
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Existence of solutions of a mixed

elliptic-parabolic boundary value

problem coupling a harmonic-like map

with a nonlinear spinor

(revised version: October 2018)

by

Jürgen Jost, Lei Liu, and Miaomiao Zhu

Preprint no.: 35 2017





EXISTENCE AND ASYMPTOTIC ANALYSIS FOR SOLUTIONS OF A MIXED
ELLIPTIC-PARABOLIC BOUNDARY VALUE PROBLEM COUPLING A

HARMONIC-LIKE MAP WITH A NONLINEAR SPINOR. I

JÜRGEN JOST, LEI LIU, AND MIAOMIAO ZHU

Abstract. In this paper, we solve a new elliptic-parabolic system arising in geometric analysis that is
motivated by the nonlinear supersymmetric sigma model of quantum field theory. The corresponding
action functional involves two fields, a map from a Riemann surface into a Riemannian manifold
and a spinor coupled to the map. The first field has to satisfy a second order elliptic system, which
we turn into a parabolic system so as to apply heat flow techniques. The spinor, however, satisfies a
first order Dirac type equation. We carry that equation as a nonlinear constraint along the flow.

With this novel scheme, in more technical terms, we can show the existence of Dirac-harmonic
maps from a compact spin Riemann surface with smooth boundary to a general compact Riemannian
manifold via a heat flow method when a Dirichlet boundary condition is imposed on the map and a
chiral boundary condition on the spinor.

1. introduction

In this paper, we explore a new scheme in geometric analysis. We show the existence of solutions
of an elliptic system consisting of second and first order equations. Such systems frequently arise
in geometric analysis, and here we look at the system for Dirac-harmonic maps. Another such
system would be the minimal surface system in Riemannian manifolds where a harmonic map,
satisfying a semilinear second order elliptic system, is further constrained by the conformality
condition, a non-linear first order system. We carry the analysis out here for Dirac-harmonic maps,
but want to emphasize the potential of the method for other problems of this type.

Such systems typically represent borderline cases for the Palais-Smale condition, and therefore
cannot be solved by standard tools. One needs to understand the potential formation of singularities
in such systems, usually called bubbles, and one then needs suitable conditions to prevent them.
Here, we deal with a system that, while of variational origin, cannot be solved by minimizing a
suitable integral, because in our case, the corresponding integral is not bounded from below. We
therefore study a parabolic system. Here, a difficulty arises from the first order elliptic part of
the system. The second order elliptic part can be easily converted into a parabolic system, by
letting the solution depend on time and equating the elliptic part with its time derivative. Since
this does not work for the first order part, we simply carry it along as an elliptic side condition.
Our contribution then consists in showing the long time existence of the resulting parabolic-elliptic
system and the convergence of its solutions to solutions of the original elliptic system as time goes
to infinity. The scheme developed in the present paper should lead to applications to a broad range
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of variational problems arising in geometry and physics for which the existence of critical points
can neither be obtained by a direct minimization procedure nor by a minimax scheme. The Dirac-
harmonic system thus seems to be a good new model problem in geometric analysis because on
one hand, it shares the important classical features, like conformal invariance, but on the other
hand does not succumb to the classical techniques. It therefore forces the development of new
methods that are of wider interest. In particular, the interplay between second and first order elliptic
equations is typical for many problems in geometric analysis, like minimal surfaces, as explained
above, or more generally, constant mean curvature surfaces, where the first order equation is the
conformality condition. In symplectic geometry, solutions of such first order equations give rise to
pseudoholomorphic curves, leading to the famous Gromov-Witten invariants. It would be of great
interest to also couple them with a spinorial field, with the hope to produce refined invariants.

Let us now describe the geometric origin and the motivation for the system that we shall solve
in this paper. Harmonic maps from Riemann surfaces are important both in mathematics and
in physics. In mathematics, they have been intensively investigated since the seminal work of
Sacks-Uhlenbeck [29], and the phenomena discovered and the techniques developed have been
fundamental for the subject of geometric analysis, see for instance [17] and the references given
there. In physics, they arise from the nonlinear sigma model of quantum field theory. From that
perspective, however, they only contain part of the story. In fact, in the supersymmetric sigma
model, they have a partner, a spinor field, see e.g. [11, 18]. In order to also incorporate that field
into the mathematical theory, [5, 6] introduced the concept of Dirac-harmonic maps that couple a
harmonic map type field with a spinor field.

This then naturally leads to the question to what extent the mathematical results obtained for har-
monic maps carry over to Dirac-harmonic maps. Foremost here is of course the existence question.
Already for harmonic maps, the existence question becomes subtle because of the phenomenon of
bubbling, that is the concentration of the energy at single points. After rescaling, this leads to
the emergence of harmonic spheres. Thus, while this seems to be an obstruction to an existence
scheme, after all, such a harmonic sphere is a nontrivial harmonic map, and so, in any case, we
find nontrivial solutions. When bubbling occurs, these solutions may, however, lie in different ho-
motopy classes than the maps that one started with. When, however, the target manifold contains
no nontrivial minimal 2-spheres, no bubbling can occur, and one can then show the existence of a
solution in any given homotopy class.

For Dirac-harmonic maps, the existence question is more difficult. We are seeking solutions that
are nontrivial in a more constrained sense. That is, not only should the map be nonconstant, like
a harmonic sphere, but also the spinor part should be nontrivial. But the schemes developed for
harmonic maps are blind to the nontriviality of the spinor part. This makes the existence question
much harder.

Here, we address the question of the existence of Dirac-harmonic maps in the case of boundary
value problems. We impose a Dirichlet type boundary condition for the map and a chiral boundary
condition for the spinor, see [8]. The reason is that a nontrivial boundary condition for the spinor
should also give the existence of a nontrivial spinor.

The harmonic map and the Dirac-harmonic map problem are limit cases for the Palais-Smale
condition, because they are conformally invariant, and the two-dimensional conformal group is
noncompact. In that situation, Sacks-Uhlenbeck [29] approximated the underlying variational in-
tegral, which contains the square of the derivative of the map, by variational integrals that contain
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higher powers and therefore satisfy the Palais-Smale condition. Their main technical achievement
then consists in controlling the limit when that power goes to 2. In our situation, however, as
explained, we cannot use a variational method and need to rely on a parabolic technique instead.
Such parabolic methods have been developed in the context of harmonic maps in [33, 4]. While in
outline, the scheme may look similar to the variational approach, already for harmonic maps, that
is, in a situation where the variational method can be applied, the parabolic approach encounters
different problems and needs to develop new estimates, as can be seen in [33, 4]. The same is the
case here. While we transfer the approximation scheme of Sacks-Uhlenbeck [29] to the parabolic
case, the detailed estimates required are rather different, and in particular, we cannot directly take
over their reasoning. In fact, extending the Sacks-Uhlenbeck scheme to the parabolic case may be
of interest in itself, but this is not our main point. For us, this scheme just provides the necessary
background, and we need to develop it here because this has not yet been done in the literature. In
fact, in our situation, that scheme still cannot fully solve the problem. This is due to the spinor part,
as the reader will amply see in the main body of this paper. We thus have to consider a new type of
flow that can also handle the first-order component of our system. For Dirac-harmonic maps, the
relevant flow has been introduced in [9] and further studied in [19, 20]. Its novel feature consists
in carrying the Dirac equation for the spinor, which is a first order elliptic equation, as a constraint
along the parabolic equation for the map. Thus, we need to deal with an elliptic-parabolic system.
And this is where the difficult part of our estimates is required.

We shall now describe our results in more precise terms. This will need some technical prepa-
ration.

Let M be a compact Riemann surface, equipped with a Riemannian metric g and with a fixed
spin structure, ΣM be the spinor bundle over M and 〈·, ·〉ΣM be the natural Hermitian inner product
on ΣM. Choosing a local orthonormal basis eγ, γ = 1, 2 on M, the usual Dirac operator is defined
as /∂ := eγ · ∇eγ , where ∇ is the spin connection on ΣM and · is the Clifford multiplication. This
multiplication is skew-adjoint:

〈X · ψ, ϕ〉ΣM = −〈ψ, X · ϕ〉ΣM

for any X ∈ Γ(T M), ψ, ϕ ∈ Γ(ΣM). For more details on spin geometry and Dirac operators, one
can refer to [22].

Let φ be a smooth map from M to another compact Riemannian manifold (N, h) with dimension
n ≥ 2. Denote φ∗T N the pull-back bundle of T N by φ and then we get the twisted bundle ΣM ⊗
φ∗T N. Naturally, there is a metric 〈·, ·〉ΣM⊗φ∗T N on ΣM ⊗ φ∗T N which is induced from the metrics
on ΣM and φ∗T N. Also we have a natural connection ∇̃ on ΣM ⊗ φ∗T N which is induced from the
connections on ΣM and φ∗T N. Let ψ be a section of the bundle ΣM ⊗ φ∗T N. In local coordinates,
it can be written as

ψ = ψi ⊗ ∂yi(φ),

where each ψi is a usual spinor on M and ∂yi is the nature local basis on N. Then ∇̃ becomes

∇̃ψ = ∇ψi ⊗ ∂yi(φ) + (Γi
jk∇φ

j)ψk ⊗ ∂yi(φ),(1.1)

where Γi
jk are the Christoffel symbols of the Levi-Civita connection of N. The Dirac operator along

the map φ is defined by
/Dψ := eα · ∇̃eαψ.
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We consider the following functional

L(φ, ψ) =
1
2

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ?T N

)
dM.

The functional L(φ, ψ) is conformally invariant, see [6]. That is, for any conformal diffeomor-
phism f : M → M, setting

φ̃ = φ ◦ f and ψ̃ = λ−1/2ψ ◦ f .

where λ is the conformal factor of the conformal map f , i.e. f ∗g = λ2g. Then there holds

L(φ̃, ψ̃) = L(φ, ψ).

Critical points (φ, ψ) are called Dirac-harmonic maps from M to N.
The Euler-Lagrange equations of the functional L are(

∆gφ
i + Γi

jkg
αβφ j

αφ
k
β

) ∂

∂yi (φ(x)) = R(φ, ψ),(1.2)

/Dψ = 0,(1.3)

where ∆g := 1
√

g
∂
∂xβ (
√

ggβγ ∂
∂xγ ) is the Laplacian operator with respect to the Riemannian metric g,

R(φ, ψ) is defined by

R(φ, ψ) =
1
2

Rm
li j(φ(x))〈ψi,∇φl · ψ j〉

∂

∂ym (φ(x)).

Here Rm
li j stands for the Riemann curvature tensor of the target manifold (N, h).

By Nash’s embedding theorem, we embed N isometrically into some RK . Then, critical points
(φ, ψ) of the functional L satisfy the Euler-Lagrange equations

∆φ = A(φ)(dφ, dφ) + Re(P(A(dφ(eγ), eγ · ψ);ψ)),(1.4)
/∂ψ = A(dφ(eγ), eγ · ψ),(1.5)

where /∂ is the usual Dirac operator, A is the second fundamental form of N in RK , and

A(dφ(eγ), eγ · ψ) := (∇φi · ψ j) ⊗ A(∂yi , ∂y j),

Re(P(A(dφ(eγ), eγ · ψ);ψ)) := P(A(∂yl , ∂y j); ∂yi)Re(〈ψi, dφl · ψ j〉).

Here P(ξ; ·) denotes the shape operator, defined by 〈P(ξ; X),Y〉 = 〈A(X,Y), ξ〉 for X,Y ∈ Γ(T N),
and Re(z) denotes the real part of z ∈ C.

For p > 1, we denote

W1,p(M,N) :=
{
φ ∈ W1,p(M,RK) | φ(x) ∈ N, a.e. x ∈ M

}
,

W1,p(ΣM ⊗ φ∗T N) :=
{
ψ ∈ W1,p(ΣM ⊗ φ∗RK) | ψ(x) is along the map φ, a.e. x ∈ M

}
.

Here ψ ∈ Γ(ΣM⊗φ∗T N) is along the map φ should be understood as a K-tuple of spinors (ψ1, ..., ψK)
satisfying

K∑
i=1

νiψ
i(x) = 0

for any normal vector ν = (ν1, ..., νK) ∈ RK at φ(x). For more details on the set up of Dirac-harmonic
maps, we refer to [5, 6, 37, 8, 31].
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The blow-up theory for sequences of Dirac-harmonic maps including the energy identity and
the no neck property, i.e., bubble tree convergence, was systematically explored in [5, 36, 28]. For
the existence results of Dirac-harmonic maps, however, since the functional L(φ, ψ) does not have
a lower bound due to the fact that the second term in L does not have a fixed sign, classical vari-
ational methods developed for harmonic maps cannot be applied directly and hence the problem
becomes very difficult. Up to now, there are only few results in this regard. See [7] for some
attempt via the maximum principle, where some partial existence results were obtained. See [3]
for a regularized heat flow approach for regularized Dirac-harmonic maps, which is different from
ours to be introduced in a moment. See [1, 10] for some existence results of uncoupled Dirac-
harmonic maps (here uncoupled means that the map part is harmonic) based on index theory and
the Riemann-Roch theorem.

In order to study the general existence problem, a heat flow approach for Dirac-harmonic maps
from spin Riemannian manifolds with boundary was introduced in [9], and the short time existence
of a solution was shown. (Recently, Wittmann [35] could show short time existence also in the
case of a closed domain under certain conditions on the initial data.) Furthermore, the existence
of a global weak solution to this flow in dimension two was obtained in [19]. By studying the
limit behaviour as time approaches infinity, they proved the existence results of Dirac-harmonic
maps with Dirichlet-chiral boundary condition in a given homotopy class under a certain smallness
assumption on the boundary-initial value in [19]. A technical difficulty stems from the fact that
along the Dirac-harmonic map flow considered in [19], one only have that the energy of the map φ
is uniformly bounded, i.e.,

E(φ(·, t)) =
1
2

∫
M
|∇φ(·, t)|2dM ≤ C < +∞.

However, the Dirac type equation (1.5) for the spinor ψ does not control the energy of the spinor
field

E(ψ(·, t)) =

∫
M
|ψ(·, t)|4dM,

as time t approaches the first singular time T1 > 0, even for the L1-norm. This is the main difficulty
and why we need to impose an additional boundary-initial constraint in [19] in order to obtain a
global weak solution to the Dirac-harmonic map flow and show some existence results by letting
t goes to infinity. For the qualitative blow-up behavior of this flow, one can refer to [20]. The
general question, however, is

Question: Does there exist a Dirac-harmonic map from a compact Riemann surface with
boundary to a compact Riemannian manifold with general given Dirichlet-chiral boundary
data?

In this paper, we will give an affirmative answer to this question. To achieve this, we shall
introduce a new parabolic-elliptic system.

In our new approach, one crucial observation is the following key estimate for the Dirac operator
/D along a given map (see Lemma 2.4):
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Key estimate: Let φ ∈ W1,q(M,N) for some q > 2 and ψ ∈ W1,p(M,ΣM ⊗ φ∗T N) for some
1 < p < 2, then there holds

(1.6) ‖ψ‖W1,p(M) ≤ C(p,M,N, ‖∇φ‖Lq(M))(‖ /Dψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M)).

Here B is an extension to spinors along a map of the chiral boundary operator for usual spinors
introduced by Gibbons-Hawking-Horowitz-Perry [13] to study positive mass theorems for black
holes via Witten’s approach through the spinor equation. See (1.13) for more details on this bound-
ary operator. There are two key properties of the above estimate. The first one is that the constant
C(p,M,N, ‖∇φ‖Lq(M)) > 0 depends on the norm ‖∇φ‖Lq(M) with q > 2, which was already observed
in [9]. The second one is that the two numbers q > 2 and 1 < p < 2 are independent of each other.
This fact was not exploited in [9] while here, as we will see later, it plays an important role. In fact,
such kind of key estimate holds true for Dirac type systems of more general type, see Lemma 2.3.

Since the key estimate for the Dirac operator /D along a map in (1.6) requires that the map φ lies
in W1,q(M,N) for some q > 2, inspired by this fact, we introduce the following functional

(1.7) Lα(φ, ψ) =
1
2

∫
M

{
(1 + |dφ|2)α + 〈ψ, /Dψ〉

}
dM,

where α > 1 is a constant. Critical points (φα, ψα) of Lα are called α-Dirac-harmonic maps from
M to N. When the spinor field is vanishing, the above functional reduces to Sacks-Uhlenbeck’s
approximation for harmonic maps in [29].

By a direct computation, critical points (φα, ψα) of the functional Lα satisfy the following Euler-
Lagrange equations (see Lemma 2.2)

∆gφ = −(α − 1)
∇g|∇gφ|

2∇gφ

1 + |∇gφ|2
+ A(dφ, dφ) +

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
α(1 + |∇gφ|2)α−1 ,(1.8)

/∂ψ = A(dφ(eγ), eγ · ψ).(1.9)

One crucial step in our scheme is to get the existence result of Dirac-harmonic maps through
studying the limit behaviour of a sequence of α-Dirac-harmonic maps as α↘ 1 1. If there exists a
sequence of α-Dirac-harmonic maps (φα, ψα) with

Eα(φα) :=
1
2

∫
M

(1 + |dφα|2)αdM ≤ Λ < ∞,

then the key estimate (1.6) implies the following uniform control of the spinors:

‖ψα‖W1,p(M) with 1 < p < 2, is uniformly bounded as α↘ 1.

Thus, we can do the blow-up analysis and we will show that the weak limit is just the desired
Dirac-harmonic map. This is better than for the Dirac-harmonic map flow [9, 19], and so, here lies
the advantage of considering α-Dirac-harmonic maps which is the basic idea in this paper.

The remaining task is to show the existence of such an α-Dirac-harmonic map sequence. This is
in fact one key step in our new scheme. Since the second term of the functional Lα is not bounded
from below, the classical Ljusternik-Schnirelman theory may not be applied here to obtain critical
points. Therefore, we need to develop a new method to proceed with our scheme.

1Here and in the sequel, for simplicity of notations, when talking about a sequence of (φα, ψα) for α↘ 1, we mean
the sequence of (φαk , ψαk ) for a given sequence of αk ↘ 1.
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In the present work, we shall consider the following new parabolic-elliptic system:

∂tφ = ∆gφ + (α − 1)
∇g|∇gφ|

2∇gφ

1 + |∇gφ|2
− A(dφ, dφ) −

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
α(1 + |∇gφ|2)α−1 ,(1.10)

/∂ψ = A(dφ(eγ), eγ · ψ),(1.11)

with the following boundary-initial data:
φ(x, t) = ϕ(x), on ∂M × [0,T ];
φ(x, 0) = φ0(x), in M;
Bψ(x, t) = Bψ0(x), on ∂M × [0,T ];
φ0(x) = ϕ(x), on ∂M.

(1.12)

where B = B± is the chiral boundary operator defined as follows:

B± : L2(∂M,ΣM ⊗ φ∗T N|∂M)→ L2(∂M,ΣM ⊗ φ∗T N|∂M)

ψ 7→
1
2

(
Id ± −→n ·G

)
· ψ,(1.13)

where −→n is the outward unit normal vector field on ∂M, G = ie1 · e2 is the chiral operator defined
using a local orthonormal frame {eγ}2γ=1 on M and satisfying:

G2 = Id, G∗ = G, ∇G = 0, G · X = −X ·G,(1.14)

for any X ∈ Γ(T M). One can also take B to be the MIT bag boundary operator B±MIT as considered
in [9]. See e.g. [15, 2] for more detailed discussions on these boundary operators. For convenience,
in the sequel, we shall only consider the case of chiral boundary conditions and omit the other case
of boundary conditions, as the arguments for them are the same. We call (1.10)-(1.11) the α-Dirac-
harmonic map flow.

Now, we state our first main result about the global existence of the α-Dirac-harmonic map flow
with a Dirichlet-chiral boundary condition.

Theorem 1.1. Let M be a compact spin Riemann surface with smooth boundary ∂M and let N ⊂
RK be a compact Riemannian manifold. Suppose

1 < α < 1 + min{ε1, ε2}

where ε1 and ε2 are the positive constants in Theorem 3.1 and Lemma 3.4 depending only on M, N.
Then for any φ0 ∈ C2+µ(M,N), ϕ ∈ C2+µ(∂M,N), ψ0 ∈ C1+µ(∂M,ΣM ⊗ ϕ∗T N) where 0 < µ < 1 is
a constant, there exists a unique global solution

φ ∈ C2+µ,1+
µ
2

loc (M × [0,∞),N)

and
ψ ∈ Cµ,

µ
2

loc (M × [0,∞),ΣM ⊗ φ∗T N) ∩ L∞([0,∞), ‖ψ(·, t)‖C1+µ(M))
to the problem (1.10)-(1.11) with boundary-initial data (1.12), satisfying

Eα(φ(t)) ≤ Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M)
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and
‖ψ(·, t)‖W1,p(M) ≤ C(p,M,N, Eα(φ0) +

√
2‖Bψ0‖

2
L2(∂M)),

where 1 < p < 2.
Moreover, there exist a time sequence ti → ∞ and an α-Dirac-harmonic map

(φα, ψα) ∈ C2+µ(M,N) ×C1+µ(M,ΣM ⊗ φ∗αT N)

with the boundary data
(φα,Bψα)|∂M = (ϕ,Bψ0),

such that (φ(·, ti), ψ(·, ti)) converges to (φα, ψα) in C2(M) ×C1(M).

We remark that the harmonic map flow from a closed Riemann surface has been solved in [33],
and from a compact Riemann surface with smooth boundary in [14, 4]. When the spinor field is
vanishing and the domain is a closed surface, our flow reduces to the one in [16].

By Theorem 1.1, for any α > 1 sufficiently close to 1, there exists an α-Dirac-harmonic
map (φα, ψα) ∈ C2+µ(M,N) × C1+µ(M,ΣM ⊗ φ∗αT N) with the Dirichlet-chiral boundary condition
(φα,Bψα)|∂M = (ϕ,Bψ0) and with the properties

(1.15) Eα(φα) ≤ Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M)

and

(1.16) ‖ψα‖W1,p(M) ≤ C(p,M,N, Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M)),

for any 1 < p < 2. With this in hand, we can prove the existence of Dirac-harmonic maps by using
the blow-up analysis.

Generally, we have the following existence and concentration compactness theorem of Dirac-
harmonic maps corresponding to the previous Question.

Theorem 1.2. Let (φα, ψα) : M → N be a sequence of α-Dirac-harmonic maps with Dirichlet-
chiral boundary condition (φα,Bψα)|∂M = (ϕ,Bψ0) and with uniformly bounded energy

Eα(φα) + ‖ψα‖L4(M) ≤ Λ.

Denoting E(φα; Ω) := 1
2

∫
Ω
|∇φα|

2dvolg, Ω ⊂ M and the energy concentration set

S :=
{
x ∈ M| lim inf

α→1
E(φα; BM

r (x)) ≥
ε0

2
f or all r > 0

}
,

where ε0 is the positive constant in Lemma 4.1 and Lemma 4.2, BM
r (x) is the geodesic ball in M

with center point x and radius r, then S is a finite set. Moreover, after selection of a subsequence
of (φα, ψα) (without changing notation), there exists a Dirac-harmonic map

(φ, ψ) ∈ C2+µ(M,N) ×C1+µ(M,ΣM ⊗ φ∗T N)

with Dirichlet-chiral boundary data (φ,Bψ)|∂M = (ϕ,Bψ0), such that

(φα, ψα)→ (φ, ψ) in C2
loc(M \ S) ×C1

loc(M \ S).

Remark 1.3. Since we can impose nontrivial boundary conditions for both the map and the spinor,
we shall obtain Dirac-harmonic maps with nontrivial map part and nontrivial spinor part.
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Moreover, we show that at each singular point x0, that is, when the energy of the map con-
centrates, after suitable rescaling, a bubble, namely, a nontrivial Dirac-harmonic sphere splits off.
Here, however, we cannot employ the usual bubbling argument for a blow-up sequence of Dirac-
harmonic maps which are conformally invariant [5], since α-Dirac-harmonic maps are not con-
formally invariant. We need to develop a different type of rescaling argument by adding a new
rescaling factor rα−1

α , with rα being the blow-up radii, to the spinor part. Therefore, the blow-up
analysis for α-Dirac-harmonic maps is more difficult and complicated than the case of Dirac-
harmonic maps. To achieve this, we shall introduce the notation of general α-Dirac-harmonic
maps and develop the appropriate analytical background, see Section 4.

Theorem 1.4. Under the same assumption as in Theorem 1.2, suppose x0 ∈ S is an energy con-
centration point, i.e.,

(1.17) lim inf
α→1

E(φα; BM
r (x0)) ≥

ε0

2
f or all r > 0.

Then,
(1) if x0 ∈ M \ ∂M, there exist a subsequence of (φα, ψα) (still denoted by (φα, ψα)) and se-

quences xα → x0, rα → 0 and a nontrivial Dirac-harmonic map (σ, ξ) : R2 → N, such that
as α→ 1,2(

φα(xα + rαx), rα−1
α

√
rαψα(xα + rαx)

)
→ (σ(x), ξ(x)) in C1

loc(R
2) ×C0

loc(R
2).

(σ, ξ) has finite energy and conformally extends to a smooth Dirac-harmonic sphere.

(2) if x0 ∈ ∂M, then dist(xα,∂M)
rα

→ ∞ and the same bubbling statement as in (1) holds.

So far, we have answered the Question about the existence of Dirac-harmonic maps with given
Dirichlet-chiral boundary data. It is natural to ask whether the map component φ of the limit
Dirac-harmonic map stays in the same homotopy class as φ0.

Here we give a positive answer under the same condition as in the harmonic map case. To see
this, we recall that we can actually choose a sequence of α-Dirac-harmonic maps satisfying the
properties (1.15)-(1.16), for any 1 < p < 2. Therefore we are in a better situation than the case of
p = 4

3 considered in Theorem 1.2. In fact, if we take 4
3 < p < 2, then we can show that the bubbles

in Theorem 1.4 are just nontrivial harmonic spheres, i.e., harmonic maps from S 2 to N. Thus, we
have the following stronger version of the existence result:

Theorem 1.5. Let M be a compact spin Riemann surface with smooth boundary ∂M and let N ⊂
RK be a compact Riemannian manifold. For any φ0 ∈ C2+µ(M,N), ϕ ∈ C2+µ(∂M,N), ψ0 ∈

C1+µ(∂M,ΣM ⊗ ϕ∗T N) where φ0|∂M = ϕ and 0 < µ < 1 is a constant, if (N, h) dose not admit any
nontrivial harmonic sphere, then there exists a Dirac-harmonic map

(φ, ψ) ∈ C2+µ(M,N) ×C1+µ(M,ΣM ⊗ φ∗T N)

with Dirichlet-chiral boundary data (φ,Bψ)|∂M = (ϕ,Bψ0) such that the map component φ is in the
same homotopy class as φ0.

2Compared to the usual rescaling, i.e.
(
φn(xn + rnx),

√
rnψn(xn + rnx)

)
, for a blow-up sequence of Dirac-harmonic

maps given in [5], here the additional factor rα−1
α comes from the fact that α-Dirac-harmonic maps are not conformally

invariant, see Section 4.
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At the end of this part, we want to state some refined analytical properties corresponding to the
blow-up sequence in Theorem 1.2. We leave the detailed proofs of these theorems to the sequel to
this paper [21].

Consider a sequence of α-Dirac-harmonic maps {(φα, ψα)} : M → N with uniformly bounded
energy

Eα(φα) + E(ψα) ≤ Λ.

From Theorem 1.2, we know that, by passing to a subsequence, (φα, ψα) converges smoothly to
some limit Dirac-harmonic map (φ, ψ) : M → N away from at most finitely many blow-up points
S = {xi}

I
i=1 as α↘ 1. For a fixed point xi, 1 ≤ i ≤ I, we may assume there are ki bubbles occurring

at this point, i.e. there are a sequence of points {xi j
α }, j = 1, ..., ki, and a sequence of positive

numbers {ri j
α } with xi j

α → xi, ri j
α → 0 as α↘ 1 and one of the following two alternatives holds true:

if 1 ≤ j1, j2 ≤ ki and j1 , j2,
(A1) for any fixed R > 0, DM

Rri j1
α

(xi j1
α ) ∩ DM

Rri j2
α

(xi j2
α ) = ∅, whenever α is sufficiently close to 1.

(A2) ri j1
α

ri j2
α

+
ri j2
α

ri j1
α

= ∞, as α↘ 1.

Moreover, the rescaled fields

σi j
α := φα(xi j

α + ri j
α x), ξi j

α :=
√

ri j
αψα(xi j

α + ri j
α x)

converge in Ck
loc(R

2 \ {pi j
1 , ..., pi j

s j}) to a nontrivial Dirac-harmonic map (σi j, ξi j). Define two types
of quantities:

(1.18) µi j = lim inf
α↘1

(ri j
α )2−2α, νi j = lim inf

α↘1
(ri j
α )−

√
α−1.

We have the following generalized energy identities

Theorem 1.6. Let M be a smooth closed Riemann surface, N be a n-dimensional smooth compact
Riemannian manifold. Let (φαk , ψαk) ∈ C∞(M,N), αk ↘ 1 be a sequence of αk-Dirac-harmonic
maps with uniformly bounded energy, i.e. Eαk(φαk) + E(ψαk) ≤ Λ. Then there exists a finite set
S = {p1, ..., pI} such that, passing to a subsequence, there exists (φ, ψ) : M → N which is a smooth
Dirac-harmonic map and there are finitely many bubbles: a finite set of Dirac-harmonic spheres
(σl

i, ξ
l
i) : S 2 → N, l = 1, ...li, where li ≥ 1, i = 1, ..., I, such that (φαk , ψαk) → (φ, ψ) weakly in

W1,2(M,N) and strongly in C∞loc(M \ S,N). Moreover, the following generalized energy identities
hold:

lim
k→∞

Eαk(φαk) = E(φ) + |M| +
I∑

i=1

li∑
l=1

µ2
ilE(σl

i),

lim
k→∞

E(ψαk) = E(ψ) +

I∑
i=1

li∑
l=1

µ2
ilE(ξl

i),

where the quantities µil are defined as in (1.18).

Furthermore, we shall show that the Dirac-harmonic necks appearing during the blow-up process
are converging to geodesics in the target manifold N. Precisely, we have
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Theorem 1.7. Under the same assumptions as in Theorem 1.6, assume S = {x1} and there is only
one bubble in DM

r (x1) ⊂ M for some r > 0, for the sequence {(φαk , ψαk)}, denoted by (σ1, ξ1), which
is a Dirac-harmonic sphere. Let

(1.19) ν1 = lim inf
α↘1

(r1
α)−

√
α−1.

Then the Dirac-harmonic neck appearing during the blow-up precess is converging to a geodesic
in the target manifold N. Moreover, we have the following alternatives:

(1) when ν1 = 1, the set φ(DM
r (x1)) ∪ σ1(S 2) is a connected set in N;

(2) when ν1 ∈ (1,∞), then the set φ(DM
r (x1)) and σ(S 2) are connected by a geodesic with

length

L =

√
E(σ1)
π

log ν1;

(3) when ν1 = ∞, the map part of the limit of the Dirac-harmonic neck contains at least an
infinite length curve which is a geodesic in N;

Although Theorem 1.7 is stated for the case of a single bubble, it is not hard to extend the results
to the case of multiple bubbles and the corresponding length formulas will be more complicated.
When the spinor field is vanishing, namely, in the case of α-harmonic maps, the refined analytical
properties for a blow-up sequence were given in [25]. To handle the more complicated case of
the coupled system of α-Dirac-harmonic maps, we need to develop new methods in order to show
Theorem 1.6 and Theorem 1.7 and we leave the detailed proofs to the forthcoming paper [21].

From the perspective of differential geometry, it is natural and interesting to find some geometric
and topological conditions on the target manifold such that the energy identities hold. In particular,
a natural question is whether or not we can exploit some geometric and topological conditions to
ensure that the limiting necks are some geodesics of finite length and hence the energy identity
follows immediately.

In view of the works on minimal hypersurfaces (see e.g. [32]), it seems reasonable to impose
the assumptions that the Ricci curvature of the target has a positive lower bound and the Dirac-
harmonic sequence has bounded Morse index.

Let (φ, ψ) : M → N be a α-Dirac-harmonic map. φ∗(T N) is the pull-back bundle over M. Let V
be a section of φ∗(T N). We use V to vary (φ, ψ) via

(1.20) φτ(x) = expφ(x)(τV), ψτ(x) = ψi(x) ⊗
∂

∂yi (φτ(x)).

Definition 1.8. Let Γ(φ∗T N) denote the linear space of the smooth sections of φ∗T N. The index of
(φ, ψ) is defined as the maximal dimension of a linear subspace Ξ of Γ(φ∗T N) on which the second
variation of Lα with respect to the variations (1.20) is negative, i.e., for any V ∈ Ξ ⊂ Γ(φ∗T N),
there holds

δ2Lα(φ, ψ)(V,V) < 0,
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where

δ2Lα(φ, ψ)(V,V)

=
d2

dτ2

∣∣∣∣∣∣
τ=0

Lα(φτ, ψτ)

= 2α
∫

M
(1 + |dφ|2)α−1 (〈∇V,∇V〉 − R(V,∇φ,∇φ,V)) + 4α(α − 1)

∫
M

(1 + |dφ|2)α−2〈dφ,∇V〉2

+ 2
∫

M

〈
ψ j ⊗ ∇V

∂

∂y j , eα · ∇̃eα

(
ψi ⊗ ∇V

∂

∂yi

)
+ eα · ψi ⊗ R(V, eα)

∂

∂yi

〉
+

∫
M

〈
ψ, eα · ψi ⊗

(
R j

ikl;pV pVkdφl(eα)
∂

∂y j + R(V, eα)∇V
∂

∂yi + R(V,∇eαV)
∂

∂yi

)〉
.

Theorem 1.9. Under the assumption of Theorem 1.6, suppose the Ricci curvature of the target
manifold (N, g) has a positive lower bound, i.e. there exists a positive constant λ0 > 0 such that
RicN ≥ λ0 > 0 and assume the sequence (φα, ψα) has bounded index. Then the limit of the necks
consist of geodesics of finite length. Moreover, the energy identities hold, i.e.

lim
k→∞

Eαk(φαk) = E(φ) + |M| +
I∑

i=1

li∑
l=1

E(σl
i),

lim
k→∞

E(ψαk) = E(ψ) +

I∑
i=1

li∑
l=1

E(ξl
i).

The rest of this paper is organized as follows. In Section 2, we derive the Euler-Lagrange
equations for α-Dirac-harmonic maps and prove the estimate (1.6). In Section 3, we establish
some properties of α-Dirac-harmonic maps flow and obtain the global existence Theorem 1.1. In
Section 4, we study the blow-up behaviour for a sequence of α-Dirac-harmonic maps. Theorem
1.2, Theorem 1.4 and Theorem 1.5 are proved in this section.

2. Euler-Lagrange equations

In this section, we derive the Euler-Lagrange equations for α-Dirac-harmonic maps and prove
the key estimate (1.6) for the Dirac type operator /D.

Lemma 2.1. The Euler-Lagrange equations for Lα are

τα =
1
α

R(φ, ψ)(2.1)

/Dψ = 0(2.2)

where τα = (τ1
α, ..., τ

n
α) and R(φ, ψ) are defined respectively by

(2.3) τi
α(φ) :=

1
√

g
∂

∂xβ

(
(1 + |dφ|2)α−1√ggβγ

∂φi

∂xγ

)
− (1 + |dφ|2)α−1gβγΓi

jk
∂φ j

∂xβ
∂φk

∂xγ



DIRAC-HARMONIC MAPS 13

and

(2.4) R(φ, ψ)(x) :=
1
2
〈ψi,∇φl · ψ j〉Rm

li j(φ(x))
∂

∂ym (φ(x)).

Proof. Let ψt be a variation of ψ with dψt
dt |t=0 = η and fix φ. By Proposition 2.1 in [6], we know

dLα(ψt)
dt

∣∣∣∣∣
t=0

=

∫
M
〈η, /Dψ〉.

Then (2.2) follows immediately.
For the equation of φ, let φt be a variation of φ such that dφt

dt |t=0 = ξ and ψi (i = 1, ..., n) in
ψ(x) = ψi(x) ⊗ ∂

∂yi (φ(x)) are independent of t. Also, by Proposition 2.1 in [6], we get

d
dt

∣∣∣∣∣
t=0

1
2

∫
M
〈ψt, /Dψt〉 =

1
2

∫
M
〈ψi,∇φl · ψ jRmli jξ

m〉.

Finally, it is easy to check that
d
dt

∣∣∣∣∣
t=0

1
2

∫
M

(1 + |dφt|
2)α

= α

∫
M

{
−

1
√

g
∂

∂xβ

(
(1 + |dφ|2)α−1√ggβγ

∂φi

∂xγ

)
+ (1 + |dφ|2)α−1gβγΓi

jk
∂φ j

∂xβ
∂φk

∂xγ

}
himξ

m

:= α

∫
M
−τi

αhimξ
m.

Thus, we obtain
dLα(φt)

dt
|t=0 =

∫
M

{
−ατi

αhim +
1
2
〈ψi,∇φl · ψ j〉Rmli j

}
ξm,

which implies the equation (2.1). �

By Nash’s embedding theorem, we embed N isometrically into some RK , denoted by f : N →
RK . Set

φ′ = f ◦ φ and ψ′ = f∗ψ.
If we identify φ with φ′ and ψ with ψ′, we can get the following extrinsic form of the Euler-
Lagrange equations:

Lemma 2.2. Let (φ, ψ) : M → N be an α-Dirac-harmonic map. Then, (φ, ψ) satisfies

∆gφ = −(α − 1)
∇g|∇gφ|

2∇gφ

1 + |∇gφ|2
+ A(dφ, dφ) +

Re (P(A(dφ(eα), eα · ψ);ψ))
α(1 + |∇gφ|2)α−1 ,(2.5)

/∂ψ = A(dφ(eα), eα · ψ).(2.6)

Proof. Firstly, it is easy to see that τ′α(φ′) and τα(φ) satisfy

(2.7) τ′α(φ′) = (1 + |dφ|2)α−1A(dφ(eβ), dφ(eβ)) + d f (τα(φ)).

Secondly, by similar arguments as in [5, 6, 8], we know

/D′ψ′ = f∗( /Dψ) +A(dφ(eβ), eβ · ψ)
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and

d f (τα(φ)) =
1
α

Re (P(A(dφ(eα), eα · ψ);ψ)) .

Then the conclusion of the lemma follows from the fact that /D′ = /∂ (here, /D′ is the Dirac
operator along the map φ′) and

τ′α(φ) =
1
√

g
∂

∂xβ

(
(1 + |dφ|2)α−1√ggβγ

∂φ

∂xγ

)
.

�

In the end of this section, we shall prove the key estimate (1.6). The idea is to use a contradiction
argument, where a crucial ingredient is the uniqueness of the Dirac equation, i.e. /Dψ = 0, M,

Bψ = 0, ∂M

has only the trivial solution ψ ≡ 0 when φ ∈ W1,p(M,N) for some p > 2, see Theorem 1.2 and
Theorem 4.1 in [9].

Lemma 2.3. Let M be a compact spin Riemann surface with smooth boundary ∂M and ψ =

(ψ1, ..., ψK), ψA ∈ ΣM, A = 1, ...,K. Let Ω ∈ Γ(Λ1T ∗M ⊗ so(K)), i.e. ΩA
B = −ΩB

A and Ω ∈ L2p′(M),
dΩ ∈ Lp′(M) for some p′ > 1. Suppose ψ ∈ W1,p(M,RK) and η = (η1, ..., ηK) ∈ Lp(M,RK),
1 < p < 2 satisfy

/∂ψA + ΩA
B · ψ

B = ηA

then there exists a positive constant C = C(p,M,K, ‖Ω‖L2p′ (M) + ‖dΩ‖Lp′ (M)) such that

(2.8) ‖ψ‖W1,p(M) ≤ C
(
‖/∂ψ + Ω · ψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M)

)
.

Our proof will follow the scheme of Remark 3.3, Theorem 3.11 and Remark 3.7 in [9]. The main
difference is that, on a two dimensional domain considered in our lemma, the two real numbers
p′ > 1 and 1 < p < 2 can be arbitrary and be independent of each other, while Theorem 3.11 in [9]
requires that 1 < p < p′, which is too strong and hence can not be applied to our blow-up analysis
of a sequence of α-Dirac-harmonic map as α ↘ 1. This is a new and crucial observation in the
present paper.

Proof. First, by Theorem 3.3 in [9], we have

(2.9) ‖ψ‖W1,p(M) ≤ C
(
‖/∂ψ + Ω · ψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M) + ‖ψ‖Lp(M)

)
,

where C = C(p,M,K,Ω) is a positive constant.
Next, we claim:

(2.10) ‖ψ‖W1,p(M) ≤ C
(
‖/∂ψ + Ω · ψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M)

)
,

where C = C(p,M,K,Ω) is a positive constant.
In fact, if (2.10) does not hold, then there exists ψi ∈ W1,p(M,RK), such that

(2.11) ‖ψi‖W1,p(M) ≥ i
(
‖/∂ψi + Ω · ψi‖Lp(M) + ‖Bψi‖W1−1/p,p(∂M)

)
.



DIRAC-HARMONIC MAPS 15

Without loss of generality, we may assume ‖ψi‖Lp = 1. Then by (2.9) and (2.11), we have

(2.12) ‖/∂ψi + Ω · ψi‖Lp(M) + ‖Bψi‖W1−1/p,p(∂M) ≤
C
i

and

(2.13) ‖ψi‖W1,p(M) ≤ C.

Then there exists a subsequence of {ψi} (also denoted by {ψi}) with ψ ∈ W1,p(M,RK), such that,

ψi ⇀ ψ weakly in W1,p(M) and ψi → ψ strongly in Lp(M).

Moreover, it is easy to see that ψ is a weak solution of

/∂ψ + Ω · ψ = 0

with boundary condition
Bψ = 0.

Since p′ > 1, by Theorem 4.1 in [9], there must hold ψ ≡ 0. However, the fact that ‖ψi‖Lp(M) = 1
tells us ‖ψ‖Lp(M) = 1. This is a contradiction and hence (2.10) holds.

For (2.8), we can also prove it by a contradiction argument. In fact, if it does not hold, then we
can find a sequence Ωi ∈ Γ(Λ1T ∗M ⊗ so(K)) and ψi ∈ W1,p(M,RK) , such that

(2.14) 1 = ‖ψi‖W1,p(M) ≥ i
(
‖/∂ψi + Ωi · ψi‖Lp(M) + ‖Bψi‖W1−1/p,p(∂M)

)
,

and
‖Ωi‖L2p′ (M) + ‖dΩi‖Lp′ (M) ≤ C.

By the weak compactness and compact embedding, there exists a subsequence of (Ωi, ψi) (with-
out changing notation) and ψ ∈ W1,p(M,RK), Ω ∈ W1,p′(M) ∩ L2p′(M), such that

Ωi ⇀ Ω weakly in L2p′(M) and dΩi ⇀ dΩ weakly in Lp′(M)

and
ψi ⇀ ψ weakly in W1,p(M) and ψi → ψ strongly in Lp∗(M),

for any p∗ satisfying 1
p∗ >

1
p −

1
2 .

Then it is easy to see that ψ is a weak solution of /∂ψ+Ω ·ψ = 0 with boundary condition Bψ = 0
which implies ψ ≡ 0 by Theorem 4.1 in [9], since p′ > 1. Thus

lim
i→∞
‖ψi‖Lp∗ (M) = 0.

Therefore, we have

‖/∂ψi + Ω · ψi‖Lp(M) ≤ ‖/∂ψi + Ωi · ψi‖Lp(M) + ‖
(
Ω −Ωi

)
ψi‖Lp(M)

≤ ‖/∂ψi + Ωi · ψi‖Lp(M) + ‖Ω −Ωi‖L2p′ (M)‖ψi‖Lp∗ (M)

≤
1
i

+ C(N)‖ (|Ω| + |Ωi|) ‖L2p′ (M)‖ψi‖Lp∗ (M) → 0

as i→ ∞, where 1
p∗ = 1

p −
1

2p′ >
1
p −

1
2 .

But, (2.10) tells us

(2.15) 1 = ‖ψi‖W1,p(M) ≤ C(p,M,K,Ω)
(
‖/∂ψi + Ω · ψi‖Lp(M) + ‖Bψi‖W1−1/p,p(∂M)

)
→ 0,

as i→ ∞, which is a contradiction. We proved this lemma.
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�

As a direct application of Lemma 2.3, we have

Lemma 2.4. Let M be a compact spin Riemann surface with boundary ∂M, N be a compact
Riemannian manifold. Let φ ∈ W1,2α(M,N) for some α > 1 and ψ ∈ W1,p(M,ΣM ⊗ φ∗T N),
1 < p < 2, then there exists a positive constant C = C(p,M,N, ‖∇φ‖L2α(M)), such that

(2.16) ‖ψ‖W1,p(M) ≤ C
(
‖ /Dψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M)

)
.

Proof. Noting thatA(dφ(eγ), eγ · ψ) = −Ω · ψ where

Ω =

K∑
i=n+1

[νi(φ), dνi(φ)] =

K∑
i=n+1

(
(νi)A(∇eγν

i)Beγ − (νi)B(∇eγν
i)Aeγ

)
and {νi}Ki=n+1 is an orthonormal basis of the normal bundle T⊥N and νi = ((νi)1, ..., (νi)K) (see
Remark 2.1 in [9]), thus

/Dψ = /∂ψ −A(dφ(eγ), eγ · ψ) = /∂ψ + Ω(φ) · ψ.

Then the conclusion of the lemma follows immediately from Lemma 2.3 and the fact that dΩ =

[dν(φ), dν(φ)]. �

3. Global existence of α-Dirac-harmonic map flow

In this section, we will prove the global existence result for the α-Dirac-harmonic map flow and
show that the limit map at infinity time is an α-Dirac-harmonic map.

The equations (1.10)-(1.11) have the equivalent intrinsic form

∂tφ =
1

(1 + |dφ|2)α−1

(
τα(φ) −

1
α

R(φ, ψ)
)
,

/Dψ = 0,

where we regard φ as a map into N and ψ as a section of ΣM ⊗ φ∗T N. This leads us to consider
another isometrical embedding. In fact, [14] (Page 108) says that (N, h) can be embedded isomet-
rically into some RL with some non-flat metric denoted by hL. Moreover, this isometric embedding
is totally geodesic and there exist a tubular neighborhood N of N and an isometric involution
i : N → N which has precisely N for its fixed point set. Since N is a totally geodesic submanifold,
then τα(φ) = τR

L

α and it suffices to study 3

∂tφ = ∆gφ + (α − 1)
∇g|∇gφ|

2∇gφ

1 + |∇gφ|2
+ Γ(φ)#∇φ#∇φ + R(φ)#∇φ#ψ#ψ,(3.1)

/Dψ = 0,(3.2)

where Γ is the Levi-Civita connection of (RL, hL), R is the curvature of (RL, hL) and

/Dψ = /∂ψ + Γ(φ)#∇φ#ψ.

3Here and in the sequel, # denotes a multi-linear map with smooth coefficients.
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Next, in order to emphasize the Dirac operator /D depends on the map φ, we sometimes use the
notation

/Dφ := /D.

Noting that
|∇φ|2 = (hL)i j(φ)∇φi∇φ j,

if we expand ∇|∇φ|2, there is an additional term like (hL)i j,k∇φ
i∇φ j∇φk. This term and Γ(φ)#∇φ#∇φ

will be put together into the term Γ(φ)#∇φ#∇φ#∇φ. Therefore, the equations can be rewritten as

∂tφ = ∆gφ + 2(α − 1)
∇2
βγφ

i∇βφ
i∇γφ

1 + |∇gφ|2
+ Γ(φ)#∇φ#∇φ#∇φ

+R(φ)#∇φ#ψ#ψ,(3.3)
/Dφψ = 0.(3.4)

Firstly, we have the following short-time existence result for the α-Dirac-harmonic map flow
with Dirichlet-chiral boundary condition. We use some ideas from harmonic map flows [12, 14,
24]. The argument here is not quite the same as in the case of Dirac-harmonic maps in [9]. For the
case of α-harmonic map flow from a closed Riemann surface, see the appendix in [16].

Theorem 3.1. Let (M, g) be a compact spin Riemann surface with a smooth boundary ∂M and
(N, h) be another compact Riemannian manifold. Then there exists a positive constant ε1 depending
only on M,N, such that, for any 1 < α < 1 + ε1 and any

φ0 ∈ C2+µ(M,N), ϕ ∈ C2+µ(∂M,N), ψ0 ∈ C1+µ(∂M,ΣM ⊗ ϕ∗T N),

where 0 < µ < 1, the problem (1.10)-(1.11) and (1.12) admits a unique solution

φ ∈ C2+µ,1+µ/2(M × [0,T ],N),

and
ψ ∈ Cµ,µ/2(M × [0,T ],ΣM ⊗ φ∗T N), ψ ∈ L∞([0,T ]; C1+µ(M)),

for some time T > 0.

Proof. Step 1: Short-time existence of (3.3)-(3.4).

For every T > 0, we define

U :=
{
u, du ∈ Cµ,µ/2(M × [0,T ])

∣∣∣ ‖u‖Cµ,µ/2(M×[0,T ]) + ‖du‖Cµ,µ/2(M×[0,T ]) ≤ 1, u|M×{0}∪∂M×[0,T ] = 0
}
.

Consider the following linear parabolic-elliptic system:

∂tφ = ∆gφ + 2(α − 1)
∇2
βγφ

i∇βui∇γu

1 + |∇gu|2
+ Γ(u)#∇u#∇u#∇u

+R(u)#∇u#ψ#ψ + ∆gφ0 + 2(α − 1)
∇2
βγφ

i
0∇βu

i∇γu

1 + |∇gu|2
,(3.5)

/Duψ = 0.(3.6)
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Now, let us begin a routine iteration argument as in [24] to show the local existence. For every
u ∈ U, on the one hand, by Theorem 4.6 in [9], there exists a unique solution v1 ∈ C1+µ(M,ΣM ⊗
u∗RL) to the problem (3.6) with boundary condition Bψ = Bψ0, satisfying

‖v1‖C1+µ(M) ≤ C(µ,M,N, ‖u‖C1+µ(M))‖Bψ0‖C1+µ(∂M).

Moreover, for any 0 < t, s < T , it is easy to see that v1(·, t) − v1(·, s) satisfy the following equation

/∂(v1(·, t) − v1(·, s)) = −Γ(u(t))#∇u(t)#(v1(·, t) − v1(·, s))
− Γ(u(t))#∇(u(t) − u(s))#v1(·, s)

−
(
Γ(u(t)) − Γ(u(s))

)
#∇u(s)#v1(·, s) in M,

i.e.

/Du(t)(v1(·, t) − v1(·, s)) = −Γ(u(t))#∇(u(t) − u(s))#v1(·, s)

−
(
Γ(u(t)) − Γ(u(s))

)
#∇u(s)#v1(·, s) in M,(3.7)

with boundary data
B(v1(·, t) − v1(·, s)) = 0 on ∂M.

By Theorem 1.2 in [9] and Sobolev embedding, for any δ ∈ (0, 1), we have

‖v1(·, t) − v1(·, s)‖Cδ(M)

≤ C(δ,M,N, ‖u‖C1(M))‖v1‖L∞(M)(‖u(·, t) − u(·, s)‖L∞(M) + ‖du(·, t) − du(·, s)‖L∞(M))

≤ C(δ,M,N, ‖u‖C1(M))‖Bψ0‖C1+µ(∂M)|t − s|
µ
2 .

Therefore,
‖v1‖Cµ,

µ
2 (M×[0,T ])

≤ C(µ,M,N, ‖u‖C1+µ(M))‖Bψ0‖C1+µ(∂M).

On the other hand, when α − 1 is sufficiently small, by the standard theory of linear parabolic
systems, for above (u, v1), there exists a unique solution u1 ∈ C2+µ,1+

µ
2 (M×[0,T ],RL) to the problem

(3.5) with the initial-boundary data φ|M×{0}∪∂M×[0,T ] = 0, such that

‖u1‖C2+µ,1+
µ
2 (M×[0,T ])

≤ C(µ,M,N)(‖u1‖C0(M×[0,T ]) + ‖φ0‖C2+µ(M) + ‖Bψ0‖C1+µ(∂M) + 1).

Noting that u1(·, 0) = 0, we have

‖u1‖C0(M×[0,T ]) ≤ C(µ,M,N)T (‖u1‖C0(M×[0,T ]) + ‖φ0‖C2+µ(M) + ‖Bψ0‖C1+µ(∂M) + 1).

Taking T small enough, we obtain

‖u1‖C0(M×[0,T ]) ≤ CT (‖φ0‖C2+µ(M) + ‖Bψ0‖C1+µ(∂M) + 1).

By the interpolation inequality for Hölder spaces (see Proposition 4.2 in [26]), we have

‖u1‖Cµ,
µ
2 (M×[0,T ])

+ ‖∇u1‖Cµ,
µ
2 (M×[0,T ])

≤ C‖u1‖
1−µ

2
C0(M×[0,T ])‖u1‖

1+µ
2

C2,1(M×[0,T ]).

Thus, if we choose T sufficiently small, then u1 ∈ U. This is the first step. Similarly, we can get
(u2, v2) by using the above argument and substituting u with u1 + φ0. After a standard induction
procedure, we will get a solution (uk+1, vk+1) of (3.5) and (3.6) with u = uk + φ0, satisfying

‖vk+1‖Cµ,
µ
2 (M×[0,T ])

≤ C(µ,M,N, ‖φ0‖C1+µ(M))‖Bψ0‖C1+µ(∂M)
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and
‖uk+1‖C2+µ,1+

µ
2 (M×[0,T ]) ≤ C(µ,M,N)(‖φ0‖C2+µ(M) + ‖Bψ0‖C1+µ(∂M) + 1).

After passing to a subsequence, we know uk converges to some φ in C2,1(M × [0,T ]) and vk

converges to some ψ in C0(M × [0,T ]). Then (φ + φ0, ψ) is a solution of equation (3.3)-(3.4) with
boundary-initial data (1.12). Since φ ∈ C2,1(M × [0,T ],RL) and ψ ∈ C0(M × [0,T ],ΣM ⊗ (φ +

φ0)∗TRL), by the standard theory of Dirac-harmonic maps (see Lemma 3.6 in [19] or Lemma 3.4
below), it is easy to see that φ ∈ C2+µ,1+

µ
2 (M × [0,T ],RL) and ψ ∈ Cµ,

µ
2 (M × [0,T ],ΣM ⊗ (φ +

φ0)∗TRL) ∩ L∞([0,T ]; C1+µ(M)).

Step 2: Uniqueness.

If there are two solutions (u1, v1) and (u2, v2) to equation (3.3)-(3.4) with boundary-initial data
(1.12), subtracting the equations of u1 and u2, then multiplying by u1 − u2 and integrating over M,
we have ∫

M
∂t(u1 − u2)(u1 − u2)

≤

∫
M

∆g(u1 − u2)(u1 − u2) + 2(α − 1)
∫

M

∇2
βγ(u

i
1 − ui

2)∇βui
1∇γu1

1 + |∇gu1|
2 (u1 − u2)

+ C
∫

M
|u1 − u2|

2 + C
∫

M
|∇u1 − ∇u2||u1 − u2| + C

∫
M
|v1 − v2||u1 − u2|.

Integrating by parts, we get

1
2

d
dt

∫
M
|u1 − u2|

2

≤

∫
M
−|∇u1 − ∇u2|

2 − 2(α − 1)
∫

M

∇β(ui
1 − ui

2)∇βui
1∇γu1

1 + |∇gu1|
2 ∇γ(u1 − u2)

+ C
∫

M
|u1 − u2|

2 + C
∫

M
|∇u1 − ∇u2||u1 − u2| + C

∫
M
|v1 − v2||u1 − u2|.

By Young’s inequality and noting that the second term on the right hand side of the above
inequality is nonpositive, we obtain

d
dt

∫
M
|u1 − u2|

2 ≤ −
1
2

∫
M
|∇u1 − ∇u2|

2 + C
∫

M
|u1 − u2|

2

+ C
∫

M
|v1 − v2||u1 − u2|.(3.8)

Similar to deriving (3.7), we know v1 − v2 satisfies the following equation

/Du1(v1 − v2) = −Γ(u1)#∇(u1 − u2)#v2

−
(
Γ(u1) − Γ(u2)

)
#∇u2#v2 in M,(3.9)

with the boundary data
B(v1 − v2) = 0 on ∂M.
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By Theorem 1.2 in [9], we have

‖v1 − v2‖W1,2(M) ≤ C(‖u1 − u2‖L2(M) + ‖∇u1 − ∇u2‖L2(M)).(3.10)

Therefore, by (3.8) and Young’s inequality, we have
d
dt

∫
M
|u1 − u2|

2 ≤ C
∫

M
|u1 − u2|

2,(3.11)

which implies u1 ≡ u2 on M × [0,T ] if u1 = u2 for t = 0. Then v1 ≡ v2 follows immediately from
(3.10).

Step 3: φ(x, t) ∈ N for all (x, t) ∈ M × [0,T ].

Since i : N → N is an isometric involution and φ0 ∈ N, ϕ ∈ N, then (i ◦ φ, i∗ψ) is also a
solution to (3.3)-(3.4) with the same boundary-initial data (1.12). By the uniqueness, i ◦ φ = φ
which implies φ(x, t) ∈ N. We finished the proof of this theorem. �

Next, we shall control the α-energy of the map part, i.e. Eα(φ), along the α-Dirac-harmonic
maps flow. Precisely, we have

Lemma 3.2. Suppose (φ, ψ) is a solution of (1.10)-(1.11) with the boundary-initial data (1.12),
then there holds

Eα(φ(t)) + α

∫
Mt

(1 + |∇gφ|
2)α−1|∂tφ|

2dMdt ≤ Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M).

Moreover, Eα(φ(t)) + 1
2

∫
∂M
〈
−→n · Bψ0, ψ(t)〉 is absolutely continuous on [0,T ] and non-increasing.

Proof. Firstly, it is easy to see that the equation (1.10) can be written as follows:

(1 + |∇gφ|
2)α−1∂tφ = div

(
(1 + |∇gφ|

2)α−1∇gφ
)
− (1 + |∇gφ|

2)α−1A(dφ, dφ)

−
1
α

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
.(3.12)

Multiplying the above equation by α∂tφ and using the Lemma 3.1 in [19] that,∫
Mt

s

〈P(A(dφ(eγ), eγ · ψ);ψ),
∂φ

∂t
〉dMdt = −

1
2

∫ t

s

d
dt

∫
∂M
〈Bψ0,

−→n · ψ〉(t)dt,(3.13)

we have

α

∫
Mt

s

(1 + |∇gφ|
2)α−1|∂tφ|

2dMdt − α
∫

Mt
s

div
(
(1 + |∇gφ|

2)α−1∇gφ
)
∂tφdMdt

= −

∫
Mt

s

〈P(A(dφ(eγ), eγ · ψ);ψ), ∂tφ〉dMdt =
1
2

∫ t

s

d
dt

∫
∂M
〈Bψ0,

−→n · ψ〉dt,

for any 0 ≤ s ≤ t ≤ T . Integrating by parts, we get

1
2

∫ t

s

d
dt

∫
M

(1 + |∇gφ|
2)αdMdt + α

∫
Mt

s

(1 + |∇gφ|
2)α−1|∂tφ|

2dMdt

=
1
2

∫ t

s

d
dt

∫
∂M
〈Bψ0,

−→n · Ψ〉dt.(3.14)
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So, we have

Eα(φ(t)) + α

∫
Mt

(1 + |∇gφ|
2)α−1|∂tφ|

2dMdt

≤ Eα(φ0) +
1
2
|

∫
{0}×∂M

〈Bψ0,
−→n · ψ〉| +

1
2
|

∫
{t}×∂M

〈Bψ0,
−→n · ψ〉|

≤ Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M),

where the last inequality follows from Proposition 2.5 in [19] that

‖ψ‖L2(∂M) =
√

2‖Bψ‖L2(∂M) =
√

2‖Bψ0‖L2(∂M),

since /Dψ ≡ 0. Also, we have∫ t

s

d
dt

(1
2

∫
M

(1 + |∇gφ|
2)αdM +

1
2

∫
∂M
〈
−→n · Bψ0,Ψ〉

)
dt

= −α

∫
Mt

s

(1 + |∇gφ|
2)α−1|∂tφ|

2dMdt,(3.15)

and the claims follow. �

Consequently, using the key estimate for the Dirac operator along a map in Lemma 2.4, we are
able to control the spinor part along the flow. For the Dirac-harmonic map flow studied in [9, 19],
however, there is in general no such a nice property.

Lemma 3.3. Suppose (φ, ψ) is a solution of (1.10)-(1.11) with the boundary-initial data (1.12),
then for any 1 < p < 2, there holds

‖ψ(·, t)‖W1,p(M) ≤ C‖Bψ0‖C1(∂M), ∀ 0 ≤ t ≤ T,(3.16)

where C is a positive constant depending only on p, M, N, Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M).

Proof. According to Lemma 3.2, for any 0 ≤ t ≤ T , we get

Eα(φ(·, t)) ≤ Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M).

Then by Lemma 2.4, we have

‖ψ(·, t)‖W1,p(M) ≤ C(p,M,N, ‖∇φ‖L2α(M))‖Bψ0‖C1(∂M)

≤ C(p,M,N, Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M))‖Bψ0‖C1(∂M), ∀ 0 ≤ t ≤ T.

�

Next, we derive a small energy regularity theory for the α-Dirac-harmonic map flow.

Lemma 3.4. Suppose that φ0 ∈ C2+µ(M,N), ϕ ∈ C2+µ(∂M,N) and ψ0 ∈ C1+µ(∂M,ΣM ⊗ ϕ∗T N),
where 0 < µ < 1 is a positive constant. Let (φ, ψ) be a solution of (1.10)-(1.11) in M × [0,T ]
with boundary-initial data (1.12). Given z0 = (x0, t0) ∈ M × (0,T ], denote PM

R (z0) := BM
R (x0) ×
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[t0 − R2, t0]. Then there exist three positive constants ε2 = ε2(M,N), ε3 = ε3(M,N, φ0, ϕ, ψ0) and
C = C(µ,R,M,N, Eα(φ0), ‖φ0‖C2+µ(M), ‖Bψ0‖C1+µ(∂M)) such that if

1 < α < 1 + ε2 and sup
[t0−4R2,t0]

E(φ(t); BM
2R(x0)) ≤ ε3,

then

(3.17)
√

R‖ψ‖L∞(PM
R (z0)) + R‖∇φ‖L∞(PM

R (z0)) ≤ C

and for any 0 < β < 1,

(3.18) sup
t0− R2

4 ≤t≤t0

‖ψ(t)‖C1+µ(BM
R/2(z0)) + ‖∇φ‖

Cβ,
β
2 (PM

R/2(z0))
≤ C(β),

Moreover, if
sup
x0∈M

sup
[t0−4R2,t0]

E(φ(t); BM
2R(x0)) ≤ ε3,

then

(3.19) ‖φ‖
C2+µ,1+

µ
2 (M×[t0− R2

8 ,t0])
+ ‖ψ‖

Cµ,
µ
2 (M×[t0− R2

8 ,t0])
+ sup

t0− R2
8 ≤t≤t0

‖ψ‖C1+µ(M) ≤ C.

Proof. For simplicity of notation and a better expression of the idea of proof, we assume M ⊂ R2

is a bounded closed domain with the standard Euclidean metric.

Step 1: We derive (3.18) and (3.19) from (3.17).

Take a cut-off function η ∈ C∞0 (PM
R (z0)) such that 0 ≤ η ≤ 1, η|PM

3R/4(z0) ≡ 1, |∇ jη| ≤ C
R j , j = 1, 2

and |∂tη| ≤
C
R2 . Set U = ηφ, then

Ut − aβγ ∂2U
∂xβ∂xγ = f , in PM

R (z0);
U(x, t) = 0, on BM

R (z0) × {t = t0 − R2};
U(x, t) = ηϕ, on ∂M × (t0 − R2, t0),

where f = f (∇φ, φ, ψ, ∂tη,∇
2η,∇η, η) and

aβγ = δβγ + 2(α − 1)
∇βφ∇γφ

1 + |∇φ|2
.

Under the assumption (3.17), we know f ∈ L∞. Noting that

∂t − aβγ
∂2

∂xβ∂xγ
is a parabolic operator when α − 1 is sufficiently small, by standard parabolic theory, for any
1 < p < ∞, we have

‖U‖W2,1
p (PM

R (z0)) ≤ C
(
‖ f ‖Lp(PM

R (z0)) + ‖ηϕ‖W2,1
p (∂PM

R (z0))
)
≤ C

(
1 + ‖φ0‖C2(M)

)
Then for any 0 < β = 1 − 4/p < 1, Sobolev embedding tells us,

‖∇φ‖Cβ,β/2(PM
3R/4(z0)) ≤ ‖∇U‖Cβ,β/2(PM

R (z0))

≤ C‖U‖W2,1
p (PM

R (z0)) ≤ C(β)
(
1 + ‖φ0‖C2(M)

)
.(3.20)
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Choose a cut-off function χ ∈ C∞0 (BM
R (x0)) satisfying 0 ≤ χ ≤ 1, χ|BM

3R/4(x0) ≡ 1 and |∇ jχ| ≤ C
R j , j =

1, 2. Set V = χψ, then we have/∂V = h, in BM
R (x0);

BV(x) = χBψ0, on ∂BM
R (x0),

where

h = χ/∂ψ + ∇χ · ψ = χA(dφ(eγ), eγ · ψ) + ∇χ · ψ ∈ L∞,

since the assumption (3.17) holds. By the standard theory of the usual Dirac operator and Sobolev
embedding, we have

‖ψ‖C1−2/p(BM
3R/4(x0)) ≤ C‖V‖W1,p(BM

R (x0))

≤ C(‖h‖Lp(BM
R (x0)) + ‖BV‖W1−1/p,p(∂BM

R (x0)))

≤ C(1 + ‖Bψ0‖C1(∂M))(3.21)

for any 2 < p < ∞. Then (3.20) and (3.21) tell us /∂ψ ∈ Cµ(BM
3R/4(z0)). By the Schauder estimates

Theorem 4.6 in [9] and taking some suitable cut-off function as before, we have

(3.22) ‖ψ(t)‖C1+µ(BM
R/2(x0)) ≤ C

(
1 + ‖Bψ0‖C1+µ(∂M)

)(
1 + ‖φ0‖C2(M)

)
for any t0 −

R2

4 ≤ t ≤ t0. Then the inequality (3.18) follows from (3.20), (3.22) immediately.
For the estimate (3.19), we first rewrite the equation /∂ψ = A(dφ(eγ), eγ · ψ) as

/∂ψ + Ω · ψ = 0

where

Ω =

K∑
i=n+1

[νi(φ), dνi(φ)] =

K∑
i=n+1

(
(νi)A(∇eγν

i)Beγ − (νi)B(∇eγν
i)Aeγ

)
and {νi}Ki=n+1 is an orthonormal basis of the normal bundle T⊥N and νi = ((νi)1, ..., (νi)K) (see
Remark 2.1 in [9]), then for any t0 −

R2

4 < t, s < t0, we have/∂(ψ(·, t) − ψ(·, s)) = −Ω(·, t)
(
ψ(·, t) − ψ(·, s)

)
+

(
Ω(·, s) −Ω(·, t)

)
ψ(·, s) in M;

B(ψ(·, t) − ψ(·, s)) = 0 on ∂M.

Since dΩ = [dν(φ), dν(φ)], with (3.20) and (3.22), according to Theorem 4.1 in [9], for any 0 <
β < 1, by Sobolev embedding, we have

‖ψ(·, t) − ψ(·, s)‖Cβ(M) ≤ C
(
‖Ω(·, t) −Ω(·, s)‖L∞(M)

)
≤ C|s − t|β.

So, we get ‖ψ‖
Cβ,

β
2 (M×[t0− R2

4 ,t0])
≤ C and∂tφ − aβγ

∂2φ

∂xβ∂xγ ∈ Cβ,β/2(M × [t0 −
R2

4 , t0]) f or any 0 < β < 1;
φ|∂M = ϕ ∈ C2+µ(∂M).
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Taking some suitable cut-off function and by standard Schauder estimates for second order para-
bolic equations, when α − 1 is sufficiently small, we have φ ∈ C2+µ,1+

µ
2 (M × [t0 −

R2

8 , t0]) and

‖φ‖
C2+µ,1+

µ
2 (M×[t0− R2

8 ,t0])

≤ C
(
‖∂tφ − aβγ

∂2φ

∂xβ∂xγ
‖Cµ,µ/2(M×[t0− R2

4 ,t0]) + ‖φ‖C0(M×[t0− R2
4 ,t0]) + ‖ϕ‖C2+µ(∂M)

)
≤ C.

So we have proved (3.19).

Step 2: We prove (3.17).

We follow a similar idea as in [30, 34, 27]. Without loss of generality, we may assume R = 1
2 .

Take 0 ≤ ρ < 1 such that

(1 − ρ)2 sup
PM
ρ (z0)
|∇φ|2 = max

0≤σ≤1
{(1 − σ)2 sup

PM
σ (z0)
|∇φ|2}

and then choose z1 = (x1, t1) ∈ PM
ρ (z0) such that

|∇φ|2(z1) = sup
PM
ρ (z0)
|∇φ|2 := e.

We claim:
(1 − ρ)2e ≤ 4.

We proceed by contradiction. If (1 − ρ)2e > 4, we set

u(x, t) := φ(x1 + e−
1
2 x, t1 + e−1t) and v(x) := e−

1
4ψ(x1 + e−

1
2 x, t1 + e−1t).

Denoting Pr(0) = Dr(0) × [−r2, 0] ⊂ R2 × R and

S r := Pr(0) ∩ {(x, t)|(x1 + e−
1
2 x, t1 + e−1t) ∈ PM

1 (0)},

then (u, v) satisfy

∂tu = ∆u + (α − 1)
∇|∇u|2∇u
e−1 + |∇u|2

− A(∇u,∇u) −
Re

(
P(A(du(eγ), eγ · v); v)

)
α(1 + e|∇u|2)α−1 ,(3.23)

/∂v = A(du(eγ), eγ · v)(3.24)

with the boundary data

(3.25) (u(x, t),Bv(x, t)) = (ϕ(x1 + e−
1
2 x), e−

1
4 Bψ0(x1 + e−

1
2 x)), i f x1 + e−

1
2 x ∈ ∂M.

Moreover,

sup
S 1

|∇u|2 = e−1 sup
PM

e−1/2 (z1)
|∇φ|2 ≤ e−1 sup

PM
ρ+e−1/2 (z0)

|∇φ|2 ≤ e−1 sup
PM

1+ρ
2

(z0)
|∇φ|2 ≤ 4

and
|∇u|2(0) = e−1|∇φ|2(z1) = 1.

Noting that v satisfies the equation /∂v = A(du(eγ), eγ · v) and the facts

|du| ≤ 2, sup
−1≤t≤0

‖v‖L4(D1) ≤ sup
t
‖ψ(·, t)‖L4(M) ≤ C,
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where in the last step we have used Lemma 3.3 by taking p = 4
3 . By elliptic estimates of the usual

Dirac operator and Sobolev embedding, we have

sup
−1≤t≤0

‖v‖L∞(D3/4) ≤ C sup
−1≤t≤0

‖v‖W1,4(D3/4) ≤ C(1 + ‖Bψ0‖C1(∂M)).

Next, we want to show that there exists a constant C > 0 such that

(3.26) 1 ≤ C
∫

S 3/4

|∇u|2dxdt.

In fact, if such a C does not exist, then there exists a sequence {(ui, vi)} satisfying (3.23)-(3.24)
with the boundary data (3.25) and

(3.27) sup
S 3/4

(
|∇ui| + |vi|

)
≤ C,

(3.28) |∇ui|
2(0) = 1,

(3.29)
∫

S 3/4

|∇ui|
2dxdt ≤

1
i
.

Similar to the argument in Step 1 (since (ui, vi) satisfy (3.23)-(3.24), (3.25) and (3.27)), we
obtain

‖∇ui‖Cβ,β/2(S 1/2) ≤ C(β)

for any 0 < β < 1.
Therefore, there exists a subsequence of {ui} (we still denote it by {ui}) and a function u ∈

Cδ, δ2 (S 1/2) such that
∇ui → ∇u in Cδ,δ/2(S 1/2)

where 0 < δ < β. By (3.29), we know

(3.30)
∫

S 1/2

|∇u|2dxdt = 0

which implies ∇u ≡ 0 in S 1/2. But, (3.28) tells us |∇u|(0) = 1. This is a contradiction and then
(3.26) must be true. Thus, we have

1 ≤ C
∫

S 3/4

|∇u|2dxdt

≤ C sup
−1<t<0

∫
BM

e
1
2

(x1)
|∇φ|2(t1 + e−1t)dx

≤ C sup
−1<t<0

∫
BM

1 (z0)
|∇φ|2(t)dx ≤ Cε3.

Choosing ε3 > 0 sufficiently small leads to a contradiction, so we must have (1− ρ)2e ≤ 4 and then

(1 − 3/4)2 sup
PM

3/4(z0)
|∇φ|2 ≤ (1 − ρ)2e ≤ 4.
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Since ψ satisfies the equation /∂ψ = A(dφ(eγ), eγ · ψ) and ‖dφ‖L∞(PM
3/4(z0)) ≤ 8, ‖ψ‖L4(M) ≤ C, by the

elliptic theory for the Dirac operator and Sobolev embedding again, we shall easily obtain

‖ψ‖L∞(PM
1/2(z0)) ≤ C.

Thus we get the inequality (3.17). This finishes the proof of the lemma. �

In the end of this section, we prove our first main Theorem 1.1.

Proof of Theorem 1.1. By the short-time existence result Theorem 3.1, there is a unique solution

φ ∈ C2+µ,1+
µ
2

loc (M × [0,T ),N)

and
ψ ∈ ∩0<S<T L∞([0, S ], ‖ψ(·, t)‖C1+µ(M)) ∩Cµ,

µ
2

loc (M × [0,T ),ΣM ⊗ φ∗T N)
to the problem (1.10)-(1.11) with boundary data (1.12) for some T > 0.

Next, we will show that the solution (φ, ψ) can be extended to the time T . In fact, by Lemma
3.2, we have

1
2

∫
M

(1 + |∇gφ|
2)α(·, t)dM ≤ Eα(φ0) +

√
2‖Bψ0‖

2
L2(∂M).

Then it is easy to see that, for any 0 < ε < ε3, there exists a positive constant r0, depending only on
ε, α, M, Eα(φ0) +

√
2‖Bψ0‖

2
L2(∂M), such that for all x ∈ M and 0 ≤ t < T , there holds

1
2

∫
BM

r0 (x)
|∇gφ|

2(·, t)dM ≤ CEα(φ)1/αr1− 1
α

0 ≤ ε.

By Lemma 3.4, we can extend the solution (φ(·, t), ψ(·, t)) to the time T with (φ(·,T ), ψ(·,T )) ∈
C2+µ(M,N) ×C1+µ(M,ΣM ⊗ φ(·,T )∗T N). Then the short-time existence result implies T = ∞.

For the limit behaviour as t → ∞, by Lemma 3.2, we get∫ ∞

0

∫
M
|∂tφ|

2dMdt ≤ C,

which implies that there exists a time sequence ti → ∞, such that∫
M
|∂tφ|

2(·, ti)dM → 0.

By Lemma 3.4, we have
‖φ(ti)‖C2+µ(M) + ‖ψ(ti)‖C1+µ(M) ≤ C.

Thus, there exists a subsequence of {ti} (still denoted by {ti}) and an α-Dirac-harmonic map (φα, ψα)
with boundary data

(φα,Bψα)|∂M = (ϕ,Bψ0),
such that (φ(·, ti), ψ(·, ti)) converges to (φα, ψα) in C2(M) × C1(M). Since (ϕ, ψ0) ∈ C2+µ(∂M,N) ×
C1+µ(∂M, ϕ∗T N), it is standard to obtain

(φα, ψα) ∈ C2+µ(M,N) ×C1+µ(M,ΣM ⊗ φ∗αT N)

from the Schauder theory for second order elliptic operators and Dirac operators. This completes
the proof of theorem. �
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4. Blow-up analysis for α-Dirac-harmonic map sequences and existence of Dirac-harmonic maps

In the previous section, it is shown that there exists a sequence of α-Dirac-harmonic maps
{(φα, ψα)} as α↘ 1 with Dirichlet-chiral boundary condition (φα,Bψα)|∂M = (ϕ,Bψ0), such that

(4.1) Eα(φα) ≤ Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M)

and

(4.2) ‖ψα‖W1,p(M) ≤ C(p,M,N, Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M)),

for any 1 < p < 2. In this section, we will study the limit behaviour of the sequence as α↘ 1 and
show that the limit is just the Dirac-harmonic map we want to find.

First of all, we consider the blow-up sequence under the following more general assumption that

Eα(φα) + ‖ψα‖L4(M) ≤ Λ < ∞.

Note that the functional Lα and the equations of α-Dirac-harmonic maps are not conformally
invariant in dimension two. For example, on an isothermal coordinate system around a point
p ∈ M, if the metric is given by

g = eρ((dx1)2 + (dx2)2)
with ρ(p) = 0, setting

(̃uα(x), ṽα(x)) :=
(
φα(p + rαx),

√
rαψα(p + rαx)

)
for some small positive number rα > 0. By the conformal invariance of the spinor equation, it is
easy to check that (̃uα(x), ṽα(x)) satisfies the following system∆gα ũα = −(α − 1)∇gα |∇gα ũα |2∇gα ũα

σα+|∇gα ũα |2
+ A(dũα, dũα) +

Re(P(A(dũα(eγ),eγ ·̃vα);̃vα))
α(1+σ−1

α |∇gα ũα |2)α−1 ,

/∂̃vα = A(dũα(eγ), eγ · ṽα),
(4.3)

where gα = eρ(p+rαx)((dx1)2 + (dx2)2) and σα = r2
α > 0.

Since α-Dirac-harmonic maps are not conformally invariant, in order to get unified bubbling
equations, we need to add another factor rα−1

α in the rescaling. Setting

(uα(x), vα(x)) :=
(̃
uα(x), rα−1

α ṽα(x)
)

=
(
φα(p + rαx), rα−1

α

√
rαψα(p + rαx)

)
and noting that the equation for the spinor part is also invariant by multiplying a constant to the
spinor, then one can verify that (uα(x), vα(x)) satisfies the following system:∆gαuα = −(α − 1)∇gα |∇gαuα |2∇gαuα

σα+|∇gαuα |2
+ A(duα, duα) +

Re(P(A(duα(eγ),eγ·vα);vα))
α(σα+|∇gαuα |2)α−1 ,

/∂vα = A(duα(eγ), eγ · vα),
(4.4)

For a general Riemannian metric gα = eρα((dx1)2 + (dx2)2), ρα ∈ C∞(D1(0)), ρα(0) = 0, and
positive constant 0 < σα ≤ 1, we call (uα, vα) a general α-Dirac-harmonic map if it satisfies the
system (4.3) or it satisfies the system (4.4) with 0 < β0 ≤ lim infα↘1 σ

α−1
α ≤ 1 for some positive

constant β0 > 0.
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Since the spinor equation is conformally invariant, it is easy to check that the system (4.3) is
equivalent to∆uα = −(α − 1)∇|∇gαuα |2∇uα

σα+|∇gαuα |2
+ A(uα)(duα, duα) +

Re(P(A(duα(eγ),eγ·vα);vα))
α(1+σ−1

α |∇gαuα |2)α−1 = 0,
/∂vα = A(duα(eγ), eγ · vα),

(4.5)

and the system (4.4) is equivalent to∆uα = −(α − 1)∇|∇gαuα |2∇uα
σα+|∇gαuα |2

+ A(uα)(duα, duα) +
Re(P(A(duα(eγ),eγ·vα);vα))

α(σα+|∇gαuα |2)α−1 = 0,
/∂vα = A(duα(eγ), eγ · vα),

(4.6)

where ∆ = ∂2

(∂x1)2 + ∂2

(∂x2)2 , the derivative ∇ and the Dirac operator /∂ are taken with respect to the
standard Euclidean metric. The {eγ} in (4.5) and (4.6) is a local orthonormal basis with respect to
the standard Euclidean metric and hence it is different from the one in (4.3) and (4.4), however, for
simplicity, we shall use the same notation. More precisely, the above equivalences of the systems
mean that (uα ◦ Id, e

ρα
2 vα ◦ Id) satisfies (4.5)-(4.6), where

Id : (D1(0), (dx1)2 + (dx2)2)→ (D1(0), gα)

is a conformal map defined by Id(x) = x. In the sequel, for simplicity of notation, we shall identify
(uα ◦ Id, e

ρα
2 vα ◦ Id) with (uα, vα) and use the appropriate forms of the systems.

Let D1(0) ⊂ R2 be the unit ball centered at 0. Denote

D+
1 (0) := {(x1, x2) ∈ D1(0)|x2 ≥ 0}, ∂0D+

1 (0) := {(x1, x2) ∈ D1(0)|x2 = 0}.

Next, we show a small energy regularity lemma for α-Dirac-harmonic maps. This kind of reg-
ularity theorem was introduced by Sacks and Uhlenbeck for the critical points of functional Eα in
[29]. For the interior case, we have

Lemma 4.1. For any 1 < p < ∞, there exist two positive constants ε0 and α0 > 1 depending
only on g,N, such that if (φα, ψα) : (D1(0), gα) → N is a general α-Dirac-harmonic map with
Eα(φα) + ‖ψα‖L4(D1(0)) ≤ Λ and

E(φα) ≤ ε0, 1 ≤ α ≤ α0,

where gα = eρα((dx1)2 + (dx2)2) and ρα(0) = 0, ρα → ρ in C∞(D1(0)) as α→ 1, then there holds

‖∇φα‖W1,p(D1/2(0)) ≤ C(p, g,Λ,N)‖∇φα‖L2(D1(0)), ‖ψα‖W1,p(D1/2(0)) ≤ C(p, g,Λ,N)‖ψα‖L4(D1(0)).

Near the boundary, we have

Lemma 4.2. For any 1 < p < ∞, there exist two positive constants ε0 and α0 > 1 depending
only on g,N, such that if (φα, ψα) : (D+

1 (0), gα) → N is a general α-Dirac-harmonic map with
Dirichlet-chiral boundary condition

(φα,Bψα)|∂0D+
1 (0) = (ϕ,Bψ0),

satisfying Eα(φα) + ‖ψα‖L4(D1(0)) ≤ Λ and

E(φα) ≤ ε0, 1 ≤ α ≤ α0,
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where gα = eρα((dx1)2 + (dx2)2) and ρα(0) = 0, ρα → ρ in C∞(D+
1 (0)) as α→ 1, then there holds

‖∇φα‖W1,p(D+
1/2(0)) ≤ C(‖∇φα‖L2(D+) + ‖∇ϕ‖C1(∂0D+),

‖ψα‖W1,p(D+
1/2(0)) ≤ C(‖ψα‖L4(D+) + ‖Bψ0‖C1(∂0D+)),

where C is a positive constant depending on p, g,Λ,N, ‖ϕ‖C2 , ‖Bψ0‖C1 .

Since the proof for the interior case is similar to, but simpler than that of the boundary case, we
only prove Lemma 4.2 here and omit the interior case.

Proof of Lemma 4.2. We prove the lemma for the case that (φα, ψα) satisfies (4.3). For the other
case, i.e. (φα, ψα) satisfies (4.4) with 0 < β0 ≤ lim infα↘1 σ

α−1
α ≤ 1 for some positive constant

β0 > 0, the proof is almost the same.

Without loss of generality, we assume
∫
∂0D+

1
2

ϕ = 0.

Choose a cut-off function η ∈ C∞0 (D+) satisfying 0 ≤ η ≤ 1, η|D+
3/4
≡ 1, |∇η| + |∇2η| ≤ C. Noting

that the ψα-equation is conformally invariant in dimension two, by standard theory of first order
elliptic equations, for any 1 < q < 2, we have

‖ηψα‖W1,q(D+) ≤ C(‖/∂(ηψα)‖Lq(D+) + ‖Bψα‖W1−1/q,q(∂0D+))

≤ C(‖∇η · ψα + η/∂ψα‖Lq(D+) + ‖Bψα‖W1−1/q,q(∂0D+))

≤ C
(
‖ψα‖Lq(D+) + ‖|dφα||ηψα|‖Lq(D+) + ‖Bψ0‖W1−1/q,q(∂0D+)

)
≤ C‖dφα‖L2(D+)‖ηψα‖

L
2q

2−q (D+)
+ C(‖ψα‖Lq(D+) + ‖Bψ0‖W1−1/q,q(∂0D+))

≤ Cε0‖ηψα‖
L

2q
2−q (D+)

+ C(‖ψα‖Lq(D+) + ‖Bψ0‖W1−1/q,q(∂0D+)).

Taking ε0 > 0 sufficiently small, by Sobolev embedding, we get

‖ηψα‖
L

2q
2−q (D+)

≤ ‖ηψα‖W1,q(D+) ≤ C(‖ψα‖Lq(D+) + ‖Bψα‖W1−1/q,q(∂0D+)).(4.7)

In particular, taking q = 8
5 , we get

‖ηψα‖L8(D+) ≤ ‖ηψα‖W1, 85 (D+)
≤ C(‖ψα‖L4(D+) + ‖Bψα‖C3/8,8/5(∂0D+)).(4.8)

Noting that

∆φα = −(α − 1)
∇|∇gαφα|

2∇φα

σα + |∇gαφα|
2 + A(dφα, dφα) +

Re
(
P(A(dφα(eγ), eγ · ψα);ψα)

)
α(1 + σ−1

α |∇gαφα|
2)α−1 ,

where ∆ = ( ∂
∂x1 )2 + ( ∂

∂x2 )2 is the Laplace operator of the standard Euclidean metric, computing
directly, we obtain

|∆(ηφα)| = |η∆φα + 2∇η∇φα + φα∆η|

≤ C
(
|φα| + |dφα| + (α − 1)|η∇2φα| + |dφα||ηdφα| + |ψα|2|ηdφα|

)
≤ C(|dφα||d(ηφα)| + (α − 1)|∇2(ηφα)|) + C

(
|φα| + |dφα| + |ψα|2|ηdφα|

)
.(4.9)
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By standard elliptic estimates and the Poincaré inequality, for any 1 < p < 2, we have

‖ηφα‖W2,p(D+) ≤ C(‖|dφα||d(ηφα)|‖Lp(D+) + (α − 1)‖∇2(ηφα)‖Lp(D+))

+ C(‖dφα‖Lp(D+) + ‖ϕ‖W2−1/p,p(∂0D+) + ‖|ψα|
2|ηdφα|‖Lp(D+))

≤ C‖d(ηφα)‖
L

2p
2−p (D+)

‖dφα‖L2(D+) + C(α − 1)‖∇2(ηψα)‖Lp(D+)

+ C(‖dφα‖Lp(D+) + ‖||ψα|
2|ηdφα||‖Lp(D+) + ‖ϕ‖W2,p(∂0D+))

≤ C(ε0 + α − 1)‖d(ηφα)‖W1,p(D+) + C(‖dφα‖Lp(D+)

+ ‖|ψα|
2|ηdφα|‖Lp(D+) + ‖∇ϕ‖W1,p(∂0D+)).

Choosing ε0 > 0 and α0 − 1 sufficiently small, we have

‖∇(ηφα)‖W1,p(D+) ≤ C(‖dφα‖Lp(D+) + ‖||ψα|
2|ηdφα||‖Lp(D+) + ‖∇ϕ‖C1(∂0D+)).(4.10)

In particular, we take p = 4
3 , then

‖∇φα‖L4(D+
5
8

) ≤ C‖∇φα‖W1, 43 (D+
5
8

)

≤ C(‖dφα‖L2(D+) + ‖ψα‖
2
L8(D+

3/4)‖dφα‖L2(D+) + ‖∇ϕ‖C1(∂0D+))

≤ C(‖dφα‖L2(D+) + ‖∇ϕ‖C1(∂0D+)),(4.11)

where the last inequality follows from (4.8).
Applying the W1,2-estimate for the usual Dirac operator, we have

‖ψα‖W1,2(D+
9
16

) ≤ C(‖/∂ψα‖L2(D+
5
8

) + ‖ψα‖L2(D+
5
8

) + ‖Bψα‖W1/2,2(∂0D+))

≤ C(‖dφα‖L4(D+
5
8

)‖ψα‖L4(D+
5
8

) + ‖ψα‖L2(D+
5
8

) + ‖Bψα‖W1/2,2(∂0D+))

≤ C(‖ψα‖L4(D+) + ‖Bψα‖C1(∂0D+)).

By (4.9), we get

|∆(ηφα)| ≤ C(α − 1)|∇2(ηφα)| + C
(
|φα| + |dφα| + |dφα|2 + |ψα|

2|dφα|
)
.(4.12)

Applying the W2,2-estimate for the Laplace operator and choosing α0 − 1 small enough, by (4.8)
and (4.11), we obtain

‖∇φα‖W1,2(D+
9

16
) ≤ C(‖dφα‖L2(D+) + ‖∇ϕ‖C1(D+)).(4.13)

By the Sobolev embedding theorem, we know ∇φα ∈ Lp(D+
9/16) and ψα ∈ Lp(D+

9/16) for any
1 < p < ∞. Then the conclusions of the lemma follow from the standard Lp-estimate for the Dirac
operator and the W2,p-estimate for the following elliptic operator immediately

∆ + (α − 1)
2∇βφα∇γφα
σα + |∇φα|2

∇2
βγ.

�

Applying the above small energy regularity for general α-Dirac-harmonic maps, we can now
show Theorem 1.2 and Theorem 1.4.
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Proof of Theorem 1.2: Without loss of generality, let {x1, ..., xI} ⊂ S be any subset with finite
points. Choosing r > 0 sufficiently small such that BM

r (xi) ∩ BM
r (x j) = ∅, i , j, then

Λ ≥ lim inf
α→1

E(φα; M) ≥
I∑

i=1

lim inf
α→1

E(φα; BM
r (xi)) ≥

ε0

2
I,

which implies I ≤ 2Λ
ε0

. Therefore, S is a set with at most finitely many points..
For any x0 ∈ M \ S, there exist r0 > 0 and a subsequence of α↘ 1, such that

E(φα; BM
r0

(x0)) <
ε0

2
.

If x0 ∈ M \ ∂M, without loss of generality, we may assume BM
r0

(x0) ∩ ∂M = ∅. By Lemma 4.1, we
have

r0‖∇φα‖L∞(BM
r0/2

(x0)) +
√

r0‖ψα‖L∞(BM
r0/2

(x0)) ≤ C(Λ,M,N).

If x0 ∈ ∂M, by Lemma 4.2, we have

r0‖∇φα‖L∞(BM
r0/2

(x0)) +
√

r0‖ψα‖L∞(BM
r0/2

(x0)) ≤ C(Λ,M,N, ‖ϕ‖C2 , ‖Bψ0‖C1).

According to the standard theory of Dirac and second order elliptic operators, we can obtain

(4.14) ‖φα‖Ck(BM
r0/4

(x0)) + ‖ψα‖Ck(BM
r0/4

(x0)) ≤ C(k, r0,Λ,M,N)

for x0 ∈ M \ ∂M and

(4.15) ‖φα‖C2+µ(BM
r0/4

(x0)) + ‖ψα‖C1+µ(BM
r0/4

(x0)) ≤ C(r0, µ,Λ,M,N, ‖ϕ‖C2+µ , ‖Bψ0‖C1+µ)

for x0 ∈ ∂M.
Suppose (φ, ψ) is the weak limit of (φα, ψα) in W1,2(M) × L4(M), then by (4.14) and (4.15), we

know there exists a subsequence of (φα, ψα) (not changing notation) such that

(φα, ψα)→ (φ, ψ) in C2
loc(M \ S) ×C1

loc(M \ S),

where
(φ,Bψ)|∂M = (ϕ,Bψ0).

By the removable singularity theory of Dirac-harmonic maps (see Theorem 4.6 in [6] for the in-
terior singularity case and the proof of Theorem 1.4 and Theorem 1.5 in [19] for the boundary
singularity case), we have (φ, ψ) ∈ C2(M) × C1(M). Then, (φ, ψ) ∈ C2+µ(M) × C1+µ(M) follows
from the standard Schauder theory. �

Proof of Theorem 1.4: Take r0 > 0 such that x0 ∈ S is the only energy concentration point in
BM

r0
(x0). By the standard blow-up analysis argument for harmonic map type problems, we can

assume that, for the sequence α↘ 1, there exist sequences xα → x0 and rα → 0 such that

(4.16) E(φα; BM
rα (xα)) = sup

x∈BM
r0

(x0),r≤rα
BM

r (x)⊂BM
r0

(x0)

E(φα; BM
r (x)) =

ε0

4
,

where ε0 > 0 is the constant in Lemma 4.1 and Lemma 4.2.
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Step 1: Let x0 ∈ ∂M and we prove the statement (2) under the assumption that

(4.17) lim sup
α→1

dist(xα, ∂M)
rα

= ∞.

Without loss of generality, we may assume x0 = 0 ∈ D+
1 (0) ⊂ R2 is the only energy concentration

point in D+
1 (0) and

g(x) = eρ(x)((dx1)2 + (dx2)2),
where ρ is a smooth function satisfying ρ(0) = 0.

Setting

(̃uα(x), ṽα(x)) =
(
φα(xα + rαx),

√
rαψα(xα + rαx)

)
,(4.18)

by (4.17) and (4.5), it is easy to see that, for any R > 0, (̃uα(x), ṽα(x)) lives in DR(0) ⊂ R2 for α
close to 1 and satisfies∆ũα = −(α − 1)∇|∇gα ũα |2∇ũα

r2
α+|∇gα ũα |2

+ A(dũα, dũα) +
Re(P(A(dũα(eγ),eγ ·̃vα);̃vα))

α(1+r−2
α |∇gα ũα |2)α−1 ,

/∂̃vα = A(dũα(eγ), eγ · ṽα),
(4.19)

where gα(x) = eρ(xα+rαx)((dx1)2 + (dx2)2) and we used the fact that the second equation, i.e. the
equation for the spinor part, is conformally invariant.

Since (̃uα(x), ṽα(x)) is a general α-Dirac-harmonic map, by (4.16) and the small energy regularity
result Lemma 4.1, we know there exists a subsequence of {α} (still denoted by the same symbols)
and (σ̃, ξ̃) ∈ W2,2

loc (R2) ×W1,2
loc (R2), such that E(σ̃; D1(0)) = ε0

4 and

(̃uα(x), ṽα(x))→ (σ̃, ξ̃) in C1
loc(R

2) ×C0
loc(R

2).(4.20)

Next, we make the following

Claim 1:

(4.21) 1 ≤ lim inf
α↘1

r2(1−α)
α ≤ lim sup

α↘1
r2(1−α)
α ≤ µmax < ∞.

To show this claim, we just need to prove that

lim sup
α↘1

r2(1−α)
α < ∞.

In fact, if it does not hold, then there exists a subsequence α j → 1 such that

lim
j→∞

r2(1−α j)
α j := µ1 = ∞.

By (4.19) and (4.20), it is easy to see that σ̃ : R2 → N is a harmonic map such that ũα j → σ̃ in
C1

loc(R
2) as j→ ∞. Then we have

2Λ ≥ lim
R→∞

lim
j→∞

∫
Drα j R(xα j )

|∇gα j
φα j |

2α jdvolgα j
= lim

R→∞
lim
j→∞

(rα j)
2−2α j

∫
DR(0)
|∇gα j

ũα j |
2α jdvolgα j (xα j +rα j x)

= lim
R→∞

µ1

∫
DR(0)
|∇σ̃|2dx = 2µ1E(σ̃).
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which is a contradiction to the fact that E(σ̃) ≥ ε > 0 which follows from the well known energy
gap theorem for harmonic spheres, since σ̃ : R2 → N is a nontrivial harmonic map with finite
energy and hence it can be conformally extended to a harmonic sphere. Thus, the Claim 1 holds
true.

Now setting

(uα(x), vα(x)) :=
(̃
uα(x), rα−1

α ṽα(x)
)

=
(
φα(xα + rαx), rα−1

α

√
rαψα(xα + rαx)

)
,(4.22)

since the equation for the spinor part is also invariant by multiplying a constant to the spinor, it is
easy to see that (uα, vα) satisfies∆uα = −(α − 1)∇|∇gαuα |2∇uα

r2
α+|∇gαuα |2

+ A(duα, duα) + r2(1−α)
α

Re(P(A(duα(eγ),eγ·vα);vα))
α(1+r−2

α |∇gαuα |2)α−1 ,

/∂vα = A(duα(eγ), eγ · vα).
(4.23)

From (4.21), we know that (uα, vα) is a general α-Dirac-harmonic map with σα = r2
α > 0.

By (4.16), (4.23), the small energy regularity result Lemma 4.1 and the fact that rα−1
α ≤ 1, we

know there exists a subsequence of {α} (still denoted by the same symbols) and a nontrivial Dirac-
harmonic map (σ, ξ) : R2 → N, such that

(uα(x), vα(x))→ (σ, ξ) in C1
loc(R

2) ×C0
loc(R

2).

Next, we will show that (σ, ξ) has finite energy, i.e.

‖∇σ‖L2(R2) + ‖ξ‖L4(R2) ≤ C < ∞.

In fact, for any R > 0,

‖∇σ‖L2(DR(0)) + ‖ξ‖L4(DR(0)) = lim
α↘1

(‖∇uα‖L2(DR(0)) + ‖vα‖L4(DR(0)))

= lim
α↘1

(‖∇φα‖L2(DrαR(xα)) + rα−1
α ‖ψα‖L4(DrαR(xα)))

≤ lim
α↘1

(‖∇φα‖L2(DrαR(xα)) + ‖ψα‖L4(DrαR(xα))) ≤ C(Λ) < ∞.

Step 2: Let x0 ∈ ∂M , then

(4.24) lim sup
α→1

dist(xα, ∂M)
rα

= ∞.

If not, then there exists a converging subsequence of dist(xα,∂M)
rα

. Without loss of generality, we
may assume

lim
α→1

dist(xα, ∂M)
rα

= a

where a ≥ 0 is a constant.
Denoting

Bα :=
{
x ∈ R2| xα + rαx ∈ D+

1 (0)
}
,

then
Bα → R

2
a :=

{
(x1, x2)|x2 ≥ −a

}
.

Noting that (̃uα(x), ṽα(x)) (see (4.18)) lives in Bα and satisfies (4.19) with the boundary data(̃
uα(x), B̃vα(x)

)
=

(
ϕ(xα + rαx),

√
rαBψ0(xα + rαx)

)
, i f xα + rαx ∈ ∂0D+

1 (0),
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by (4.16), Lemma 4.1 and Lemma 4.2, we have

(4.25) ‖̃uα‖W2,p(D4R(0)∩Bα(0)) + ‖̃vα‖W1,p(D4R(0)∩Bα(0)) ≤ C(p,R, g,Λ,N, ‖ϕ‖C2+µ , ‖Bψ0‖C1+µ)

for any DR(0) ⊂ R2 and p > 1, which implies

‖̃uα(x − (0,
dα
rα

))‖W2,2(D+
3R(0)) + ‖̃vα(x − (0,

dα
rα

))‖W1,2(D+
3R(0)) ≤ C

when 1
α−1 , R are large, where dα := dist(xα, ∂0D+).

Then there exist a subsequence of (̃uα, ṽα) (also denoted by (̃uα, ṽα)) and

(̃u, ṽ) ∈ W2,2
loc (R2+

a ) ×W1,2
loc (R2+

a )

with the boundary data (̃u, B̃v)|∂R2+
a

= (ϕ(x0), 0) where R2+
a :=

{
(x1, x2)|x2 > −a

}
, such that for any

R > 0,

lim
α→1
‖̃uα(x − (0,

dα
rα

)) − ũ(x)‖W1,2(D+
3R(0)) = 0, lim

α→1
‖̃vα(x − (0,

dα
rα

)) − ṽ(x)‖L4(D+
3R(0)) = 0.

We set σ̃(x) := ũ(x + (0, a)) and ξ̃(x) := ṽ(x + (0, a)) and then conclude that, for any R > 0,

lim
α→1
‖̃uα(x) − σ̃(x)‖W1,2(D2R(0)∩Bα∩R2

a) = 0, lim
α→1
‖̃vα(x) − ξ̃(x)‖L4(D2R(0)∩Bα∩R2

a) = 0.

Combining this with (4.25) and noting that the measures of D2R(0)∩ Bα \R
2
a and D2R(0)∩R2

a \ Bα

go to zero, we have

lim
α→1
‖∇ũα(x)‖L2(DR(0)∩Bα) = ‖∇σ̃(x)‖L2(DR(0)∩R2

a), lim
α→1
‖̃vα(x)‖L4(DR(0)∩Bα) = ‖̃ξ(x)‖L4(DR(0)∩R2

a).(4.26)

By (4.16), we have E(σ̃; D1(0) ∩ R2
a) = ε0

4 .

Next, similarly to Claim 1 in Step 1, we make the following

Claim 2:

(4.27) 1 ≤ lim inf
α↘1

r2(1−α)
α ≤ lim sup

α↘1
r2(1−α)
α ≤ µmax < ∞.

In fact, if it is not true, then there exists a subsequence α j → 1 such that

lim
j→∞

r2(1−α j)
α j → ∞.

In view of the equation (4.5), it follows from the above fact that (̃uα j , ṽα j) ⇀ (σ̃, ξ̃) weakly in
W2,2

loc (R2+
a ) × W1,2

loc (R2+
a ) as j → ∞ and σ̃ : R2+

a → N is a harmonic map with boundary data
σ̃|∂R2+

a
= ϕ(x0). By a well known result of Lemaire [23], we have that σ̃ is a constant map, which

is a contradiction to the fact that E(σ̃; D1(0) ∩ R2
a) = ε0

4 . Thus, Claim 2 holds.
Then we know (uα, vα) (see (4.22)) is a general α-Dirac-harmonic map. By Lemma 4.2 and

above arguments, there exist a subsequence of {α} (still denoted by itself) and a Dirac-harmonic
map (σ, ξ) : R2+

a → N with the boundary data (σ,Bξ)|∂R2+
a

= (ϕ(x0), 0), such that

lim
α→1
‖∇uα(x)‖L2(DR(0)∩Bα) = ‖∇σ(x)‖L2(DR(0)∩R2

a), lim
α→1
‖vα(x)‖L4(DR(0)∩Bα) = ‖ξ(x)‖L4(DR(0)∩R2

a)
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for any R > 0, which implies E(σ; D1(0)∩R2
a) = ε0

4 according to (4.16). However, by Theorem 1.4
in [19], we know σ is a constant map and ξ ≡ 0. This is a contradiction and hence the statement
(2) holds.

Step 3: For the first statement (1), i.e., the case of x0 ∈ M \ ∂M, the argument is almost the same
as in Step 1, so we omit it. The proof of the theorem is finished. �

Finally, we show Theorem 1.5.

Proof of Theorem 1.5. By Theorem 1.1, we know there exists a sequence of α-Dirac-harmonic
maps (φα, ψα) ∈ C2+µ(M,N) ×C1+µ(M,ΣM ⊗ φ∗αT N) for α↘ 1 with the Dirichlet-chiral boundary
condition

(φα,Bψα)|∂M = (ϕ,Bψ0),
satisfying

(4.28) Eα(φα) ≤ Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M)

and

(4.29) ‖ψα‖W1,p(M) ≤ C(p,M,N, Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M)),

for any 1 < p < 2. All φα are in the homotopy class of φ0.
Now, we claim that if the target manifold N does not admit any harmonic sphere, then the energy

concentration set S defined in Theorem 1.2 is empty.
In fact, if not, taking a point x0 ∈ S, then by Theorem 1.4, there exist sequences xα → x0, rα → 0

and a nontrivial Dirac-harmonic map (σ, ξ) : R2 → N, such that(
φα(xα + rαx), rα−1

α

√
rαψα(xα + rαx)

)
→ (σ, ξ) in C2

loc(R
2),

as α→ 1. For any 4 < q < ∞, taking p =
2q

2+q ∈ ( 4
3 , 2) in (4.29), we have

(4.30) ‖ψα‖Lq(M) ≤ C(q,M,N, Eα(φ0) +
√

2‖Bψ0‖
2
L2(∂M)),

and for any R > 0,

‖ξ‖L4(DR(0)) = lim
α→1

rα−1
α ‖ψα‖L4(DRrα (xα)) ≤ lim

α→1
C‖ψα‖Lq(M)(Rrα)2( 1

4−
1
q ) = 0.

Thus, ξ ≡ 0 and the Dirac-harmonic map (σ, ξ) : R2 → N is just a nontrivial harmonic map
σ : R2 → N with finite energy, which can be extended to a nontrivial smooth harmonic sphere.
This is a contradiction and hence S must be empty.

By Theorem 1.2, we have

(φα, ψα)→ (φ, ψ) in C2(M) ×C1(M), as α→ 1,

where (φ, ψ) ∈ C2+µ(M,N) × C1+µ(M,ΣM ⊗ φ∗T N) is a Dirac-harmonic map with Dirichlet-chiral
boundary data

(φα,Bψα)|∂M = (ϕ,Bψ0).
Moreover, it is easy to see that (φ, ψ) is in the same homotopy class as φ0. We have finished the
proof. �
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