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REGULARITY OF DIRAC-HARMONIC MAPS WITH λ−CURVATURE TERM IN
HIGHER DIMENSIONS

JÜRGEN JOST, LEI LIU, AND MIAOMIAO ZHU

Abstract. In this paper, we will study the partial regularity for stationary Dirac-harmonic maps
with λ−curvature term. For a weakly stationary Dirac-harmonic map with λ−curvature term (φ, ψ)
from a smooth bounded open domain Ω ⊂ Rm with m ≥ 2 to a compact Riemannian manifold N, if
ψ ∈ W1,p(Ω) for some p > 2m

3 , we prove that (φ, ψ) is smooth outside a closed singular set whose
(m−2)-dimensional Hausdorff measure is zero. Furthermore, if the target manifold N does not admit
any harmonic sphere S l, l = 2, ...,m − 1, then (φ, ψ) is smooth.

1. introduction

Variational problems from fields of theoretical physics, like quantum field or string theory, usu-
ally come in some particular dimension, with some finite dimensional, but non-compact symmetry
group. These include harmonic maps coming from the nonlinear sigma model in dimension 2 or
Yang-Mills fields in dimension 4. Typically, they then represent borderline cases of the Palais-
Smale condition, and therefore, standard PDE methods for proving the regularity of solutions may
not apply. In those dimensions, geometric analysis can usually identify a particular blow-up behav-
ior, that is, a special scheme for the emergence and the control of singularities. That is, minimizing
sequences can develop singularities, but in the limit, these singularities can be described as regular
solutions on some blown-up domain.

The mathematical aspects, however, are also of much interest and subtlety in higher dimen-
sions. In those dimensions, solutions can really become singular. Again, this has been widely
explored in geometric analysis. For instance, the equations for minimal submanifolds in Euclidean
or Riemannian spaces loose the conformal invariance, and completely new phenomena emerge,
in particular around the Bernstein problem, and this has been a key trigger for the development
of geometric measure theory. For harmonic mappings, see [18, 15, 16, 35], and for Yang-Mills,
Rivière has carried out the systematic investigation in dimensions larger than 4, see [32] and the
references therein. In those cases, the best analytical results that can be obtained are usually partial
regularity results, that is, one can control the Hausdorff dimension of the singular set and often
also the structure of the singularities.

Here, we engage in such an investigation for Dirac-harmonic maps, a variational problem mo-
tivated by the supersymmetric non-linear sigma model of quantum field theory. They arise again
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naturally in dimension 2, where we again find conformal invariance and can perform a – rather
subtle – blow-up analysis. Dirac-harmonic maps were first introduced and studied in [9, 8] in
dimension 2. In light of the above, it seems worthwhile to also investigate them in higher dimen-
sions, and again, we expect that the analytical behavior will be rather different. Such an analysis
has been started by Wang and Xu [40]. In particular, they derived a monotonicity formula and
controlled the singular set as for harmonic maps. In fact, since Dirac-harmonic maps generalize
harmonic maps in the sense that they couple a harmonic map type field with a nonlinear Dirac
field, one should naturally expect that the structure of harmonic map regularity theory can serve
as a guideline. Nevertheless, as it turns out already in dimension 2, while the results are indeed
roughly similar to those known for harmonic maps, their proofs can become considerably more
difficult. This forces the development of new techniques, some of which then in turn also lead to
deeper insights for harmonic maps. Here, we take a step further by implementing the important
analysis of Lin [26] who could show regularity in the absence of obstructions, represented by har-
monic spheres in a certain range of dimensions. Also, we consider a model that is more general
than that in [40], but which is important from the original perspective of quantum field theory, that
of Dirac-harmonic maps with curvature term. While the curvature term usually only comes with a
constant factor in the literature, we find that we can also admit a field-dependent, variable factor,
without impeding the analysis.

We now recall the technical details of the models, and then state our main results at the end of this
introduction. Let (M, g) be an m-dimensional compact spin Riemannian manifold, ΣM the spinor
bundle over M and 〈·, ·〉ΣM the metric on ΣM. Choosing a local orthonormal basis eα, α = 1, ...,m
on M, the usual Dirac operator is defined as /∂ := eα · ∇eα , where ∇ is the spin connection on ΣM
and · is the Clifford multiplication. For more details on spin geometry and Dirac operators, one
can refer to [25].

Let φ be a smooth map from M to another compact Riemannian manifold (N, h) with dimension
n ≥ 2. If φ∗T N is the pull-back bundle of T N by φ, we get the twisted bundle ΣM ⊗ φ∗T N.
Naturally, there is a metric 〈·, ·〉ΣM⊗φ∗T N on ΣM ⊗ φ∗T N which is induced from the metrics on
ΣM and φ∗T N. Also we have a natural connection ∇̃ on ΣM ⊗ φ∗T N which is induced from the
connections on ΣM and φ∗T N. Let ψ be a section of the bundle ΣM ⊗ φ∗T N. In local coordinates
{yi}, it can be written as

ψ = ψi ⊗ ∂yi(φ),

where each ψi ∈ Γ(ΣM) is a usual spinor and {∂yi} is a local basis on N. Then ∇̃ becomes

∇̃ψ = ∇ψi ⊗ ∂yi(φ) + (Γi
jk∇φ

j)ψk ⊗ ∂yi(φ),(1.1)

where Γi
jk are the Christoffel symbols of the Levi-Civita connection of N. The Dirac operator along

the map φ is defined by
/Dψ := eα · ∇̃eαψ.

Now, consider the action functional introduced in [8, 9]

(1.2) L(φ, ψ) =

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ∗T N

)
dvolg.

Critical points (φ, ψ) of L are called Dirac-harmonic maps from M to N.
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In local coordinates, the Euler-Lagrange equations of the functional L are given as follows(
∆φi + Γi

jkg
αβφ j

αφ
k
β

) ∂

∂yi (φ(x)) = R(φ, ψ),(1.3)

/Dψ = 0,(1.4)

where R(φ, ψ) is defined by

R(φ, ψ) =
1
2

Rm
li j(φ(x))Re〈ψi,∇φl · ψ j〉

∂

∂ym (φ(x)).

Here Re(z) denotes the real part of z ∈ C and Rm
li j stands for the Riemann curvature tensor of the

target manifold (N, g). See [8, 9] for details.
Dirac-harmonic maps are motivated from the supersymmetric nonlinear sigma model from quan-

tum field theory [12, 19]. They have been investigated extensively in recent years. This subject
generalizes the theory of harmonic maps and harmonic spinors. The regularity problem for har-
monic maps has been extensively studied in the literature, see e.g. [28, 35, 17, 13, 3, 6] for the
classical regularity theory of minimizing harmonic maps and stationary harmonic maps. Based on
the geometric analysis techniques developed for harmonic maps and more generally critical ellip-
tic systems with an antisymmetric structure [31, 33], regularity issues for Dirac-harmonic maps in
dimension two were systematically studied in [8, 43, 40, 11, 37]. In higher dimensions, Wang-Xu
[40] introduced the notion of stationary Dirac-harmonic maps and derived a monotonicity for-
mula for stationary Dirac-harmonic maps, based on which some partial regularity results were
obtained. They proved the singular set has Hausdorff dimension at most m − 2. In this paper, we
give conditions on the target manifold under which the dimension can be reduced further. More-
over, we prove these properties hold for a general case, i.e. Dirac-harmonic maps with λ-curvature
term. The blow-up analysis for Dirac-harmonic maps has been investigated in [8, 42, 44, 27]. To
study the existence problem, a heat flow approach was introduced in [10] and further explored in
[21, 22, 23].

Usually, the supersymmetric nonlinear sigma model of quantum field theory includes an addi-
tional curvature term in addition to (1.2). This leads us to consider the following functional

(1.5) Lc(φ, ψ) =
1
2

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ∗T N −

1
6

Rik jl〈ψ
i, ψ j〉〈ψk, ψl〉

)
dvolg.

Critical points (φ, ψ) of Lc are called Dirac-harmonic maps with curvature term from M to N.
They were first proposed and studied by Chen-Jost-Wang [7], where a type of Liouville theorem
was proved. The regularity for weak solutions in dimension two was considered in [4]. The
blow-up theory, including the energy identity and bubble tree convergence, for a sequence of Dirac-
harmonic maps with curvature term from a closed Riemann surface with uniformly bounded energy
has been systematically investigated in [20]. For the regularity problem of a similar model with
a different type of curvature term, i.e., Dirac-harmonic maps with Ricci type spinor potential, we
refer to Xu-Chen [41].

In this paper, we shall consider the following functional:

Lλ(φ, ψ) =
1
2

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ∗T N −

λ(φ)
6

Rik jl(φ)〈ψi, ψ j〉〈ψk, ψl〉

)
dvolg
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where λ is a smooth function on N. Since (N, h) ia a compact Riemannian manifold, we define a
nonnegative constant:

(1.6) Λ1 := maxy∈N |λ(y)| + |∇λ(y)|.

The critical points (φ, ψ) of Lλ are called Dirac-harmonic maps with λ-curvature term from M to
N. Thus, (φ, ψ) is a Dirac-harmonic map iff λ ≡ 0 and it is a Dirac-harmonic map with curvature
term iff λ ≡ 1.

By the Nash embedding theorem, we embed N isometrically into RK . Following Wang-Xu’s
analysis set up for Dirac-harmonic maps in higher dimensions in [40], we denote

W1,2(M,N) := {φ ∈ W1,2(M,RK)|φ(x) ∈ N, a.e.x ∈ M},

S 1,4/3(ΣM ⊗ φ∗T N) := {ψ ∈ Γ(ΣM ⊗ φ∗T N)|
∫

M
|(ψ|4 + |∇ψ|

4
3 ) < ∞}.

Here ψ ∈ Γ(ΣM ⊗ φ∗T N) should be understood as a K-tuple of spinors (ψ1, ..., ψK) satisfying
K∑

i=1

ψiνi = 0

for any normal vector ν = (ν1, ..., νK) ∈ RK .

In the sequel, for simplicity, we shall consider the case that M = Ω is a bounded open domain
of Rm with smooth boundary and equipped with the Euclidean metric. Then, the spinor bundle ΣM
over M can be identified with Σ = Ω × CL, L = rankCΣ. See [25].

Definition 1.1. We call (φ, ψ) ∈ W1,2(Ω,N)×S 1, 4
3 (CL⊗φ∗T N) a weakly Dirac-harmonic map with

λ-curvature term if it is a critical point of Lλ over the Sobolev space W1,2(Ω,N)×S 1,4/3(CL⊗φ∗T N).

Our first main result is the following small regularity theorem.

Theorem 1.2. For m ≥ 2, there exists an ε0 = ε0(m,Λ1,N) > 0 such that if (φ, ψ) ∈ W1,2(Ω,N) ×
S 1, 4

3 (CL ⊗ φ∗T N) is a weakly Dirac-harmonic map with λ-curvature term satisfying

sup
x∈Br0 (x0),0<r≤r0

r2−m
∫

Br(x)
(|∇φ|2 + |ψ|4)dvolg ≤ ε

2
0 ,(1.7)

then (φ, ψ) ∈ C∞(B r0
2

(x0)), and it satisfies

‖∇φ‖L∞(Br0/2(x0)) + ‖ψ‖2L∞(Br0/2(x0)) ≤ Cr−
m
2

0 (‖∇φ‖L2(Br0 (x0)) + ‖ψ‖2M4,2(Br0 (x0))),(1.8)

where C = C(m,Λ1,N) > 0 and Λ1 is as in (1.6).

When λ = 0, the conclusion in the above theorem has been proven in [40]. When m = 2 and
λ = 1, one can refer to [4].

Similarly to the classical regularity theory of harmonic maps, in order to study the partial regu-
larity in higher dimensions, we need to introduce the notion of stationary solutions.
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Definition 1.3. A weakly Dirac-harmonic map with λ-curvature term (φ, ψ) ∈ W1,2(Ω,N)×S 1, 4
3 (CL⊗

φ∗T N) is called stationary if it is also a critical point of Lλ with respect to the domain variations,
i.e. for any Y ∈ C∞0 (Ω,Rn), it holds

d
dt
|t=0

∫
Ω

(
|dφt|

2 + 〈ψt, /Dψt〉ΣM⊗φ∗t T N −
λ

6
Rik jl〈ψ

i
t, ψ

j
t 〉〈ψ

k
t , ψ

l
t〉

)
dvol = 0,

where φt(x) = φ(x + tY(x)) and ψt(x) = ψ(x + tY(x)).

We would like to remark that for the cases λ = 0, 1, the above definition has been introduced in
[40, 5], respectively, where the following monotonicity formula was derived: for any x0 ∈ Ω and
0 < r1 ≤ r2 < dist(x0, ∂Ω),

r2−m
2

∫
Br2 (x0)

(|∇φ|2 +
λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉)dx − r2−m
1

∫
Br1 (x0)

(|∇φ|2 +
λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉)dx

=

∫ r2

r1

r2−m
∫
∂Br

(2|
∂φ

∂r
|2 + Re〈ψ, ∂r · ψr〉)dHn−1dr

where ∂r = ∂
∂r = ∂

∂|x−x0 |
and ψr = ∇̃∂rψ. The second term of the right hand side of the above equation

does not have a fixed sign, which makes the use of this formula difficult. This is why in [40], some
additional condition on the spinors was imposed in order to get the partial regularity of stationary
Dirac-harmonic maps.

In this paper, we shall impose the same extra condition for the spinor as in Wang-Xu [40] and
get the following partial regularity theorem for stationary Dirac-harmonic maps with λ-curvature
term. For similar results for stationary harmonic maps and stationary Dirac-harmonic maps, we
refer to [3, 13, 40].

Theorem 1.4. For m ≥ 2, let (φ, ψ) ∈ W1,2(Ω,N)× S 1, 4
3 (CL ⊗φ∗T N) be a weakly stationary Dirac-

harmonic map with λ-curvature term. Suppose ‖ψ‖W1,p(Ω) ≤ Λ for some p > 2m
3 , then there exists a

closed subset S (φ) ⊂ Ω, with Hm−2(S (φ)) = 0, such that (φ, ψ) ∈ C∞(Ω \ S (φ)).

Furthermore, we have

Theorem 1.5. Under the same assumption as in the above theorem, if N does not admit harmonic
spheres, S l, l = 2, ...,m − 1, then (φ, ψ) is smooth.

To prove Theorem 1.2, we firstly use the idea of Wang in [39] to improve the regularity of
the spinor ψ and then apply regularity results for elliptic system with an antisymmetric structure
(see e.g. Theorem 5.2 in Appendix) to handle the map φ. For Theorem 1.4, since ∇ψ ∈ Lp

for some p > 2m
3 , it follows from using Theorem 1.2, the monotonicity formula and applying

similar arguments as in Wang-Xu [40]. As for our last Theorem 1.5, thanks to the observation in
Proposition 4.5 for some formulas of the spinors, following Lin’s scheme in [26], we consider the
concentration set of a blow-up sequence of Dirac-harmonic maps with λ-curvature term. The proof
is based on the analysis of defect measures by geometric measure theory.

The rest of the paper is organized as follows. In Section 2, we first derive the Euler-Lagrange
equation for stationary Dirac-harmonic maps with λ-curvature term. Secondly, we establish the
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monotonicity formula crucial to prove Theorem 1.4 and Theorem 1.5. In Section 3, we prove
the small regularity Theorem 1.2 and then Theorem 1.4 follows immediately by applying some
monotonicity formula argument. In Section 4, we use the blow-up analysis to prove Theorem 1.4.
For the reader’s convenience, we will state some well-known regularity results and estimates for
some first and second order elliptic systems in Section 5.

2. Euler-Lagrange equations and monotonicity formula

In this section, we will derive the Euler-Lagrange equation and the monotonicity formula for
Dirac-harmonic maps with λ-curvature term.

First, similarly to the cases λ = 0, 1 considered in [9] and [7], respectively, the Euler-Lagrange
equations of the functional Lλ can be derived in terms of local coordinates as follows:

Lemma 2.1. Let (φ, ψ) be a Dirac-harmonic map with λ-curvature term from M to N. Then, in
local coordinates, (φ, ψ) satisfies

τ(φ) =
1
2

Rm
li j(φ)〈ψi,∇φl · ψ j〉

∂

∂ym (φ) −
λ

12
hmpRik jl;p〈ψ

i, ψ j〉〈ψk, ψl〉
∂

∂ym (φ)

−
∇Nλ(φ)

12
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉,(2.1)

/Dψ =
λ

3
Rm

jkl〈ψ
j, ψl〉ψk ∂

∂ym (φ),(2.2)

where τ(φ) =
(
−∆φi + Γi

jkg
αβφ

j
αφ

k
β

)
∂
∂yi (φ(x)) is the tension field of φ and ∇Nλ = hmp ∂λ

∂yp
∂
∂ym is the

gradient vector field on N.

Proof. By the computation of Section II in [7], we obtain the ψ-equation for Lλ,

/Dψ =
λ

3
Rm

jkl〈ψ
j, ψl〉ψk ∂

∂ym (φ)

and

d
dt
|t=0

1
2

∫
M

(|dφt|
2 + 〈ψ, /Dψ〉)dvolg

=
1
2

∫
M

(
−2himτ

i(φ) +
2
3

Γmi,pRp
jkl〈ψ

i, ψk〉〈ψ j, ψl〉 + 〈ψi,∇φl · ψ j〉Rmli j

)
ξmdvolg,

where φt is the variation of φ with φ0 = φ and d
dt |t=0 = ξ.

We just need to compute the last term:

−
d
dt
|t=0

∫
M

λ(φt)
12

Ri jkl〈ψ
i, ψk〉〈ψ j, ψl〉dvolg

= −

∫
M

λ(φ)
12

Ri jkl,m〈ψ
i, ψk〉〈ψ j, ψl〉ξmdvolg −

1
12

∫
M

Ri jkl〈ψ
i, ψk〉〈ψ j, ψl〉

∂λ

∂ym ξ
mdvolg.
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Thus,

−
dLλ(φt)

dt
|t=0

=
1
2

∫
M

(
− 2himτ

i(φ) + 〈ψi,∇φl · ψ j〉Rmli j −
λ(φ)

6
Ri jkl;m〈ψ

i, ψk〉〈ψ j, ψl〉

−
1
6

Ri jkl〈ψ
i, ψk〉〈ψ j, ψl〉

∂λ

∂ym

)
ξm.

The conclusion of the lemma follows immediately.
�

By the Nash embedding theorem, we embed N isometrically into RN , denoted by f : N → RK .
Since λ ∈ C∞(N), there exists an extended function λ ∈ C∞0 (RK) (for simplicity, we still denote it
by λ), such that

‖λ‖C2(RK ) ≤ C(N)‖λ‖C2(N).

Set
φ′ = f ◦ φ and ψ′ = f∗ψ.

If we identify φ with φ′ and ψ with ψ′, similarly to the case of λ = 1 and dim M = 2 considered in
[4, 20], we can get the following extrinsic form of the Euler-Lagrange equation:

Lemma 2.2. Let (φ, ψ) ∈ W1,2(Ω,N) × S 1, 4
3 (CL ⊗ φ∗T N) be a weakly Dirac-harmonic map with

λ-curvature term. Then, (φ, ψ) satisfies

−∆φ = A(dφ, dφ) + Re (P(A(dφ(eα), eα · ψ);ψ)) −G(ψ),(2.3)
/∂ψ = A(dφ(eα), eα · ψ) + F(ψ, ψ)ψ(2.4)

where

Re (P(A(dφ(eα), eα · ψ);ψ)) = P(A(∂y j , ∂yl); ∂yi)Re〈ψi,∇φl · ψ j〉;

G(ψ) =
λ

6
(
〈∇Ai j, Akl〉 − 〈∇Ail, A jk〉

)
Re(〈ψi, ψ j〉〈ψk, ψl〉)

−
B>

12
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉;

F(ψ, ψ)ψ =
λ

3

(
P(A(∂y j , ∂yl); ∂yk) − P(A(∂y j , ∂yk); ∂yl)

)
〈ψ j, ψl〉ψk,

and B := ( ∂λ
∂z1 , ...,

∂λ
∂zK ), B> is the tangential part of B along the map φ, P(·; ·) is the shape operator,

i.e.
〈P(ξ; X),Y〉 = 〈A(X,Y), ξ〉

for any X,Y ∈ Γ(T N),ξ ∈ Γ(T⊥N), A is the second fundamental form of N in RK and

A(dφ(eα), eα · ψ) = (∇φi · ψ j) ⊗ A(∂yi , ∂y j).

Proof. The proof here is almost the same as the computations in the case of λ = 1 (see Section 3 in
[20] where the inner product for the spinors was taken to be Hermitian as in this paper and hence
one needs to take the real parts for certain terms. See also Lemma 3.5 in [4]). We omit the details
here. �
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Secondly, we will derive some useful formulae (i.e. Lemma 2.3 and Lemma 2.4) for stationary
Dirac-harmonic maps with λ-curvature term which are just Lemma 4.2 and Lemma 4.4 in [40] for
λ = 0 and Proposition 5.3 and Proposition 5.5 in [5] for λ = 1.

Lemma 2.3. Let (φ, ψ) ∈ W1,2(Ω,N) × S 1, 4
3 (CL ⊗ φ∗T N) be a weakly Dirac-harmonic map with

λ-curvature term. Then (φ, ψ) is stationary if and only if for any Y ∈ C∞0 (Ω,Rn), there holds

(2.5)
∫

Ω

(
〈
∂φ

∂xα
,
∂φ

∂xβ
〉 −

1
2
|∇φ|2δαβ +

1
2

Re〈ψ,
∂

∂xα
· ∇̃ ∂

∂xβ
ψ〉 −

λ

12
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉δαβ

)
∂Yβ

∂xα
= 0.

Proof. Let t ∈ R small enough and y = Ft(x) := x+ tY(x) and x = F−1
t (y). On one hand, by Lemma

4.2 in [40], we have

d
dt
|t=0

1
2

∫
Ω

(|dφt|
2 + 〈ψt, /Dψt〉ΣM⊗φ∗t T N)dx

=

∫
Ω

(
〈
∂φ

∂xα
,
∂φ

∂xβ
〉 −

1
2
|∇φ|2δαβ +

1
2

Re〈ψ,
∂

∂xα
· ∇̃ ∂

∂xβ
ψ〉

)
∂Yβ

∂xα
dx.(2.6)

On the other hand, we have

d
dt
|t=0

1
2

∫
Ω

λ

6
Rik jl〈ψ

i
t, ψ

j
t 〉〈ψ

k
t , ψ

l
t〉dx

=
d
dt
|t=0

1
2

∫
Ω

λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉JacF−1
t dx

= −
λ

12

∫
Ω

Rik jl〈ψ
i, ψ j〉〈ψk, ψl〉div(Y)dx,(2.7)

where we used the fact that
d
dt
|t=0JacF−1

t = −div(Y).

Combining (2.6) with (2.7), we will get the conclusion of the lemma. �

Now, we can derive the monotonicity formula for weakly stationary Dirac-harmonic maps with
λ-curvature term (see [40, 5] for the cases of λ = 0, 1)

Lemma 2.4. Let (φ, ψ) ∈ W1,2(Ω,N) × S 1, 4
3 (CL ⊗ φ∗T N) be a weakly stationary Dirac-harmonic

map with λ-curvature term. Then for any x0 ∈ Ω and 0 < r1 ≤ r2 < dist(x0, ∂Ω), there holds

r2−m
2

∫
Br2 (x0)

(|∇φ|2 +
λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉)dx − r2−m
1

∫
Br1 (x0)

(|∇φ|2 +
λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉)dx

=

∫
Br2 (x0)\Br1 (x0)

|x − x0|
2−m(2|

∂φ

∂r
|2 + Re〈ψ, ∂r · ψr〉)dx

where ∂r = ∂
∂r = ∂

∂|x−x0 |
and ψr = ∇̃∂rψ.

Proof. For simplicity, we assume x0 = 0 ∈ Ω. For any ε > 0 and 0 < r < dist(0, ∂Ω), let
ϕε(x) = ϕε(|x|) ∈ C∞0 (Br) be such that 0 ≤ ϕε(x) ≤ 1 and ϕε(x)|B(1−ε)r = 1. Taking Y(x) = xϕε(x) into
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the formula (2.5) and noting that

∂Yβ

∂xα
= ϕε(x)δα,β +

xαxβ

|x|
ϕ′ε(x),

we have

(1 −
m
2

)
∫

Br

|∇φ|2ϕε(x) +

∫
Br

1
2

Re〈ψ, /Dψ〉ϕε(x) −
∫

Br

λm
12

Rik jl〈ψ
i, ψ j〉〈ψk, ψl〉ϕε(x)

=

∫
Br

(
−|
∂φ

∂r
|2 +

1
2
|∇φ|2 −

1
2

Re〈ψ, ∂r · ∇̃∂rψ〉 +
λ

12
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉

)
|x|ϕ′ε(x).

Using the equation (2.2) and letting ε → 0, we get

(2 − m)
∫

Br

(|∇φ|2 +
λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉) + r
∫
∂Br

(|∇φ|2 +
λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉)

= r
∫
∂Br

(2|
∂φ

∂r
|2 + Re〈ψ, ∂r · ∇̃∂rψ〉),

which yields

d
dr

(
r2−m

∫
Br

(|∇φ|2 +
λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉)dx
)

= r2−m
∫
∂Br

(2|
∂φ

∂r
|2 + Re〈ψ, ∂r · ∇̃∂rψ〉).

The conclusion of the lemma follows by integrating r from r1 to r2. �

The following corollary is a small extension of the case of λ = 0 considered in [40]:

Corollary 2.5. Let (φ, ψ) ∈ W1,2(Ω,N)× S 1, 4
3 (CL ⊗ φ∗T N) be a weakly stationary Dirac-harmonic

map with λ-curvature term. If we assume

‖ψ‖W1,p(Ω) ≤ Λ

for some 2m
3 < p < m, then for any x0 ∈ Ω and 0 < r1 ≤ r2 < min{dist(x0, ∂Ω), 1}, there holds

r2−m
1

∫
Br1 (x0)

|∇φ|2dx ≤r2−m
2

∫
Br2 (x0)

|∇φ|2dx + C(m)‖ψ‖
L

mp
m−p (Br2 (x0))

‖∇ψ‖Lp(Br2 (x0))r
3− 2m

p

2

+ C(m,N)Λ1‖ψ‖
4

L
mp

m−p (Br2 (x0))
r

6− 4m
p

2 ,

where Λ1 is as defined in (1.6).
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Proof. By Lemma 2.4, we know

r2−m
1

∫
Br1 (x0)

|∇φ|2dx ≤ r2−m
2

∫
Br2 (x0)

(|∇φ|2 +
λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉)dx

+

∫
Br2 (x0)\Br1 (x0)

|x − x0|
2−m|ψ||∇ψ|dx

− r2−m
1

∫
Br1 (x0)

λ

6
Rik jl〈ψ

i, ψ j〉〈ψk, ψl〉dx,

which implies

r2−m
1

∫
Br1 (x0)

|∇φ|2dx ≤ r2−m
2

∫
Br2 (x0)

|∇φ|2dx + C(N)Λ1r2−m
2

∫
Br2 (x0)

|ψ|4dx

+

∫
Br2 (x0)\Br1 (x0)

|x − x0|
2−m|ψ||∇ψ|dx + C(N)Λ1r2−m

1

∫
Br1 (x0)

|ψ|4dx.(2.8)

By Sobolev’s embedding and Young’s inequality, we have∫
Br(x0)
|x − x0|

2−m|ψ||∇ψ|dx ≤ ‖ψ‖
L

mp
m−p (Br(x0))

‖∇ψ‖Lp(Br(x0))‖|x − x0|
2−m‖

L
mp

mp−2m+p (Br(x0))

≤ C(m)‖ψ‖
L

mp
m−p (Br(x0))

‖∇ψ‖Lp(Br(x0))r3− 2m
p(2.9)

and

r2−m
1

∫
Br1 (x0)

|ψ|4dx + r2−m
2

∫
Br2 (x0)

|ψ|4dx ≤ C(m)‖ψ‖4
L

mp
m−p (Br2 (x0))

r
6− 4m

p

2 .(2.10)

�

Then the conclusion of the corollary follows immediately from (2.8).

3. Proof of Theorem 1.2 and Theorem 1.4

In this section, we will prove our main results: Theorem 1.2 and Theorem 1.4.
For Theorem 1.2, we will firstly use the idea in [39] to raise the integrability of ψ. Let us recall

the definition of Morrey spaces (see [29]). For p ≥ 1, 0 < µ ≤ m and a domain U ⊂ Rm, the
Morrey space Mp,µ(U) is defined by

Mp,µ(U) := { f ∈ Lp
loc(U)| ‖ f ‖Mp,µ(U) < ∞}

where
‖ f ‖p

Mp,µ(U) := sup
Br⊂U

rµ−m
∫

Br

| f |p.

Lemma 3.1. For any 4 < p < ∞ and m ≥ 2, there exists a positive constant ε1 = ε1(p,m,N) > 0
and C = C(m, p,N) > 0, such that if (φ, ψ) is a weak solution of (2.4) and

‖∇φ‖M2,2(B1) + ‖|λ||ψ|2‖M2,2(B1) ≤ ε1,

then ψ ∈ Lp(B1/2) and satisfies the estimate

(3.1) ‖ψ‖Lp(B1/2) ≤ C(m, p,N)‖ψ‖M4,2(B1).
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The idea of proving this lemma is similar to Lemma 2.2 in [39] which has been applied to some
other Dirac type equation in dimension 2 in [37, 4]. Recently, [24] (Lemma 6.1) proved a similar
lemma for a more general equation in higher dimensions which can be used in our case.

Proof. By (2.4), it is easy to see that ψ satisfies the equation of the form (5.1) in the Appendix with

|A| ≤ C(N)(|∇φ| + |λ||ψ|2), B ≡ 0,

the conclusion of the lemma follows from Lemma 5.1 in the Appendix (or Lemma 6.1 in [24])
immediately. �

Combining Lemma 3.1 with Theorem 5.2, we can now prove Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality, we may assume r0 = 1. By assumption (1.7),
it is easy to see that

‖∇φ‖M2,2(B1(x0)) + ‖|ψ|2‖M2,2(B1(x0)) ≤ ε0.

If ε0 ≤
ε1

1+Λ1
, by Lemma 3.1, we have ψ ∈ L

4mq
2+q (B 3

4
(x0)) for any 2 < q < ∞ and

‖ψ‖
L

4mq
2+q (B 3

4
(x0))
≤ C(m, q,N)‖ψ‖M4,2(B1(x0)).

Thus
G(ψ) ∈ L

mq
2+q (B 3

4
(x0)).

By slightly modifying the extrinsic equations for Dirac-harmonic maps (i.e., the case of λ = 0)
considered in [43, 11, 37] (see equations (3.6) and (3.8) in [37]), it is easy to see that the equation
(2.3) for the map can be written as the following form

∆φ = Ω̂ · ∇φ + f

with an antisymmetric potential Ω̂ satisfying

|Ω̂| ≤ C̃(N)(|∇φ| + |ψ|2),

and with an error term f satisfying

| f | = |G(ψ)| ≤ C(Λ1,N)|ψ|4.

Take ε0 = min{ ε1
1+Λ1

, ε

C̃(N)
}, where ε is the constant in Theorem 5.2 in the Appendix. By Theorem

5.2, we know ∇φ ∈ Mq,2(B 5
8
(x0)) for any 2 < q < ∞ and

‖∇φ‖Mq,2(B 5
8

(x0)) ≤ C(m, q,N)(‖∇φ‖L2(B 3
4

(x0)) + ‖G(ψ)‖
L

mq
2+q (B 3

4
(x0))

)

≤ C(m, q,Λ1,N)(‖∇φ‖L2(B1(x0)) + ‖ψ‖M4,2(B1(x0))),

which implies |∆φ| ∈ Lq(B 5
8
(x0)) and for some q > m. The elliptic theory tells us φ ∈ W2,q(B 1

2
(x0)).

Thus φ ∈ C1,α(B 1
2
(x0)) for some α > 0. Then by (2.4) and the standard first order elliptic estimates

Lemma 5.3, we get ψ ∈ W1,q(B 1
2
(x0)) which yields ψ ∈ C1,α(B 1

2
(x0)) and (1.8) holds. The higher

order regularity then follows from the classical Schauder estimates for the Laplace and Dirac equa-
tion (see Lemma 5.4 in the Appendix) and a standard bootstrap argument. �

Now, we prove our main Theorem 1.4.
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Proof of Theorem 1.4. Without loss of generality, we assume λ , 0 (for λ = 0, one can see [40]).
Let ε0 > 0 be the constant in Theorem 1.2. Define

S (φ) := {x ∈ Ω : lim inf
r↘0

r2−m
∫

Br(x)
|∇φ|2 ≥

ε2
0

2m }.(3.2)

It is well known that Hn−2(S (φ)) = 0. Next, we show S (φ) is a closed set and (φ, ψ) ∈ C∞(Ω\S (φ)).
For any x0 ∈ Ω \ S (φ) and ε > 0, there exists 0 < r0 < ε such that,

(2r0)2−m
∫

B2r0 (x0)
|∇φ|2dx <

ε2
0

2m .(3.3)

Therefor,

sup
z∈Br0 (x0)

r2−m
0

∫
Br0 (z)
|∇φ|2dx <

ε2
0

4
.(3.4)

By Corollary 2.5, for any 0 < r0 <
1
2 min{dist(x0, ∂Ω), 1}, we have

sup
z∈Br0 (x0),0<r≤r0

r2−m
∫

Br(z)
(|∇φ|2 + |ψ|4)dx

≤ sup
z∈Br0 (x0)

r2−m
0

∫
Br0 (z)
|∇φ|2dx + C(m)‖ψ‖

L
mp

m−p (B2r0 (x0))
‖∇ψ‖Lp(B2r0 (x0))r

3− 2m
p

0

+ C(m,N)(1 + Λ1)‖ψ‖4
L

mp
m−p (B2r0 (x0))

r
6− 4m

p

0

≤
ε2

0

4
+ C(m, p,Ω,N)(Λ2 + (1 + Λ1)Λ4)r

3− 2m
p

0 ,(3.5)

where the last inequality follows from Sobolev’s embedding W1,p(Ω) ↪→ L
mp

m−p (Ω).
Taking ε ≤ ( ε2

0
4C(m,p,Ω,N)(Λ2+(1+Λ1)Λ4) )

2m
p −3, we get

sup
z∈Br0 (x0),0<r≤r0

r2−m
∫

Br(z)
(|∇φ|2 + |ψ|4)dx ≤

ε2
0

2
.(3.6)

Then Theorem 1.2 tells us that (φ, ψ) ∈ C∞(Br0/2(x0)) which implies Br0/4(x0) ⊂ Ω \ S (φ). We
finished the proof. �

4. Proof of Theorem 1.5

In this section, we consider a weakly converging sequence of stationary Dirac-harmonic maps
with λ-curvature term.

Let {(φn, ψn)} be a sequence of stationary Dirac-harmonic maps with λ-curvature term with
bounded energy

E(φn, ψn) =

∫
Ω

(|∇φn|
2 + |ψn|

4) ≤ Λ.

Additionally, we assume
‖ψn‖W1,p(Ω) ≤ Λ
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for some p > 2m
3 . Similar to harmonic maps [34], define the energy concentration set Σ as follows

Σ = {x ∈ Ω| lim inf
r↘0

lim inf
n→∞

r2−m
∫

Br(x)
|∇φn|

2dx ≥ ε0}.(4.1)

Suppose (φn, ψn) ⇀ (φ, ψ) weakly in W1,2(Ω,N) × L4(CL ⊗ φ∗nT N) and

µn := |∇φn|
2dx→ µ = |∇φ|2dx + ν

in the sense of Radon measures.

Without loss of generality, we assume B1(0) ⊆ Ω. Then, we have

Lemma 4.1. Let {(φn, ψn)} be a sequence of stationary Dirac-harmonic maps with λ-curvature
term with bounded energy and ‖ψn‖W1,p ≤ Λ for some p > 2m

3 . Denote

Σ = {x ∈ B1| lim inf
r↘0

lim inf
n→∞

r2−m
∫

Br(x)
|∇φn|

2dx ≥
ε2

0

2m },(4.2)

where ε0 is the constant in Theorem 1.2, then Σ is closed in B1 and Hm−2(Σ) ≤ C(ε0,m,Λ). More-
over,

(4.3) Σ = spt(ν) ∪ sing(φ),

where sing(φ) denoted the singular set of φ, i.e. for any x0 ∈ sing(φ), φ is not smooth at x0.

Proof. For x0 ∈ B1 \ Σ, by the proof of Theorem 1.4, there exists a positive constant r0 > 0 and a
subsequence of {n} (also denoted by {n}), such that, for any n, there holds

(2r0)2−m
∫

B2r0 (x)
|∇φn|

2dx <
ε2

0

2m ,

which implies (similar to deriving (3.6))

sup
z∈Br0 (x),0<r≤r0

r2−m
∫

Br(z)
(|∇φn|

2 + |ψn|
4)dx <

ε2
0

2
.

By Theorem 1.2, we know

r0‖∇φn‖L∞(Br0/2(x0)) +
√

r0‖ψn‖L∞(Br0/2(x0)) ≤ C(m, r0, ε0,Λ1,N).(4.4)

Then, it is easy to see that there exists a small positive constant r1 = r1(m, r0, ε0, λ1,N), such
that, whenever r ≤ r1,

sup
x∈Br0/4(x0)

r2−m
∫

Br(x)
|∇φn|

2dx <
ε2

0

2m .

Thus, Br0/4(x0) ⊂ B1 \ Σ. So, Σ is a closed set.
It is standard to get Hm−2(Σ) ≤ C(ε0,m,Λ) by a covering lemma (cf. [26]).
For (4.3), on the one hand, let x0 ∈ B1 \ Σ. Then (4.4) holds and by standard elliptic estimates,

we have

‖φn‖C1+α(Br0/4(x0)) + ‖ψn‖Cα(Br0/2(x0)) ≤ C,(4.5)
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for some 0 < α < 1. So, there exists a subsequence of {φn, ψn} (also denoted by {φn, ψn}) such that
φn → φ strongly in W1,2 and φ ∈ C∞(Br0/8(x0)) which imply that x0 < sing(φ) and x0 < sptν since
ν ≡ 0 on Br0/8(x0).

On the other hand, let x0 ∈ Σ, by the definition, for any r > 0 small enough, when n is sufficient
large, we have

µn(Br(x0))
rm−2 ≥

ε2
0

2m+1 .

Letting n→ ∞,
µ(Br(x0))

rm−2 ≥
ε2

0

2m+1

for a.e. r > 0. Suppose x0 < sing(φ), then

r2−m
∫

Br(x0)
|∇φ|2dx ≤

ε2
0

2m+2

whenever r > 0 is small enough. Then we have

ν(Br(x0))
rm−2 ≥

ε2
0

2m+2

for all small positive r > 0 and x0 ∈ sptν. This finishes the proof of lemma. �

Lemma 4.2. Under the assumption of the preceding lemma, the limit

(4.6) lim
r→0

ν(Br(x))
rm−2

exists for Hm−2 a.e. x ∈ Σ. If we denote it by θν(x), then

ε2
0

2m ≤ θν(x) ≤ C(m, p,Ω,Λ1,Λ,N)δ2−m
0 ,

where δ0 := dist(B1(0), ∂Ω).

Proof. For any x ∈ Ω and any two sequence si → 0, ti → 0, by Corollary 2.5 and Sobolev’s
embedding W1,p(Ω) ↪→ L

mp
m−p (Ω), we have

µn(Bsi(x))
sm−2

i

≤
µn(Bt j(x))

tm−2
j

+ C(m, p,Ω,Λ1,Λ,N)(t j)3− 2m
p(4.7)

for si ≤ t j. Letting firstly i→ ∞ and secondly j→ ∞, we get

lim sup
r→0

µ(Br(x))
rm−2 ≤ lim inf

r→0

µ(Br(x))
rm−2 ,

which implies that

lim
r↘0

µ(Br(x))
rm−2

exists for any x ∈ Ω.
Noting that for Hm−2 a.e. x ∈ Ω,

lim
r→0

r2−m
∫

Br(x)
|∇φ|2dx = 0,(4.8)
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therefore,

lim
r→0

ν(Br(x))
rm−2 = lim

r→0

µ(Br(x))
rm−2 .

Obviously, from (4.7), we can get

r2−mµ(Br(x)) ≤ C(Λ)δ2−m
0 + C(m, p,Ω,Λ1,Λ,N)(δ0)3− 2m

p ≤ C(m, p,Ω,Λ1,Λ,N)δ2−m
0 .

This implies µbΣ is absolutely continuous with respect to Hm−2bΣ and the Radon-Nikodym theorem
tells us that there exists a measurable function θ(x) such that

µbΣ = θ(x)Hm−2bΣ.

Noting that for Hm−2 a.e. x ∈ Σ,

22−m ≤ lim inf
r→0

Hm−2(Σ ∩ Br(x))
rm−2 ≤ lim sup

r→0

Hm−2(Σ ∩ Br(x))
rm−2 ≤ 1

and (4.8), we have
νbΣ = θ(x)Hm−2bΣ

and
ε0

2m ≤ θν(x) = θ(x) ≤ C(m, p,Ω,Λ1,Λ,N)δ2−m
0 .

�

By modifying Lin’s method in [26] or applying Preiss’s result [30], we have

Corollary 4.3. The set of energy concentration points Σ is (m − 2)-rectifiable.

For any x ∈ Σ and λ > 0, we define a scaled Radon measure µy,λ by

µy,λ(A) = λ2−mµ(y + λA).

If there is a Radon measure µ∗ such that

µy,λ → µ∗

in the sense of Radon measure as r ↘ 0, then we say that µ∗ is the tangent measure of µ at y. (See
[14, 38].)

Lemma 4.4. Suppose Hm−2(Σ) > 0, then there exists a nonconstant harmonic sphere S 2 into N.

Before we prove this lemma, let us state a basic proposition for the Dirac operator.

Proposition 4.5. Suppose φ ∈ C2(M,N), ψ ∈ C2(M,ΣM ⊗ φ?T N). Let {eα}mα=1 be a unit normal
basis of T M and eβ ∈ Γ(T M) a section satisfying

[eβ, eα] = 0, α = 1, ...,m,

then

〈ψ, ∇̃eβ( /Dψ) = 2〈Re (P(A(dφ(eα), eα · ψ);ψ)) , φβ〉 + 〈ψ, /Dψβ〉,(4.9)

where [·, ·] is the Lie bracket, φβ = dφ(eβ) and ψβ = ∇̃eβψ.
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Proof. The proof is similar to the Proposition 2.2 in [22] (see also the computations of Proposition
3.3 in [9]), where the case of a two dimensional domain was considered. �

Proof of Lemma 4.4. Since Σ is (m − 2)-rectifiable, we can find a point x0 ∈ Σ, such that ν has a
tangent measure at x0 and

ν∗ = θ(x0)Hm−2bΣ∗

where Σ∗ ⊂ R
m is a (m − 2) linear subspace which is usually called the tangent space of Σ at x0.

Without loss of generality, we assume x0 = 0 and Σ∗ = Rm−2 × {(0, 0)}.
In fact, by a diagonal argument, we can find a sequence rn → 0, such that,

|∇un|
2dx→ ν∗

in the sense of Radon measures (cf. [26]), where

(un(x), vn(x)) := (φn(x0 + rnx),
√

rnψn(x0 + rnx)).

It is easy to see that (un, vn) is also a stationary Dirac-harmonic map with λ−curvature term. By
Lemma 2.4, we have∫ r2

r1

∫
∂Br(x0)

|x − x0|
2−m(2|

∂un

∂r
|2 + Re〈vn, ∂r · ∇̃∂rvn〉)dHn−1dr

= r2−m
2

∫
Br2 (x0)

(|∇un|
2 +

λ

6
Rik jl〈vi

n, v
j
n〉〈v

k
n, v

l
n〉)dx

− r2−m
1

∫
Br1 (x0)

(|∇un|
2 +

λ

6
Rik jl〈vi

n, v
j
n〉〈v

k
n, v

l
n〉)dx.(4.10)

By (2.9) and (2.10), we have∫
Br(x0)
|x − x0|

2−m|vn||∇vn|dx ≤ C(m)‖vn‖L
mp

m−p (Br(x0))
‖∇vn‖Lp(Br(x0))r3− 2m

p

= C(m)‖ψn‖L
mp

m−p
‖∇ψn‖Lp(rrn)3− 2m

p

≤ C(m, p,Λ,Ω)(rrn)3− 2m
p(4.11)

and

r2−m
1

∫
Br1 (x0)

|ψ|4dx + r2−m
2

∫
Br2 (x0)

|ψ|4dx ≤ C(m, p,Λ,Ω)(r2rn)6− 4m
p .(4.12)

Since r2−m
2 ν∗(Br2(0)) = r2−m

1 ν∗(Br1(0)), letting n→ ∞ in (4.10), we get

(4.13) lim
n→∞

∫
B2(0)
|
∂un

∂|x|
|2dx = 0.

Noting that ν∗y,r = ν∗ for y ∈ Σ∗, we also have

(4.14) lim
n→∞

∫
B2(0)
|
∂un

∂|x − y|
|2dx = 0, f or y ∈ Σ∗ ∩ B2.
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These imply

(4.15) lim
n→∞

m−2∑
k=1

∫
B2(0)
|
∂un

∂xk |
2dx = 0.

Let x′ = (x1, ..., xm−2), x′′ = (xm−1, xm), define fn : Bm−2
1 → R by

fn(x′) :=
m−2∑
k=1

∫
B2

1(0)
|
∂un

∂xk
|2(x′, x′′)dx′′.

Then,
lim
n→∞
‖ fn(x′)‖L1(Bm−2

1 (0)) = 0.

Let M( fn)(x′) be the Hardy-Littlewood maximal function, i.e.

M( fn)(x) = sup
0<r< 1

2

r2−m
∫

Bm−2
r (x)

fn(x′)dx′, x ∈ Bm−2
1/2 (0).

By the weak L1−estimate, for any ρ > 0, we have

|{x ∈ Bm−2
1/2 (0)|M( fn) > ρ}| ≤

C(m)
ρ
‖ fn‖L1(Bm−2

1/2 (0)),

which implies

|{x ∈ Bm−2
1/2 (0)| lim sup

n→∞
M( fn) > 0}| = 0.

Combining this with Theorem 1.4, there exists a sequence of points {x′n ∈ Bm−2
1/2 (0)}, such that

(un, vn) is smooth near (x′n, x
′′) for all x′′ ∈ B2

1(0) and

(4.16) lim
n→∞

M( fn)(x′n) = 0.

By the blow-up argument in [26], there exist sequences {σn} and {x′′n } ⊂ B2
1/2(0) such that σn →

0, x′′n → (0, 0) and

(4.17) max
x′′∈B2

1/2(0)
σ2−m

n

∫
Bm−2
σn (x′n)×B2

σn (x′′)
|∇un|

2dx =
ε2

0

C1(m)
,

where the maximum is achieved at the point x′′n and C1(m) ≥ 4m is a positive constant to be
determined later.

In fact, denote

gn(σ) := max
x′′∈B2

1/2(0)
σ2−m

∫
Bm−2
σ (x′n)×B2

σ(x′′)
|∇un|

2dx.

On one hand, since (un, vn) is smooth near x′n × B2
1(0), we have

lim
σ→0

gn(σ) = 0.

On the other hand, for any σ > 0, when n is big enough, we must have

gn(σ) ≥
ε2

0

2m .
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Otherwise, by Theorem 1.2 (similar to deriving (3.6)), un will converge strongly in W1,2 which is
contradict to |∇un|

2dx→ ν∗. Thus, there exists σn, such that

gn(σn) =
ε2

0

C1(m)

and we may assume the maximum is achieved at x′′n . Next, we show σn → 0 and x′′n → (0, 0).
If σn ≥ δ > 0, by Corollary 2.5, we have

ε2
0

C1(m)
= lim sup

n→∞
gn(σn) ≥ lim sup

n→∞

(
gn(δ) −C(m, p,Λ1,Λ,Ω,N)(rnσn)3− 2m

p
)
≥
ε0

2m ,

which is a contradiction.
If x′′n → x′′0 ∈ B2

1/2(0) and x′′0 , (0, 0), for any 0 < σ <
|x′′0 |
2 ,

ε0

2m ≤ lim sup
n→∞

gn(σ) ≤ σ2−mν∗(Bm−2
1 (0) × B2

2σ(x′′0 )) = 0.

This is also a contradiction. �

Let xn = (x′n, x
′′
n ) and

(̃un(x), ṽn(x)) := (un(xn + σnx),
√
σnvn(xn + σnx)).

Then (̃un(x), ṽn(x)) is a stationary Dirac-harmonic map with λ−curvature term defined on Bm−2
Rn

(0)×
B2

Rn
(0), where Rn = 1

4σn
which tends to infinity as n→ ∞.

By (4.16), we have

lim
n→∞

sup
0<R<Rn

R2−m
∫

Bm−2
R (0)×B2

Rn
(0)

m−2∑
k=1

|
∂ũn

∂xk
|2dx

= lim
n→∞

sup
0<R<Rn

(σnR)2−m
∫

Bm−2
σnR(x′n)×B2

σnRn
(x′′n )

m−2∑
k=1

|
∂un

∂xk
|2dx

≤ lim
n→∞

M( fn)(x′n) = 0.(4.18)

By (4.17), we get

ε2
0

C1(m)
=

∫
Bm−2

1 (0)×B2
1(0)
|∇ũn|

2dx = max
x′′∈B2

Rn−1(0)

∫
Bm−2

1 (0)×B2
1(x′′)
|∇ũn|

2dx.(4.19)

By Corollary 2.5, for any R > 0, we obtain∫
Bm−2

R (0)×B2
R(0)
|∇ũn|

2dx = (σn)2−m
∫

Bm−2
σnR(x′n)×B2

σnR(x′′n )
|∇un|

2dx

≤ C(m, p, δ0,Λ1,Λ,Ω,N)Rm−2,(4.20)

when n is big enough.
Let ζ ∈ C∞0 (Bm−2

1 (0)) be a cut-off function such that 0 ≤ ζ ≤ 1 and ζ |Bm−2
1/2 (0) ≡ 1. Let η ∈

C∞0 (B2
1(0)) also be a cut-off function such that 0 ≤ ζ ≤ 1 and η|B2

1/2(0) ≡ 1. Similarly to [26], for any
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R > 0, we define Fn(a) : Bm−2
6 (0) × B2

R(0)→ R as follows:

Fn(a) =

∫
Bm−2

1 (0)×B2
1(0)
|∇ũn|

2(a + x)ζ(x′)η(x′′)dx.

Computing directly, one has
∂Fn(a)
∂ak

=

∫
Bm−2

1 (0)×B2
1(0)

∂

∂xk
|∇ũn|

2(a + x)ζ(x′)η(x′′)dx

= 2
∫

Bm−2
1 (0)×B2

1(0)
〈
∂ũn

∂xl
,
∂2ũn

∂xl∂xk
〉(a + x)ζ(x′)η(x′′)dx

= −2
∫

Bm−2
1 (0)×B2

1(0)
〈∆ũn,

∂ũn

∂xk
〉(a + x)ζ(x′)η(x′′)dx

− 2
∫

Bm−2
1 (0)×B2

1(0)
〈
∂ũn

∂xl
,
∂ũn

∂xk
〉(a + x)

∂

∂xl
(ζ(x′)η(x′′))dx.

On the one hand, by Proposition 4.5,

〈̃vn, ∇̃ ∂

∂xk
( /Dṽn)〉 = 2〈Re (P(A(dũn(eα), eα · ṽn); ṽn)) ,∇ ∂

∂xk
ũn〉 + 〈̃vn, /D∇̃ ∂

∂xk
ṽn〉,(4.21)

and (2.3), we have

− 2
∫

Bm−2
1 (0)×B2

1(0)
〈∆ũn,

∂ũn

∂xk
〉(a + x)ζ(x′)η(x′′)dx

=

∫
Bm−2

1 (0)×B2
1(0)
〈̃vn, ∇̃ ∂

∂xk
( /Dṽn) − /D∇̃ ∂

∂xk
ṽn〉(a + x)ζ(x′)η(x′′)dx

−

∫
Bm−2

1 (0)×B2
1(0)
〈G(̃vn),

∂ũn

∂xk
〉(a + x)ζ(x′)η(x′′)dx.(4.22)

Noting that

〈G(̃vn),
∂ũn

∂xk
〉 =

1
12

∂
(
λ(̃un)Ri jkl(̃un)

)
∂xk 〈vi

n, v
j
n〉〈v

k
n, v

l
n〉,

integrating by parts and using Young’s inequality, then the right hand side of (4.22) is controlled
by

C(Λ1,N)
∫

Bm−2
1 (0)×B2

1(0)
(|∇̃vn||̃vn|

3 + |̃vn|
4 + |∇̃vn||̃vn|)(a + x)dx

≤ C(m, p,Λ1,Λ,Ω,N)(σnrn)3− 2m
p .

On the other hand, by Hölder’s inequality, one has

− 2
∫

Bm−2
1 (0)×B2

1(0)
〈
∂ũn

∂xl
,
∂ũn

∂xk
〉(a + x)

∂

∂xl
(ζ(x′)η(x′′))dx

≤ C(
∫

Bm−2
R+1 (0)×B2

R+1(0)
|∇ũn|

2dx)1/2(
∫

Bm−2
R+1 (0)×B2

R+1(0)
|
∂ũn

∂xk
|2dx)1/2.
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Combining these and letting n→ ∞, we obtain
∂Fn(a)
∂ak

→ 0, k = 1, ...,m − 2,

uniformly in Bm−2
6 (0) × B2

R(0) for any fixed R > 0.
Thus, for any a = (a′, a′′) = Bm−2

6 (0) × B2
R(0),∫

Bm−2
1/2 (a′)×B2

1/2(a′′)
|∇ũn|

2dx ≤ Fn(a)

≤ Fn((0, a′′)) + C(m)
m−2∑
k=1

|
∂Fn(a)
∂ak

|

≤

∫
Bm−2

1 (0)×B2
1(a′′)
|∇ũn|

2dx + C(m)
m−2∑
k=1

|
∂Fn(a)
∂ak

|

≤
ε2

0

C1(m)
+ C(m)

m−2∑
k=1

|
∂Fn(a)
∂ak

|.

Therefore, for any R > 0, when n is big enough, we have

62−m
∫

Bm−2
6 (0)×B2

6(0)
|∇ũn|

2(x′, x′′ + b)dx ≤
C(m)ε2

0

C1(m)
f or all b ∈ B2

R−6.(4.23)

Taking C1(m) ≥ 2mC(m), similar to deriving (3.5), we have

sup
x0∈B3(0),0<r≤3

r2−m
∫

Br(x0)
(|∇ũn|

2 + |λ|2 |̃vn|
4)(x′, x′′ + b)dx

≤
ε2

0

4
+ C(m, p,Λ1,Λ,Ω,N)(rnσn)3− 2m

p ≤
ε2

0

2
,

whenever n is large enough.
By Theorem 1.2, we know (̃un, ṽn) sub-converges to a Dirac-harmonic map with λ-curvature

term (u, v) in C1
loc(B

m−2
3/2 (0) × R2). Moreover, by (4.18)-(4.20), for any R > 0, we have∫

BR(0)

m−2∑
k=1

|
∂u
∂xk
|2dx = 0,

and ∫
B1(0)
|∇u|2dx =

ε2
0

C1(m)
,

∫
BR(0)
|∇u|2dx ≤ C(m, p, δ0,Λ1,Λ,Ω,N)Rm−2.

Furthermore, since∫
BR(0)
|v|4dx = lim

n→∞

∫
BR(0)
|̃vn|

4dx ≤ lim
n→∞

C(m, p, δ0,Λ1,Λ,Ω,N)(rnσnR)3− 2m
p = 0,

we know v ≡ 0 and u : R2 → N is a nonconstant harmonic map with finite energy. By the
conformal invariance of harmonic maps in dimension two, u can be extended to a nonconstant
harmonic sphere.
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Proof of Theorem 1.5. The conclusion of Theorem 1.5 follows from Lemma 4.4 and the Federer
dimension reduction argument which is similar to [35] for minimizing harmonic maps. We omit
the details here. This completes the proof. �

5. Appendix

In this section, for reader’s convenience, we recall some known results which are used in this
paper.

Lemma 5.1 (Lemma 6.1 in [24]). Let m ≥ 2 and 4 < p < ∞. Let ψ ∈ M4,2(B1,C
L ⊗RK) be a weak

solution of the nonlinear system

(5.1) /∂ψi = Ai
jψ

j + Bi, 1 ≤ i ≤ K,

where A ∈ M2,2(B1, gl(L,C) ⊗ gl(K,R)) and B ∈ M2,2(B1,C
L ⊗ RK). For any U ⊆ B1, there exists

ε0 = ε0(m, p) > 0 and C = C(m, p,U) > 0 such that if

‖A‖M2,2(B1) ≤ ε0,

then ψ ∈ Lp(U) and the following estimate hold:

‖ψ‖Lp(U) ≤ C(m, p,U)(‖ψ‖M4,2(B1) + ‖B‖M2,2(B1)).

Theorem 5.2 ([33], Theorem 1.2 in [36]). Let m ≥ 2 and 2 < p < ∞. Let u ∈ W1,2(B1,R
d),

Ω ∈ M2,2(B1, so(d) ⊗ ∧1Rm) and f ∈ Lp(B1,R
d) with m

2 < p < m, satisfy weakly

(5.2) ∆u = Ω · ∇u + f in B1.

Then for any U ⊆ B1, there exist ε = ε(m, d, p) > 0 and C = C(m, d, p,U) > 0 such that if
‖Ω‖M2,2(B1) ≤ ε, then

‖∇2u‖
M

2p
m ,2(U)

+ ‖∇u‖
M

2p
m−p ,2(U)

≤ C(m, d, p,U)(‖u‖L1(B1) + ‖ f ‖Lp(B1)).

Lemma 5.3 (Wk,p-estimates, c.f. [2]). Let (M, g) be an m-dimensional spin Riemannian manifold.
Suppose ψ ∈ Γ(ΣM), ψ ∈ L4(Br(x0)) is a weak solution of

/∂ψ = f in Br(x0)

where Br(x0) is a geodesic ball of M and f ∈ Wk,p(Br(x0)) for some 1 < p < ∞, k ≥ 1. Then
ψ ∈ Wk+1,p(B r

2
(x0)) and

‖ψ‖Wk+1,p(B r
2

(x0)) ≤ C(p, k, r,M)(‖ψ‖L4(Br(x0)) + ‖ f ‖Wk,p(Br(x0))).
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Lemma 5.4 (Schauder estimates, c.f. [2]). Let (M, g) be a m-dimensional spin Riemannian mani-
fold. Suppose ψ ∈ Γ(ΣM), ψ ∈ L4(Br(x0)) is a weak solution of

/∂ψ = f in Br(x0)

where f ∈ Ck,α(Br(x0)) for some 0 < α < 1 and k ≥ 1. Then ψ ∈ Ck+1,α(B r
2
(x0)) and

‖ψ‖Ck+1,α(B r
2

(x0)) ≤ C(α, r, k,M)(‖ψ‖L4(Br(x0)) + ‖ f ‖Ck,α(Br(x0))).
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