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Monogamy relations characterize the distributions of entanglement in multipartite systems. We
investigate monogamy relations related to the concurrence C and the entanglement of formation E.
We present new entanglement monogamy relations satisfied by the α-th power of concurrence for
all α ≥ 2, and the α-th power of the entanglement of formation for all α ≥

√
2. These monogamy

relations are shown to be tighter than the existing ones.

PACS numbers:

I. INTRODUCTION

Quantum entanglement [1] is an essential feature of
quantum mechanics. As one of the fundamental differ-
ences between quantum entanglement and classical corre-
lations, a key property of entanglement is that a quantum
system entangled with one of other subsystems limits its
entanglement with the remaining ones. The monogamy
relations give rise to the distribution of entanglement in
the multipartite setting. Monogamy is also an essential
feature allowing for security in quantum key distribution
[2].
For a tripartite system A, B and C, the usual

monogamy of an entanglement measure E implies that [3]
the entanglement between A and BC satisfies EA|BC ≥
EAB + EAC . Such monogamy relations are not always
satisfied by all entanglement measures for all quantum
states. It has been shown that the squared concurrence
C2 [4, 5] and the squared entanglement of formation
E2 [6] satisfy the monogamy relations for multi-qubit
states. It is further proved that [8] Cα and Eα satis-

fy the monogamy inequalities for α ≥ 2 and α ≥
√
2,

respectively.
In this paper, we show that the monogamy inequali-

ties obtained so far can be made tighter. We establish
entanglement monogamy relations for the α-th power of
the concurrence C and the entanglement of formation E
which are tighter than those in [8], which give rise to
finer characterizations of the entanglement distributions
among the multipartite qubit states.

II. TIGHTER MONOGAMY RELATION OF
CONCURRENCE

We first consider the monogamy inequalities related to
concurrence. Let HX denote a discrete finite dimensional
complex vector space associated with a quantum subsys-
tem X. For a bipartite pure state |ψ⟩AB in vector space
HA ⊗HB , the concurrence is given by [7, 9, 10]

C(|ψ⟩AB) =
√
2 [1− Tr(ρ2A)], (1)

where ρA is the reduced density matrix by tracing over
the subsystem B, ρA = TrB(|ψ⟩AB⟨ψ|). The concurrence

for a bipartite mixed state ρAB is defined by the convex
roof extension

C(ρAB) = min
{pi,|ψi⟩}

∑
i

piC(|ψi⟩),

where the minimum is taken over all possible decomposi-
tions of ρAB =

∑
i pi|ψi⟩⟨ψi|, with pi ≥ 0 and

∑
i pi = 1

and |ψi⟩ ∈ HA ⊗HB .
For an N -qubit pure state |ψ⟩AB1···BN−1 ∈ HA ⊗

HB1 ⊗ · · · ⊗ HBN−1
, the concurrence C(|ψ⟩A|B1···BN−1

)
of the state |ψ⟩A|B1···BN−1

, viewed as a bipartite state
under the partitions A and B1, B2, · · · , BN−1, satisfies
the Coffman-Kundu-Wootters (CKW) inequality [4, 5],

C2
A|B1,B2··· ,BN−1

≥ C2
A|B1

+C2
A|B2

+ · · ·+C2
A|BN−1

, (2)

where CABi = C(ρABi) is the concurrence of
ρABi

= TrB1···Bi−1Bi+1···BN−1
(|ψ⟩AB1···BN−1

⟨ψ|),
CA|B1,B2··· ,BN−1

= C(|ψ⟩A|B1···BN−1
). It is further

proved that for α ≥ 2, one has [8],

CαA|B1,B2··· ,BN−1
≥ CαA|B1

+CαA|B2
+ · · ·+CαA|BN−1

. (3)

In fact, as the characterization of the entanglement
distribution among the subsystems, the monogamy in-
equalities satisfied by the concurrence can be refined and
becomes tighter. Before finding tighter monogamy rela-
tions of concurrence, we first introduce a Lemma.

[Lemma]. For any 2⊗2⊗2n−2 mixed state ρ ∈ HA⊗
HB ⊗HC , if CAB ≥ CAC , we have

CαA|BC ≥ CαAB +
α

2
CαAC , (4)

for all α ≥ 2.
[Proof]. For arbitrary 2⊗2⊗2n−2 tripartite state ρABC ,

one has [4, 11], C2
A|BC ≥ C2

AB+C2
AC . If CAB ≥ CAC , we

have

CαA|BC ≥ (C2
AB + C2

AC)
α
2 = CαAB

(
1 +

C2
AC

C2
AB

)α
2

≥ CαAB

[
1 +

α

2

(
C2
AC

C2
AB

)α
2

]
= CαAB +

α

2
CαAC ,

where the second inequality is due to the inequality (1+
t)x ≥ 1 + xt ≥ 1 + xtx for x ≥ 1, 0 ≤ t ≤ 1.
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In the Lemma, without loss of generality, we have as-
sumed that CAB ≥ CAC , since the subsystems A and B
are equivalent. Moreover, in the proof of the Lemma we
have assumed CAB > 0. If CAB = 0 and CAB ≥ CAC ,
then CAB = CAC = 0. The lower bound is trivially ze-
ro. For multipartite qubit systems, we have the following
Theorem.
[Theorem 1]. For any 2 ⊗ 2 ⊗ · · · ⊗ 2 mixed state

ρ ∈ HA ⊗HB1 ⊗ · · · ⊗HBN−1
, if CABi ≥ CA|Bi+1···BN−1

for i = 1, 2, · · · ,m, and CABj ≤ CA|Bj+1···BN−1
for j =

m+ 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, we have

CαA|B1B2···BN−1
≥ CαA|B1

+
α

2
CαA|B2

+ · · ·+
(α
2

)m−1

CαA|Bm

+
(α
2

)m+1

(CαA|Bm+1
+ · · ·+ CαA|BN−2

)

+
(α
2

)m
CαA|BN−1

(5)

for all α ≥ 2.
[Proof]. By using the inequality (4) repeatedly, one

gets

CαA|B1B2···BN−1
≥ CαA|B1

+
α

2
CαA|B2···BN−1

≥ CαA|B1
+
α

2
CαA|B2

+
(α
2

)2
CαA|B3···BN−1

≥ · · · ≥ CαA|B1
+
α

2
CαA|B2

+ · · ·+
(α
2

)m−1

CαA|Bm

+
(α
2

)m
CαA|Bm+1···BN−1

.

(6)
As CABj ≤ CA|Bj+1···BN−1

for j = m+ 1, · · · , N − 2, by
(4) we get

CαA|Bm+1···BN−1
≥ α

2
CαA|Bm+1

+ CαA|Bm+2···BN−1

≥ α

2
(CαA|Bm+1

+ · · ·+ CαA|BN−2)
+ CαA|BN−1

. (7)

Combining (6) and (7), we have Theorem 1.

As for α ≥ 2, (α/2)m ≥ 1 for all 1 ≤ m ≤ N − 3,
comparing with the monogamy relation (3), our formu-
la (5) in Theorem 1 gives a tighter monogamy rela-
tion with larger lower bounds. In Theorem 1 we have
assumed that some CABi ≥ CA|Bi+1···BN−1

and some
CABj ≤ CA|Bj+1···BN−1

for the 2⊗2⊗· · ·⊗2 mixed state
ρ ∈ HA⊗HB1⊗· · ·⊗HBN−1 . If all CABi ≥ CA|Bi+1···BN−1

for i = 1, 2, · · · , N − 2, then we have the following con-
clusion:
[Theorem 2]. If CABi ≥ CA|Bi+1···BN−1

for all i =
1, 2, · · · , N − 2, then we have

CαA|B1···BN−1
≥ CαA|B1

+
α

2
CαA|B2

+· · ·+
(α
2

)N−2

CαA|BN−1
.

(8)
Example 1. Let us consider the three-qubit state |ψ⟩

which can be written in the generalized Schmidt decom-

2 3 4 5 6
Α

0.05

0.10

0.15

0.20

0.25

y

FIG. 1: y is the “residual” entanglement as a function of α:
solid (red) line y1 from our result, dashed (blue) line y2 from
the result in [8].

position form [19, 20],

|ψ⟩ = λ0|000⟩+λ1eiφ|100⟩+λ2|101⟩+λ3|110⟩+λ4|111⟩,
(9)

where λi ≥ 0, i = 0, · · · , 4 and
∑4
i=0 λ

2
i = 1.

From the definition of concurrence, we have CA|BC =

2λ0
√
λ22 + λ23 + λ24, CA|B = 2λ0λ2, and CA|C = 2λ0λ3.

Set λ0 = λ1 = λ2 = λ3 = λ4 =
√
5
5 . One gets

CαA|BC = ( 2
√
3

5 )α, CαA|B+C
α
A|C = 2( 25 )

α, CαA|B+
α
2C

α
A|C =(

1 + α
2

)
( 25 )

α. The “residual” entanglement from our re-

sult is given by y1 = CαA|BC −CαA|B− α
2C

α
A|C = ( 2

√
3

5 )α−(
1 + α

2

)
( 25 )

α and the “residual” entanglement from (3)

is given by y2 = CαA|BC−CαA|B−CαA|C = ( 2
√
3

5 )α−2( 25 )
α.

One can see that our result is better than that in [8] for
α ≥ 2, see Figure 1.

We can also derive a tighter upper bound of
CαA|B1B2···BN−1

for α < 0.

[Theorem 3]. For any 2⊗ 2⊗ · · · ⊗ 2 mixed state ρ ∈
HA⊗HB1⊗· · ·⊗HBN−1 with CABi ̸= 0, i = 1, 2, · · · , N−
1, we have

CαA|B1B2···BN−1
< M̃(CαA|B1

+ CαA|B2
+ · · ·+ CαA|BN−1

)

(10)

for all α < 0, where M̃ = 1
N−1 .

[Proof]. Similar to the proof of Theorem 1, for arbi-
trary tripartite state we have

CαA|B1B2
≤ (C2

AB1
+ C2

AB2
)

α
2

= CαAB1

(
1 +

C2
AB2

C2
AB1

)α
2

< CαAB1
,

(11)

where the first inequality is due to α < 0 and the second

inequality is due to (1+
C2

AB2

C2
AB1

)
α
2 < 1. On the other hand,

we have

CαA|B1B2
≤ (C2

AB1
+ C2

AB2
)

α
2

= CαAB2

(
1 +

C2
AB1

C2
AB2

)α
2

< CαAB2
.

(12)
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FIG. 2: y is the “residual” entanglement as a function of α:
red line (solid line) from our Theorem 2; blue line (dashed
line ) from the result in [8].

From (11) and (12) we obtain

CαA|B1B2
<

1

2
(CαAB1

+ CαAB2
). (13)

By using the inequality (13) repeatedly, one gets

CαA|B1B2···BN−1
<

1

2
(CαA|B1

+ CαA|B2···BN−1
)

<
1

2
CαA|B1

+

(
1

2

)2

CαA|B2
+

(
1

2

)2

CαA|B3···BN−1

< · · · < 1

2
CαA|B1

+

(
1

2

)2

CαA|B2
+ · · ·

+

(
1

2

)N−2

CαA|BN−2
+

(
1

2

)N−2

CαA|BN−1
.

(14)
By cyclically permuting the sub-indices
B1, B2, · · · , BN−1 in (14) we can get a set of in-
equalities. Summing up these inequalities we have
(10).

As the factor M̃ = 1
N−1 is less than one, the inequality

(10) is tighter than the one in [8]. This factor M̃ depends
on the number of partite N . Namely, for larger multi-
partite systems, the inequality (10) gets even tighter than
the one in [8].
Example 2. Let us consider again the three-qubit s-

tate (9). In this case, we have N = 3 and M̃ =
1/2. Taking the same parameters used in Example

1, we have CαA|BC = ( 2
√
3

5 )α, CαA|B + CαA|C = 2( 25 )
α,

M̃(CαA|B + CαA|C) = ( 25 )
α. Comparing the function of

y1 = CαA|BC − M̃CαA|B − M̃CαA|C = ( 2
√
3

5 )α − ( 25 )
α with

y2 = CαA|BC − CαA|B − CαA|C = ( 2
√
3

5 )α − 2( 25 )
α, one can

see that our result is better than the one from [8], see
Figure 2.
[Remark] In (10) we have assumed that all CABi ,

i = 1, 2, · · · , N − 1, are nonzero. In fact, if one of them
is zero, the inequality still holds if one removes this ter-
m from the inequality. Namely, if CABi = 0, then one

has CαA|B1B2···BN−1
< 1

2C
α
A|B1

+ · · · +
(
1
2

)i−1
CαA|Bi−1

+(
1
2

)i
CαA|Bi+1

+ · · ·+
(
1
2

)N−3
CαA|BN−2

+
(
1
2

)N−3
CαA|BN−1

.

Similar to the analysis in proving Theorem 2, one gets
CαA|B1B2···BN−1

< 1
N−1 (C

α
A|B1

+ · · ·+CαA|Bi−1
+CαA|Bi+1

+

· · ·+ CαA|BN−1
), for α < 0.

III. TIGHTER MONOGAMY INEQUALITY
FOR EOF

The entanglement of formation (EoF) [12, 13] is a well
defined important measure of entanglement for bipartite
systems. Let HA and HB be m and n dimensional (m ≤
n) vector spaces, respectively. The EoF of a pure state
|ψ⟩ ∈ HA ⊗HB is defined by

E(|ψ⟩) = S(ρA), (15)

where ρA = TrB(|ψ⟩⟨ψ|) and S(ρ) = −Tr(ρ log2 ρ). For a
bipartite mixed state ρAB ∈ HA⊗HB , the entanglement
of formation is given by

E(ρAB) = min
{pi,|ψi⟩}

∑
i

piE(|ψi⟩) (16)

with the minimum taking over all possible decompo-
sitions of ρAB in a mixture of pure states ρAB =∑
i pi|ψi⟩⟨ψi|, where pi ≥ 0 and

∑
i pi = 1.

Denote f(x) = H
(

1+
√
1−x
2

)
, where H(x) =

−x log2(x) − (1 − x) log2(1 − x). From (15) and (16),
one has E(|ψ⟩) = f

(
C2(|ψ⟩)

)
for 2⊗m (m ≥ 2) pure s-

tate |ψ⟩, and E(ρ) = f
(
C2(ρ)

)
for two-qubit mixed state

ρ [16]. It is obvious that f(x) is a monotonically increas-
ing function for 0 ≤ x ≤ 1. f(x) satisfies the following
relations:

f
√
2(x2 + y2) ≥ f

√
2(x2) + f

√
2(y2), (17)

where f
√
2(x2 + y2) = [f(x2 + y2)]

√
2.

It has been show that the entanglement of formation
does not satisfy the inequality EAB + EAC ≤ EA|BC
[17]. In [18] the authors showed that EoF is a monotonic

function E2(C2
A|B1B2···BN−1

) ≥ E2(
∑N−1
i=1 C2

ABi
). It is

further proved that for N−qubit systems, one has [8]

EαA|B1B2···BN−1
≥ EαA|B1

+ EαA|B2
+ · · ·+ EαA|BN−1

(18)

for α ≥
√
2, where EA|B1B2···BN−1

is the entanglement of
formation of ρ in bipartite partition A|B1B2 · · ·BN−1,
and EABi , i = 1, 2, · · · , N − 1, is the entangle-
ment of formation of the mixed states ρABi =
TrB1B2···Bi−1,Bi+1···BN−1(ρ). In fact, generally we can
prove the following results.

[Theorem 4]. For any N-qubit mixed state ρ ∈ HA⊗
HB1 ⊗ · · · ⊗ HBN−1 , if CABi ≥ CA|Bi+1···BN−1

for i =
1, 2, · · · ,m, and CABj ≤ CA|Bj+1···BN−1

for j = m +
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1, · · · , N−2, ∀ 1 ≤ m ≤ N−3, N ≥ 4, the entanglement
of formation E(ρ) satisfies

EαA|B1B2···BN−1
≥ EαA|B1

+ tEαA|B2
· · ·+ tm−1EαA|Bm

+tm+1(EαA|Bm+1
+ · · ·+ EαA|BN−2

)

+tmEαA|BN−1
, (19)

for α ≥
√
2, where t = α/

√
2.

[Proof]. For α ≥
√
2, we have

fα(x2 + y2) =
(
f
√
2(x2 + y2)

)t
≥
(
f
√
2(x2) + f

√
2(y2)

)t
(20)

≥
(
f
√
2(x2)

)t
+ t
(
f
√
2(y2)

)t
= fα(x2) + tfα(y2),

where the first inequality is due to the inequality (17),
and the second inequality is obtained from a similar con-
sideration in the proof of the second inequality in (4).
Let ρ =

∑
i pi|ψi⟩⟨ψi| ∈ HA ⊗HB1 ⊗ · · · ⊗HBN−1 be

the optimal decomposition of EA|B1B2···BN−1
(ρ) for the

N-qubit mixed state ρ, we have

EA|B1B2···BN−1
(ρ)

=
∑
i

piEA|B1B2···BN−1
(|ψi⟩)

=
∑
i

pif
(
C2
A|B1B2···BN−1

(|ψi⟩)
)

≥ f

(∑
i

piC
2
A|B1B2···BN−1

(|ψi⟩)

)

≥ f

[∑
i

piCA|B1B2···BN−1
(|ψi⟩)

]2
≥ f

(
C2
A|B1B2···BN−1

(ρ)
)
,

where the first inequality is due to that f(x) is a convex
function. The second inequality is due to the Cauchy-
Schwarz inequality: (

∑
i x

2
i )

1
2 (
∑
i y

2
i )

1
2 ≥

∑
i xiyi, with

xi =
√
pi and yi =

√
piCA|B1B2···BN−1

(|ψi⟩). Due to the
definition of concurrence and that f(x) is a monotoni-
cally increasing function, we obtain the third inequality.
Therefore, we have

EαA|B1B2···BN−1
(ρ)

≥ fα(C2
AB1

+ C2
AB2

+ · · ·+ C2
ABm−1

)

≥ fα(C2
A|B1

) + tfα(C2
A|B2

) · · ·+ tm−1fα(C2
A|Bm

)

+ tm+1
(
fα(C2

A|Bm+1
) + · · ·+ fα(C2

A|BN−2
)
)

+ tmfα(C2
A|BN−1

)

= EαA|B1
+ tEαA|B2

· · ·+ tm−1EαA|Bm

+ tm+1(EαA|Bm+1
+ · · ·+ EαA|BN−2

) + tmEαA|BN−1
,
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FIG. 3: y is the residual entanglement as a function of α: red
(solid) line from our results; blue (dashed) line from the result
in [8].

where we have used the monogamy inequality in (2) for
N−qubit states ρ to obtain the first inequality. By using
(20) and the similar consideration in the proof of Theo-
rem 1, we get the second inequality. Since for any 2⊗ 2
quantum state ρABi , E(ρABi) = f

[
C2(ρABi)

]
, one gets

the last equality.

As the factor t = α/
√
2 is greater or equal to one

for α ≥
√
2, (19) is obviously tighter than (18). More-

over, similar to the concurrence, for the case that CABi ≥
CA|Bi+1···BN−1

for all i = 1, 2, · · · , N − 2, we have a sim-
ple tighter monogamy relation for entanglement of for-
mation:

[Theorem 5]. If CABi ≥ CA|Bi+1···BN−1
for all i =

1, 2, · · · , N − 2, we have

EαA|B1B2···BN−1
≥ EαA|B1

+
α√
2
EαA|B2

+ · · ·

+

(
α√
2

)N−2

EαA|BN−1

(21)

for α ≥
√
2.

Example 3. Let us consider the W state, |W ⟩ =
1√
3
(|100⟩+ |010⟩+ |001⟩). We have EAB = EAC = 0.55,

EA|BC = 0.92. Let y1 = EαA|BC−EαA|B− α√
2
EαA|C denote

the residual entanglement from our formula (21), and
y2 = EαA|BC − EαA|B − EαA|C the residual entanglement

from formula (18). It is easily verified that our results is

better than the one in [8] for α ≥
√
2, see Figure 3.

IV. CONCLUSION

Entanglement monogamy is a fundamental property of
multipartite entangled states. We have investigated the
monogamy relations related to the concurrence and EoF,
and presented tighter entanglement monogamy relation-
s of Cα and Eα for α ≥ 2 and α ≥

√
2, respectively.

Monogamy relations characterize the distributions of en-
tanglement in multipartite systems. Tighter monogamy
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relations imply finer characterizations of the entangle-
ment distribution. Our approach may be also used to
study further the monogamy properties related to other
quantum entanglement measures such as negativity and
quantum correlations such as quantum discord.
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