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Uncertainty relations occupy a fundamental position in quantum mechanics. We propose stronger

variance-based uncertainty relations for the product and sum of variances of two incompatible ob-

servables in a finite dimensional Hilbert space. It is shown that the new uncertainty relations provide

near-optimal state-dependent bounds, which can be useful for quantum metrology, entanglement de-

tection etc. in quantum information theory. It is further shown that the uncertainty relations are

related to the “spreads” of the distribution of measurement outcomes caused by incompatible ob-

servables. Intuitively, this means that the ability of learning the distribution has both the upper

and lower bounds. Combination of these bounds provides naturally an uncertainty interval which

captures the essence of uncertainty in quantum theory. Finally, we explain how to employ entropic

uncertainty relations to derive lower bounds for the product of variances of incompatible observables.

PACS numbers: 03.65.Ta, 03.67.-a, 42.50.Lc

I. INTRODUCTION

A distinguished aspect of quantum mechanics is that

the uncertainty relations [1] between incompatible ob-

servables allow for succinct quantitative formulations of

this revolutionary idea: it is impossible to simultaneous-

ly measure precisely two complementary variables of a

particle. The uncertainty relations underlie many intrin-

sic differences between classical and quantum mechanics,

and have direct applications for entanglement detection

[2], quantum metrology [3–5], quantum cryptography [6],

signal processing [7] and quantum speed limit [8] etc.

For arbitrary incompatible observablesA andB with

bounded spectrums, the Schrödinger uncertainty relation

states that

V (A)V (B) ≥| 1
2
⟨[A,B]⟩ |2 + | 1

2
⟨{A,B}⟩ |2, (1)

where V (A) = ⟨A2⟩ (resp. V (B)) denotes the variance

of the observable A (resp. B), A = A− ⟨A⟩, and the ex-

pectation value ⟨ ⟩ is over the quantum state |Ψ⟩. The

product form of the variance-based uncertainty relation

cannot fully capture incompatibility of observables since

the lower bound may become trivial even if the observ-

ables A and B do not commute with each other. It is thus

necessary to formulate uncertainty relations in terms of

the sum of variances (i.e. V (A) + V (B)).

An important question is how to improve the low-

er bound of the uncertainty relation, which is useful in

quantum theory and quantum information theory. It ap-

pears that most strong variance-based uncertainty rela-

tions [9, 10] rely on |Ψ⟩ and its mutually exclusive physi-

cal states |Ψ⊥⟩, which are usually given in a complicated

process. It is known that the mutual exclusive physical

states are harder to be determined as the dimension of

the quantum state increases. It is thus necessary to seek

for uncertainty relations in the absence of the mutually

exclusive physical states |Ψ⊥⟩.

The goal of this paper is to derive tighter upper

and lower bounds for both the product and sum form-

s of the variance-based uncertainty relations. Compar-

isons among recent strong bounds [11] and our new ones

are given in figures. In Sec. II, we obtain stronger low-

er bounds to the product of variances by generalizing

the Cauchy-Schwarz inequality. Sec. III derives lower

bounds on the sum of variances for two incompatible ob-

servables in finite dimensional spaces. Sec. IV introduces

the concept of uncertainty intervals on which the lower

and upper bounds combine together. Moreover, our un-

certainty interval reveals the intrinsic restrictions on the

ability of learning the distribution of measurement out-
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comes caused by incompatible observables. Finally, we

conclude with some typical examples, in which our lower

bounds are near-optimal, in Sec. V.

II. PRODUCT FORMS OF VARIANCE-BASED

UNCERTAINTY RELATIONS

Let A =
∑

i ai|ai⟩⟨ai| and B =
∑

i bi|bi⟩⟨bi| be

the spectral decompositions of two incompatible observ-

ables, and A =
∑

i a
′
i|ai⟩⟨ai| (resp. B =

∑
i b

′
i|bi⟩⟨bi|)

the corresponding decomposition, where ai, a
′
i, bi, b

′
i ∈ R

are the eigenvalues of A,A,B,B, respectively. By choos-

ing any complete orthonormal basis {|ψi⟩}, we can write

A|Ψ⟩ =
∑

i αi|ψi⟩ and B|Ψ⟩ =
∑

i βi|ψi⟩.
Then V (A) =| −→x |2 (resp. V (B) =| −→y |2) for

the real vectors −→x = (x1, x2, · · · , xn) (resp. −→y =

(y1, y2, · · · , yn)), where xi = |αi| ≥ 0, yi = |βi| ≥ 0.

The Cauchy-Schwarz inequality implies that

V (A)V (B) ≥

(∑
i

xiyi

)2

(2)

which is one of the main lower bounds recently obtained

by Mondal et al in [11]. Note that with xi =| a′i |√
⟨Ψ|ai⟩⟨ai|Ψ⟩, yi =| b′i |

√
⟨Ψ|bi⟩⟨bi|Ψ⟩, one gets anoth-

er main result in [11]. For simplicity, denote ⟨Ψ|ai⟩⟨ai|Ψ⟩
(⟨Ψ|bi⟩⟨bi|Ψ⟩) by F a

i (F b
i ), which is the fidelity between

|Ψ⟩ and |ai⟩ (|bi⟩).
To derive stronger bounds, we investigate the re-

lation between the arithmetic and geometric mean in-

equality (AM-GM inequality) and the Cauchy-Schwarz

inequality. Observe that

| −→α |2|
−→
β |2 =

∑
ij

x2i y
2
j

=
∑
i<j

(x2i y
2
j + x2jy

2
i ) +

∑
i

x2i y
2
i

≥
∑
i<j

(2xixjyjyi) +
∑
i

x2i y
2
i

=

(∑
i

xiyi

)2

, (3)

where the inequality is a result of n(n − 1)/2 AM-GM

inequalities of x2i y
2
j +x

2
jy

2
i ≥ 2xiyjxjyi, thus the equality

holds if and only if xiyj = xjyi for all i ̸= j.

For 0 ≤ k ≤ n, define

Ik =
∑

1≤i<j≤k

(2xixjyjyi)+
∑

1≤i<j≤n
k<j

(x2i y
2
j + x2jy

2
i )

+
∑

1≤i≤n

x2i y
2
i , (4)

so I0 =| −→x |2| −→y |2= V (A)V (B) and In =

(∑
i

xiyi

)2

.

Theorem 1. For any n-dimensional real vectors −→x and
−→y with positive components, one has that

I0 ≥ I2 ≥ · · · ≥ In−1 ≥ In.

In fact, it follow from the AM-GM inequality that

Ik+1 = Ik +
k∑

i=1

(2xixk+1yiyk+1 − x2i y
2
k+1 − x2k+1y

2
i )

≤ Ik

Geometrically, the inequality | −→x |2| −→y |2≥ Ik

means the Cauchy-Schwarz inequality is only applied on

the first k components locally, which can be seen as a par-

tial Cauchy-Schwarz inequality. These apparently give

(n−2) tighter lower bounds for V (A)V (B) than the main

result of [11], which is I0 = V (A)V (B) ≥ In. Moreover,

we can insert more terms in the above descending chain

by selecting arbitrary x2i y
2
j + x2jy

2
i (i < j). Here we only

formulate the inequalities on all i, j with 1 ≤ i < j ≤ k

for simplicity.

For example, one of the new variance-based uncer-

tainty relations | −→α |2|
−→
β |2≥ In−1 can be read as

V (A)V (B) ≥1

4

(
n−1∑
i=1

∣∣⟨[A,Bn]⟩+ ⟨{A,Bn}⟩
∣∣)2

+
∣∣⟨Ψ|A|ψn⟩

∣∣2 ( n∑
i=1

∣∣⟨Ψ|B|ψn⟩
∣∣2)

+
∣∣⟨Ψ|B|ψn⟩

∣∣2 ( n∑
i=1

∣∣⟨Ψ|A|ψn⟩
∣∣2)

−
∣∣⟨Ψ|A|ψn⟩

∣∣2 ∣∣⟨Ψ|B|ψn⟩
∣∣2 := L1, (5)

which offers a stronger bound than that of [11]:

L1 ≥ 1

4

(
n∑

i=1

∣∣⟨[A,Bn]⟩+ ⟨{A,Bn}⟩
∣∣)2

≥
∣∣⟨AB⟩

∣∣2 .
(6)
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Next, we use the symmetric group to strengthen the

bounds. Note that the symmetric group Sn acts on the

components of −→α and
−→
β by permutation. For any two

permutations π1, π2 ∈ Sn we define

(π1, π2)Ik =
∑

1≤π1(i)<π2(j)≤k

(2xπ1(i)xπ2(j)yπ2(j)yπ1(i))

+
∑

1≤π1(i)<π2(j)≤n
k<π2(j)

(x2π1(i)
y2π2(j)

+ x2π2(j)
y2π1(i)

)

+
∑

π1(i)=π2(j)

x2π1(i)
y2π2(j)

. (7)

Clearly I0 is stable under the action of Sn ×Sn.

The following state-dependent variance-based uncer-

tainty relations are easy consequences of Theorem 1.

Theorem 2. For any permutations π1, π2 ∈ Sn, one

has that

V (A)V (B) = I0

≥ (π1, π2)I2 ≥ · · · ≥ (π1, π2)In−1 ≥ (π1, π2)In.

Optimizing over the Sn, we get a stronger version of

the state-dependent variance-based uncertainty relations

in the following.

Theorem 3.

I0 ≥ max
π1,π2∈Sn

(π1, π2)I2 ≥ · · · ≥ max
π1,π2∈Sn

(π1, π2)In−1

≥ max
π1,π2∈Sn

(π1, π2)In. (8)

This new uncertainty relations are tighter than the

result in Thm. 1, since max
π1,π2∈Sn

(π1, π2)Ik ≥ Ik for any

2 ≤ k ≤ n.

III. SUM FORMS OF VARIANCE-BASED

UNCERTAINTY RELATIONS

The product form of variance-based uncertainty re-

lations cannot fully capture the incompatibility of ob-

servables, since the uncertainty can be trivial if the state

is an eigenstate of A or B. It is necessary to consider

other forms of the variance-based uncertainty relations,

such as the sum form. Before introducing our strong sum

form variance-based uncertainty relations, we recall the

rearrangement inequality first.

Let (xi) and (yi) be two n-tuple of real positive num-

bers such that xi ≥ xi+1 and yi ≥ yi+1, then the direct

sum, random sum and reverse sum between xi and yi are

defined as

Di :=x1y1 + x2y2 + · · ·+ xnyn,

Ra :=x1yπ(1) + x2yπ(2) + · · ·+ xnyπ(n), π ∈ Sn

Re :=x1yn + x2yn−1 + · · ·+ xny1.

(9)

The following lemma establishes the relationship among

the three sums.

Lemma.(Rearrangement inequality) For any two de-

scending n-tuples x and y of nonnegative numbers, one

has that

Di ≥ Ra ≥ Re. (10)

Recall the parallelogram law

V (A) + V (B) =
1

2

∑
i

(xi + yi)
2 +

1

2

∑
i

(xi − yi)
2.

(11)

Combining with the rearrangement inequality we get the

following result.

Theorem 4. For any two permutations π1, π2 ∈ Sn one

has that

V (A) + V (B) ≥1

2

∑
i

(xi + yi)(xπ1(i) + yπ1(i))

+
1

2

∑
i

|xi − yi|
∣∣xπ2(i) − yπ2(i)

∣∣ . (12)

Clearly, by setting π1 = (1) the new uncertainty

relation outperforms the main result for the sum of vari-

ances in [11] all the time. We will also denote by L2 the

bound of Thm. 4 corresponding to the choice of π1 = (1),

π2 = (1 2 · · · n), xi = |αi|, yi = |βi|, which will be used

in Sect. V

IV. UNCERTAINTY INTERVALS

In [11], the authors have shown that quantum me-

chanics imposes restrictions on the ability of learning the
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FIG. 1: Lower bounds of V (A)V (B) for a family of spin-1

particles: V (A)V (B), our bound L1 and the bound of [11]

are respectively shown in red, blue and green. The orange

curve denotes the Schrödinger uncertainty relation.

distribution of measurement outcomes caused by incom-

patible observables, these restrictions have both lower

and upper bounds, or the bound and reverse bound of the

uncertainty relation. Their upper bounds are far from

being tight. In this section, we propose stronger upper

bounds for both V (A)V (B) and V (A) + V (B), and in-

troduce the concept of the uncertainty interval to char-

acterize the restrictions on uncertainty relations.

Let X = max
i

{xi}, x = min
i
{xi}, Y = max

i
{yi} and

y = min
i
{yi}, where the extremes are taken over for 1 ≤

i ≤ n. Using the rearrangement inequality, we have

(xy +XY )2

4xyXY

(∑
i

xiyi

)2

≥ (xy +XY )2

4xyXY

(∑
i

xiyπ(i)

)2

≥ V (A)V (B). (13)

Therefore by taking minimum over π ∈ Sn we construct

a tighter upper bound for V (A)V (B):

V (A)V (B) ≤ min
π∈Sn

(xy +XY )2

4xyXY

(∑
i

xiyπ(i)

)2

:= U1.

(14)

This means that the distribution of measurement out-

comes caused by incompatible observables A and B

(for the product form) is restricted within the interval

[L1,U1], i.e. V (A)V (B) ∈ [L1,U1]. In other words,

[L1,U1] is an uncertainty interval for V (A)V (B).

Next we formulate an upper bound of V (A) + V (B)

and construct one of its uncertainty intervals. Using the

fact V (A) =| −→α |2 and V (B) =|
−→
β |2, one can derive

0.5 1.0 1.5 2.0 2.5 3.0
θ

0.8

1.0

1.2

1.4

1.6

1.8

2.0

V

FIG. 2: Several lower bounds for the sum of variances of a

family of spin-1 particles: the sum V (A) + V (B), our lower

bound L2 and the bound of [11] are in blue, green, and yellow

respectively.

the upper bound on the sum of variances of incompatible

observables A and B as

V (A) + V (B) =
∑
i

(x2i + y2i ) ≤
∑
i

(xi + yi)
2. (15)

Recalling the definitions xi = |αi| and yi = |βi|, we have

that

V (A) + V (B) ≤
∑
i

(
∣∣⟨ψn|A|Ψ⟩

∣∣+ ∣∣⟨ψn|B|Ψ⟩
∣∣)2. (16)

Denote the right-hand (RHS) of (16) by U2. Thus we

have obtained a uncertainty interval for V (A) + V (B):

[L2,U2]. We remark that U2 is not always better than the

bound obtained by [11], but it provides a complementary

one. The comparison will be discussed by examples in the

next section.

V. EXAMPLES AND CONCLUSIONS

In this section we give examples to show how the

new bounds obtained works compared with the recent

bounds in [11], which are some of the stronger ones for

variance-based uncertainty relations.

We consider first the spin-1 particle with the state

|Ψ⟩ = cos θ|1⟩ − sin θ|0⟩ (note that |0⟩ and |1⟩ are eigen-

states of the angular momentum Lz). This example was

also given in [11] to show their bounds. We take the in-

compatible observables as A = Lx and B = Ly, which

are the angular momentum operators for spin-1 parti-

cle. To calculate the bounds, we choose xi = |αi| and
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FIG. 3: Several upper bounds for the product of two variances

for a family of spin- 1
2
particles: The red line shows the product

of variances V (A)V (B), the blue points stand for our near-

optimal upper bound U1, the orange line is the upper bound

for the product of variances given in [11].

yi = |βi| (similar for xi =| a′i |
√

⟨Ψ|ai⟩⟨ai|Ψ⟩ and

yi =| b′i |
√
⟨Ψ|bi⟩⟨bi|Ψ⟩).

In FIG. 1, our new bound L1 is compared with that

of [11] in the product form for the family of spin-1 parti-

cles |Ψ⟩. In the comparison, the bound L1 provides the

best estimation and is almost optimal (thus shown by

blue dots, on the red curve for the product of variances),

and L1 is tighter than the bound of [11] everywhere.

Schrödinger’s uncertainty relation (in orange curve) is

used as a background in the comparison，and is the worst

among the three.

In FIG. 2, we plot the bounds for the sum of vari-

ances for the family of the spin-1 particles |Ψ⟩. Our

bound L2 outperforms the lower bound from [11].

From now on, let us consider the spin- 12 particle with

density matrix

ρ =
1

2

(
Id+ cos

θ

2
σx +

√
3

2
sin

θ

2
σy +

1

2
sin

θ

2
σz

)
, (17)

where the two incompatible observables are taken as A =

σx and B = σz.

In FIG. 3 we study the upper bounds for the product

of variances V (A)V (B) for a family of spin- 12 states ρ.

Our upper bound U1 provides the best estimation for the

product of two variances and typically outperforms the

upper bound from [11]. Note that our bound is almost

optimal, as it is shown almost identical to the optimal

value.

However, our upper bound U2 for the sum of vari-
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3.5
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V

FIG. 4: Several upper bounds for the sum of variances of a

family of spin- 1
2
particles: The sum V (A)+V (B), our bound

U2 and that of [11] are respectively shown in red, blue, and

orange.

ances V (A)+V (B) for states ρ is not always tighter than

that of [11]. Nevertheless, it still provides a complemen-

tary bound for V (A) + V (B) in [11], as the figure shows

there are portions of the region where the bound U2 out-

performs that of [11] markedly, see FIG. 4.

Apart from constructing stronger uncertainty rela-

tions, our method used in Sec. II also helps to fill up

the gaps between the product form of variance-based un-

certainty relation and the entropic uncertainty relation.

Following [12], assume the sum form of variance-based

uncertainty relation

V (A) + V (B) ≥ H(A) +H(B) + c, (18)

where H(·) stands for the Shannon entropy and c is a

state-independent constant. Using the basic inequality

in Thm. 1, we derive

V (A)V (B)

≥1

4

(
n−1∑
i=1

xiyi

)2

+ x2nV (B) + y2nV (A)− x2ny
2
n. (19)

On the one hand, the term x2nV (B) + y2nV (A) form-

s a so-called weighted uncertainty relation [10]. Using

the weighted uncertainty relation, we then have a low-

er bound. On the other hand, notice that we can al-

ways assume x2n = y2n in the numerical calculation, since

V (rA)V (B) = r2V (A)V (B). In that case, (19) can be



6

changed to

V (A)V (B)

≥1

4

(
n−1∑
i=1

xiyi

)2

+ x2n (H(A) +H(B) + c)− x4n. (20)

Therefore both the incompatibility between observables

and mixing status of the state will affect the variance-

based uncertainty relations. Moreover, any entropic un-

certainty relation can be employed to construct a lower

bound for V (A)V (B).

In conclusion, we have proposed stronger state de-

pendent variance-based uncertainty relations both in the

sum and product forms. After obtaining tighter upper

bounds, we have introduced the concept of uncertainty

intervals, which restricts the ability of learning the distri-

bution of measurement outcomes caused by incompatible

observables. Our newly constructed uncertainty relations

provide near-optimal approximations in some typical and

nontrivial examples, which can be used in entanglemen-

t detection, quantum metrology, quantum speed limits

and other related topics in quantum information theory.

Finally, our method in deriving stronger state dependen-

t variance-based uncertainty relations precisely fills the

gap among the product form of variance-based uncertain-

ty relations and entropic uncertainty relations.
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