y∈D+

1/2

|φ(x)− φ(y)| ≤ C(‖∇φ‖L2(D+) + ‖τ(u)‖Lp(D+) + ‖∇ϕ‖W 1,p(D+)).
(2.2)

Proof. Without loss of generality, we assume
∫
∂0D+

1
2

ϕ = 0.

Choosing a cut-off function η ∈ C∞0 (D+) satisfying 0 ≤ η ≤ 1, η|D+
3/4
≡ 1, |∇η|+|∇2η| ≤ C,

by elliptic theory of first order elliptic operator, for any 1 < q < 2, we have

‖ηψ‖W 1,q(D+) ≤ C(‖/∂(ηψ)‖Lq(D+) + ‖Bψ‖W 1−1/q,q(∂0D+))

≤ C(‖∇η · ψ + η/∂ψ‖Lq(D+) + ‖Bψ‖W 1−1/q,q(∂0D+))

≤ C
(
‖ψ‖Lq(D+) + ‖|dφ||ηψ|‖Lq(D+) + ‖h‖Lq(D+) + ‖Bψ‖W 1−1/q,q(∂0D+)

)
≤ C‖dφ‖L2(D+)‖ηψ‖

L
2q
2−q (D+)

+ C(‖ψ‖Lq(D+) + ‖h‖Lq(D+) + ‖Bψ‖W 1−1/q,q(∂0D+))

≤ Cε0‖ηψ‖
L

2q
2−q (D+)

+ C(‖ψ‖Lq(D+) + ‖h‖Lq(D+) + ‖Bψ‖W 1−1/q,q(∂0D+)).

Taking ε0 > 0 sufficiently small, by Sobolev embedding, we get

‖ηψ‖
L

2q
2−q (D+)

≤ ‖ηψ‖W 1,q(D+) ≤ C(‖ψ‖Lq(D+) + ‖h‖Lq(D+) + ‖Bψ‖W 1−1/q,q(∂0D+)).(2.3)

Computing directly, we obtain

|∆(ηφ)| = |η∆φ+ 2∇η∇φ+ φ∆η|
≤ C

(
|φ|+ |dφ|+ |dφ||ηdφ|+ |ψ|2|ηdφ|+ |τ |

)
≤ C(|dφ|+ |ψ|2)|d(ηφ)|+ C

(
|φ|+ |dφ|+ |ψ|2 + |τ |

)
.



ENERGY IDENTITY FOR A CLASS OF APPROXIMATE DIRAC-HARMONIC MAPS 9

By standard elliptic estimates and Poincaré’s inequality, for any 1 < p < 2, we have

‖ηφ‖W 2,p(D+) ≤ C‖(|dφ|+ |ψ|2)|d(ηφ)|‖Lp(D+) + C(‖dφ‖Lp(D+) + ‖|ψ|2‖Lp(D+)

+ ‖|τ |‖Lp(D+) + ‖ϕ‖W 2,p(D+))

≤ C‖d(ηφ)‖
L

2p
2−p (D+)

(‖dφ‖L2(D+) + ‖ψ‖2
L4(D+)) + C(‖dφ‖Lp(D+)

+ ‖ψ‖2
L2p(D+) + ‖|τ |‖Lp(D+) + ‖ϕ‖W 2,p(D+))

≤ Cε0‖d(ηφ)‖
L

2p
2−p (D+)

+ C(‖dφ‖Lp(D+) + ‖ψ‖2
L2p(D+) + ‖|τ |‖Lp(D+)

+ ‖∇ϕ‖W 1,p(D+)).

Taking ε0 > 0 sufficiently small, we have

‖∇(ηφ)‖
L

2p
2−p (D+)

≤ C‖ηφ‖W 2,p(D+)

≤ C(‖dφ‖Lp(D+) + ‖ψ‖2
L2p(D+) + ‖|τ |‖Lp(D+) + ‖∇ϕ‖W 1,p(D+)).(2.4)

So, we have proved the theorem in the case 1 < p < 2, 4/3 < q < 2.
For the case p = 2, 4/3 < q < 2, taking p = q

2(q−1)
∈ (1, 2) and p = 4

3
in (2.4), by Sobolev

embedding, we have

‖∇φ‖L4(D+
3/4

) + ‖∇φ‖
L

2q
3q−4 (D+

3/4
)

≤ C(‖dφ‖L2(D+) + ‖ψ‖2
L4(D+) + ‖|τ |‖L2(D+) + ‖∇ϕ‖W 1,2(D+)).(2.5)

By (2.3) and the W 2,2-estimate for the Laplace operator, we obtain

‖φ‖W 2,2(D+
1/2

) ≤ C(‖∆φ‖L2(D+
3/4

) + ‖∇φ‖L2(D+) + ‖∇ϕ‖W 1,2(D+))

≤ C(‖∇φ‖2
L4(D+

3/4
)
+ ‖∇φ‖ 2q

3q−4
(D+

3/4
)‖|ψ|

2‖
L

q
2−q (D+

3/4
)
+ ‖∇φ‖L2(D+)

+ ‖∇ϕ‖W 1,2(D+))

≤ C(‖dφ‖L2(D+) + ‖ψ‖L4(D+) + ‖|τ |‖L2(D+) + ‖∇ϕ‖W 1,2(D+)).

For the case q = 2, 1 < p < 2, taking q = 2p
3p−2
∈ (1, 2) in (2.3), we get

‖ψ‖
L

p
p−1 (D+

3/4
)
≤ C(‖ψ‖L2(D+) + ‖h‖L2(D+) + ‖Bψ‖W 1−1/2,2(∂0D+)).(2.6)

By (2.4) and W 1,2-estimates for the Dirac operator, we arrive at

‖ψ‖W 1,2(D+
1/2

) ≤ C(‖/∂ψ‖L2(D+
3/4

) + ‖ψ‖L4(D3/4) + ‖Bχ‖W 1−1/2,2(∂0D+))

≤ C(‖∇φ‖
L

2p
2−p (D+

3/4
)
‖ψ‖

L
p
p−1 (D+

3/4
)
+ ‖ψ‖L4(D3/4) + ‖Bχ‖W 1−1/2,2(∂0D+))

≤ C(‖ψ‖L2(D+) + ‖h‖L2(D+) + ‖Bψ‖W 1−1/2,2(∂0D+)).

For the case p = q = 2, taking q = 8
5

in (2.3) and p = 4
3

in (2.4), we will obtain a L8(D+
3/4)-

bound for ψ and a L4(D+
3/4) bound for ∇φ. Then one can apply the W 2,2-boundary estimate

for the Laplace operator and the W 1,2-boundary estimate for the Dirac operator to get the
conclusion of the theorem. �
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Next we shall derive a Pohozaev type identity for approximate Dirac-harmonic maps with
boundary data, extending the interior case given in Lemma 2.3 in [14]. For corresponding
results for two dimensional approximate harmonic maps, one can refer to Lemma 2.4 [19] for
the interior case and refer to Lemma 4.3 in [12] and Lemma 2.5 in [13] for various boundary
cases.

Lemma 2.2. (Pohozaev type identity) Let Ω ⊂ R2 be a bounded smooth domain. If D+ ⊂
Ω ⊂ R2

+ and (φ, ψ) ∈ C2(Ω, N)×C1(Ω,ΣΩ⊗φ∗TN) is an approximate Dirac-harmonic map
with boundary data (1.9) on ∂0Ω, then for any 0 < t < 1

2
, we have

t

∫
∂+D+

t

(|φr|2 −
1

2
|∇φ|2) =

1

2

∫
∂+D+

t

〈ψ, r−1∂θ · ψθ〉 −
1

2

∫
D+
t

〈ψ, /Dψ〉dx−Re
∫
D+
t

〈 /Dψ, rψr〉dx

+

∫
D+
t

r(φ− ϕ)rτdx+
1

2

∫
∂0D+

t

〈ψ, ∂

∂x2
· rψr〉

+

∫
∂+D+

t

rφrϕr −
∫
D+
t

∇φ(∇ϕ+ r∇ϕr)dx

+

∫
D+
t

〈rϕr, A(φ)(dφ, dφ)−Re (P (A(dφ(eα), eα · ψ);ψ))〉dx,(2.7)

where (r, θ) are polar coordinates in D centered at 0, φr = ∂φ
∂r

, ψr = ∇̃ ∂
∂r
ψ and ψθ = ∇̃ ∂

∂θ
ψ.

Before we prove this lemma, let us recall two basic properties for Dirac operators and
spinors with chiral boundary constraint,

Lemma 2.3 (Proposition 3.1 in [4]). For any ψ, ω ∈ W 1,3/4(M,ΣM ⊗ φ∗TN) satisfying

Bψ|∂M = Bω|∂M = 0,

we have

(2.8) 〈−→n · ψ, ω〉 = 0 on ∂M,

where −→n is the unit normal vector field on ∂M .

Lemma 2.4 (Proposition 3.2 in [4]). For any ψ, ω ∈ W 1,3/4(M,ΣM ⊗ φ∗TN), we have

(2.9)

∫
M

〈ψ, /Dω〉dx =

∫
M

〈 /Dψ, ω〉dx−
∫
∂M

〈−→n · ψ, ω〉

where 〈ψ, ω〉 := hij〈ψi, ωj〉.

Proof of Lemma 2.2: Multiplying the equation (1.7) by r(φ− ϕ)r and integrating over D+
t ,

noting the fact that r∂rφ = xβ∂βφ and recalling Proposition 2.2 in [14] that

〈ψ, ∇̃ ∂

∂xβ
( /Dψ) = 2〈Re (P (A(dφ(eα), eα · ψ);ψ)) ,∇ ∂

∂xβ
φ〉+ 〈ψ, /D∇̃ ∂

∂xβ
ψ〉,(2.10)
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we get∫
D+
t

r(φ− ϕ)rτdx =

∫
D+
t

r(φ− ϕ)r∆φdx−
∫
D+
t

〈rφr, Re (P (A(dφ(eα), eα · ψ);ψ))〉dx

−
∫
D+
t

〈rϕr, A(φ)(dφ, dφ)−Re (P (A(dφ(eα), eα · ψ);ψ))〉dx

=

∫
D+
t

r(φ− ϕ)r∆φdx+
1

2

∫
D+
t

〈xβψ, /Dψβ〉dx−
1

2

∫
D+
t

〈xβψ, ∇̃∂β
/Dψ〉dx

−
∫
D+
t

〈rϕr, A(φ)(dφ, dφ)−Re (P (A(dφ(eα), eα · ψ);ψ))〉dx

: = I + II + III + IV.

On one hand, by integrating by parts, we have

I =

∫
∂+D+

t

r|φr|2 −
∫
∂+D+

t

rφrϕr −
∫
D+
t

∇φ∇(r(φ− ϕ)r)dx

=

∫
∂+D+

t

r|φr|2 −
∫
∂+D+

t

rφrϕr −
∫
D+
t

∇φ∇(φ− ϕ)dx− 1

2

∫
D+
t

r∂r|∇φ|2dx

+

∫
D+
t

r∇φ∇ϕrdx

= t

∫
∂+D+

t

(|φr|2 −
1

2
|∇φ|2)−

∫
∂+D+

t

rφrϕr +

∫
D+
t

∇φ(∇ϕ+ r∇ϕr)dx,

where the last equality follows from the fact that

−1

2

∫
D+
t

r∂r|∇φ|2dx = −1

2

∫
∂+D+

1

∫ t

0

r2∂r|∇φ|2drdθ

= −1

2

∫
∂+D+

t

t|∇φ|2 +

∫
D+
t

|∇φ|2dx.

On the other hand, by Lemma 2.4, we get

2II =

∫
D+
t

〈xβψ, /Dψβ〉dx

=

∫
D+
t

〈 /D(xβψ), ψβ〉dx−
∫
∂+D+

t

〈 ∂
∂r
· xβψ, ψβ〉+

∫
∂0D+

t

〈 ∂
∂x2
· xβψ, ψβ〉

= −
∫
D+
t

〈ψ, /Dψ〉dx+

∫
D+
t

〈 /Dψ, rψr〉dx+

∫
∂+D+

t

〈ψ, r∂r · ψr〉 −
∫
∂0D+

t

〈ψ, ∂

∂x2
· rψr〉.(2.11)
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Integrating by parts, it follows that

2III = −
∫
D+
t

〈xβψ, ∇̃∂β
/Dψ〉dx

= −
∫
∂+D+

t

〈rψ, /Dψ〉dx+

∫
D+
t

〈∇̃∂β(xβψ), /Dψ〉dx

= 2

∫
D+
t

〈ψ, /Dψ〉dx+

∫
D+
t

〈rψr, /Dψ〉dx−
∫
∂+D+

t

〈rψ, /Dψ〉.(2.12)

Thus, we have

II + III =
1

2

∫
D+
t

〈ψ, /Dψ〉dx+Re

∫
D+
t

〈 /Dψ, rψr〉dx−
1

2

∫
∂+D+

t

〈ψ, r−1∂θ · ψθ〉

− 1

2

∫
∂0D+

t

〈ψ, ∂

∂x2
· rψr〉.

Combining these estimates, we get (2.7). This finishes the proof of the lemma. �

As a consequence of Lemma 2.2, we derive the following Pohozaev type estimate, which
plays a key role in the proof of Theorem 1.1.

Corollary 2.5. (Pohozaev type estimate) Under the assumption of Lemma 2.2, if

E(φ, ψ;D+) + ‖τ(φ, ψ)‖L2 + ‖h(φ, ψ)‖L4 ≤ Λ,

then for any 0 < t < 1
4

and 0 < ε < 1
4
, we have∫

D+
2t\D

+
t

(|φr|2 −
1

2
|∇φ|2)dx ≤ε

∫
D+

2t\D
+
t

∣∣∣∣r−1∂φ

∂θ

∣∣∣∣2 dx+
C

ε

∫
D+

2t\D
+
t

|ψ|4dx

+ C

∫
D+

2t\D
+
t

∣∣∣∣r−1∂ψ

∂θ

∣∣∣∣ 43 dx+ C
√
t,(2.13)

where C is a positive constant depending only on Λ, N, ‖ϕ‖C2 , ‖χ‖C1.

Proof. Firstly, by equation (1.8) and elliptic theory, we have

‖ψ‖
W 1, 43 (D+

1
2

)
≤ C(‖∇φ‖L2(D+)‖ψ‖L4(D+) + ‖h‖

L
4
3 (D+)

+ ‖Bχ‖W 1/4,4/3(∂0D+)) ≤ C.

Thanks to Lemma 2.2, for any 0 < t < 1
2
, we have

t

∫
∂+D+

t

(|φr|2 −
1

2
|∇φ|2) := I1 + ...+ I8.(2.14)

Using Young’s inequality and the fact that

(2.15) ψr = ∇̃ ∂
∂r
ψ =

∂ψ

∂r
+ ψi ⊗ A(dφ(

∂

∂r
),

∂

∂yi
),
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where ∂ψ
∂r

= (∂ψ
1

∂r
, ..., ∂ψ

K

∂r
), we obtain

I2 + I3 + I4 ≤ Ct(‖ψ‖L4(D+
t ) + ‖ψr‖L 4

3 (D+
t )

)‖h‖L4(D+
t )

+ Ct(‖∇φ‖L2(D+
t ) + ‖∇ϕ‖L2(D+

t ))‖τ‖L2(D+
t )

≤ Ct(‖ψ‖L4(D+
t ) + ‖∇ψ‖

L
4
3 (D+

t )
+ ‖∇φ‖L2(D+

t )‖ψ‖L4(D+
t ))‖h‖L4(D+

t ) + Ct

≤ Ct.(2.16)

As for I5, we have

I5 =
1

2

∫
∂0D+

t

〈ψ, ∂

∂x2
· rψr〉

=
1

2

∫
∂0D+

t

〈ψ − χ, ∂

∂x2
· r(ψ − χ)r〉+

1

2

∫
∂0D+

r

〈χ, ∂

∂x2
· rψr〉

+
1

2

∫
∂0D+

t

〈ψ, ∂

∂x2
· rχr〉 −

1

2

∫
∂0D+

t

〈χ, ∂

∂x2
· rχr〉

=
1

2

∫
∂0D+

t

〈χ, ∂

∂x2
· rψr〉+

1

2

∫
∂0D+

t

〈ψ, ∂

∂x2
· rχr〉 −

1

2

∫
∂0D+

t

〈χ, ∂

∂x2
· rχr〉,(2.17)

where the last equality follows from Lemma 2.3 which tells us that

1

2

∫
∂0D+

t

〈ψ − χ, ∂

∂x2
· r(ψ − χ)r〉 = 0.

Computing directly, we get

1

2

∫
∂0D+

t

〈χ, ∂

∂x2
· rψr〉 = −1

2

∫ t

−t
〈x1 ∂

∂x2
· χ, ∇̃ ∂

∂x1
ψ〉dx1

= −1

2

∫ t

−t

∂

∂x1
〈x1 ∂

∂x2
· χ, ψ〉dx1 +

1

2

∫ t

−t
〈∇̃ ∂

∂x1
(x1 ∂

∂x2
· χ), ψ〉dx1

≤ Ct(|ψ|(t, 0) + |ψ|(−t, 0)) + C
√
t‖ψ‖L2(∂0D+

1
2

).

By Hölder’s inequality and trace theory, we have

1

2

∫
∂0D+

t

〈ψ, ∂

∂x2
· rχr〉 −

1

2

∫
∂0D+

t

〈χ, ∂

∂x2
· rχr〉 ≤ C(

√
t‖ψ‖L2(∂0D+

1
2

) + t)

≤ C(
√
t‖ψ‖

W 1, 43 (D+
1
2

)
+ t),

where C is a constant depending only on ‖χ‖C1 .
Then (2.17) implies

I5 ≤ Ct(|ψ|(t, 0) + |ψ|(−t, 0)) + C
√
t‖ψ‖L2(∂0D+

1
2

) + Ct.(2.18)

For I7 and I8, it is easy to see that

I7 + I8 ≤ Ct.(2.19)
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Multiplying (2.14) by 1
t

and integrating from t to 2t, we get∫
D+

2t\D
+
t

(|φr|2 −
1

2
|∇φ|2)dx

≤ 1

2

∫ 2t

t

1

r

∫
∂+D+

r

〈ψ, r−1∂θ · ψθ〉dθdr +

∫ 2t

t

1

r

∫
∂+D+

r

rφrϕrdθdr

+ C

∫ 2t

t

(|ψ|(r, 0) + |ψ|(−r, 0) + 1 +
1√
r

)dr

≤ C‖ψ‖L4(D+
2t\D

+
t )‖r

−1ψθ‖L 4
3 (D+

2t\D
+
t )

+ Ct(1 + ‖dφ‖L2(D+
2t\D

+
t )) + C

√
t(1 + ‖ψ‖L2(∂0D+

1
2

))

≤ ε

∫
D+

2t\D
+
t

∣∣∣∣r−1∂φ

∂θ

∣∣∣∣2 dx+
C

ε

∫
D+

2t\D
+
t

|ψ|4dx+ C

∫
D+

2t\D
+
t

∣∣∣∣r−1∂ψ

∂θ

∣∣∣∣ 43 dx+ C
√
t,

where the last inequality follows from Young’s inequality, the trace theory

‖ψ‖L2(∂0D+
1
2

) ≤ C‖ψ‖
W 1, 43 (D+

1
2

)

and the fact

ψθ = ∇̃ ∂
∂θ
ψ =

∂ψ

∂θ
+ ψi ⊗ A(dφ(

∂

∂θ
),

∂

∂yi
).

This finishes the proof. �

In the end of this section, we recall some known results for (approximate) Dirac-harmonic
maps which are used in this paper.

Theorem 2.6 (Theorem 2.1., [14]). There is a small constant ε′0 > 0 depending on p, q
and N , such that if (φ, ψ) ∈ W 2,p(D,N) ×W 1,q(D,ΣD ⊗ φ∗TN) is an approximate Dirac-
harmonic map from the unit disc D in R2 to a compact Riemannian manifold (N, g) with
τ(φ, ψ) ∈ Lp and h(φ, ψ) ∈ Lq for some 4

3
≤ p ≤ 2 and some 8

5
≤ q ≤ 2, and satisfies

E(φ, ψ;D) =

∫
D

(|dφ|2 + |ψ|4)dx < (ε′0)2,(2.20)

then

‖φ− φ‖W 2,p(D 1
2

) ≤ C(‖dφ‖L2(D) + ‖τ‖Lp(D)),

‖ψ‖W 1,q(D 1
2

) ≤ C(‖ψ‖L4(D) + ‖h‖Lq(D)),

where φ := 1
|D1/2|

∫
D1/2

φdx and C > 0 is a constant depending only on p, q, N .

Moreover, by the Sobolev embedding W 2,p(R2) ⊂ C0(R2), we have

(2.21) ‖φ‖Osc(D1/2) = sup
x,y∈D1/2

|φ(x)− φ(y)| ≤ C(Λ, N)(‖∇φ‖L2(D) + ‖τ(u)‖Lp(D)).



ENERGY IDENTITY FOR A CLASS OF APPROXIMATE DIRAC-HARMONIC MAPS 15

Proposition 2.7 (Theorem 3.1 in [1]). There exists an ε1 > 0 depending on N such that if
(φ, ψ) is a smooth Dirac-harmonic map from the standard sphere S2 to a compact Riemann-
ian manifold N satisfying ∫

S2

(|dφ|2 + |ψ|4)dx < ε1,

then φ is a constant map and ψ ≡ 0.

Theorem 2.8 (Theorem 1.4 in [11]). Let (φ, ψ) : R2
+ → N be a smooth Dirac-harmonic map

with boundary data φ|∂R2
+

= const. and Bψ|∂R2
+

= 0 and satisfying∫
R2
+

|∇φ|2dx+

∫
R2
+

|ψ|4dx <∞.

Then φ is a constant map and ψ ≡ 0.

3. Energy identity

In this section, we will prove our main Theorem 1.1. Since the interior blow-up behavior
was already studied in [14], we only need to consider the boundary blow-up behavior.

Firstly, we consider the following simpler case of a boundary blow-up point.

Theorem 3.1. Let φn ∈ C2(D+
1 (0), N), ψn ∈ C1(D+

1 (0),ΣD+
1 (0)⊗ φ∗nTN) be a sequence of

approximate Dirac-harmonic maps satisfying

(a) ‖φn‖W 1,2(D+) + ‖ψn‖L4(D+) + ‖τn‖L2(D+) + ‖hn‖L4(D+) ≤ Λ,

(b) (φn, ψn) ⇀ (φ, ψ) weaky in W 2,2
loc (D+ \ {0})×W 1,2

loc (D+ \ {0}) as n→∞.

Then there exist a subsequence of (φn, ψn) (still denoted by (φn, ψn)) and a nonnegative
integer L such that, for any i = 1, ..., L, there exist points xin, positive numbers λin and a
nonconstant Dirac-harmonic sphere (σi, ξi) : S2 → N such that:

(1) xin → 0, λin → 0, as n→∞;

(2) dist(xin,∂
0D+)

λin
→∞ , as n→∞;

(3) limn→∞
(λin
λjn

+ λjn
λin

+ |xin−x
j
n|

λin+λjn

)
=∞ for any i 6= j;

(4) (σi, ξi) is the weak limit of (φn(xin + λinx), ψn(xin + λinx)) in W 1,2
loc (R2)× L4

loc(R2);
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(5) Energy identity: we have

lim
n→∞

E(φn) = E(φ) +
L∑
i=1

E(σi),(3.1)

lim
n→∞

E(ψn) = E(ψ) +
L∑
i=1

E(ξi).(3.2)

Proof. By assumption, without loss of generality, we may assume that 0 is the only blow-up
point of the sequence {(φn, ψn)} in D+, i.e.

(3.3) lim inf
n→∞

E(φn, ψn;D+
r ) ≥ ε2

2
for all r > 0

where ε = min{ε0, ε′0} and ε0, ε
′
0 are the constants in Theorem 2.1 and Theorem 2.6 by

taking suitable p and q. By the standard argument of blow-up analysis (see e.g. [6, 1]), we
can assume that, for any n, there exist sequences xn → 0 and rn → 0 such that

(3.4) E(φn, ψn;D+
rn(xn)) = sup

x∈D+,r≤rn
D+
r (x)⊂D+

E(φn, ψn;D+
r (x)) =

ε2

4
.

Firstly, we make a Claim 1: lim supn→∞
dist(xn,∂0D+)

rn
=∞.

If not, after taking a subsequence, we may assume limn→∞
dist(xn,∂0D+)

rn
= a ≥ 0. Set

un(x, t) := φn(xn + rnx), vn(x, t) :=
√
rnψn(xn + rnx),

and
Bn := {x ∈ R2|xn + rnx ∈ D+}.

Then
Bn → R2

a := {(x1, x2)|x2 ≥ −a},
as n→∞. It is easy to see (un, vn) lives in Bn and satisfies{

r2
nτ(φn) = ∆un + A(dun, dun)−Re(P (A(dun(eα), eα · vn); vn)), in Bn;

r
4
3
nhn = /∂vn −A(dun(eα), eα · vn), in Bn,

(3.5)

with the boundary data{
un(x) = ϕ(x1 + rnx), if xn + rnx ∈ ∂M ;

Bvn(x) =
√
rnBχ(xn + rnx), if xn + rnx ∈ ∂M.

(3.6)

By (3.4), Theorem 2.6 and Theorem 2.1, we have

(3.7) ‖un‖W 2,2(D4R(0)∩Bn) + ‖vn‖W 1,2(D4R(0)∩Bn) ≤ C(R,N)

for any DR(0) ⊂ R2 which implies

‖un(x− (0,
dn
rn

))‖W 2,2(D+
3R(0)) + ‖vn(x− (0,

dn
rn

))‖W 1,2(D+
3R(0)) ≤ C(R,N)

when n,R are large, where dn := dist(xn, ∂
0D+).
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Then there exist a subsequence of (un, vn) (also denoted by (un, vn)) and a Dirac-harmonic
map (ũ, ṽ) ∈ W 2,2(R2

+) ×W 1,2(R2
+) with the boundary data (ũ,Bṽ)|∂R2

+
= (ϕ(x0), 0), such

that for any R > 0,

lim
n→∞

‖un(x− (0,
dn
rn

))− ũ(x)‖W 1,2(D+
3R(0)) = 0

lim
n→∞

‖vn(x− (0,
dn
rn

))− ṽ(x)‖L4(D+
3R(0)) = 0.

Set ũ1(x) := ũ(x+ (0, a)) and ṽ1(x) := ṽ(x+ (0, a)), then we get, for any R > 0,

lim
n→∞

‖un(x)− ũ1(x)‖W 1,2(D2R(0)∩Bn∩R2
a) = 0

lim
n→∞

‖vn(x)− ṽ1(x)‖L4(D2R(0)∩Bn∩R2
a) = 0.

Combining this with (3.7) and noting that the measure of D2R(0)∩Bn \R2
a goes to zero, we

have

lim
n→∞

‖un(x)‖W 1,2(DR(0)∩Bn) = ‖ũ1(x)‖W 1,2(DR(0)∩R2
a)

lim
n→∞

‖vn(x)‖L4(DR(0)∩Bn) = ‖ṽ1(x)‖L4(DR(0)∩R2
a).

Therefore, by (3.4), we can obtain E(ũ1, ṽ1;D1(0) ∩ R2
a) = ε2

4
. However, by Theorem 2.8,

we know ũ1 is a constant map and ṽ1 ≡ 0. This is a contradiction. We proved Claim 1.

Under the assumption lim supn→∞
dist(xn,∂0D+)

rn
= ∞, we can see that (un, vn) lives in Bn

which tends to R2 as n → ∞. Moreover, for any x ∈ R2, when n is sufficiently large, by
(3.4), we have

(3.8) E(un, vn;D1(x)) ≤ ε2

4
.

According to Theorem 2.6, there exist a subsequence of (un, vn) (we still denote it by (un, vn))
and a Dirac-harmonic map (u1(x), v1(x)) ∈ W 2,2(R2, N) ×W 1,2(R2,ΣR2 ⊗ (u1)∗TN) such
that

un(x)→ u1(x) in W 1,2
loc (R2), vn(x)→ v1(x) in L4

loc(R2),(3.9)

as n → ∞. Besides, we know E(u1, v1;D1(0)) = ε2

4
. By the standard theory of Dirac-

harmonic maps [1], (u1(x), v1(x)) can be extended to a nontrivial Dirac-harmonic sphere
which is usually called the first bubble.

By the standard induction argument in [6], we only need to prove the theorem in the
case where there is only one bubble. For the more bubbles case, i.e. the bubble tree, we
just need to distinguish “neck domains” which is almost the same as in the blow-up theory
of approximate harmonic maps. See [17, 18] for details. Then we can estimate the energy
concentration on each “neck domain” by using the proof of the one bubble case.

Under this assumption, we have the following:
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Claim 2: for any ε > 0, there exist δ > 0 and R > 0 such that

(3.10) E(φn, ψn;D+
8t(xn) \D+

t (xn)) ≤ ε2 for any t ∈ (
1

2
rnR, 2δ)

when n is large enough.

In fact, if (3.10) is not true, then we can find tn → 0, such that limn→∞
tn
rn

=∞ and ε′ > 0
such that

(3.11) E(φn, ψn;D+
8tn(xn) \D+

tn(xn)) ≥ ε′ > 0.

Passing to a subsequence, we may assume limn→∞
dn
tn

= b ∈ [0,∞]. For simplicity of
notation, we also denote

un(x) := φn(xn + tnx), vn(x) :=
√
tnψn(xn + tnx).

Denoting B′n := {x ∈ R2|xn+ tnx ∈ D+}, then it is easy to see that (un(x), vn(x)) lives in B′n
and 0 is also an energy concentration point for (un, vn). We have to consider the following
two cases:

(a) b <∞.

Then B′n tends to R2
b as n→∞. Here, we also need to consider two cases.

(a-1) (un, vn) has no other energy concentration points except 0.

By Theorem 2.6, Theorem 2.1 and the proof of Claim 1, there exists a Dirac-harmonic
map (u, v) : R2

b → N with boundary data u|∂R2
b

= ϕ(0), Bv|∂R2
b

= 0 satisfying, passing to a
subsequence, for any λ,R > 0, there hold

lim
n→∞

‖un(x)− u(x)‖W 1,2(D2R(0)∩B′n∩R2
b\Dλ(0)) = 0

lim
n→∞

‖vn(x)− v(x)‖L4(D2R(0)∩B′n∩R2
b\Dλ(0)) = 0,

and

lim
n→∞

‖un(x)‖W 1,2(DR(0)∩B′n\Dλ(0)) = ‖u(x)‖W 1,2(DR(0)∩R2
b\Dλ(0))

lim
n→∞

‖vn(x)‖L4(DR(0)∩B′n\Dλ(0)) = ‖v(x)‖L4(DR(0)∩R2
b\Dλ(0)).

According to (3.11), we have

E(u, v; (D8(0) \D1(0)) ∩ R2
b) = lim

n→∞
E(un, vn; (D8(0) \D1(0)) ∩B′n) ≥ ε′.

However, Theorem 2.8 tells us that u is a constant map and v ≡ 0. This is a contradiction.

(a-2) (un, vn) has another energy concentration point p 6= 0.



ENERGY IDENTITY FOR A CLASS OF APPROXIMATE DIRAC-HARMONIC MAPS 19

Without loss of generality, we may assume p is the only energy concentration point in
Dr0(p) for some r0 > 0. By the standard argument of blow-up analysis, there exist sequences
x′n → p and r′n → 0 such that

(3.12) E(un, vn;Dr′n(x′n) ∩B′n) = sup
x∈Dr0 (p),r≤r′n
Dr(x)⊂Dr0 (p)

E(un, vn;Dr(x) ∩B′n) =
ε2

4
.

By (3.4), we have r′ntn ≥ rn and taking a subsequence, we may assume

lim
n→∞

dn
r′ntn

= d ∈ [0,∞].

Furthermore, we know d must be ∞ (the proof is the same as for Claim 1). Then similar
to the process of constructing the first bubble, there exists a nontrivial Dirac-harmonic map
(u2(x), v2(x)) ∈ W 2,2(R2, N)×W 1,2(R2,ΣR2 ⊗ (u2)∗TN) such that

un(x′n + r′nx)→ u2(x) in W 1,2
loc (R2),

√
r′nvn(x′n + r′nx)→ v2(x) in L4

loc(R2),

as n→∞. This is

φn(xn+tnx
′
n+tnr

′
nx)→ v2(x) in W 1,2

loc (R2) and
√
tnr′nψn(xn+tnx

′
n+tnr

′
nx)→ v2(x) in L4

loc(R2).

Thus, (u2, v2) is also a bubble for the sequence (φn, ψn). This is a contradiction to the one
bubble assumption.

(b) b =∞.

In this case, B′n will tend to R2 as n→∞. Again, we need to consider the following two
cases.

(b-1) (un, vn) has no other energy concentration points except 0.

According to (3.11), Theorem 2.6, Theorem 2.1 and the process of constructing the first
bubble, we know that there exists a nontrivial Dirac-harmonic map (u2, v2) : R2 → N such
that, passing to a subsequence,

un(x)→ u2(x) in W 1,2
loc (R2 \ {0}) and vn(x)→ v2(x) in L4

loc(R2 \ {0}),

as n→∞. Then, we get the second bubble (u2(x), v2(x)) which contradicts the “one bubble”
assumption.

(b-2) (un, vn) has another energy concentration point p 6= 0.

Similar to Case (a-2), there exist sequences x′n → p and r′n → 0 satisfying (3.12) and

lim
n→∞

dn
r′ntn

=∞.
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Moreover, by the process of constructing the first bubble, there exists a nontrivial Dirac-
harmonic map (u2, v2) : R2 → N such that, as n→∞,

un(x′n + r′nx)→ v2(x) in W 1,2
loc (R2) and

√
r′nvn(x′n + r′nx)→ v2(x) in L4

loc(R2)

that is

φn(xn+tnx
′
n+tnr

′
nx)→ v2(x) inW 1,2

loc (R2) and
√
tnr′nψn(xn+tnx

′
n+tnr

′
nx)→ v2(x) in L4

loc(R2).

So, we get the second bubble (u2(x), v2(x)). This also contradicts the “one bubble ” assump-
tion. Thus, we proved Claim 2.

Under the “one bubble” assumption, by (3.9), it is easy to see that energy identity (3.1)
and (3.2) are equivalent to

(3.13) lim
R→∞

lim
δ→0

lim
n→∞

E(φn;D+
δ (xn) \D+

rnR
(xn)) = 0

and

(3.14) lim
R→∞

lim
δ→0

lim
n→∞

E(ψn;D+
δ (xn) \D+

rnR
(xn)) = 0.

Without loss of generality, we may assume δ = 2mnrnR for some positive integer mn which
tends to ∞ as n→∞. We denote Pi := D+

2irnR
(xn) \D+

2i−1rnR
(xn).

Firstly we use a finite decomposition argument that is similar to those in [29, 30] to
separate Σ := D+

δ (xn) \D+
rnR

(xn) into finite parts

Σ = ∪snj=1Qj, Qj := ∪kji=kj−1+1Pi, 0 = k0 < k1 <, ..., < ksn = mn

such that sn ≤ S and

E(φn, ψn;Qj) ≤
1

C1(N)
, j = 1, ..., sn,(3.15)

where C1(N) > 0 is a constant depending only on N to be determined later and S is a
uniform integer for all n large enough.

From (3.10), for any ε < 1
2C1(N)

, we have

E(φn, ψn;Pi) < ε <
1

2C1(N)
, i = 1, ...,mn

when n is large.
If

E(φn, ψn; Σ) ≤ 1

C1(N)
,

let k1 = mn and then Q1 = Σ. Otherwise, we can choose an integer 1 ≤ k1 < mn such that

1

2C1(N)
< E(φn, ψn;Q1) ≤ 1

C1(N)
and E(φn, ψn;Q1 ∪ Pk1+1) >

1

C1(N)
.

This is the first step of the division. Inductively, suppose that kj is chosen such that
E(φn, ψn;Qj) ≤ 1

C1(N)
. If

E(φn, ψn;∪mni=kj+1Pi) ≤
1

C1(N)
,
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let kj+1 = mn, thus Qj+1 = ∪mni=kj+1Pi. If not, then similar to the first step, we can find

kj < kj+1 < mn such that

1

2C1(N)
< E(φn, ψn;Qj+1) ≤ 1

C1(N)
and E(φn, ψn;Qj+1 ∪ Pkj+1+1) >

1

C1(N)
.

Since E(φn, ψn) is uniformly bounded by Λ, we will finish our division after at most S =
[2C1(N)Λ] + 1 steps. So we have finished the division.

Take a cut-off function η ∈ C∞0 (D+

2kj+1rnR
(xn) \D+

2kj−1−1rnR
(xn)) such that 0 ≤ η ≤ 1 and

η|D+

2
kj rnR

(xn)\D+

2
kj−1rnR

(xn) ≡ 1 and

|∇η| ≤ C

2kjrnR
on D+

2kj+1rnR
(xn) \D+

2kj rnR
(xn) and

|∇η| ≤ C

2kj−1rnR
on D+

2kj−1rnR
(xn) \D+

2kj−1−1rnR
(xn).

By the standard elliptic estimates, we have

‖ηψn‖W 1,4/3(D+
1 )

≤ C‖η/∂ψn +∇η · ψn‖L 4
3 (D+

1 )
+ C‖ηBχ‖W 1/4,4/3(∂D+

1 )

≤ 1

4
C(N)(‖|dφn||ηψn|‖L 4

3 (Σ)
+ ‖η|hn|‖L 4

3 (Σ)
) + C‖|∇η||ψn|‖L 4

3 (Σ)
+ C‖ηBχ‖W 1/4,4/3(∂0D+

δ )

≤ 1

4
C(N)‖dφn‖L2(D

2
kj+1

rnR
(xn)\D

2
kj−1−1

rnR
(xn))‖ηψn‖L4(Σ) + C‖hn‖L 4

3 (Σ)

+ C‖∇ηψn‖L 4
3 (Pkj−1

∪Pkj+1)
+ C‖ηBχ‖W 1/4,4/3(∂0D+

δ )

≤ 1

4
C(N)

2√
C1(N)

‖ηψn‖L4(Σ) + C‖ψn‖L4(Pkj−1
∪Pkj+1) + C‖hn‖L 4

3 (Σ)
+ C‖ηBχ‖W 1/4,4/3(∂0D+

δ ),

where the last inequality is from (3.10) and (3.15). Then, taking C1(N) = C2(N) + 1, by
(3.10) and Sobolev embedding, we have

‖ψn‖L4(Qj) + ‖∇ψn‖L4/3(Qj) ≤ C‖ψn‖L4(Pkj−1
∪Pkj+1) + C‖hn‖L 4

3 (Σ)
+ C‖ηBχ‖W 1/4,4/3(∂0D+

δ )

≤ C(Λ, ‖χ‖C1)(
√
ε+ δ).

So,

‖ψn‖L4(Σ) + ‖∇ψn‖L4/3(Σ) ≤
sn∑
j=1

(‖ψn‖L4(Qj) + ‖∇ψn‖L4/3(Qj)) ≤ CS(
√
ε+ δ).

This is (3.14).

Suppose x′n ∈ ∂0D+ is the projection of xn, i.e. dn = dist(xn, ∂
0D+) = |xn − x′n|. Sim-

ilar to the boundary blow-up cases for approximate harmonic maps studied in [12, 13], we
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decompose the neck domain D+
δ (xn) \D+

rnR
(xn) as follows

D+
δ (xn) \D+

rnR
(xn) = D+

δ (xn) \D+
δ
2

(x′n) ∪D+
δ
2

(x′n) \D+
2dn

(x′n)

∪D+
2dn

(x′n) \D+
dn

(xn) ∪D+
dn

(xn) \D+
rnR

(xn)

:= Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4,

when n is large.
Since limn→∞ dn = 0 and limn→∞

dn
rn

=∞, when n is large enough, it is easy to see that

Ω1 ⊂ D+
δ (xn) \D+

δ
4

(xn), and Ω3 ⊂ D+
4dn

(xn) \D+
dn

(xn).

Moreover, for any dn ≤ t ≤ δ, there holds

D+
2t(x

′
n) \D+

t (x′n) ⊂ D+
4t(xn) \D+

t/2(xn).

By assumption (3.10), we have

(3.16) E(φn, ψn; Ω1) + E(φn, ψn; Ω3) ≤ ε2

and

(3.17) E(φn, ψn;D+
2t(x

′
n) \D+

t (x′n)) ≤ ε2 for any t ∈ (dn, δ).

By (3.10), Theorem 2.6, Theorem 2.1 and the standard scaling argument, we get

OscD+
2t(x

′
n)\D+

t (x′n)φn

≤ C(‖∇φn‖L2(D+
4t(x

′
n)\D+

t/2
(x′n)) + ‖ψn‖L4(D+

4t(x
′
n)\D+

t/2
(x′n)) + ‖∇ϕ‖L2(D+

4t(x
′
n)\D+

t/2
(x′n))

+ t‖∇2ϕ‖L2(D+
4t(x

′
n)\D+

t/2
(x′n)) + t‖τ(un)‖L2(D+

4t(x
′
n)\D+

t/2
(x′n)))

≤ C(
√
ε+ δ),(3.18)

for any t ∈ (2rnR,
1
2
δ), where C = C(Λ, N, ‖ϕ‖C2 , ‖χ‖C1) is a positive constant.

Noting that Ω4 = D+
dn

(xn) \ D+
rnR

(xn) = Ddn(xn) \ DrnR(xn), by the energy identity of
approximate Dirac-harmonic maps with interior blow-up points (see Theorem 1.2 in [14]),
there holds

(3.19) lim
R→∞

lim
n→0

E(un;Ddn(xn) \DrnR(xn)) = 0.

Therefore, we just need to estimate the energy concentration in Ω2. Here, we use a similar
method as in [12, 13].

Define Ω̂2 := D δ
2
(x′n) \D2dn(x′n), Φn(x) := φn(x)− ϕ(x), x ∈ Ω2 and

Φ̂n(x) :=

{
Φn(x), x ∈ Ω2,

−Φn(x′), x ∈ Ω̂2 \ Ω2,
(3.20)

where x = (x1, x2) and x′ = (x1,−x2). It is easy to see that Φ̂n(x) ∈ W 2,∞(Ω̂2) and satisfies
the following equation

∆Φ̂n(x) =

{
∆φn(x)−∆ϕ(x), x ∈ Ω2,

−∆φn(x′) + ∆ϕ(x′), x ∈ Ω̂2 \ Ω2,
(3.21)
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where ∆φn(x) = −A(dφn, dφn)(x) +Re (P (A(dφn(eα), eα · ψn);ψn)) (x) + τ(un)(x).
Without loss of generality, we may also assume 1

2
δ = 2m

′
n(2dn), where m′n is a positive

integer which tends to ∞ as n → ∞. Setting P ′i := D+
2i+1dn

(x′n) \ D+
2idn

(x′n) and P̂ ′i :=

D2i+1dn(x′n) \D2idn(x′n),
Set

Φ̂n

∗
(r) :=

1

2π

∫ 2π

0

Φ̂n(r, θ)dθ,

where (r, θ) are the polar coordinates at x′n. By (3.18) and (3.20), we have

‖Φ̂n(x)− Φ̂n

∗
(x)‖L∞(Ω̂2) ≤ sup

1≤i≤m′n
‖Φ̂n(x)− Φ̂n

∗
(x)‖

L∞(P̂ ′i )
≤ sup

1≤i≤m′n
‖Φ̂n(x)‖

Osc(P̂ ′i )

≤ 2 sup
1≤i≤m′n

‖Φn(x)‖Osc(P ′i ) ≤ 2 sup
1≤i≤m′n

‖φn(x)‖Osc(P ′i ) + Cδ‖∇ϕ‖L∞

≤ C(N,Λ, ‖ϕ‖C2 , ‖χ‖C1)(
√
ε+ δ).(3.22)

Integrating by parts, we get∫
P̂ ′i

∇Φ̂n∇(Φ̂n − Φ̂n

∗
)dx =

∫
∂P̂ ′i

(Φ̂n − Φ̂n

∗
)
∂Φ̂n

∂r
−
∫
P̂ ′i

(Φ̂n − Φ̂n

∗
)∆Φ̂ndx.

On the one hand, we have∫
P̂ ′i

∇Φ̂n∇(Φ̂n − Φ̂n

∗
)dx =

∫
P̂ ′i

|∇Φ̂n|2dx−
∫
P̂ ′i

∂Φ̂n

∂r

∂Φ̂n

∗

∂r
dx

≥
∫
P̂ ′i

|∇Φ̂n|2dx− (

∫
P̂ ′i

|∂Φ̂n

∂r
|2dx)

1
2 (

∫
P̂ ′i

|∂Φ̂n

∗

∂r
|2dx)

1
2

≥
∫
P̂ ′i

|∇Φ̂n|2dx−
∫
P̂i

|∂Φ̂n

∂r
|2dx

=
1

2

∫
P̂ ′i

|∇Φ̂n|2dx−
∫
P̂ ′i

(|∂Φ̂n

∂r
|2 − 1

2
|∇Φ̂n|2)dx

=

∫
P ′i

|∇Φn|2dx− 2

∫
P ′i

(|∂Φn

∂r
|2 − 1

2
|∇Φn|2)dx.

By direct computation, we obtain∫
P ′i

|∇Φn|2dx− 2

∫
P ′i

(|∂Φn

∂r
|2 − 1

2
|∇Φn|2)dx

=

∫
P ′i

|∇φn|2dx− 2

∫
P ′i

(|∂φn
∂r
|2 − 1

2
|∇φn|2)dx+ 4

∫
P ′i

(
∂φn
∂r

∂ϕ

∂r
−∇φn∇ϕ)dx

+ 2

∫
P ′i

(|∇ϕ|2 − |∂ϕ
∂r
|2)dx

≥
∫
P ′i

|∇φn|2dx− 2

∫
P ′i

(|∂φn
∂r
|2 − 1

2
|∇φn|2)dx− C2idn.
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On the other hand, by (3.21) and (3.22), we have∫
P̂ ′i

(Φ̂n − Φ̂n

∗
)∆Φ̂ndx ≤ C(

√
ε+ δ)

∫
P ′i

|dφn|2dx+ C(
√
ε+ δ)

∫
P ′i

|dφ||ψn|2dx

+ C(
√
ε+ δ)

∫
P ′i

(|τn|+ |∆ϕ|)dx

≤ C(
√
ε+ δ)

∫
P ′i

|dφn|2dx+ C(
√
ε+ δ)

∫
P ′i

|ψn|4dx+ C(
√
ε+ δ)2idn.

From the above, by Corollary 2.5 (taking ε = 1
2
), we get∫

P ′i

|dφn|2dx ≤
∫
∂P̂ ′i

(Φ̂n − Φ̂n

∗
)
∂Φ̂n

∂r
+

∫
P ′i

(|∂φn
∂r
|2 − 1

2
|∇φn|2)dx+ C(

√
ε+ δ)

∫
P ′i

|dφn|2dx

+ C(
√
ε+ δ)

∫
P ′i

|ψn|4dx+ C2idn

≤
∫
∂P̂ ′i

(Φ̂n − Φ̂n

∗
)
∂Φ̂n

∂r
+ (

1

2
+ C(

√
ε+ δ))

∫
P ′i

|dφn|2dx+ C

∫
P ′i

|ψn|4dx

+ C

∫
P ′i

|∇ψn|
4
3dx+ C2idn.

Summing i from 1 to m′n, we get

(
1

2
− C(

√
ε+ δ))

∫
Ω2

|∇φn|2dx ≤
∫
∂Dδ/2(x′n)

(Φ̂n − Φ̂n

∗
)
∂Φ̂n

∂r
−
∫
∂D2dn (x′n)

(Φ̂n − Φ̂n

∗
)
∂Φ̂n

∂r

+ C

∫
Ω2

|∇ψn|4/3dx+ C

∫
Ω2

|ψn|4dx+ Cδ.(3.23)

As for the boundary term, by trace theory, we have∫
∂Dδ/2(x′n)

(Φ̂n − Φ̂n

∗
)
∂Φ̂n

∂r
≤ C(

√
ε+ δ)

∫
∂Dδ/2(x′n)

|∇Φ̂n|

≤ C(
√
ε+ δ)

∫
∂+Dδ/2(x′n)

(|∇φn|+ |∇ϕ|)

≤ C(
√
ε+ δ)

(
‖∇φn‖L2(D+

δ \D
+
1
4 δ

) + δ‖∇2φn‖L2(D+
δ \D

+
1
4 δ

) + 1

)
≤ C(

√
ε+ δ)

(
‖∇φn‖L2(D+

4
3 δ
\D+

1
6 δ

) + ‖ψn‖L4(D+
4
3 δ
\D+

1
6 δ

)

+ ‖∇ϕ‖L2(D+
4
3 δ
\D+

1
6 δ

) + δ‖∇2ϕ‖L2(D+
4
3 δ
\D+

1
6 δ

)

+ δ‖τn‖L2(D+
4
3 δ
\D+

1
6 δ

) + 1
)

≤ C(
√
ε+ δ),

where the last second inequality can be derived from Theorem 2.1.
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Also, there holds ∫
∂D2dn

(Φ̂n − Φ̂n

∗
)
∂Φ̂n

∂r
≤ C(

√
ε+ δ).

Putting these in (3.23) and taking ε and δ sufficient small, we have∫
Ω2

|∇φn|2dx ≤ C

∫
Ω2

|∇ψn|4/3dx+ C

∫
Ω2

|ψn|4dx+ C(
√
ε+ δ).(3.24)

Combining this with (3.16), (3.19) and (3.14), we will obtain (3.13) and we finished the proof
of Theorem 3.1. �

Proof of Theorem 1.1: It is easy to see that Theorem 1.1 is a consequence of the interior
blow-up case, i.e. Theorem 1.2 in [14] and the model case of boundary blow-ups, i.e. Theorem
3.1. �
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