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Abstract

We study the continuity estimation of the Tsallis entropy. An inequality relating the
Tsallis entropy difference of two quantum states to their trace norm distance is derived. This
inequality is shown to be tight in the sense that equality can be attained for every prescribed
value of the trace norm distance. It includes the sharp Fannes inequality for von Neumann
entropy as a special case.

PACS: 03.65.Ud, 03.67.Mn

The Tsallis entropy plays an essential role in nonextensive statistics with many important

findings [1]. Besides many interesting properties [2, 3], the Tsallis entropy is tightly related to

many physical phenomena such as the distribution characterizing the motion of cold atoms in

dissipative optical lattices [4, 5], the fluctuations of the magnetic field in the solar wind [6], the

velocity distributions in driven dissipative dusty plasma [7] and spin glass relaxation [8]. The well

known von Neumann entropy and linear entropy are just two special cases of the Tsallis entropy.

We study the continuity estimation of the Tsallis entropy and present a tight inequality connecting

the Tsallis entropy difference of two quantum states and their trace norm distance, which includes

the sharp Fannes inequality for von Neumann entropy as a special case.

The von Neumann entropy of a quantum state ρ is defined by

S(ρ) := −Tr[ρ log2 ρ]. (1)
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For classical probability distributions, the von Neumann entropy reduces to the Shannon entropy,

H(p) :=
d∑
i

H(pi) = −
d∑
i

pi log2 pi, (2)

where p := (pi) = (p1, p2, ..., pd) is a d-dimensional probability vector, pi ≥ 0,
∑d

i pi = 1 and

H(pi) := −pi log2 pi.

In [9, 10] Fannes proved the famous Fannes inequality for the continuity of the von Neumann

entropy,

|S(ρ)− S(σ)| ≤ 2T log2(d)− 2T log2(2T ), (3)

where T = ||ρ− σ||1/2, ||ρ− σ||1 = Tr[
√
(ρ− σ)†(ρ− σ)] is the trace norm distance between the

states ρ and σ, T ∈ [0, 1]. The inequality (3) is valid for 0 ≤ T ≤ 1/2e. The inequality (3) is

further improved to be a sharp one by Audenaert [11]:

|S(ρ)− S(σ)| ≤ T log2(d− 1) +H((T, 1− T )). (4)

The Tsallis entropy is a more general form of the von Neumann entropy,

Tα(ρ) :=
1

1− α
[Tr(ρα)− 1], α > 0, (5)

When α goes to one, the Tsallis entropy becomes the von Neumann entropy. When α = 2, the

Tsallis entropy is just the linear entropy (up to a factor 2), T2(ρ) = 1−Tr(ρ2), which is a measure

of the mixedness of quantum states. In the following, we show that for the Tsallis entropy, an

improved sharp Fannes type inequality exists.

[Theorem]. For all d-dimensional states ρ and σ,

|Tα(ρ)− Tα(σ)| ≤
1

|1− α|
[1− (1− T )α − (d− 1)1−αTα], (6)

where T is half of the trace norm distance of ρ and σ.

In proving the Theorem, for simplicity, we denote Sα(ρ) := (1−α)Tα(ρ) = [Tr(ρα)− 1]. Hence

in stead of (6), we prove the following inequality,

|Sα(ρ)− Sα(σ)| ≤ 1− (1− T )α − (d− 1)1−αTα. (7)
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Let λi, i = 1, 2, ..., d, be the eigenvalues of ρ. One has Sα(ρ) =
∑
i

[(λi)
α − λi] :=

∑
i

Sα(λi),

where Sα(λi) := [(λi)
α − λi]. First we show that for any probability vectors p = (pi) and q = (qi),

the following inequality holds:

|Sα(p)− Sα(q)| ≤ 1− (1− T )α − (d− 1)1−αTα, (8)

where T = 1
2

d∑
i=1

|pi − qi|, Sα(p) =
∑
i

[(pi)
α − pi] =

∑
i

Sα(pi), Sα(q) =
∑
i

[(qi)
α − qi] =

∑
i

Sα(qi),

pi ≥ 0, qi ≥ 0 and
∑
i

pi =
∑
i

qi = 1.

Let q = p+ δ+− δ−, where δ+ = (δ+i ) and δ− = (δ−i ) are two vectors such that δ+i ≥ 0, δ−i ≥ 0,

i = 1, 2, ..., d, δ+ · δ− = 0,
∑

i δ
+
i = T .

(I) For α < 1, Sα(p) is concave. Hence Sα(p + δ+ − δ−) − Sα(p) is a concave function of δ+.

And it will get its minimum at a certain point, say, δ+ = e1 = (1, 0, · · · , 0)T .

Set p = (p1, (1 − p1)r), q = (p1 + T, (1 − p1)r − Ts), where r and s are d − 1 dimensional

probability vectors such that p1 + T ≤ 1, (1− p1)r − Ts ≥ 0 and Ts = δ−. We have

Sα(q)− Sα(p) = Sα(p1 + T )− Sα(p1) + Sα((1− p1)r − Ts)− Sα((1− p1)r).

Denote (1− p1)r − Ts = (1− p1 − T )η. Then

Sα((1− p1)r − Ts)− Sα((1− p1)r) = Sα((1− p1 − T )η)− Sα((1− p1 − T )η + Ts). (9)

Since Sα(x) − Sα(x + y) is concave and a monotonously increasing function of x, the right hand

side of (9) gets its minimum at certain point of η, say, η = e1 = (1, 0, · · · , 0, 1)T is a d dimensional

vector whose first entry is 1 and other entries are 0.

Let s = (s1, (1− s1)ϕ) with ϕ a d− 2 dimensional probability vector. We have

Sα((1−p1−T )η)−Sα((1−p1−T )η+Ts) = Sα(1−p1−T )−Sα(1−p1−T (1−s1))−Sα(T (1−s1)ϕ) , ∆.

As Sα(T (1 − s1)ϕ) gets its maximum when ϕ = (1, 1, · · · , 1)/(d − 2) is the uniform distribution,

∆ has the minimum,

∆ = Sα(1− p1 − T )− Sα(1− p1 − T (1− s1))− (d− 2)1−α(T (1− s1))
α + T (1− s1).

From
∂∆

∂s1
= −Tα[(1− p1 − T (1− s1))

α−1 − (d− 2)1−α(T (1− s1))
1−α] = 0,
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we get

T (1− s1) =
(1− p1)(d− 2)

(d− 1)
≡ ω. (10)

From (10) we see that for 0 < T < ω, there is no local minimum of ∆. For T (1− s1) = T , i.e.

s1 = 0, ∆ has a minimum, −(d− 2)(1−α)Tα + T . When ω ≤ T ≤ 1− p1, (10) can be satisfied and

∆ gets it minimum (1− p1 − T )α + T − (1− p1)
α/(d− 1)α−1.

Therefore when 0 < T < ω, Sα(q)−Sα(p) gets its minimum Sα(p1+T )−Sα(p1)−(d−2)1−αTα+

T . Moreover, due to that Sα(p1 + T )− Sα(p1) is decreasing function of p1, when p1 = 1− (d−1)T
d−2

,

Sα(q)− Sα(p) gets its minimum (1− T
d−2

)α − (1− (d−1)T
d−2

)α − (d− 2)1−αTα.

When ω ≤ T < 1− p1, Sα(q)− Sα(p) gets its minimum

−Sα(p1) + Sα(p1 + T ) + (1− p1 − T )α − (1− p1)
α

(d− 1)α−1
+ T.

The derivative of the above formula with respect to p1 is less than zero. Hence when p1 = 1− T ,

Sα(q)− Sα(p) gets its minimum 1− (1− T )α − (d− 1)1−αTα.

Since Sα(x)−Sα(x−T ) is a decreasing function of x, and 1 > 1− T
d−2

, 1−(1−T )α ≤ (1− T
d−2

)α−

(1− (d−1)T
d−2

)α. Therefore 1− (1− T )α − (d− 1)1−αTα ≤ (1− T
d−2

)α − (1− (d−1)T
d−2

)α − (d− 2)1−αTα.

1− (1− T )α − (d− 1)1−αTα is minimum of Sα(q)− Sα(p).

(II) When 1 ≤ α < 2, Sα(p)− Sα(q) = Sα(p)− Sα(p+ δ+ − δ−) is concave with respect to δ+.

Take δ+ = e1 = (1, 0, · · · , 0, 1)T . We have

Sα(p)− Sα(q) = Sα(p1)− Sα(p1 + T ) + Sα((1− p1)r)− Sα((1− p1)r − Ts),

in which

Sα((1− p1)r)− Sα((1− p1)r − Ts) = Sα((1− p1 − T )η + Ts)− Sα((1− p1 − T )η).

Since Sα(x+ y)− Sα(x) is concave for α < 2, Sα((1− p1 − T )η + Ts)− Sα((1− p1 − T )η) gets its

minimum at η = e1 = (1, 0, · · · , 0, 0)T .

Let s = (s1, (1− s1)ϕ) with ϕ a d− 2 dimensional probability vector. We get

Sα((1−p1−T )η+Ts)−Sα((1−p1−T )η) = Sα(1−p1−T (1−s1))+Sα(T (1−s1)ϕ)−Sα(1−p1−T ) , ∆.

When ϕ = (1, 1, · · · , 1)/(d − 2), Sα(T (1 − s1)ϕ) gets its minimum, and ∆ gets its minimum,

∆ = Sα(1− p1 − T (1− s1))− Sα(1− p1 − T ) + (d− 2)1−α(T (1− s1))
α − T (1− s1). From

∂∆
∂s1

= 0,

we have the formula (10) again.
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∆ has no local minimum for 0 < T < ω. For T (1−s1) = T , ∆ has a minimum (d−2)(1−α)Tα−T .

For ω ≤ T ≤ 1 − p1, at T (1 − s1) = ω, ∆ gets it minimum (1−p1)α

(d−1)α−1 − (1 − p1 − T )α − T .

Correspondingly, when 0 < T < ω, Sα(p) − Sα(q) gets its minimum, Sα(p1) − Sα(p1 + T ) +

(d − 2)1−αTα − T , which takes the minimum value (1 − (d−1)T
d−2

)α − (1 − T
d−2

)α + (d − 2)1−αTα at

p1 = 1 − (d−1)T
d−2

. When ω ≤ T < 1 − p1, Sα(q) − Sα(p) gets its minimum Sα(p1) − Sα(p1 + T ) −

(1− p1 − T )α − T + (1−p1)α

(d−1)α−1 = (1− T )α + (d− 1)1−αTα − 1 at p1 = 1− T . Therefore

(1− T )α + (d− 1)1−αTα − 1 < (1− (d− 1)T

d− 2
)α − (1− T

d− 2
)α + (d− 2)1−αTα

and (6) is valid.

(III) When α ≥ 2, Sα((1 − p1)r) − Sα((1 − p1)r − Ts) is concave with respect to s. Hence

Sα((1 − p1)r) − Sα((1 − p1)r − Ts) gets its minimum in one of the extreme points of s, say,

s = e1 = (1, 0, · · · , 0).

Let r = (r1, (1− r1)ϕ) with ϕ a d− 2 dimensional probability vector. Then

Sα((1− p1)r)− Sα((1− p1)r − Ts) = Sα((1− p1)r1)− Sα((1− p1)r1 − T ) , ∇.

Since
∂∇
∂r1

= α(1− p1)
αrα−1

1 − α(1− p1)((1− p1)r1 − T )α−1 > 0,

when (1 − p1)r1 = T , ∇ has the minimum Tα. Therefore Sα(p) − Sα(q) takes its minimum

pα1 − (p1 + T )α + Tα. Because pα1 − (p1 + T )α + Tα decreases as p1 decreases, Sα(p)− Sα(q) takes

its minimum Tα + (1− T )α − 1 at p1 = 1− T .

We have proved the inequality (8), namely the inequality (7) for the case that both states ρ

and σ are diagonal ones. For general ρ and σ, the inequality can be directly proved accounting to

the fact that the Tsallis entropy is unitary invariant [11].

We have investigated the continuity estimation of the Tsallis entropy, by presenting an inequal-

ity which relates the Tsallis entropy difference of two quantum states to their trace norm distance.

In our inequality, equality can be attained for every prescribed value of the trace norm distance.

It is direct to verify that for α → 1, our inequality (6) gives rise to the the sharp Fannes inequality

for von Neumann entropy. Our inequality also solves the problem of the continuity estimation of

linear entropy (α = 2).
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