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Abstract

The human brain forms functional networks on all spatial scales. Modern fMRI scanners allow

for resolving functional brain data in high resolution, enabling the study of large-scale networks

that relate to cognitive processes. The analysis of such networks forms a cornerstone of experimental

neuroscience. Due to the immense size and complexity of the underlying data sets, efficient evaluation

and visualization pose challenges for data analysis.

In this study, we combine recent advances in experimental neuroscience and applied mathematics

to perform a mathematical characterization of complex networks constructed from fMRI data. We

use task-related edge densities [Lohmann et al., 2016] for constructing networks whose nodes repre-

sent voxels in the fMRI data and whose edges represent the task-related changes in synchronization

between them. This construction captures the dynamic formation of patterns of neuronal activity

and therefore efficiently represents the connectivity structure between brain regions.

Using geometric methods that utilize Forman-Ricci curvature as an edge-based network charac-

teristic [Weber et al., 2017], we perform a mathematical analysis of the resulting complex networks.

We motivate the use of edge-based characteristics to evaluate the network structure with geometric

methods. Our results identify important structural network features including long-range connections

of high curvature acting as bridges between major network components. The geometric features link

curvature to higher order network organization that could aid in understanding the connectivity and

interplay of brain regions in cognitive processes.

1 Introduction

The key idea of network analysis is to reduce a system to relations among its basic elements as means

for understanding their interactions and commonalities. Recent technological advances in the natural

sciences allow for the analysis and description of highly complex systems at increasingly smaller and

more detailed scales. In the neurosciences, novel experimental technologies allow for the analysis of neural

systems on the scale of specific brain regions or even on the single-neuron level. A landmark study, the

Human Connectome Project (HCP) [Van Essen et al., 2013]. provided the scientific community with the

opportunity to study task-specific human brain activity measured with modern fMRI technology on an
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unprecedented scale. The HCP and its follow up studies have produced a large body of knowledge about

the inner workings of the brain that was unimaginable just a few years prior.

In the present study we bring together recent advances in Computational Neuroscience and Applied

Mathematics to introduce a new approach in analyzing such large-scale neuro-scientific data sets. In

[Lohmann et al., 2016], Lohmann et al. developed a method for analyzing fMRI data with a network-

based approach called TED. The main idea behind TED is to compute large-scale, task-related changes in

brain connectivity on the voxel level. In TED, task-related changes between a pair of voxels are defined as

difference in synchronization between the respective time series. The advantage of this approach is that we

do not depend on any specific hemodynamic response model. Critically, such changes in synchronization

occur in dense packs around the spatial neighborhood of the voxel pair. Using nonparametric FDR-based

statistics, large-scale networks can be derived using the TED method.

In a series of papers [Weber et al., 2017, Weber et al., 2016b, Weber et al., 2016a], Weber et al. in-

troduced a new set of characteristics for network analysis. They show that information encoded in the

edges yields novel insights into the local and global structure of the network as well as the direction and

density of the information flow. These features are not captured in classic node-based network character-

istics, such as the distribution of node degrees (i.e. the number of edges per node) and the average path

length (minimal number of edges connecting any pair of two nodes) across a given network. The core

component of this theory, a discrete Ricci-curvature introduced by R. Forman [Forman, 2003], gives rise

to a corresponding Ricci flow that allows for the characterization of not only static networks, but also

dynamic effects in the evolution of networks over time. Utilizing both Ricci curvature and its associated

flows, this work suggests network-analytic methods with a wide range of possible applications to data

mining. Essentially, the Forman-Ricci curvature measures the dispersion or divergence at the two ends

or vertices of an edge. This measure provides an indication for the importance of an edge in the network.

By applying the TEDmethod to fMRI data from the HCP, we construct TED networks for a curvature-

based geometric analysis. The resulting fMRI TED networks are large, complex objects whose analysis

with traditional tools presents a computational challenge. We analyze the geometry of the networks with

the Forman-Ricci formalism, to give insights into the relation of network connectivity and functional

features indicated by the underlying data. The curvature-based methods identify long-range connections

with high curvature that span the network. With this, curvature can be linked to higher order network

organization. This observation motivates the study of higher order structures in TED networks (the

network’s backbone) and opens up possibilities for complexity reduction that could aid, more generally,

in the computational analysis of large brain networks.

2 Methods

2.1 Forman-Ricci Curvature for Complex Networks

The early node-based approach employed in network analysis has proved incapable of capturing both

the local and global behavior of complex networks. It has also proven to be ineffective in describing

the interplay between large and small scales. In the search for new methods that could resolve this

issue, certain properties that relate to the geometry of networks were found to be very useful. Such

geometry, beyond simple and immediate metric properties, includes the notion of curvature. Various

notions of discrete curvature have been explored on networks, starting with the combinatorial analogue

of the classical Gauss curvature, in the guise of the, by now, ubiquitous clustering coefficient.

Among the different notions of curvature, Ricci curvature was found to be particularly powerful for

developing a general notion of curvature on networks. While it is not the most general curvature concept,

it has proved to be a tool strong enough to capture deep phenomena, but at the same time simple enough

to be applied in various discrete settings. Two different discretizations of Ricci curvature have been shown

to give efficient solutions for geometrizations of networks. The better know of these is Ollivier’s (coarse)

2



Ricci curvature [Ollivier, 2009, Ollivier, 2010], which has seen various applications in network analysis

(see, e.g. [Sandhu et al., 2015, Gao et al., 2016]). The second one, based on Forman’s theoretical work

on the so called weighted CW complexes [Forman, 2003], was proposed recently by some of the authors

[Weber et al., 2017, Sreejith et al., 2016] as a tool for network analysis. From a computational point of

view, the simple notion of Forman’s Ricci curvature is advantageous in terms of efficient computability

that allows for large-scale complex networks.

The key advantage of Ricci curvature for network analysis is that it is edge-based rather than node-

based. This resolves some of the issues with node-based network characteristics (e.g. node-degree biases

in biological network analysis). As a discretization of the classical (smooth) notion, that “resides” on

vectors, it gives rise to a natural measure of the discrete avatar of vectors: the network’s edges. Thus,

a discrete notion of Ricci curvature is ideally suited for the study of edge-based network properties that

capture the connectivity structure, such as weighted connections and directionality. By laying the focus

on the relations (edges) between the system’s elements (nodes), the approach is especially suited for

networks, where major information is encoded in the weighted connectivity structure of the network.

2.1.1 Definition

We denote a network graph by G = {V,E, ω} where V := {v ∈ G} is the set of nodes (or vertices) and

E := {e = (v1, v2) ∀v1, v2 ∈ G} the set of edges connecting pairs of nodes. Let further ω := {ω(V ), ω(E)}

be the weighting schemes on nodes (ω(V )) and edges (ω(E)), both with values in [0, 1].

Figure 1: Local connectivity structure. Edge e with adjacent vertices v1 and v2 and parallel edges
{e′v1

, e′′v1
, e′′′v1

} (adjacent to v1) and {e′v2 , e
′′

v2
, e′′′v2

, e′′′′v2
} (adjacent to v2).

Then the Forman-Ricci curvature is defined by

RicF (e) = ω(e)
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; (1)

with edges e = (v1, v2) ∈ E and ev1
, ev2 ∈ E parallel edges adjacent to e at vertices v1 and v2. This

notion of Forman’s Ricci curvature is not restricted to combinatorial (unweighted) networks, but also

applicable to weighted networks as the TED networks discussed in this article. Moreover, the definition

can be easily extended to the case of directed networks. For each node, we evaluate the contributions of

incoming and outgoing edges separately. W denote the set of incoming and outgoing edges for a node

v by EI,v and EO,v. We then define the In Forman curvature RicI(v) and the Out Forman curvature

3



RicO(v) by

RicI(v) =
∑

e∈EI,v

Ric(ev) (2)

RicO(v) =
∑

e∈EO,v

Ric(ev) , (3)

summing over only the incoming or outgoing edges, respectively. Then the total amount of flow through

a node v is

RicI/O(v) = RicI(v)− RicO(v) . (4)

The Forman-Ricci curvature defines an edge-based network characteristic that gives insights into commu-

nity structure and directionality. In particular, it exhibits a ”backbone effect” that we will discuss in the

following section: Edges that form connections between major communities (the network’s ”backbone”)

are characterized by high absolute Forman-Ricci curvature (see, e.g., [Weber et al., 2017]).

2.1.2 Curvature-based Network Analysis

Classic network analysis has focused on the elements of the system and their connectivity (node-based ap-

proach) rather than the relations (edges) between them. We propose an edge-based approach [Weber et al., 2017,

Weber et al., 2016b]:

• evaluate not only binary, but also weighted networks;

• natural notion for directed networks;

• dynamic models for network evolution;

• generalization from pairwise to higher order interactions.

Our approach builds on a discrete version of the well-known concept of curvature in differential

geometry. The edge-based Forman curvature and its associated geometric flow can be utilized to

• identify higher order connectivity structure;

• characterize local assortativity;

• detect structural anomalies.

2.1.3 Ricci flow and the ”backbone effect”

In [Weber et al., 2017, Weber et al., 2016a], Weber et al. discuss the geometric relations between cur-

vature and flow and construct a Ricci flow corresponding to Forman’s discrete Ricci curvature. The

discrete Ricci flow introduced therein possesses the essential properties of the smooth Ricci flow. Its

various applications in data mining include denoising and change detection of dynamic networks and the

study of network evolution towards predicting long-time behavior of time-dependent complex networks

[Weber et al., 2016b]. Together, curvature and flow capture the geometry of the network: Edges with

high curvature evolve fast under the Ricci flow and therefore dominate the higher order network orga-

nization (backbone effect). The connection between high curvature values and the network’s backbone

becomes evident when rewriting eq. 1:

RicF = ω(v1) + ω(v2)−
∑

ev1∼e
ev2∼e

[

ω(v1)

√

ω(e)

ω(ev1
)
+ ω(v2)

√

ω(e)

ω(ev2)

]

(5)
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We see that high absolute curvature occurs, if v1 and v2 have high degrees and if ω(e) is large compared to

ω(ev1
) and ω(ev2). This coincides with the notion of bridges, relating high curvature with the network’s

backbone.

This backbone effect can be emphasized by applying the discrete Ricci flow. We iteratively scale

edge weights according to curvature: A reverse Ricci flow acts on the edges and assigns high weights to

edges with high curvature and low weights to low curvature edges. The iterative procedure highlights the

backbone of the network and therefore lends itself as a tool for complexity reduction. By reducing the

network to its much smaller backbone we can make large-scale networks accessible to computationally

intense network analysis tools.

We construct a reverse Ricci flow on the edges by discretizing

∂ω(e, t)

∂t
= RicF (ω(e, t))ω(e, t) (6)

to

ω(e, t+ 1) = ω(e, t) + RicF (ω(e, t))ω(e, t) ; (7)

and renormalize after each step

ω̂(e, t+ 1) =
ω(e, t+ 1)

maxe∈E ω(e, t+ 1)
. (8)

(Here, ω(e, t) denotes the weight of edge e at time or iteration step t.)

We conclude with the remark, that the notion of Forman-Ricci curvature is not restricted to the

pairwise interactions in classic networks. By extending the curvature notion to higher dimensions, we

can study higher order interactions that might be represented as simplicial or, more general, polyhedral

complexes.

2.2 Task-related edge densities for fMRI networks

2.2.1 Data source

We analyze task-based fMRI data provided by the Human Connectome Project (HCP) and the WU-Minn

Consortium [Van Essen et al., 2013, Barch et al., 2013]. More specifically, we analyze two functional task

data sets from the HCP 1200 release by computing task-related network changes: An emotion task data set

containing 1045 subjects and a motor task data set with 1079 subjects. For the motor task experiments,

subjects were cued visually to tap their left or right fingers, squeeze their left or right toes, or move their

tongue. Each block lasted 12 seconds (10 movements) and was preceded by a 3 second cue (for details

see [Barch et al., 2013]). In the emotion task, subjects were cued to match two faces or two shapes with

another face or shape shown at the bottom of the screen; the faces had either angry or fearful expressions.

Each block consisted of 6 subsequent trials and lasted 21 seconds. All data sets were acquired with the

following parameters: TR=720ms, TE=33.1ms, 2 mm isotropic voxel size, multiband factor 8.

2.2.2 Method

Task-induced edge density (TED) [Lohmann et al., 2016] is a novel way for investigating changes in

functional connectivity across a set of experimental conditions. It allows a whole-brain investigation

into changes of connectivity and thus, it is not necessary to define a seeding region. Furthermore, the

method operates on the voxel level, rendering pre-segmentations obsolete. TED relies on changes in

synchronization between pairs of voxels and does not make assumptions on the haemodynamic response

function.
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Figure 2: Task-related edge densities, schematic (from [Lohmann et al., 2016]).

The key idea behind TED is the observation that if two voxels change their synchronization, their

spatial neighborhood also changes their connectivity to a much greater extent than it would be expected

given the inherent spatial correlation between spatially adjacent voxels. The figure below exemplifies this

effect, showing neighborhoods of voxels and their connectivity. The upper pair of neighborhoods (A) is

more strongly connected than the lower one (B). This reflects on the TED value, which is defined as the

number of connections divided by the number of theoretically possible connections (11/729 for A and

5/729 for B). The respective TED-value is then assigned to the central edge (shown in red). Statistical

significance testing is established using permutation testing and controlling the false discovery rate.

2.2.3 Preprosessing with TED

We used minimally preprocessed HCP data (as described in [Glasser et al., 2013]), but constrained our

analysis to runs with left-right phase encoding direction. To reduce dimensionality, we down sampled

the data to (3mm)3, applied a temporal high-pass filter (cutoff 1/100s) and spatial smoothing with a

5mm kernel. For the motor task, we only investigated the left and right hand finger tapping condition,

using the time course of the second trial as input for the TED analysis, resulting in 16 volumes. For the

emotion task, we used fearful vs angry faces, resulting in 25 volumes. We computed TED networks for

both tasks [Lohmann et al., 2016], using an initial fractional threshold q=0.999 for both tasks, implying

we only computed edge density values for the top 0.1% of all edges. For both tasks we estimated statistical

significance on the basis of 2000 permutations. The permutation and FDR procedure yielded an edge-

density threshold of 0.1387 for the motor task, resulting in 109,328 significant edges. For the emotion

task the edge-density threshold was 0.1235, resulting in 1,289,949 significant edges.

2.3 Correlation of curvature and TED

We evaluate the relation of curvature and task-related edge density through correlation tests. On both

data sets we find significant correlations between both measures. This indicates that the curvature-defined

backbone is partly, but not exclusively, characterized by edges that appear in dense packs.
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Figure 3: High-density correlation plots for two HCP data sets with optimal bin size: emotion task (left)
and motor task (right).

motor task emotion task

t-value 827.76 980.17

correlation 0.62 0.65

p-value < 2.2e− 16 < 2.2e− 16

Table 1: Results of a Pearson correlation test for edge densities and curvature values in two HCP data
sets. The TED networks are constructed with q=0.999.

3 Results

We analyze task-based fMRI data provided by the Human Connectome Project with a focus on motor

tasks using minimally preprocessed data of left-right phase-encoding runs. The curvature-based analysis

of the resulting TED networks gives insight into the higher order network organization that can be linked

to underlying functional structures.

3.1 Curvature-based Analysis.

We perform a curvature-based geometric analysis of TED networks built from task-based HCP data. For

this, we compute the Forman-Ricci curvature (Eq. 1) across all edges of the network. We note that the

sign of the curvature is negative across the network (see Fig. 4). In recent work [Weber et al., 2016b],

some of the authors developed a curvature-based global classification scheme for networks, the so-called

prototype networks. The TED networks analyzed here are of spherical type that exhibits a clique-like

community structure.

Figure 4 shows curvature-colored plots for three different TED networks. The results illustrate the

link between curvature and the network backbone as discussed in the previous section. A community

structure is formed by clusters of vertices interconnected by bundles of ”long range” (inter-community)

connections that form the ”backbone” of the network and have a high Forman-Ricci curvature. In

a network-theoretic sense, these long-range connections act as ”bridges” [Jensen et al., 2016] between
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Figure 4: Major network components (communities) are connected by dense bundles of edges with high
curvature. They are displayed in red here; low curvature edges are shown in yellow (A-C). The geometry
of the network is characterized by these (curvature-wise) dominating edges (backbone effect). Acting
as bridges between major communities they determine the higher order structural organization of the
network. See SI for details on visualization.

major network communities. Removing any of these bundles of high curvature edges would disconnect

the network graph and remove major routes of ”information transmission” in the network. The effects

of high Forman curvature are comparable to a ”dispersion”, i.e. heavy branching out on one (or both)

ends of the respective edge. This suggests Forman-curvature as a potential characteristic for the spread

of information within a complex network.

The identification of key structural features (network backbone) is an essential part of network analy-

sis: Networks built from empirical data suffer from experimental biases in the underlying measurements.

Correlation-based construction methods such as TED might introduce additional bias through the choice

of the threshold. In this context it is important to identify substructures that are strongly indicated

by the data and robust against small variations in the systematic parameters (e.g. choice of threshold).

With curvature-based methods, these key substructures are identified through high curvature and the

”backbone effect”.

This observation gives rise to a complexity reduction tool: If we restrict our analysis to the high-

curvature edges and the vertices they connect (i.e., the network’s backbone) we reduce the complexity of

the network significantly, making even very large network accessible for further computational analysis.

3.2 Neuro-Anatomical Analysis

For both the motor and emotion HCP experiments, we analyze the distribution of Forman-Ricci curvature

across the TED networks. From the roughly 1 million edges, we extracted 20,000 edges with the highest

and lowest curvature values (i.e. about 2% on each tail) for further analysis. For visualization, we use

braingl and performed edge bundling using default parameters, as described in [Boettger et al., 2011].

In both HCP tasks, a similar pattern emerged: The top 2% of edges with highest curvature were

condensed in very few brain areas, whereas edges with low curvature were distributed over more regions
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Figure 5: Task-based functional networks from the HCP that show voxel-wise changes in synchronization.
The panel shows the HCP emotion task contrasting angry versus fearful faces (left) and the HCP motor
task contrasting right hand versus left hand tapping (right). We computed the Forman-Ricci curvature
for both tasks and extracted the edges with the highest (red) and lowest (blue) curvature.

(see Fig. 5). More specifically, in the motor task, the highest edges were located in key motor regions,

including the motor cortex, the cerebellum lobules VI and VIII, and the putamen. For the emotion task,

the highest edges were located in the superior parietal cortex, the posterior cingulate gyrus, and visual

cortex (see Fig. 6). The reported activities are in accordance with theoretical expectations. Edges with

low curvature in both tasks were distributed diffusely throughout the brain. These results strengthen the

theoretically established link between the network’s backbone (essential functional structure) and high

curvature edges.

4 Discussion

In this paper we motivate the use of curvature-based methods, namely the discrete Forman-Ricci cur-

vature and its associated geometric flow, for the analysis of complex brain networks. We demonstrate

the formalism by studying fMRI networks constructed from task-related edge densities using the TED

method.

Our analysis gives insights into structural properties of brain networks and allows for the characteri-

zation of their higher order organization. Low curvature-edges can be found within network communities

whereas high curvature edges form connections between communities. This observation links curvature to
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Figure 6: Hubness map for the two HCP data sets (left: emotion task, right: motor task).

the network-theoretic notions of bridges and network backbone. We show both theoretically and empiri-

cally that edges with high Forman curvature span the network acting as bridges between major network

communities. This core connectivity structure forms the backbone of the network and determines its

higher order structure.

We present computational results for TED networks constructed from two HCP data sets, one for

an underlying emotion task and one for a motor task. The empirical results support that the notion

of Forman-Ricci curvature is indicative of brain network structure. We found that edges with high

curvature differ drastically in structure from the ones with low curvature: High-curvature edges form

denser bundles that span the network while low-curvature ones are widely distributed. For the motor

task the high-curvature edges converged in areas of the core motor network (motor cortex, cerebellum,

and putamen). For the emotion task, the edges with highest curvature are mainly located in default

mode regions (posterior cingulate and superior parietal). The results suggest curvature as a potentially

useful metric for brain network analysis. Future work is needed to establish the biological underpinnings

of Forman-Ricci curvature in a systematic study on larger scale.

Recent advances in measurement technologies have enabled large-scale studies of neural systems with

high resolution. With international landmark collaborations underway, new large-scale data resources

for advances in the fast emerging field of Connectomics will become available over the course of the next

years. These efforts include the Human Brain Project of the European Union, the Blue Brain Project of

EPFL and IBM, and the US-lead BRAIN initiative. All of these projects aim to understand the complex

interactions underlying human brain function on the scale of brain regions or even single neurons. Efficient

tools are essential for the analysis of both the structural and functional features of the resulting complex

brain networks and may eventually aid in establishing a deeper understanding of the all-important link

between structure and function in the human brain. With the curvature-based formalism we hope to

contribute to the growing toolbox of network-theoretic methods available to assists in these efforts.

Supportive Information

Details on computational methods and experiments can be found in the supplemental. All code is publicly

available on GitHub.

GitHub: MelWe/brainnet-curvature
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1 Visualization

1.1 Network Visualization

The visualization incorporates the connectivity structure, the distribution of node degrees and the distri-

bution of Forman-Ricci curvature across the set of edges. The algorithm draws the first node in the list,

then its neighbors and the respective edges connecting them, then their neighbors and the corresponding

edges, etc. Black dotes represent nodes, their size being proportional to their respective degrees. Edges

have the same width each, their color scales with the normalized Forman-Ricci curvature ranging from

yellow (low value) to red (high value). For computing purposes, nodes with degree < 3 are neglected.

1.2 Network Alignment

As part of this research, a MATLAB application was implemented and employed to sample and visualize

brain network data.The main inputs are the node coordinates and the net connectivity data. Another

input parameter employed in the visualization processes is a reference brain model of an individual (or

MNI brain). Reference brain models can be represented by surface meshes or by voxels. In particular,

we used cortical meshes as supplied in the non-linear MNI-ICBM152 atlas [Fonov et al., 2011].

We sample data according to specified minimal node rank and minimal edge probability parameters.

Coordinates of sampled nodes are aligned with the reference brain model and the resulting net is colored

according to its curvature, using a user-specified color scale function. Empirically, we have found that

the best results are achieved with the logarithmic color scale. In order to depict core net structure, edge

widths and edge transparencies are encoded according to edge probabilities (i.e. higher probabilities

corresponding to wider and less transparent edges). Similarly, we depict nodes as dots of different sizes

that correspond to node ranks.
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Figure 1: Anatomically aligned network visualization: Test case showing the reduction, via the reverse
Forman-Ricci flow, to high-curvature edges acting as bridge between major network communities.

2 Correlation of Curvature and Anatomical distance

We performed a brief analysis on the relation between Forman-Ricci curvature of edges and Euclidean

distances measured between edge nodes (i.e. edge lengths). We computed distances directly from voxel

and net connectivity data and the edge curvature was computed according to eq. 1, from the main

text. The analysis reveals a minor negative correlation between anatomical distances and curvature

values, suggesting the predominance of low curvature within communities and high curvature for the

connections between between communities. This is consistent with the correspondence between high

curvature and the network backbone.

Figure 2: Histogram plots of normalized distances (Dist) and normalized curvature values (Curv) on the
main diagonal and Pearson correlation scatter plots between these values on the skew diagonal. (TED
networks for emotion task (top) and motor task (bottom), both with q=0.999.)
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GitHub: MelWe/brainnet-curvature
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