Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Tighter entanglement monogamy relations of qubit systems
by
Zhi-Xiang Jin and Shao-Ming Fei

Tighter entanglement monogamy relations of qubit systems

Zhi-Xiang Jin ${ }^{1}$ and Shao-Ming Fei ${ }^{1,2}$
${ }^{1}$ School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
${ }^{2}$ Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

Abstract

Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate monogamy relations related to the concurrence C and the entanglement of formation E. We present new entanglement monogamy relations satisfied by the α-th power of concurrence for all $\alpha \geq 2$, and the α-th power of the entanglement of formation for all $\alpha \geq \sqrt{2}$. These monogamy relations are shown to be tighter than the existing ones.

PACS numbers:

I. INTRODUCTION

Quantum entanglement [1] is an essential feature of quantum mechanics. As one of the fundamental differences between quantum entanglement and classical correlations, a key property of entanglement is that a quantum system entangled with one of other subsystems limits its entanglement with the remaining ones. The monogamy relations give rise to the distribution of entanglement in the multipartite setting. Monogamy is also an essential feature allowing for security in quantum key distribution [2].

For a tripartite system A, B and C, the usual monogamy of an entanglement measure \mathcal{E} implies that [3] the entanglement between A and $B C$ satisfies $\mathcal{E}_{A \mid B C} \geq$ $\mathcal{E}_{A B}+\mathcal{E}_{A C}$. Such monogamy relations are not always satisfied by all entanglement measures for all quantum states. It has been shown that the squared concurrence $C^{2}[4,5]$ and the squared entanglement of formation E^{2} [6] satisfy the monogamy relations for multi-qubit states. It is further proved that [8] C^{α} and E^{α} satisfy the monogamy inequalities for $\alpha \geq 2$ and $\alpha \geq \sqrt{2}$, respectively.

In this paper, we show that the monogamy inequalities obtained so far can be made tighter. We establish entanglement monogamy relations for the α-th power of the concurrence C and the entanglement of formation E which are tighter than those in [8], which give rise to finer characterizations of the entanglement distributions among the multipartite qubit states.

II. TIGHTER MONOGAMY RELATION OF CONCURRENCE

We first consider the monogamy inequalities related to concurrence. Let H_{X} denote a discrete finite dimensional complex vector space associated with a quantum subsystem X. For a bipartite pure state $|\psi\rangle_{A B}$ in vector space $H_{A} \otimes H_{B}$, the concurrence is given by $[7,9,10]$

$$
\begin{equation*}
C\left(|\psi\rangle_{A B}\right)=\sqrt{2\left[1-\operatorname{Tr}\left(\rho_{A}^{2}\right)\right]}, \tag{1}
\end{equation*}
$$

where ρ_{A} is the reduced density matrix by tracing over the subsystem $B, \rho_{A}=\operatorname{Tr}_{B}\left(|\psi\rangle_{A B}\langle\psi|\right)$. The concurrence
for a bipartite mixed state $\rho_{A B}$ is defined by the convex roof extension

$$
C\left(\rho_{A B}\right)=\min _{\left\{p_{i},\left|\psi_{i}\right\rangle\right\}} \sum_{i} p_{i} C\left(\left|\psi_{i}\right\rangle\right),
$$

where the minimum is taken over all possible decompositions of $\rho_{A B}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, with $p_{i} \geq 0$ and $\sum_{i} p_{i}=1$ and $\left|\psi_{i}\right\rangle \in H_{A} \otimes H_{B}$.
For an N-qubit pure state $|\psi\rangle_{A B_{1} \cdots B_{N-1}} \in H_{A} \otimes$ $H_{B_{1}} \otimes \cdots \otimes H_{B_{N-1}}$, the concurrence $C\left(|\psi\rangle_{A \mid B_{1} \cdots B_{N-1}}\right)$ of the state $|\psi\rangle_{A \mid B_{1} \cdots B_{N-1}}$, viewed as a bipartite state under the partitions A and $B_{1}, B_{2}, \cdots, B_{N-1}$, satisfies the Coffman-Kundu-Wootters (CKW) inequality [4, 5],

$$
\begin{equation*}
C_{A \mid B_{1}, B_{2} \cdots, B_{N-1}}^{2} \geq C_{A \mid B_{1}}^{2}+C_{A \mid B_{2}}^{2}+\cdots+C_{A \mid B_{N-1}}^{2}, \tag{2}
\end{equation*}
$$

where $C_{A B_{i}}=C\left(\rho_{A B_{i}}\right)$ is the concurrence of $\rho_{A B_{i}}=\operatorname{Tr}_{B_{1} \cdots B_{i-1} B_{i+1} \cdots B_{N-1}}\left(|\psi\rangle_{A B_{1} \cdots B_{N-1}}\langle\psi|\right)$, $C_{A \mid B_{1}, B_{2} \cdots, B_{N-1}}=C\left(|\psi\rangle_{A \mid B_{1} \cdots B_{N-1}}\right)$. It is further proved that for $\alpha \geq 2$, one has [8],

$$
\begin{equation*}
C_{A \mid B_{1}, B_{2} \cdots, B_{N-1}}^{\alpha} \geq C_{A \mid B_{1}}^{\alpha}+C_{A \mid B_{2}}^{\alpha}+\cdots+C_{A \mid B_{N-1}}^{\alpha} . \tag{3}
\end{equation*}
$$

In fact, as the characterization of the entanglement distribution among the subsystems, the monogamy inequalities satisfied by the concurrence can be refined and becomes tighter. Before finding tighter monogamy relations of concurrence, we first introduce a Lemma.
[Lemma]. For any $2 \otimes 2 \otimes 2^{n-2}$ mixed state $\rho \in H_{A} \otimes$ $H_{B} \otimes H_{C}$, if $C_{A B} \geq C_{A C}$, we have

$$
\begin{equation*}
C_{A \mid B C}^{\alpha} \geq C_{A B}^{\alpha}+\frac{\alpha}{2} C_{A C}^{\alpha} \tag{4}
\end{equation*}
$$

for all $\alpha \geq 2$.
[Proof]. For arbitrary $2 \otimes 2 \otimes 2^{n-2}$ tripartite state $\rho_{A B C}$, one has $[4,11], C_{A \mid B C}^{2} \geq C_{A B}^{2}+C_{A C}^{2}$. If $C_{A B} \geq C_{A C}$, we have

$$
\begin{aligned}
C_{A \mid B C}^{\alpha} & \geq\left(C_{A B}^{2}+C_{A C}^{2}\right)^{\frac{\alpha}{2}}=C_{A B}^{\alpha}\left(1+\frac{C_{A C}^{2}}{C_{A B}^{2}}\right)^{\frac{\alpha}{2}} \\
& \geq C_{A B}^{\alpha}\left[1+\frac{\alpha}{2}\left(\frac{C_{A C}^{2}}{C_{A B}^{2}}\right)^{\frac{\alpha}{2}}\right]=C_{A B}^{\alpha}+\frac{\alpha}{2} C_{A C}^{\alpha}
\end{aligned}
$$

where the second inequality is due to the inequality ($1+$ $t)^{x} \geq 1+x t \geq 1+x t^{x}$ for $x \geq 1,0 \leq t \leq 1$.

In the Lemma, without loss of generality, we have assumed that $C_{A B} \geq C_{A C}$, since the subsystems A and B are equivalent. Moreover, in the proof of the Lemma we have assumed $C_{A B}>0$. If $C_{A B}=0$ and $C_{A B} \geq C_{A C}$, then $C_{A B}=C_{A C}=0$. The lower bound is trivially zero. For multipartite qubit systems, we have the following Theorem.
[Theorem 1]. For any $2 \otimes 2 \otimes \cdots \otimes 2$ mixed state $\rho \in H_{A} \otimes H_{B_{1}} \otimes \cdots \otimes H_{B_{N-1}}$, if $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for $i=1,2, \cdots, m$, and $C_{A B_{j}} \leq C_{A \mid B_{j+1} \cdots B_{N-1}}$ for $j=$ $m+1, \cdots, N-2, \forall 1 \leq m \leq N-3, N \geq 4$, we have

$$
\begin{align*}
& C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq C_{A \mid B_{1}}^{\alpha} \\
& \quad+\frac{\alpha}{2} C_{A \mid B_{2}}^{\alpha}+\cdots+\left(\frac{\alpha}{2}\right)^{m-1} C_{A \mid B_{m}}^{\alpha} \\
& \quad+\left(\frac{\alpha}{2}\right)^{m+1}\left(C_{A \mid B_{m+1}}^{\alpha}+\cdots+C_{A \mid B_{N-2}}^{\alpha}\right) \tag{5}\\
& \quad+\left(\frac{\alpha}{2}\right)^{m} C_{A \mid B_{N-1}}^{\alpha}
\end{align*}
$$

for all $\alpha \geq 2$.
[Proof]. By using the inequality (4) repeatedly, one gets

$$
\begin{align*}
& C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq C_{A \mid B_{1}}^{\alpha}+\frac{\alpha}{2} C_{A \mid B_{2} \cdots B_{N-1}}^{\alpha} \\
& \quad \geq C_{A \mid B_{1}}^{\alpha}+\frac{\alpha}{2} C_{A \mid B_{2}}^{\alpha}+\left(\frac{\alpha}{2}\right)^{2} C_{A \mid B_{3} \cdots B_{N-1}}^{\alpha} \\
& \quad \geq \cdots \geq C_{A \mid B_{1}}^{\alpha}+\frac{\alpha}{2} C_{A \mid B_{2}}^{\alpha}+\cdots+\left(\frac{\alpha}{2}\right)^{m-1} C_{A \mid B_{m}}^{\alpha} \\
& \quad+\left(\frac{\alpha}{2}\right)^{m} C_{A \mid B_{m+1} \cdots B_{N-1}}^{\alpha} . \tag{6}
\end{align*}
$$

As $C_{A B_{j}} \leq C_{A \mid B_{j+1} \cdots B_{N-1}}$ for $j=m+1, \cdots, N-2$, by (4) we get

$$
\begin{align*}
& C_{A \mid B_{m+1} \cdots B_{N-1}}^{\alpha} \geq \frac{\alpha}{2} C_{A \mid B_{m+1}}^{\alpha}+C_{A \mid B_{m+2} \cdots B_{N-1}}^{\alpha} \\
& \quad \geq \frac{\alpha}{2}\left(C_{A \mid B_{m+1}}^{\alpha}+\cdots+C_{\left.A \mid B_{N-2}\right)}^{\alpha}+C_{A \mid B_{N-1}}^{\alpha}\right. \tag{7}
\end{align*}
$$

Combining (6) and (7), we have Theorem 1.
As for $\alpha \geq 2,(\alpha / 2)^{m} \geq 1$ for all $1 \leq m \leq N-3$, comparing with the monogamy relation (3), our formula (5) in Theorem 1 gives a tighter monogamy relation with larger lower bounds. In Theorem 1 we have assumed that some $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ and some $C_{A B_{j}} \leq C_{A \mid B_{j+1} \cdots B_{N-1}}$ for the $2 \otimes 2 \otimes \cdots \otimes 2$ mixed state $\rho \in H_{A} \otimes H_{B_{1}} \otimes \cdots \otimes H_{B_{N-1}}$. If all $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for $i=1,2, \cdots, N-2$, then we have the following conclusion:
[Theorem 2]. If $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for all $i=$ $1,2, \cdots, N-2$, then we have
$C_{A \mid B_{1} \cdots B_{N-1}}^{\alpha} \geq C_{A \mid B_{1}}^{\alpha}+\frac{\alpha}{2} C_{A \mid B_{2}}^{\alpha}+\cdots+\left(\frac{\alpha}{2}\right)^{N-2} C_{A \mid B_{N-1}}^{\alpha}$.
Example 1. Let us consider the three-qubit state $|\psi\rangle$ which can be written in the generalized Schmidt decom-

FIG. 1: y is the "residual" entanglement as a function of α : solid (red) line y_{1} from our result, dashed (blue) line y_{2} from the result in [8].
position form [19, 20],
$|\psi\rangle=\lambda_{0}|000\rangle+\lambda_{1} e^{i \varphi}|100\rangle+\lambda_{2}|101\rangle+\lambda_{3}|110\rangle+\lambda_{4}|111\rangle$,
where $\lambda_{i} \geq 0, \quad i=0, \cdots, 4$ and $\sum_{i=0}^{4} \lambda_{i}^{2}=1$. From the definition of concurrence, we have $C_{A \mid B C}=$ $2 \lambda_{0} \sqrt{\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}}, C_{A \mid B}=2 \lambda_{0} \lambda_{2}$, and $C_{A \mid C}=2 \lambda_{0} \lambda_{3}$. Set $\lambda_{0}=\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\frac{\sqrt{5}}{5}$. One gets $C_{A \mid B C}^{\alpha}=\left(\frac{2 \sqrt{3}}{5}\right)^{\alpha}, C_{A \mid B}^{\alpha}+C_{A \mid C}^{\alpha}=2\left(\frac{2}{5}\right)^{\alpha}, C_{A \mid B}^{\alpha}+\frac{\alpha}{2} C_{A \mid C}^{\alpha}=$ $\left(1+\frac{\alpha}{2}\right)\left(\frac{2}{5}\right)^{\alpha}$. The "residual" entanglement from our result is given by $y_{1}=C_{A \mid B C}^{\alpha}-C_{A \mid B}^{\alpha}-\frac{\alpha}{2} C_{A \mid C}^{\alpha}=\left(\frac{2 \sqrt{3}}{5}\right)^{\alpha}-$ $\left(1+\frac{\alpha}{2}\right)\left(\frac{2}{5}\right)^{\alpha}$ and the "residual" entanglement from (3) is given by $y_{2}=C_{A \mid B C}^{\alpha}-C_{A \mid B}^{\alpha}-C_{A \mid C}^{\alpha}=\left(\frac{2 \sqrt{3}}{5}\right)^{\alpha}-2\left(\frac{2}{5}\right)^{\alpha}$. One can see that our result is better than that in [8] for $\alpha \geq 2$, see Figure 1 .
We can also derive a tighter upper bound of $C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha}$ for $\alpha<0$.
[Theorem 3]. For any $2 \otimes 2 \otimes \cdots \otimes 2$ mixed state $\rho \in$ $H_{A} \otimes H_{B_{1}} \otimes \cdots \otimes H_{B_{N-1}}$ with $C_{A B_{i}} \neq 0, i=1,2, \cdots, N-$ 1, we have

$$
\begin{equation*}
C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha}<\tilde{M}\left(C_{A \mid B_{1}}^{\alpha}+C_{A \mid B_{2}}^{\alpha}+\cdots+C_{A \mid B_{N-1}}^{\alpha}\right) \tag{10}
\end{equation*}
$$

for all $\alpha<0$, where $\tilde{M}=\frac{1}{N-1}$.
[Proof]. Similar to the proof of Theorem 1, for arbitrary tripartite state we have

$$
\begin{align*}
C_{A \mid B_{1} B_{2}}^{\alpha} & \leq\left(C_{A B_{1}}^{2}+C_{A B_{2}}^{2}\right)^{\frac{\alpha}{2}} \\
& =C_{A B_{1}}^{\alpha}\left(1+\frac{C_{A B_{2}}^{2}}{C_{A B_{1}}^{2}}\right)^{\frac{\alpha}{2}}<C_{A B_{1}}^{\alpha}, \tag{11}
\end{align*}
$$

where the first inequality is due to $\alpha<0$ and the second inequality is due to $\left(1+\frac{C_{A B_{2}}^{2}}{C_{A B_{1}}^{2}}\right)^{\frac{\alpha}{2}}<1$. On the other hand, we have

$$
\begin{align*}
C_{A \mid B_{1} B_{2}}^{\alpha} & \leq\left(C_{A B_{1}}^{2}+C_{A B_{2}}^{2}\right)^{\frac{\alpha}{2}} \\
& =C_{A B_{2}}^{\alpha}\left(1+\frac{C_{A B_{1}}^{2}}{C_{A B_{2}}^{2}}\right)^{\frac{\alpha}{2}}<C_{A B_{2}}^{\alpha} . \tag{12}
\end{align*}
$$

FIG. 2: y is the "residual" entanglement as a function of α : red line (solid line) from our Theorem 2; blue line (dashed line) from the result in [8].

From (11) and (12) we obtain

$$
\begin{equation*}
C_{A \mid B_{1} B_{2}}^{\alpha}<\frac{1}{2}\left(C_{A B_{1}}^{\alpha}+C_{A B_{2}}^{\alpha}\right) \tag{13}
\end{equation*}
$$

By using the inequality (13) repeatedly, one gets

$$
\begin{align*}
& C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha}<\frac{1}{2}\left(C_{A \mid B_{1}}^{\alpha}+C_{A \mid B_{2} \cdots B_{N-1}}^{\alpha}\right) \\
& \quad<\frac{1}{2} C_{A \mid B_{1}}^{\alpha}+\left(\frac{1}{2}\right)^{2} C_{A \mid B_{2}}^{\alpha}+\left(\frac{1}{2}\right)^{2} C_{A \mid B_{3} \cdots B_{N-1}}^{\alpha} \\
&<\cdots<\frac{1}{2} C_{A \mid B_{1}}^{\alpha}+\left(\frac{1}{2}\right)^{2} C_{A \mid B_{2}}^{\alpha}+\cdots \\
&+\left(\frac{1}{2}\right)^{N-2} C_{A \mid B_{N-2}}^{\alpha}+\left(\frac{1}{2}\right)^{N-2} C_{A \mid B_{N-1}}^{\alpha} \tag{14}
\end{align*}
$$

By cyclically permuting the sub-indices $B_{1}, B_{2}, \cdots, B_{N-1}$ in (14) we can get a set of inequalities. Summing up these inequalities we have (10).

As the factor $\tilde{M}=\frac{1}{N-1}$ is less than one, the inequality (10) is tighter than the one in [8]. This factor \tilde{M} depends on the number of partite N. Namely, for larger multipartite systems, the inequality (10) gets even tighter than the one in [8].

Example 2. Let us consider again the three-qubit state (9). In this case, we have $N=3$ and $\tilde{M}=$ $1 / 2$. Taking the same parameters used in Example 1, we have $C_{A \mid B C}^{\alpha}=\left(\frac{2 \sqrt{3}}{5}\right)^{\alpha}, C_{A \mid B}^{\alpha}+C_{A \mid C}^{\alpha}=2\left(\frac{2}{5}\right)^{\alpha}$, $\tilde{M}\left(C_{A \mid B}^{\alpha}+C_{A \mid C}^{\alpha}\right)=\left(\frac{2}{5}\right)^{\alpha}$. Comparing the function of $y_{1}=C_{A \mid B C}^{\alpha}-\tilde{M} C_{A \mid B}^{\alpha}-\tilde{M} C_{A \mid C}^{\alpha}=\left(\frac{2 \sqrt{3}}{5}\right)^{\alpha}-\left(\frac{2}{5}\right)^{\alpha}$ with $y_{2}=C_{A \mid B C}^{\alpha}-C_{A \mid B}^{\alpha}-C_{A \mid C}^{\alpha}=\left(\frac{2 \sqrt{3}}{5}\right)^{\alpha}-2\left(\frac{2}{5}\right)^{\alpha}$, one can see that our result is better than the one from [8], see Figure 2.
[Remark] In (10) we have assumed that all $C_{A B_{i}}$, $i=1,2, \cdots, N-1$, are nonzero. In fact, if one of them is zero, the inequality still holds if one removes this term from the inequality. Namely, if $C_{A B_{i}}=0$, then one
has $C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha}<\frac{1}{2} C_{A \mid B_{1}}^{\alpha}+\cdots+\left(\frac{1}{2}\right)^{i-1} C_{A \mid B_{i-1}}^{\alpha}+$ $\left(\frac{1}{2}\right)^{i} C_{A \mid B_{i+1}}^{\alpha}+\cdots+\left(\frac{1}{2}\right)^{N-3} C_{A \mid B_{N-2}}^{\alpha}+\left(\frac{1}{2}\right)^{N-3} C_{A \mid B_{N-1}}^{\alpha}$. Similar to the analysis in proving Theorem 2, one gets $C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha}<\frac{1}{N-1}\left(C_{A \mid B_{1}}^{\alpha}+\cdots+C_{A \mid B_{i-1}}^{\alpha}+C_{A \mid B_{i+1}}^{\alpha}+\right.$ $\cdots+C_{A \mid B_{N-1}}^{\alpha}$), for $\alpha<0$.

III. TIGHTER MONOGAMY INEQUALITY

 FOR EOFThe entanglement of formation (EoF) $[12,13]$ is a well defined important measure of entanglement for bipartite systems. Let H_{A} and H_{B} be m and n dimensional ($m \leq$ $n)$ vector spaces, respectively. The EoF of a pure state $|\psi\rangle \in H_{A} \otimes H_{B}$ is defined by

$$
\begin{equation*}
E(|\psi\rangle)=S\left(\rho_{A}\right) \tag{15}
\end{equation*}
$$

where $\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)$ and $S(\rho)=-\operatorname{Tr}\left(\rho \log _{2} \rho\right)$. For a bipartite mixed state $\rho_{A B} \in H_{A} \otimes H_{B}$, the entanglement of formation is given by

$$
\begin{equation*}
E\left(\rho_{A B}\right)=\min _{\left\{p_{i},\left|\psi_{i}\right\rangle\right\}} \sum_{i} p_{i} E\left(\left|\psi_{i}\right\rangle\right) \tag{16}
\end{equation*}
$$

with the minimum taking over all possible decompositions of $\rho_{A B}$ in a mixture of pure states $\rho_{A B}=$ $\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, where $p_{i} \geq 0$ and $\sum_{i} p_{i}=1$.
Denote $f(x)=H\left(\frac{1+\sqrt{1-x}}{2}\right)$, where $H(x)=$ $-x \log _{2}(x)-(1-x) \log _{2}(1-x)$. From (15) and (16), one has $E(|\psi\rangle)=f\left(C^{2}(|\psi\rangle)\right)$ for $2 \otimes m(m \geq 2)$ pure state $|\psi\rangle$, and $E(\rho)=f\left(C^{2}(\rho)\right)$ for two-qubit mixed state ρ [16]. It is obvious that $f(x)$ is a monotonically increasing function for $0 \leq x \leq 1 . f(x)$ satisfies the following relations:

$$
\begin{equation*}
f^{\sqrt{2}}\left(x^{2}+y^{2}\right) \geq f^{\sqrt{2}}\left(x^{2}\right)+f^{\sqrt{2}}\left(y^{2}\right) \tag{17}
\end{equation*}
$$

where $f^{\sqrt{2}}\left(x^{2}+y^{2}\right)=\left[f\left(x^{2}+y^{2}\right)\right]^{\sqrt{2}}$.
It has been show that the entanglement of formation does not satisfy the inequality $E_{A B}+E_{A C} \leq E_{A \mid B C}$ [17]. In [18] the authors showed that EoF is a monotonic function $E^{2}\left(C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}\right) \geq E^{2}\left(\sum_{i=1}^{N-1} C_{A B_{i}}^{2}\right)$. It is further proved that for N-qubit systems, one has [8]

$$
\begin{equation*}
E_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq E_{A \mid B_{1}}^{\alpha}+E_{A \mid B_{2}}^{\alpha}+\cdots+E_{A \mid B_{N-1}}^{\alpha} \tag{18}
\end{equation*}
$$

for $\alpha \geq \sqrt{2}$, where $E_{A \mid B_{1} B_{2} \cdots B_{N-1}}$ is the entanglement of formation of ρ in bipartite partition $A \mid B_{1} B_{2} \cdots B_{N-1}$, and $E_{A B_{i}}, i=1,2, \cdots, N-1$, is the entanglement of formation of the mixed states $\rho_{A B_{i}}=$ $\operatorname{Tr}_{B_{1} B_{2} \cdots B_{i-1}, B_{i+1} \cdots B_{N-1}}(\rho)$. In fact, generally we can prove the following results.
[Theorem 4]. For any N-qubit mixed state $\rho \in H_{A} \otimes$ $H_{B_{1}} \otimes \cdots \otimes H_{B_{N-1}}$, if $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for $i=$ $1,2, \cdots, m$, and $C_{A B_{j}} \leq C_{A \mid B_{j+1} \cdots B_{N-1}}$ for $j=m+$
$1, \cdots, N-2, \forall 1 \leq m \leq N-3, N \geq 4$, the entanglement of formation $E(\rho)$ satisfies

$$
\begin{align*}
E_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq & E_{A \mid B_{1}}^{\alpha}+t E_{A \mid B_{2}}^{\alpha} \cdots+t^{m-1} E_{A \mid B_{m}}^{\alpha} \\
& +t^{m+1}\left(E_{A \mid B_{m+1}}^{\alpha}+\cdots+E_{A \mid B_{N-2}}^{\alpha}\right) \\
& +t^{m} E_{A \mid B_{N-1}}^{\alpha}, \tag{19}
\end{align*}
$$

for $\alpha \geq \sqrt{2}$, where $t=\alpha / \sqrt{2}$.
[Proof]. For $\alpha \geq \sqrt{2}$, we have

$$
\begin{align*}
f^{\alpha}\left(x^{2}+y^{2}\right) & =\left(f^{\sqrt{2}}\left(x^{2}+y^{2}\right)\right)^{t} \\
& \geq\left(f^{\sqrt{2}}\left(x^{2}\right)+f^{\sqrt{2}}\left(y^{2}\right)\right)^{t} \tag{20}\\
& \geq\left(f^{\sqrt{2}}\left(x^{2}\right)\right)^{t}+t\left(f^{\sqrt{2}}\left(y^{2}\right)\right)^{t} \\
& =f^{\alpha}\left(x^{2}\right)+t f^{\alpha}\left(y^{2}\right),
\end{align*}
$$

where the first inequality is due to the inequality (17), and the second inequality is obtained from a similar consideration in the proof of the second inequality in (4).

Let $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \in H_{A} \otimes H_{B_{1}} \otimes \cdots \otimes H_{B_{N}-1}$ be the optimal decomposition of $E_{A \mid B_{1} B_{2} \cdots B_{N-1}}(\rho)$ for the N -qubit mixed state ρ, we have

$$
\begin{aligned}
& E_{A \mid B_{1} B_{2} \cdots B_{N-1}}(\rho) \\
& =\sum_{i} p_{i} E_{A \mid B_{1} B_{2} \cdots B_{N-1}}\left(\left|\psi_{i}\right\rangle\right) \\
& =\sum_{i} p_{i} f\left(C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}\left(\left|\psi_{i}\right\rangle\right)\right) \\
& \geq f\left(\sum_{i} p_{i} C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}\left(\left|\psi_{i}\right\rangle\right)\right) \\
& \geq f\left(\left[\sum_{i} p_{i} C_{A \mid B_{1} B_{2} \cdots B_{N-1}}\left(\left|\psi_{i}\right\rangle\right)\right]^{2}\right) \\
& \geq f\left(C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}(\rho)\right),
\end{aligned}
$$

where the first inequality is due to that $f(x)$ is a convex function. The second inequality is due to the CauchySchwarz inequality: $\left(\sum_{i} x_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i} y_{i}^{2}\right)^{\frac{1}{2}} \geq \sum_{i} x_{i} y_{i}$, with $x_{i}=\sqrt{p_{i}}$ and $y_{i}=\sqrt{p_{i}} C_{A \mid B_{1} B_{2} \cdots B_{N-1}}\left(\left|\psi_{i}\right\rangle\right)$. Due to the definition of concurrence and that $f(x)$ is a monotonically increasing function, we obtain the third inequality. Therefore, we have

$$
\begin{aligned}
& E_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha}(\rho) \\
& \geq f^{\alpha}\left(C_{A B_{1}}^{2}+C_{A B_{2}}^{2}+\cdots+C_{A B_{m-1}}^{2}\right) \\
& \geq f^{\alpha}\left(C_{A \mid B_{1}}^{2}\right)+t f^{\alpha}\left(C_{A \mid B_{2}}^{2}\right) \cdots+t^{m-1} f^{\alpha}\left(C_{A \mid B_{m}}^{2}\right) \\
&+t^{m+1}\left(f^{\alpha}\left(C_{A \mid B_{m+1}}^{2}\right)+\cdots+f^{\alpha}\left(C_{A \mid B_{N-2}}^{2}\right)\right) \\
&+t^{m} f^{\alpha}\left(C_{A \mid B_{N-1}}^{2}\right) \\
&= E_{A \mid B_{1}}^{\alpha}+t E_{A \mid B_{2}}^{\alpha} \cdots+t^{m-1} E_{A \mid B_{m}}^{\alpha} \\
&+t^{m+1}\left(E_{A \mid B_{m+1}}^{\alpha}+\cdots+E_{A \mid B_{N-2}}^{\alpha}\right)+t^{m} E_{A \mid B_{N-1}}^{\alpha},
\end{aligned}
$$

FIG. 3: y is the residual entanglement as a function of α : red (solid) line from our results; blue (dashed) line from the result in [8].
where we have used the monogamy inequality in (2) for N-qubit states ρ to obtain the first inequality. By using (20) and the similar consideration in the proof of Theorem 1, we get the second inequality. Since for any $2 \otimes 2$ quantum state $\rho_{A B_{i}}, E\left(\rho_{A B_{i}}\right)=f\left[C^{2}\left(\rho_{A B_{i}}\right)\right]$, one gets the last equality.

As the factor $t=\alpha / \sqrt{2}$ is greater or equal to one for $\alpha \geq \sqrt{2}$, (19) is obviously tighter than (18). Moreover, similar to the concurrence, for the case that $C_{A B_{i}} \geq$ $C_{A \mid B_{i+1} \cdots B_{N-1}}$ for all $i=1,2, \cdots, N-2$, we have a simple tighter monogamy relation for entanglement of formation:
[Theorem 5]. If $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for all $i=$ $1,2, \cdots, N-2$, we have

$$
\begin{align*}
E_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq & E_{A \mid B_{1}}^{\alpha}+\frac{\alpha}{\sqrt{2}} E_{A \mid B_{2}}^{\alpha}+\cdots \\
& +\left(\frac{\alpha}{\sqrt{2}}\right)^{N-2} E_{A \mid B_{N-1}}^{\alpha} \tag{21}
\end{align*}
$$

for $\alpha \geq \sqrt{2}$.
Example 3. Let us consider the W state, $|W\rangle=$ $\frac{1}{\sqrt{3}}(|100\rangle+|010\rangle+|001\rangle)$. We have $E_{A B}=E_{A C}=0.55$, $E_{A \mid B C}=0.92$. Let $y_{1}=E_{A \mid B C}^{\alpha}-E_{A \mid B}^{\alpha}-\frac{\alpha}{\sqrt{2}} E_{A \mid C}^{\alpha}$ denote the residual entanglement from our formula (21), and $y_{2}=E_{A \mid B C}^{\alpha}-E_{A \mid B}^{\alpha}-E_{A \mid C}^{\alpha}$ the residual entanglement from formula (18). It is easily verified that our results is better than the one in [8] for $\alpha \geq \sqrt{2}$, see Figure 3 .

IV. CONCLUSION

Entanglement monogamy is a fundamental property of multipartite entangled states. We have investigated the monogamy relations related to the concurrence and EoF, and presented tighter entanglement monogamy relations of C^{α} and E^{α} for $\alpha \geq 2$ and $\alpha \geq \sqrt{2}$, respectively. Monogamy relations characterize the distributions of entanglement in multipartite systems. Tighter monogamy
relations imply finer characterizations of the entanglement distribution. Our approach may be also used to study further the monogamy properties related to other quantum entanglement measures such as negativity and quantum correlations such as quantum discord.

Acknowledgments We thank Bao-Zhi Sun, Xue-Na Zhu and Xian Shi for very useful discussions. This work is supported by NSFC under number 11275131.
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000.
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett. 92, 167902 (2004).
K. Chen, S. Albeverio, and S. M. Fei, Phys. Rev. Lett. 95, 040504 (2005).
H. P. Breuer, J. Phys. A: Math. Gen. 39, 11847 (2006).
H. P. Breuer, Phys. Rev. Lett. 97, 080501 (2006).
J. I. de Vicente, Phys. Rev. A 75, 052320 (2007).
C. J. Zhang, Y. S. Zhang, S. Zhang, and G. C. Guo, Phys. Rev. A 76, 012334 (2007).
[2] M. Pawlowski, Phys. Rev. A 82, 032313 (2010).
[3] M. Koashi and A. Winter, Phys. Rev. A 69, 022309 (2004).
[4] T. J. Osborne and F. Verstraete, Phys. Rev. Lett. 96, 220503 (2006).
[5] Y. K. Bai, M. Y. Ye, and Z. D. Wang, Phys. Rev. A 80, 044301 (2009).
[6] T. R. de Oliveira, M. F. Cornelio, and F. F. Fanchini, Phys. Rev. A 89, 034303 (2014).
[7] A. Uhlmann, Phys. Rev. A 62, 032307 (2000).
[8] X. N. Zhu and S. M. Fei, Phys. Rev. A 90, 024304 (2014).
[9] P. Rungta, V. Buzek, C. M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A 64, 042315 (2001).
[10] S. Albeverio and S. M. Fei, J. Opt. B: Quantum Semiclass Opt. 3, 223 (2001).
[11] X. J. Ren and W. Jiang, Phys. Rev. A 81, 024305 (2010).
[12] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996).
[13] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
[14] O. Cohen, Phys. Rev. Lett. 80, 2493 (1998).
[15] G. Gour, D. A. Meyer, and B. C. Sanders, Phys. Rev. A 72, 042329 (2005).
[16] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[17] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000).
[18] Y. K. Bai, N. Zhang, M. Y. Ye, and Z. D. Wang, Phys. Rev. A 88, 012123 (2013).
[19] A. Acin, A. Andrianov, L. Costa, E. Jane, J. I. Latorre, and R. Tarrach, Phys. Rev. Lett. 85, 1560 (2000).
[20] X. H. Gao and S. M. Fei, Eur. Phys. J. Special Topics 159, 71 (2008).

