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In Coles-Piani’s recent remarkable version of the entropic uncertainty principle, the entropic sum

is controlled by the first and second maximum overlaps between the two projective measurements.

We generalize the entropic uncertainty relation and find the exact dependence on all first d largest

overlaps between two measurements on any d-dimensional Hilbert space. The corresponding entropic

uncertainty principle in the presence of quantum memory is also derived. Our bounds are strictly

tighter than previous entropic bounds.
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The uncertainty principle, first introduced by

Heisenberg [1], plays a central role in physics and mark-

s a distinguished characteristic of quantum mechanics.

The principle bounds the uncertainties of measurement

outcomes of two observables, such as the position and

momentum of a particle. This shows the underlying d-

ifference of quantum mechanics from classical mechanics

where any properties of a physical object can be quanti-

fied exactly at the same time. In Robertson’s formulation

[2], the product of the standard deviations (denoted by

∆(R) for the observable R) of the measurement of two

observables R and S is controlled by their commutator:

∆R∆S > 1

2
|⟨[R,S]⟩|, (1)

where ⟨ ⟩ is the expectation value. The relation implies

that it is impossible to simultaneously measure exactly a

pair of imcompatible (noncommutative) observables.

In the context of both classical and quantum infor-

mation sciences, it is more natural to use entropy to

quantify uncertainties [3, 4]. The first entropic uncer-

tainty relation for position and momentum was given in

[5] (which can be shown to be equivalent to Heisenberg’s

original relation). Later Deutsch [6] found an entropic

uncertainty relation for any pair of observables. An im-

provement of Deutsch’s entropic uncertainty relation was
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subsequently conjectured by Kraus [7] and later proved

by Maassen and Uffink [8] (we use base 2 log throughout

this paper),

H(R) +H(S) > log
1

c1
, (2)

where R = {|uj⟩} and S = {|vk⟩} are two orthonormal

bases on d-dimensional Hilbert space HA, and H(R) =

−
∑

j pj log pj is the Shannon entropy of the probability

distribution {pj = ⟨uj |ρA|uj⟩} for state ρA of HA (sim-

ilarly for H(S) and {qk = ⟨vk|ρA|vk⟩}). The number c1

is the largest overlap among all cjk = |⟨uj |vk⟩|2 (6 1)

between the two projective measurements R and S.

The Maassen-Uffink bound has recently been up-

graded by Coles and Piani [9], who have shown a re-

markable state-independent bound

H(R) +H(S) > log
1

c1
+

1−√
c1

2
log

c1
c2

, (3)

where c2 is the second largest overlap among all cjk

(counting multiplicity) and other notations are the same

as in Eq.(2). As 1 > c1 > c2, the second term in Eq.(3)

shows that the uncertainties depend on more detailed in-

formation of the transition matrix or overlaps between

the two bases. The Coles-Piani bound offers a strictly

tighter bound than the Maassen-Uffink bound as long as

1 > c1 > c2. The goal of this letter is to report a more

general and tighter bound for the entropic uncertainty

relation.

To state our result, we first recall the majoriza-

tion relation between two probability distributions P =



2

(p1, · · · , pd), Q = (q1, · · · , qd). The partial order P ≺ Q

means that
∑i

j=1 p
↓
j 6

∑i
j=1 q

↓
j for all i = 1, · · · , d.

Here ↓ denotes rearranging the components of p or q

in descending order. Any probability distribution vec-

tor P is bounded by ( 1d , · · · ,
1
d ) ≺ P ≺ (1, 0, · · · , 0) =

{1}. For any two probability distributions P = (pj)

and Q = (qk) corresponding to measurements R and

S of the state ρ, there is a state-independent bound

of direct-sum majorization [10]: P ⊕ Q ≺ {1} ⊕ W ,

where P ⊕Q = (p1 · · · , pd, q1, · · · , qd) and W = (s1, s2 −
s1, · · · , sd−sd−1) is a special probability distribution vec-

tor defined exclusively by the overlap matrix related to

R and S. Let U = (⟨uj |vk⟩)jk be the overlap matrix be-

tween the two bases given by R and S, and define the

subset Sub(U, k) to be the collection of all size r× s sub-

matrices M such that r + s = k + 1. Following [10] we

define sk = max{∥M∥ : M ∈ Sub(U, k)}, where ∥M∥
is the maximal singular value of M . Denote the sum of

the largest k terms in {1} ⊕W as Ωk = 1 + sk−1, while

s0 = 0, s1 =
√
c1 and sd = 1. It is clear that

1 = Ω1 6 Ω2 6 · · · 6 Ωd+1 = · · · = Ω2d = 2,

where we already noted that Ω2 = 1 +
√
c1.

Our first result is the following stronger state-

independent bound of the quantum system HA without

quantum memory.

Theorem 1. Let R = {|uj⟩} and S = {|vk⟩} be any two

orthonormal bases on d-dimensional Hilbert space HA.

Then for any state ρA over HA, we have the following

inequality,

H(R) +H(S)

> log
1

c1
+

1−√
c1

2
log

c1
c2

+
2− Ω4

2
log

c2
c3

+
2− Ω6

2
log

c3
c4

+ · · ·+
2− Ω2(d−1)

2
log

cd−1

cd
, (4)

where Ωk = 1+sk−1 6 2 and ci is the i-th largest overlap

among cjk: c1 > c2 > c3 > · · · > cd2 .

We remark that due to Ωd+1 = · · ·Ω2d = 2, the

last (non-zero) term of formula (4) can be fine-tuned ac-

cording to parity of d. If d = 2n, it is 2−Ωd

2 log cn
cn+1

; if

d = 2n+ 1, it is 2−Ωd−1

2 log cn
cn+1

.

For simplicity, we leave the proof of Theorem 1 after

that of Theorem 2. Let us consider the following exam-

FIG. 1: Comparison of Maassen-Uffink’s, Coles-Piani’s and

the new bounds in absence of quantum memory. They are

respectively in green, yellow and blue colors.

ple:

ρA =
1

1 + 7p


1
2 + 3p

2 0 0

√
1−p2

2

0 2p 0 0

0 0 2p 0√
1−p2

2 0 0 1
2 + 3p

2

 . (5)

Consider the following two projective measurements:

{|vk⟩} are the standard orthonormal basis on HA and

{|uj⟩} are given by

|u1⟩ = (
12√
205

,
6√
205

,
4√
205

,
3√
205

)T ,

|u2⟩ = (− 66

29
√
205

,
172

29
√
205

,
183

29
√
205

,− 324

29
√
205

)T ,

|u3⟩ = (− 11

29
√
298

,
309

29
√
298

,−
195

√
2

149

29
,−

27
√

2
149

29
)T ,

|u4⟩ = (
9√
298

,− 9√
298

,−3

√
2

149
,−5

√
2

149
)T .

Then the overlap matrix has the form
144
205

36
205

16
205

9
205

4356
172405

29584
172405

33489
172405

104976
172405

121
250618

95481
250618

76050
125309

1458
125309

81
298

81
298

18
149

50
149

 . (6)

Then Ω4 ̸= 2 and c2 ̸= c3. FIG. 1. illustrates the differ-

ence among Eq. (4), Coles-Piani’s bound and Maassen-

Uffink’s bound in this situation. From the diagram it is

clear that the new bound is tighter everywhere for each

p ∈ (0, 1).

Our stronger bound for the entropic uncertainty re-

lation can be also generalized to bipartite states in the



3

presence of quantum memory [11]. For a bipartite quan-

tum state ρAB on Hilbert space HA⊗HB , without confu-

sion, we still use H to denote the von Neumann entropy,

H(ρAB) = −Tr(ρAB log ρAB).

Theorem 2. Let R = {|uj⟩} and S = {|vk⟩} be arbitrary

orthonormal bases of the subsystem A of a bipartite state

ρAB. Then we have that

H(R|B) +H(S|B)

> log
1

c1
+

1−√
c1

2
log

c1
c2

+
2− Ω4

2
log

c2
c3

+

+ · · ·+
2− Ω2(d−1)

2
log

cd−1

cd
+H(A|B), (7)

where H(R|B) = H(ρRB)−H(ρB) is the conditional en-

tropy with ρRB =
∑

j(|uj⟩⟨uj | ⊗ I)(ρAB)(|uj⟩⟨uj | ⊗ I)

(similarly for H(S|B)), and d is the dimension of the

subsystem A. The term H(A|B) = H(ρAB) − H(ρB)

appearing on the right-hand side is related to the entan-

glement between the measured particle A and the quan-

tum memory B. Notations Ωk and ci are the same as in

Eq.(4).

Proof. For completeness we start from the derivation

of the Coles-Piani inequality. Observe that the quan-

tum channel ρ → ρSB is in fact ρSB =
∑

k |vk⟩⟨vk| ⊗
TrA((|vk⟩⟨vk|⊗I)ρAB). As the relative entropyD(ρ∥σ) =
Tr(ρ log ρ) − Tr(ρ log σ) is monotonic under a quantum

channel it follows that

H(S|B)−H(A|B)

=D(ρAB∥
∑
k

(|vk⟩⟨vk| ⊗ I)|ρAB(|vk⟩⟨vk| ⊗ I))

>D(ρRB∥
∑
j,k

cjk|uj⟩⟨uj | ⊗ TrA((|vk⟩⟨vk| ⊗ I)ρAB))

>D(ρRB∥
∑
j

max
k

cjk|uj⟩⟨uj | ⊗ ρB)

=−H(R|B)−
∑
j

pj logmax
k

cjk, (8)

where the first equation is a basic identity of the quantum

relative entropy (cf. [12, 13]). So the state-dependent

bound under a quantum memory follows:

H(R|B) +H(S|B) > H(A|B)−
∑
j

pj logmax
k

cjk. (9)

Interchanging R and S we also have

H(R|B) +H(S|B) > H(A|B)−
∑
k

qk logmax
j

cjk.

(10)

We arrange the numbers max
k

cjk, j = 1, · · · , d, in
descending order:

max
k

cj1k > max
k

cj2k > · · · > max
k

cjdk, (11)

where j1j2 · · · jd is a permutation of 12 · · · d. Clearly c1 =

max
k

cj1k and in general ci > max
k

cjik for all i. Therefore

−
d∑

j=1

pj logmax
k

cjk = −
d∑

i=1

pji logmax
k

cjik

>− pj1 log c1 − pj2 log c2 − · · · − pjd log cd

=− (1− pj2 − · · · − pjd) log c1

− pj2 log c2 − · · · − pjd log cd

=− log c1 + pj2 log
c1
c2

+ · · ·+ pjd log
c1
cd

. (12)

Similarly we also have

−
∑
k

qk logmax
j

cjk

>− log c1 + qk2 log
c1
c2

+ · · ·+ qkd
log

c1
cd

, (13)

for some permutation k1k2, · · · kd of 12 · · · d. Taking the

average of Eq. (9) and Eq. (10) and plugging in Eq.

(12-13) we have that

H(R|B) +H(S|B)

>H(A|B) + log
1

c1
+

pj2 + qk2

2
log

c1
c2

+ · · ·+ pjd + qkd

2
log

c1
cd

. (14)

Using pj2 + qk2 =
∑d

i=2(pji + qki) −
∑d

i=3(pji + qki) we

see that Eq. (14) can be written equivalently as

H(R|B) +H(S|B)

> H(A|B) + log
1

c1
+

1

2

d∑
i=2

(pji + qki) log
c1
c2

+
pj3 + qk3

2
log

c2
c3

+ · · ·+ pjd + qkd

2
log

c2
cd

. (15)

The above transformation from Eq.(14) to Eq.(15) adds

all later coefficients of log c1
c3
, · · · , log c1

cd
into that of log c1

c2

and modify the argument of each log to log c2
c3
, · · · , log c2

cd
.
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Continuing in this way, we can write Eq.(15) equivalently

as

H(R|B) +H(S|B)

=H(A|B)− log c1 +
2− (pj1 + qk1)

2
log

c1
c2

+
2− (pj1 + qk1 + pj2 + qk2)

2
log

c2
c3

+ · · ·+
2−

∑d−1
i=1 (pji + qki)

2
log

cd−1

cd
. (16)

Since P ⊕ Q ≺ {1} ⊕ W , we have pj1 + qk1 6 Ω2, · · · ,
pj1 + qk1 + · · ·+ pjd−1

+ qkd−1
6 Ω2(d−1). Plugging these

into Eq.(14) completes the proof. �
Theorem 1 can be similarly proved due to the

following simple observation. When measurements

are performed on system A, H(R) + H(S) >
−
∑
j

pj log
∑
k

qkcjk+H(A) > −
∑
j

pj logmax
k

cjk+H(A).

Then Theorem 1 follows directly from the proof of The-

orem 2.

We remark that the most possible condition which

can force our new bound Eq.(7) degenerates to Eq.(2) is

when two orthonormal bases are mutually unbiased.

As an example, consider the following 2×4 bipartite

state,

ρAB =
1

1 + 7p



p 0 0 0 0 p 0 0

0 p 0 0 0 0 p 0

0 0 p 0 0 0 0 p

0 0 0 p 0 0 0 0

0 0 0 0 1+p
2 0 0

√
1−p2

2

p 0 0 0 0 p 0 0

0 p 0 0 0 0 p 0

0 0 p 0

√
1−p2

2 0 0 1+p
2


,

(17)

which is known to be entangled for 0 < p < 1. We take

system A as the quantum memory, and consider the same

measurement sets {|uj⟩} and {|vk⟩} as in the example of

Theorem 1. {|uj⟩} and {|vk⟩} are now the measurement

bases on space HB , with the overlap matrix (6). The

comparison between Coles-Piani’s bound and Eq. (7) in

the presence of quantum memory is displayed in FIG. 2,

which shows that our new bound is strictly tighter for all

p ∈ (0, 1).

FIG. 2: Comparison of bounds for entangled ρAB . The blue

curve is the new bound Eq. (7) and the yellow curve is Coles-

Piani’s bound.

Conclusion. We have found new lower bounds for

the sum of the entropic uncertainties both with and with-

out quantum memory. Our new bounds have formu-

lated the complete dependence on all d largest entries

in the overlap matrix between two measurements on a

d-dimensional Hilbert space, while the previously best-

known bound depends on the first two largest entries.

We have shown that the new bounds are strictly tighter

than previously known entropic uncertainty bounds by

formulas and examples.
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