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Abstract

We continue our analysis of the thresholding scheme from the variational viewpoint and
prove a conditional convergence result towards Brakke’s notion of mean curvature flow. Our
proof is based on a localized version of the minimizing movements interpretation of Esedoğlu
and the second author. We apply De Giorgi’s variational interpolation to the thresholding
scheme and pass to the limit in the resulting energy-dissipation inequality. The result is con-
ditional in the sense that we assume the time-integrated energies of the approximations to
converge to those of the limit.
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1 Introduction

The thresholding scheme is a time discretization for mean curvature flow. Its structural simplicity
is intriguing to both applied and theoretical scientists. Merriman, Bence and Osher [25] introduced
the algorithm in 1992 to overcome the numerical difficulty of multiple scales in phase-field models.
Their idea is based on an operator splitting for the Allen-Cahn Equation, alternating between linear
diffusion and thresholding. The latter replaces the fast reaction coming from the nonlinearity, i.e.,
the reaction-term, in the Allen-Cahn Equation. We refer to Algorithm 1.1 below for a precise
description of the scheme. The convolution can be implemented efficiently on a uniform grid using
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the discrete Fourier Transform and the thresholding step is a simple pointwise operation. Because
of its simplicity and efficiency, thresholding gained a lot of attention in the last decades. Large-
scale simulations [10, 11, 12] demonstrate the efficiency of a slight modification of the scheme. For
applications in materials science and image segmentation it is desirable to design algorithms that
are efficient enough to handle large numbers of phases but flexible enough to incorporate external
forces, variable surface tensions and even anisotropies. Not long ago, the natural extension to the
multi-phase case [26] was generalized to arbitrary surface tensions by Esedoğlu and the second
author [14]. They realized that thresholding preserves the gradient-flow structure of (multi-phase)
mean-curvature flow in the sense that it can be viewed as a minimizing movements scheme for an
energy that Γ-converges to the total interfacial area. This viewpoint allowed them to incorporate
a wide class of surface tensions including the well-known Read-Shockley formulas for small-angle
grain boundaries [29]. The development of thresholding schemes for anisotropic motions started
with the work [18] of Ishii, Pires and Souganidis. Efficient schemes were presented by Bonnetier,
Bretin and Chambolle [6], where the convolution kernels are explicit and well-behaved in Fourier
space but not necessarily in real space. The recent work [9] of Elsey and Esedoğlu is inspired by
the variational viewpoint [14] and shows that not all anisotropies can be obtained when structural
features such as positivity of the kernel are needed. However, variants of the scheme developed by
Esedoğlu and Jacobs [13] share the same stability conditions even for more general kernels. The
rigorous asymptotic analysis of thresholding schemes started with the independent convergence
proofs of Evans [15] and Barles and Georgelin [5] in the isotropic two-phase case. Since the scheme
preserves the geometric comparison principle of mean curvature flow, they were able to prove
convergence towards the viscosity solution of mean curvature flow. Recently, Swartz and Yip [30]
proved convergence for a smooth evolution by establishing consistency and stability of the scheme,
very much in the flavor of classical numerical analysis. They prove explicit bounds on the curvature
and injectivity radius of the approximations and get a good understanding of the transition layer.
However, also their result does not generalize to the multi-phase case immediately. In our previous
work [21] we established the convergence of thresholding to a distributional formulation of multi-
phase mean-curvature flow based on the assumption of convergence of the energies. In [23], Swartz
and the first author applied these techniques to the case of volume-preserving mean-curvature flow
and other variants.

Since the works [5, 15] are based on the comparison principle, the proofs do not apply in the
multi-phase case. Our guiding principle in this work is instead the gradient-flow structure of (multi-
phase) mean curvature flow. In general, a gradient-flow structure is given by an energy functional
and a dissipation mechanism, given by the geometry of the space of configurations through a
Riemannian metric. A simple computation reveals this structure for mean curvature flow. If the
hypersurface Σ = Σ(t) evolves smoothly by its mean curvature (here and throughout we use the
time scale such that 2V = H) the change of area is given by

2
d

dt
|Σ| = −

∫
Σ

2V H = −
∫
Σ

H2, (1)

where V denotes the normal velocity and H denotes the mean curvature of Σ. In view of (1), when
fixing the energy to be the surface area, the metric tensor is given by the L2-metric

∫
Σ
V 2 on the

space of normal vector fields. However, some care needs to be taken when dealing with this metric
as for example the geodesic distance vanishes identically [27]. The implicit time discretization of
Almgren, Taylor and Wang [2], and Luckhaus and Sturzenhecker [24] makes use of the gradient-flow
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structure. In fact, it inspired De Giorgi to define a similar implicit time discretization for abstract
gradient flows which he named “minimizing movements”. His abstract scheme consists of a family
of minimization problems which mimic the principle of a gradient flow moving in direction of the
steepest descent in an energy landscape. The configuration Σn at time step n is obtained from its
predecessor Σn−1 by minimizing E(Σ)+ 1

2h dist2(Σ,Σn−1), where dist denotes the geodesic distance
induced by the Riemannian structure and h > 0 denotes the time-step size. In the Euclidean case,
the scheme boils down to the implicit Euler scheme. It has been used for applications in partial
differential equations and for instance allowed Jordan, Kinderlehrer and the second author [19] to
interpret diffusion equations as gradient flows for the entropy w.r.t. the Wasserstein distance. In
view of the degeneracy in the case of mean curvature flow it is evident that the scheme in [2, 24] uses
a proxy for the geodesic distance. Their replacement for the distance of two boundaries Σ = ∂Ω and
Σ̃ = ∂Ω̃ is the (non-symmetric) quantity 2

∫
Ω∆Ω̃

dΩ̃ dx, where dΩ̃ denotes the (unsigned) distance

to ∂Ω̃. Chambolle [8] showed that the scheme [2, 24] which seems academic at a first glance can be
implemented rather efficiently.

In retrospect, also Brakke’s pioneering work [7] can be seen as a way of interpreting mean
curvature flow as a gradient flow. His definition is similar to the one of an abstract gradient flow
and characterizes solutions by the optimal dissipation of energy in the spirit of (1). Brakke’s
solutions are varifolds, a concept weak enough to obtain compactness under natural conditions and
strong enough to give sense to either side of (1). In contrast to the abstract framework, Brakke
measures the dissipation of energy only in terms of the gradient of the energy, here the mean
curvature. Therefore he has to monitor localized versions of (1) and – as for an abstract gradient
flow – only asks for an inequality instead of an equality. We refer to Definition 2.1 for a precise
definition in our context of sets of finite perimeter. Since his definition does not involve the metric
term, one loses control over the time derivative and thus weak solutions may be discontinuous in
time and in particular mass can disappear instantly. Ilmanen [17] utilized a phase-field version
of Huisken’s monotonicity formula [16] to prove the convergence of solutions to the scalar Allen-
Cahn Equation to Brakke’s mean curvature flow. Extending his proof to the multi-phase case is
a challenging open problem. Only recently, Simon and the first author [22] proved a conditional
convergence result for the vector-valued Allen-Cahn Equation very much in the spirit of [24, 21].
However, an unconditional result is not yet available. Even the construction of non-trivial global
solutions to multi-phase mean-curvature flow has only been done recently by Tonegawa and Kim
[20].

In the present work we establish the convergence of the thresholding scheme to Brakke’s motion
by mean curvature. As our previous result [21], also this one is only a conditional convergence result
in the sense that we assume the time-integrated energies to converge to those of the limit. Our proof
is based on the observation that thresholding does not only have a global minimizing movements
interpretation, but indeed solves a family of localized minimization problems. In Section 2 we state
our main results, in particular Theorem 2.2. We use De Giorgi’s variational interpolation for these
localized minimization problems to derive an exact energy-dissipation relation and pass to the limit
in the inequality with help of our strengthened convergence. Section 4 provides the tools for these
results. We first recall the known results from the abstract framework of gradient flows in metric
spaces (cf. Chapter 3 in [4]). Then we pass to the limit h → 0 in these terms with help of our
strengthened convergence.

The starting point for our analysis of thresholding schemes is the minimizing movements inter-
pretation of Esedoğlu and the second author [14]. Let us explain this interpretation with help of

3



the example of the two-phase scheme. The combination χn = 1{Gh∗χn−1> 1
2}

of convolution and

thresholding is equivalent to minimizing Eh(χ) + 1
2hd2

h(χ, χn−1), where Eh is an approximation of
the perimeter functional and dh is a metric. The latter serves as a proxy for the induced distance,
just like 2

∫
Ω∆Ωn−1 dΩn−1dx in the minimizing movements scheme of Almgren, Taylor and Wang [2],

and Luckhaus and Sturzenhecker [24]. The Γ-convergence of similar functionals has been developed
some time ago by Alberti and Bellettini [1] and more recently by Ambrosio, De Philippis and Mar-
tinazzi [3], and was proven for the functionals Eh by Miranda, Pallara, Paronetto and Preunkert
[28]. Esedoğlu and the second author found an independent, much simpler proof in the case of the
energies Eh, which extends to the multi-phase case.

In this first version of the paper we restrict ourselves to the two-phase case. Let us recall the
thresholding scheme and the basic notation in this setting.

Algorithm 1.1. Given the phase Ωn−1 at time t = (n− 1)h, obtain the evolved phase Ωn at time
t = nh by the following two operations:

1. Convolution step: φ := Gh ∗ 1Ωn−1 .

2. Thresholding step: Ωn :=
{
φ > 1

2

}
.

Here and throughout the paper

Gh(z) :=
1

(2πh)d/2
exp

(
−|z|

2

2h

)
denotes a Gaussian of variance h. For convenience we will work with periodic boundary conditions,
i.e., on the flat torus [0,Λ)d. We write

∫
dx short for

∫
[0,Λ)d

dx and
∫
dz short for

∫
Rd dz. Further-

more, χn := 1Ωn denotes the characteristic function of the phase Ωn at time step n and we denote
its piecewise constant interpolation by

χh(t) := χn = 1Ωn for t ∈ [nh, (n+ 1)h).

However, we will mostly use a nonlinear interpolation which will be introduced later. Selim Esedoğlu
and the second author [14] showed that thresholding preserves the gradient-flow structure of (multi-
phase) mean curvature flow in the sense that it can be viewed as a minimizing movements scheme

χn = arg min
u

{
Eh(u) +

1

2h
d2
h(u, χn−1)

}
, (2)

where the dissipation functional

1

2h
d2
h(u, χ) :=

1√
h

∫ [
Gh/2 ∗ (u− χ)

]2
dx (3)

is the square of a metric and the energy is

Eh(u) :=
1√
h

∫
(1− u)Gh ∗ u dx, (4)

an approximation of the perimeter functional. Indeed, these functionals Γ-converge to

E(χ) := c0

∫
|∇χ| , for χ : [0,Λ)d → {0, 1},
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where c0 = 1√
2π

. This Γ-convergence is a consequence of the pointwise convergence of these func-

tionals and the monotonicity property

EN2h(u) ≤ Eh(u) for all u : [0,Λ)d → [0, 1], h > 0 and N ∈ N, (5)

see [14]. We write A . B to express that A ≤ CB for a generic constant C <∞ that only depends
on the dimension d and on the size Λ of the domain. By A = O(B) we mean |A| . B while
A = o(B) as h→ 0 means A

B → 0 as h→ 0.

2 Brakke’s inequality

The main statement of this work is Theorem 2.2 below. Assuming there was no drop of energy as
h→ 0, i.e.,

T∫
0

Eh(χh) dt→
T∫

0

E(χ) dt, (6)

it states that the limit of the approximate solutions satisfies a BV -version of Brakke’s inequality
[7].

Brakke’s inequality is a weak formulation of motion by mean curvature V = H
2 and is motivated

by the following characterization of the normal velocity. Given a smoothly evolving hypersurface
∂Ω(t) = Σ(t) with normal velocity V we have

d

dt

∫
Σ

ζ ≤
∫
Σ

(−ζH V − V ∇ζ · ν + ∂tζ) (7)

for any smooth test function ζ ≥ 0. Here ν denotes inner normal of ∂Ω and we take the convention
V > 0 for an expanding Ω and H < 0 for a convex Ω. The converse is also true: Given a function
V : Σ → R such that (7) holds for any such test function ζ ≥ 0 then V is the normal velocity of
Σ. In the pioneering work [7], Brakke uses this inequality as a definition for the equation V = H

2
to extend the concept of motion by mean curvature to general varifolds. We recall his definition in
our more restrictive setting of finite perimeter sets.

Definition 2.1. We say that χ : (0, T )× [0,Λ)d → {0, 1} moves by mean curvature if there exists
a |∇χ| dt-measurable function H : (0, T )× [0,Λ)d → R with

T∫
0

∫
H2 |∇χ| dt <∞,

which is the mean curvature in the sense that for all test vector fields ξ ∈ C∞0 ((0, T )× [0,Λ)d,Rd)

T∫
0

∫
(∇ · ξ − ν · ∇ξ ν) |∇χ| dt =

T∫
0

∫
H ξ · ν |∇χ| dt, (8)
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such that for any test function ζ ∈ C∞0 ((0, T )× [0,Λ)d) with ζ ≥ 0 we have

T∫
0

∫ (
2∂tζ − ζH2 −Hν · ∇ζ

)
|∇χ| dt ≥ 0. (9)

Theorem 2.2 (Brakke’s inequality). Given initial data χ0 : [0,Λ)d → {0, 1} with E(χ0) <∞ and
a finite time horizon T < ∞, for any sequence there exists a subsequence h ↓ 0 such that the
approximate solutions given by Algorithm 1.1 converge to a limit χ : (0, T )× [0,Λ)d → {0, 1} in L1

and a.e. in space-time. Given the convergence assumption (6), χ moves by mean curvature in the
sense of Definition 2.1.

Remark 2.3. Given initial conditions χ0 with E(χ0) <∞ the compactness in [21] yields a subse-
quence such that χh → χ a.e. for a function χ with suptE(χ(t)) ≤ E(χ0).

This statement is similar to our result in [21]. There we proved the convergence of threshold-
ing towards a distributional formulation of (multi-phase) mean-curvature flow. Under the same
assumption (6) we constructed a |∇χ| dt-measurable function V : (0, T )× [0,Λ)d → R with

T∫
0

∫
V 2 |∇χ| dt <∞,

which is the normal velocity in the sense that

T∫
0

∫
∂tζ χ dx dt = −

T∫
0

∫
ζ V |∇χ| dt

for all ζ ∈ C∞0 ((0, T )× [0,Λ)d), such that V = H
2 in the following distributional sense:

T∫
0

∫
(∇ · ξ − ν · ∇ξ ν − 2 ξ · ν V ) |∇χ| dt = 0 (10)

for all ξ ∈ C∞0 ((0, T )× [0,Λ)d,Rd).
The connection of (10) to the strong equation V = H

2 comes from the integration by parts rule
for smooth hypersurfaces: ∫

Σ

(∇ · ξ − ν · ∇ξ ν) =

∫
Σ

H ξ · ν.

Without any regularity assumption, none of the two formulations is stronger in the sense that
it implies the other. Nevertheless (10) requires more regularity as it is formulated for sets of finite
perimeter, whereas Brakke’s inequality naturally extends to general varifolds.

3 De Giorgi’s variational interpolation

It is a well-appreciated fact that a classical gradient flow u̇(t) = −∇E(u(t)) of a smooth energy
functional E on a Hilbert space can be characterized by the optimal rate of dissipation of the energy
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E along the solution u:
d

dt
E(u(t)) ≤ −1

2
|u̇(t)|2 − 1

2
|∇E(u(t))|2. (11)

This is the guiding principle in generalizing gradient flows to metric spaces where one replaces |u̇|
by the metric derivative and |∇E(u)| by some upper gradient, e.g. the local slope |∂E(u)|, see (17)
for a definition in our context.

Mean curvature flow can be viewed as a gradient flow in the sense that for a smooth evolution
Σ = Σ(t) the energy, which in this case is the surface area |Σ(t)|, satisfies the inequality

2
d

dt
|Σ| =

∫
Σ

H 2V ≤ −1

2

∫
Σ

H2 − 1

2

∫
Σ

(2V )2.

While in the abstract framework, the dissipation of the energy is measured w.r.t. both terms
|u̇|2=̂

∫
Σ

(2V )2 and |∂E(u)|2=̂
∫

Σ
H2, Brakke measures the rate only in terms of the local slope∫

Σ
H2 but asks for the localized version (9).

The main result of this section and the basis of this work is the approximate version of Brakke’s
inequality, Lemma 3.1 below. In view of the minimizing movements interpretation (2) it should be
feasible to obtain at least the global inequality

2
d

dt
|Σ| ≤ −

∫
Σ

H2

but the localized inequality (9) would be still out of reach. The lemma states that thresholding
does not only solve the global minimization problem (2) but a whole family of local minimization
problems, which will allow us to establish the family of localized inequalities (9).

Lemma 3.1 (Local minimization). Let χn be obtained from χn−1 by one iteration of Algorithm
1.1 and ζ ≥ 0 an arbitrary test function. Then

χn = arg min
u

{
Eh(u, χn−1; ζ) +

1

2h
d2
h(u, χn−1; ζ)

}
, (12)

where the minimum runs over all u : [0,Λ)d → [0, 1]. By dh(u, χ; ζ) we denote the localization of
the metric dh(u, χ) given by

1

2h
d2
h(u, χ; ζ) :=

1√
h

∫
ζ
[
Gh/2 ∗ (u− χ)

]2
dx, (13)

which is again a (semi-)metric on the space of all such u’s as above and in particular satisfies a
triangle inequality. By Eh(u, χ; ζ) we denote the localized (approximate) energy incorporating the
localization error:

Eh(u, χ; ζ) :=
1√
h

∫
ζ (1− u)Gh ∗ u dx+

1√
h

∫
(u− χ) [ζ,Gh∗] (1− χ) dx (14)

+
1√
h

∫
(u− χ)

[
ζ,Gh/2∗

]
Gh/2 ∗ (u− χ) dx.
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Here and throughout the paper

[ζ,Gh∗]u := ζ Gh ∗ u−Gh ∗ (ζ u) ≈ −∇ζ · h∇Gh ∗ u

denotes the commutator of the multiplication with the function ζ and the convolution with the
kernel Gh.

Let us comment on the structure of the localized energy Eh. The first integral is an approxima-
tion of the localized surface energy c0

∫
Σ
ζ. Expanding ζ, as h → 0 the leading-order term of the

second integral in the definition of Eh(χn, χn−1; ζ) is

h

∫
χn − χn−1

h
∇ζ ·

√
h∇Gh ∗ χn−1 dx,

which at least formally (and after summation over the time steps) converges to c0
∫ T

0

∫
Σ
V ∇ζ · ν

and hence we expect to recover the transport term c0
2

∫ T
0

∫
Σ
H ∇ζ · ν in Brakke’s inequality (9).

We will see later that the last integral in the definition of Eh, the commutator in the metric term,
is negligible in the limit h→ 0. By definition of Eh we have

Eh(u, u; ζ) =
1√
h

∫
ζ (1− u)Gh ∗ u dx and Eh(u, χ; 1) = Eh(u), cf.(4),

so that in particular we recover the minimizing movements interpretation (2) in the case ζ ≡ 1.

Thanks to the above local minimization property of the thresholding scheme we can apply
the abstract framework of De Giorgi, cf. Chapters 1–3 in [4], to these localized energies. As for
any minimizing movements scheme, the comparison of χn to the previous time step χn−1 in the
minimization problem (12) yields an energy-dissipation inequality which works well as an a priori
estimate, but which is however not sharp. To obtain a sharp inequality we follow the ideas of De
Giorgi. We introduce his variational interpolation uh of χn and χn−1: For t ∈ (0, h] and n ∈ N we
let

uh((n− 1)h+ t) := arg min
u

{
Eh(u, χn−1; ζ) +

1

2t
d2
h(u, χn−1; ζ)

}
. (15)

Comparing uh(t) with uh(t + δt) in this minimization problem and taking the limit δt → 0 while
keeping h fixed, one obtains the sharp energy-dissipation inequality along this interpolation, the
following approximate version of Brakke’s inequality (9).

Corollary 3.2 (Approximate Brakke inequality). For any test function ζ ≥ 0, a time-step size
h > 0 and T = Nh we have

h

2

N∑
n=1

∣∣∂Eh( · , χn−1; ζ)
∣∣2(χn) +

1

2

T∫
0

∣∣∂Eh( · , χh(t); ζ)
∣∣2(uh(t)) dt

+

N∑
n=1

(
Eh(χn, χn−1; ζ)− Eh(χn, χn; ζ)

)
≤ Eh(χ0, χ0; ζ)− Eh(χN , χN ; ζ), (16)

where |∂Eh( · , χ; ζ)| (u) is the local slope of Eh( · , χ; ζ) at u defined by

|∂Eh( · , χ; ζ)| (u) := lim sup
v→u

(Eh(u, χ; ζ)− Eh(v, χ; ζ))+

dh(u, v; ζ)
. (17)

The convergence v → u is in the sense of the metric dh.
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Our goal is to derive Brakke’s inequality (9) from its approximate version (16), i.e., we want to
relate the limits of the expressions in (16) with the terms appearing in (9), cf. Propositions 4.5 and
4.8.

4 Some lemmas

Because of the localization, our energy (14) depends on the configuration at the previous time step.
However, we can apply the abstract framework (cf. Chapter 3 of [4]) to this case if we only follow
one time step. Both h and ζ are fixed parameters when applying these results.

Given χ we define the Moreau-Yosida approximation Eh,t of Eh by

Eh,t(χ; ζ) := min
u

{
Eh(u, χ; ζ) +

1

2t
d2
h(u, χ; ζ)

}
(18)

and furthermore we recall, cf. (15), the (not necessarily unique) variational interpolation uh(t) of
χ and χ1 := uh(h) by

uh(t) = arg min
u

{
Eh(u, χ; ζ) +

1

2t
d2
h(u, χ; ζ)

}
.

As t decreases we have a stronger penalization. Thus we expect uh(t) to be “closer” to χ = uh(0)
than χ1 = uh(h) which justifies the name “interpolation”. We will make this statement more
rigorous later. Note that Eh(u, χ; ζ) and d(u, χ; ζ) are, because of the smoothing property of the
kernel Gh, weakly continuous in u and χ.

The following theorem monitors the evolution of the (approximate) energy along the interpo-
lation uh(t) in terms of the distances at different time instances measured by the metric dh, and
gives a lower bound in terms of the local slope |∂Eh| of Eh, cf. (17).

Theorem 4.1 (Theorem 3.1.4 and Lemma 3.1.3 in [4]). For every χ : [0,Λ)d → {0, 1} the map
t 7→ Eh,t(χ; ζ) is locally Lipschitz in (0, h] and continuous in [0, h] with

d

dt
Eh,t(χ; ζ) = −d2

h(uh(t), χ; ζ)

2t2
(19)

and furthermore we have

|∂Eh( · , χ; ζ)| (uh(t)) ≤ dh(uh(t), χ; ζ)

t
. (20)

In particular

t

2
|∂Eh( · , χ; ζ)|2 (uh(t)) +

1

2

t∫
0

|∂Eh( · , χ; ζ)|2 (uh(s)) ds

≤ 1

2t
d2
h(uh(t), χ; ζ) +

t∫
0

d2
h(uh(s), χ; ζ)

2s2
ds = Eh(χ, χ; ζ)− Eh(uh(t), χ; ζ). (21)
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While the above statements are a mere application of the abstract theory in [4], we will now use
the particular character of thresholding, i.e., the structure of the energy (14) and the metric term
(13) in order to pass to the limit in the approximate Brakke inequality (16).

We start with the basic a priori estimate for the piecewise constant interpolation χh.

Corollary 4.2 (Energy-dissipation estimate). Given initial conditions χ0 : [0,Λ)d → {0, 1} with
finite energy E0 := E(χ0) <∞, a time-step size h > 0 and a finite time horizon T = Nh we have

sup
n
Eh(χn) + h

N∑
n=1

d2
h(χn, χn−1)

2h2
≤ E0. (22)

We recall the following proposition from [21] which will allow us to pass to the limit in the
approximate Brakke inequality for the scheme.

Proposition 4.3 (Lemma 2.8 and Proposition 3.5 in [21]). Given uh → χ and Eh(uh)→ E(χ), a
test function ζ ∈ C∞([0,Λ)d) and a test matrix field A ∈ C∞([0,Λ)d,Rd×d) we have

lim
h→0

1√
h

∫
ζ
(
1− uh

)
Gh ∗ uh dx = c0

∫
ζ |∇χ| and (23)

lim
h→0

1√
h

∫
A :
(
1− uh

)
h∇2Gh ∗ uh dx = c0

∫
A : ν ⊗ ν |∇χ| . (24)

In [21] we used the above proposition to pass to the limit in the first variation of the energy

δEh(u, ξ) :=
d

ds

∣∣∣
s=0

Eh(us),

where the inner variations us of u along a vector field ξ are given by the transport equation

∂sus + ξ · ∇us = 0 us|s=0 = u. (25)

Proposition 4.4 (Proposition 3.2, Remark 3.3 and Lemma 3.4 in [21]). Given u : [0,Λ)d → [0, 1]
we have

δEh(u, ξ) =
1√
h

∫
∇ξ : (1− u)

(
Gh Id− h∇2Gh

)
∗ u dx+O(

√
h‖∇2ξ‖∞Eh(u)). (26)

In particular if uh → χ ∈ {0, 1} and Eh(uh)→ E(χ) <∞ we have

δEh(uh, ξ)→ δE(χ, ξ) = c0

∫
∇ξ : (Id− ν ⊗ ν) |∇χ| . (27)

Although the proof is contained in [21], we will repeat the short argument for the proposition
in this two-phase context based on (23) and (24) for the convenience of the reader in the following
section.

For a constant test function, the right-hand side of (21) yields a telescoping sum, i.e., the last

left-hand side term
∑N
n=1

(
Eh(χn, χn−1; ζ)− Eh(χn, χn; ζ)

)
in (16) disappears. However, for a non-

constant test function we have to pass to the limit in this extra term. In the following proposition
we prove the convergence towards the transport term c0

2

∫
Σ
H ν · ∇ζ in Brakke’s inequality under

the convergence assumption (6).

10



Proposition 4.5. Given the convergence assumption (6) and T = Nh we have

lim
h→0

N∑
n=1

(
Eh(χn, χn−1; ζ)− Eh(χn, χn; ζ)

)
=
c0
2

T∫
0

∫
∇2ζ : (Id− ν ⊗ ν) |∇χ| dt.

The following a priori estimate for the variational interpolation uh defined in (15) follows now
very easily.

Corollary 4.6 (A priori estimate). Given initial conditions χ0 : [0,Λ)d → {0, 1} with finite energy
E0 := E(χ0) < ∞, a time-step size h > 0 and a finite time horizon T = Nh if the test function ζ
is strictly positive, then for the interpolation (15) we have

sup
t
Eh(uh(t)) +

T∫
0

d2
h(uh(t), χh(t))

2h2
dt .

‖ζ‖W 2,∞

inf ζ
(1 + T )E0 + o(1) (28)

as h→ 0.

The following statement is a post-processed version of our assumption (6).

Lemma 4.7 (Lemma 2.8 in [21]). Given the convergence assumption (6), for a subsequence, we
also have the pointwise property

Eh(χh)→ E(χ) a.e. in (0, T ) (29)

and furthermore for the variational interpolation uh given by (15)

Eh(uh)→ E(χ) a.e. in (0, T ) (30)

and in particular the integrated version

T∫
0

Eh(uh) dt→
T∫

0

E(χ) dt. (31)

Without the localization, i.e., if ζ ≡ 1, we can show

c0
2

∫
H2 |∇χ| ≤ lim inf

h→0
|∂Eh|2 (uh) whenever uh → χ in L1 and Eh(uh)→ E(χ).

In the following proposition we prove a similar estimate for the local slope
∣∣∂Eh( · , χh; ζ)

∣∣2 (uh)
after integration in time if additionally we have the following quantitative proximity of uh(t) to
χh(t) in L2 after mollification:

√
h

T∫
0

∫ ∣∣∣Gh/2 ∗ (uh − χh
h

)∣∣∣2dx dt stays bounded as h→ 0.

In our case where uh(t) is the variational interpolation (15) or the approximate solution χh(t+ h)
itself, this rate is a direct consequence of the energy-dissipation estimate (22) or the a priori estimate
(28), respectively.

11



Proposition 4.8. Let ζ > 0 be smooth, χh(t) the approximate solution obtained by Algorithm 1.1
and let uh(t) be either the variational interpolation (15) or the approximate solution χh(t+h) at time
t+ h. Given the convergence assumption (6), there exists a measurable function H ∈ L2(|∇χ| dt),
which is the mean curvature in the sense of (8), such that

c0
2

T∫
0

∫
ζ H2 |∇χ| dt ≤ lim inf

h→0

T∫
0

∣∣∂Eh( · , χh; ζ)
∣∣2 (uh) dt. (32)

5 Proofs

We first give the proofs of the main results, Theorem 2.2, Lemma 3.1 and Corollary 3.2 with help
of the auxiliary statements in Section 4.

Proof of Theorem 2.2. Step 1: Time-freezing for ζ. We claim that it is enough to prove

T̃∫
0

∫ (
ζ

1

2
H2 +

1

2
Hν · ∇ζ

)
|∇χ| dt ≤

∫
ζ |∇χ(0)| −

∫
ζ|∇χ(T̃ )| (33)

for any time-independent, strictly positive test function ζ = ζ(x) > 0 and a.e. T̃ .

This is a standard approximation argument: In order to reduce (9) to (33) we fix a time-
dependent test function ζ = ζ(t, x) ≥ 0 and two time instances 0 ≤ s < t. It is no restriction to
assume s = 0. Writing t =: T̃ for the time horizon we take a regular partition 0 = T0 < · · · < TM =
T̃ of the interval (0, T̃ ) of fineness τ = T̃ /M . We write ζM for the piecewise constant interpolation
of ζ plus a small perturbation 1

M so that ζM ≥ 1
M > 0:

ζM (t) := ζ(Tm−1) +
1

M
if t ∈ [Tm−1, Tm).

Writing ∂−τζM (t) := 1
τ (ζM (t)− ζM (t− τ)) for the discrete (backwards) time derivative we have

ζM → ζ, ∇ζM → ∇ζ and ∂−τζM → ∂tζ uniformly as M →∞. (34)

Using (33) for ζM ≥ 1
M > 0 on each interval [Tm−1, Tm) and summing over m we obtain (9).

Step 2: Proof of (33). Given a test function ζ = ζ(x) > 0 and T̃ > 0, we want to prove (33). We
may assume that T̃ = Nh is a multiple of the time step size h. Furthermore by (29) we may assume
that Eh(χh(T̃ )) → E(χ(T̃ )). We pass to the limit in the approximate Brakke inequality (16) to
prove Brakke’s inequality (33) for this time-independent test function.

By (6) and (31) in Lemma 4.7 we may apply Proposition 4.8 to obtain

c0
4

T̃∫
0

∫
ζ H2 |∇χ| dt ≤ lim inf

h→0

h

2

N∑
n=1

∣∣∂Eh( · , χn−1; ζ)
∣∣2 (χn),

12



as well as

c0
4

T̃∫
0

∫
ζ H2 |∇χ| dt ≤ lim inf

h→0

1

2

T̃∫
0

∣∣∂Eh( · , χh(t); ζ)
∣∣2 (uh(t)) dt.

In addition we may apply Proposition 4.5 for the transport term and after division by the common
prefactor c0 we obtain (33).

Proof of Lemma 3.1. Given initial conditions χ ∈ {0, 1} and a time-step size h > 0, one iteration
of the thresholding scheme yields χ1 = 1{Gh∗χ> 1

2}
. Then χ1 clearly minimizes

(1− u)Gh ∗ χ+ uGh ∗ (1− χ)

among all u ∈ [0, 1] pointwise a.e. This expression is equal to

(1− u)Gh ∗ u+ (u− χ)Gh ∗ (u− χ) + [− (1− χ)Gh ∗ (u− χ) + uGh ∗ (1− χ)] .

The term in the parenthesis can be rewritten as

(u− χ)Gh ∗ (1− χ)− (1− χ)Gh ∗ (u− χ) + χGh ∗ (1− χ) ,

where the last summand is independent of u and thus irrelevant for the minimization. Multiplying
with ζ ≥ 0 and integrating shows that χ1 minimizes∫
ζ [(1− u)Gh ∗ u+ (u− χ)Gh ∗ (u− χ) + (u− χ)Gh ∗ (1− χ)− (1− χ)Gh ∗ (u− χ)] dx+const.

Dividing by
√
h, recalling the definitions (13) and (14) of the localized distance and energy, and

using the semi-group and symmetry properties of the kernel yield (12).

Proof of Corollary 3.2. We apply Theorem 4.1 with χ = χn−1 and t = h, and sum over n =
1, . . . , N .

Now we prove the auxiliary statements of Section 4 which we used for the proof of our main
result.

Proof of Corollary 4.2. The statement simply follows from testing the global minimization problem
(2) for χn with its predecessor χn−1.

Proof of Proposition 4.4. The first variation of Eh at u along the vector field ξ is given by

δEh(u, ξ) =
1√
h

∫
−ξ · ∇(1− u)Gh ∗ u− (1− u)Gh ∗ (ξ · ∇u) dx

=
1√
h

∫
ξ · ((1− u)∇Gh ∗ u)− (1− u)∇Gh ∗ (ξ u) dx

+
1√
h

∫
(∇ · ξ) (1− u)Gh ∗ u+ (1− u)Gh ∗ ((∇ · ξ)u) dx.

13



This can be compactly rewritten as

δEh(u, ξ) =
1√
h

∫
2 (∇ · ξ) (1− u)Gh ∗ u+ (1− u) [ξ·,∇Gh∗]u− (1− u) [∇ · ξ,Gh∗]u dx.

We expand the first commutator

[ξ·,∇Gh∗]u =

∫
(ξ(x)− ξ(x− z)) · ∇Gh(z)u(x− z) dz

= ∇ξ :

∫
− z√

h
⊗ z√

h
Gh(z)u(x− z) dz +O

(
‖∇2ξ‖∞

√
h kh ∗ u

)
,

where the kernel kh is given by the mask k(z) = |z|3G(z) and can be controlled by a gaussian with
slightly larger variance k(z) . G(z/2). The second commutator can be estimated by

|[∇ · ξ,Gh∗]u| . ‖∇2ξ‖∞
√
h k̃ ∗ u,

where k̃h is given by the mask k̃(z) = |z|G(z) . G(z/2). By the identity G(z) (Id− z ⊗ z) =
−∇2G(z) we indeed obtain (26) with an error of order ‖∇2ξ‖∞

√
hE4h(u), which by the mono-

tonicity (5) of Eh yields the claim.

Proof of Proposition 4.5. We first note that by definition

Eh(χn, χn−1; ζ)− Eh(χn, χn; ζ) =
1√
h

∫ (
χn − χn−1

)
[ζ,Gh∗]

(
1− χn−1

)
dx

+
1√
h

∫ (
χn − χn−1

) [
ζ,Gh/2∗

]
Gh/2 ∗

(
χn − χn−1

)
dx.

By the antisymmetry of the commutator, we may replace (1−χn−1) by (1−χn) on the right-hand
side:

1√
h

∫ (
χn − χn−1

)
[ζ,Gh∗] (1− χn) +

(
χn − χn−1

) [
ζ,Gh/2∗

]
Gh/2 ∗

(
χn − χn−1

)
dx.

Now we prove the proposition in two steps. First, we show that the first term converges to the
right-hand side of the claim:

lim
h→0

T∫
0

∫
∂−ht χh

1√
h

[ζ,Gh∗]
(
1− χh

)
dx = c0

T∫
0

∫
∇2ζ : (Id− ν ⊗ ν) |∇χ| dt, (35)

where ∂−ht χh = χh−χh( · −h)
h denotes the discrete backwards time-derivative of χh. Then we prove

that the second term is negligible:

lim
h→0

T∫
0

√
h

∫
∂−ht χh

[
ζ,Gh/2∗

]
Gh/2 ∗ ∂−ht χh dx dt = 0. (36)

Step 1: Argument for (35). Expanding the commutator to second order

1√
h

[ζ,Gh∗] v = −
√
h∇Gh∗(∇ζ v)+

√
h

2

(
Gh Id+ h∇2Gh

)
∗
(
∇2ζ v

)
+O

(
‖∇3ζ‖∞h kh ∗ |v|

)
, (37)
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where the kernel kh is given by the mask k(z) = |z|3G(z), we obtain for the first-order term

h

N∑
n=1

∫
χn − χn−1

h

√
h∇Gh ∗ (−∇ζ (1− χn)) dx

= h

N∑
n=1

1√
h

∫ (
χn − χn−1

)
Gh ∗ (∇ζ · ∇χn −∆ζ (1− χn)) dx.

Now we recognize the first variation of the dissipation functional on the right-hand side:

δ

(
1

2h
d2
h( · , χn−1)

)
(χn, ξ) =

2√
h

∫ (
χn − χn−1

)
Gh ∗ (−ξ · ∇χn) dx.

Using the semi-group and symmetry properties of the kernel, the extra term involving the Laplacian
of the test function can be estimated by Jensen’s inequality and the energy-dissipation estimate
(22):∣∣∣∣∣h

N∑
n=1

1√
h

∫ (
χn − χn−1

)
Gh ∗ (∆ζ (1− χn)) dx

∣∣∣∣∣
. ‖∆ζ‖∞T 1/2

(
h

N∑
n=1

1√
h

∫ (
Gh/2 ∗

(
χn − χn−1

))2
dx

)1/2

≤ ‖∆ζ‖∞T 1/2E
1/2
0 h1/4.

Formally, the leading-order term, i.e., the first variation of the dissipation functional, converges
to c0

∫
Σ
V ∇ζ · ν but we want to obtain the term c0

2

∫
Σ
H∇ζ · ν instead. Therefore we use the

minimizing movements interpretation (2) in form of the Euler-Lagrange equation

δEh(χn, ξ) + δ

(
1

2h
d2
h( · , χn−1)

)
(χn, ξ) = 0 for all ξ ∈ C∞([0,Λ)d,Rd).

We thus have

h

N∑
n=1

∫
χn − χn−1

h

√
h∇Gh ∗ (∇ζ χn) dx =

h

2

N∑
n=1

δEh(χn,∇ζ) + o(1).

By the convergence of the energies (6) and Proposition 4.3 we may pass to the limit h → 0 and
obtain

1

2

T∫
0

δE(χ,∇ζ) dt =
c0
2

T∫
0

∫
∇2ζ : (Id− ν ⊗ ν) |∇χ| dt.

Now we conclude the argument for (35) by showing that the contributions of the second- and
third-order terms in the expansion (37) are negligible in the limit h → 0. The contribution of the
second-order term is estimated as follows

T∫
0

∫
∂−ht χh

√
h

2

(
Gh Id+ h∇2Gh

)
∗
(
∇2ζ

(
1− χh

))
dx dt

≤

 T∫
0

√
h

∫ ∣∣(Gh Id+ h∇2Gh
)
∗ ∂−ht χh

∣∣2 dx dt


1
2
 T∫

0

√
h

∫ ∣∣∇2ζ
(
1− χh

)∣∣2 dx dt


1
2

.
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The second right-hand side integral is bounded by TΛd‖∇2ζ‖2∞
√
h = o(1) while the first right-hand

side integral can be estimated by

√
h

∫ ∣∣(Gh Id+ h∇2Gh
)
∗ ∂−ht χh

∣∣2 dx .
√
h

∫ (
Gh ∗ ∂−ht χh

)2
+
∣∣h∇2Gh ∗ ∂−ht χh

∣∣2 dx,
which by the semi-group property of the kernel ∇2Gh = ∇2Gh/2 ∗Gh/2 is bounded by a constant

times
√
h
∫ (
Gh/2 ∗∂−ht χh

)2
dx. Therefore the time integral stays bounded by the energy-dissipation

estimate (22).

The contribution of the third-order term is controlled by

T∫
0

∫
h
∣∣∂−ht χh

∣∣ dx dt =

T∫
0

∫ ∣∣χh(t)− χh(t− h)
∣∣ dx dt.

The following basic estimate, which is valid for any pair of characteristic functions,

|χ− χ̃| = |χ− χ̃|2 .
∣∣Gh/2 ∗ (χ− χ̃)

∣∣2 +
∣∣Gh/2 ∗ χ− χ∣∣2 +

∣∣Gh/2 ∗ χ̃− χ̃∣∣2 ,
and the fact that by the normalization

∫
Gh/2(z) dz = 1 and the pointwise estimateGh/2(z) . Gh(z)

we have

1√
h

∫ ∣∣Gh/2 ∗ χ− χ∣∣ dx ≤ 1√
h

∫
Gh/2(z)

∫
|χ(x)− χ(x− z)| dx dz . Eh(χ)

yield the estimate

T∫
0

∫ ∣∣χh(t)− χh(t− h)
∣∣ dx dt . (1 + T )E0

√
h→ 0.

This concludes the proof of (35).

Step 2: Argument for (36). We expand the commutator to first order

[
ζ,Gh/2∗

]
v = −h

2
∇Gh/2 ∗ (∇ζ v) +O

(
‖∇2ζ‖∞h kh ∗ |v|

)
, (38)

where the kernel kh is given by the mask k(z) = |z|2G1/2(z), and first consider the contribution of
the first-order term to (36), namely

−h
2

T∫
0

√
h

∫
∂−ht χh∇Gh/2 ∗

(
∇ζ Gh/2 ∗ ∂−ht χh

)
dx dt.
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Using the antisymmetry of ∇G, the chain rule and integration by parts this is equal to

h

2

T∫
0

√
h

∫
∇
(
Gh/2 ∗ ∂−ht χh

)
· ∇ζ

(
Gh/2 ∗ ∂−ht χh

)
dx dt

=
h

2

T∫
0

√
h

∫
∇ζ · ∇

(
1

2

(
Gh/2 ∗ ∂−ht χh

)2)
dx dt

= −h
4

T∫
0

√
h

∫
∆ζ
(
Gh/2 ∗ ∂−ht χh

)2
dx dt.

By the energy-dissipation estimate (22) this term is O(h) as h→ 0.
The second-order term coming from the expansion (38) is controlled by

T∫
0

√
h

∫ ∣∣∂−ht χh
∣∣hkh ∗ ∣∣Gh/2 ∗ ∂−ht χh

∣∣ dx dt . T∫
0

√
h

∫ ∣∣Gh/2 ∗ ∂−ht χh
∣∣ dx dt,

where the kernel kh is given by the mask k(z) = |z|2G1/2(z). Therefore, this term vanishes as h→ 0
by Jensen’s inequality and the energy-dissipation estimate (22).

Proof of Corollary 4.6. In contrast to the piecewise constant interpolation χh, the variational inter-
polation uh is not given in an explicit form but only by the minimization problem (15). In particular,
since in general uh may depend on the test function ζ, we are tied to the local minimization problem
(15). By (21) we have in particular

Eh(uh(T ), uh(T ); ζ) +

T∫
0

d2
h(uh, χh; ζ)

2h2
dt ≤ Eh(χ0, χ0; ζ)−

N∑
n=1

(
Eh(χn, χn−1; ζ)− Eh(χn, χn; ζ)

)
for any T ∈ [Nh, (N + 1)h), where N ∈ N. The left-hand side is bounded from below by

inf ζ

Eh(uh(T )) +

T∫
0

d2
h(uh, χh)

2h2
dt


while the right-hand side can be controlled by Proposition 4.5.

Proof of Lemma 4.7. The convergence assumption (6) and lim inf-inequality of the Γ-convergence
imply the convergence of Eh(χh) → E(χ) in L1(0, T ). In order to understand the behavior of the
energies of the variational interpolations we compare them to the energies of the piecewise constant
interpolation:

|Eh(uh)− Eh(χh)| ≤ 2√
h

∫ ∣∣Gh/2 ∗ (uh − χh)
∣∣ dx

and by Jensen we obtain

T∫
0

|Eh(uh)− Eh(χh)| dt . T 1/2 1√
h

T∫
0

∫ (
Gh/2 ∗ (uh − χh)

)2
dx dt,
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which by (28) is estimated by T 1/2E
1/2
0 h1/4 → 0. That means the approximate energies converge to

the same limit in L1(0, T ) and therefore we obtain the L1-convergence (31) and – after the possible
passage to a further subsequence – the pointwise convergences (29) and (30).

Proof of Proposition 4.8. We let the variations us defined in (25) play the role of v in the definition
of the local slope (17) so that we obtain the inequality

|∂Eh( · , χh; ζ)|(uh) ≥ lim sup
s→0

(
Eh(uh, χh; ζ)− Eh(uhs , χ

h; ζ)
)

+

dh(uhs , u
h; ζ)

.

As s→ 0 we expand the numerator in the following way

Eh(uhs , χ
h; ζ) = Eh(uh, χh; ζ) + s

d

ds

∣∣∣
s=0

Eh(uhs , χ
h; ζ) + o(s).

For the denominator we have

1

2h
d2
h(uhs , u

h; ζ) =
s2

√
h

∫
ζ
(
Gh/2 ∗

(
ξ · ∇uh

))2
dx+ o(s2)

as s→ 0. Taking the limit s→ 0 we obtain

|∂Eh( · , χh; ζ)|(uh) ≥
d
ds

∣∣
s=0

Eh(uhs , χ
h; ζ)√

2
√
h
∫
ζ
(
Gh/2 ∗ (ξ · ∇uh)

)2
dx

for all ξ. (39)

Now we expand ζ and ξ to analyze the leading order terms as h→ 0. Using (25) we can compute
the first variation of the localized energy Eh(u, χ; ζ):

d

ds

∣∣∣
s=0

Eh(us, χ; ζ)

=
1√
h

∫
− ζ ξ · ∇ (1− u)Gh ∗ u− ζ (1− u)Gh ∗ (ξ · ∇u)

− ξ · ∇u [ζ,Gh∗] (1− u)− ξ · ∇u [ζ,Gh∗] (u− χ)

− ξ · ∇u
[
ζ,Gh/2∗

]
Gh/2 ∗ (u− χ) + ξ · ∇uGh/2 ∗

[
ζ,Gh/2∗

]
(u− χ) dx.

The fourth term in the sum comes from replacing (1 − χ) by (1 − u) in the third term, while for
the last term we used the antisymmetry

∫
u
[
ζ,Gh/2∗

]
v dx = −

∫
v
[
ζ,Gh/2∗

]
u dx. Note that due

to the symmetry of G there is a cancellation between the second and third term in this sum:∫
−ζ (1− u)Gh ∗ (ξ · ∇u)− ξ · ∇u [ζ,Gh∗] (1− u) dx =

∫
−ζ ξ · ∇uGh ∗ (1− u) dx

=

∫
− (1− u)Gh ∗ (ζ ξ · ∇u ) dx.

A direct computation based on the semi-group property Gh = Gh/2 ∗Gh/2 yields

− [ζ,Gh∗] v −
[
ζ,Gh/2∗

]
Gh/2 ∗ v +Gh/2 ∗

[
ζ,Gh/2∗

]
v = −2

[
ζ,Gh/2∗

]
Gh/2 ∗ v (40)
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so that the last three terms in the first variation of Eh above can be combined using once more the
antisymmetry of the commutator, and we get

d

ds

∣∣∣
s=0

Eh(us, χ; ζ) =
1√
h

∫
−ζ ξ · ∇ (1− u)Gh ∗ u− (1− u)Gh ∗ (ζ ξ · ∇u ) dx

+
2√
h

∫
Gh/2 ∗ (u− χ)

[
ζ,Gh/2∗

]
(ξ · ∇u) dx. (41)

Note that the first right-hand side integral is exactly δEh(u, ζ ξ), the first variation of the energy
along the “localized” vector field ζ ξ. Now we plug u = uh into the above formula. Since uh → χ
in L1 and Eh(uh)→ E(χ) for a.e. t, using Proposition 4.4 with ζ ξ playing the role of ξ, for a.e. t,
along the sequence uh the first right-hand side integral of (41) converges to

δE(χ, ζ ξ) = c0

∫
∇ (ζ ξ) : (Id− ν ⊗ ν) |∇χ| .

Now we give the argument that the second integral in (41) is negligible:

2√
h

∫
Gh/2 ∗ (u− χ)

[
ζ,Gh/2∗

]
(ξ · ∇u) dx→ 0 in L1(0, T ). (42)

In view of the boundedness of

√
h

T∫
0

∫ ∣∣∣Gh/2 ∗ (uh − χh
h

)∣∣∣2dx dt,
which is a direct consequence of the a priori estimate (28), by Cauchy-Schwarz it is enough to prove

√
h

T∫
0

∫ ([
ζ,Gh/2∗

] (
ξ · ∇uh

))2
dx dt→ 0. (43)

Rewriting the commutator[
ζ,Gh/2∗

]
(ξ · ∇u) =

∫
Gh/2(z) (ζ(x)− ζ(x− z)) ξ(x− z) · ∇uh(x− z) dz,

using ξ · ∇uh = ∇(ξ · uh) − (∇ · ξ)uh with ξ replaced by (ζ( · )− ζ( · − z)) ξ( · − z) and using the
Lipschitz estimate |ζ(x)− ζ(x− z)| ≤ ‖∇ζ‖∞|z| we obtain the pointwise estimate∣∣[ζ,Gh/2∗] (ξ · ∇u)

∣∣ =

∣∣∣∣∫ ∇Gh/2(z) · ξ(x− z) (ζ(x)− ζ(x− z))uh(x− z) dz
∣∣∣∣

+

∣∣∣∣∫ Gh/2(z)∇ · [(ζ(x)− ζ(x− z))ξ(x− z)]uh(x− z) dz
∣∣∣∣

≤ (‖∇ζ‖∞‖ξ‖∞ + ‖ζ ξ‖W 1,∞) . ‖ζ‖W 1,∞‖ξ‖W 1,∞

and hence (43) holds with the rate O(‖ζ‖2W 1,∞‖ξ‖2W 1,∞

√
h). Therefore we have proven the following

convergence of the first variation of the localized energy (14):

lim
h→0

T∫
0

d

ds

∣∣∣
s=0

Eh(uhs , χ
h; ζ) dt = lim

h→0

T∫
0

δEh(uh, ζ ξ) dt = c0

T∫
0

∫
∇ (ζ ξ) : (Id− ν ⊗ ν) |∇χ| dt.

(44)
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With the same methods we can handle the term in the expansion of the metric term dh(uhs , χ
h):

We claim that

lim
h→0

2
√
h

∫
ζ
(
Gh/2 ∗

(
ξ · ∇uh

))2
dx = lim

h→0

2√
h

∫
ζ (ξ ⊗ ξ) :

(
1− uh

)
(h∇2Gh) ∗ uh dx

= 2c0

∫
ζ (ξ · ν)

2 |∇χ| for a.e. t. (45)

To this end we plug ξ ·∇u = ∇·(ξu)−(∇·ξ)u into the quadratic term on left-hand side and expand
the square. First we note that only the term

2
√
h

∫
ζ
(
Gh/2 ∗

(
∇ · (ξuh)

))2
dx = 2

√
h

∫
ζ
(
∇Gh/2 ∗

(
ξ uh

))2
dx (46)

survives in the limit h→ 0. Indeed, we have

2
√
h

∫
ζ
(
Gh/2 ∗

(
(∇ · ξ)uh

))2
dx . ‖∇ξ‖2∞

√
h

∫
|ζ| dx

and the mixed term can be estimated by Young’s inequality and the boundedness of the leading-
order term which we will show now. Using the antisymmetry of ∇G and in particular

∫
∇G(z) dz =

0 we may add a lower-order term to (46):

2
√
h

∫
ζ
(
∇Gh/2 ∗

(
ξ uh

))2
dx = 2

√
h

∫
uh ξ · ∇Gh/2 ∗

(
ζ∇Gh/2 ∗

(
− ξ uh

))
dx

= 2
√
h

∫
uh ξ · ∇Gh/2 ∗

(
ζ∇Gh/2 ∗

(
ξ (1− uh)

))
dx+ o(1).

The term involving ∇Gh/2 ∗
(
ζ∇Gh/2 ∗ ξ

)
is indeed of lower order since both gradients may be put

on the test functions ζ and ξ. Now we want to commute the multiplication with ξ and the outer
convolution and afterwards the multiplication with ζ ξ and the inner convolution. For this we use
the L∞-commutator estimates

‖[ξ·,∇Gh∗]u‖∞ . ‖∇ξ‖∞ and ‖[ζ ξ·,∇Gh∗]‖ . ‖ζ‖W 1,∞‖ξ‖W 1,∞ ,

the L1-estimate ∫ ∣∣∇Gh/2 ∗ (ξ uh)∣∣ dx . ‖∇ξ‖∞ + ‖ξ‖∞
∫ ∣∣∇Gh/2 ∗ uh∣∣ dx

and the a priori estimate (28) for the last term:∫ ∣∣∇Gh/2 ∗ uh∣∣ dx . Eh(uh) .
‖ζ‖W 2,∞

inf ζ
(1 + T )E0 + o(1).

Therefore, the leading-order term becomes

2√
h

∫
ζ (ξ ⊗ ξ) :

(
1− uh

)
(h∇2Gh) ∗ uh dx+ o(1).

Then (45) follows from the convergence of the energies (cf. Lemma 4.7) and Proposition 4.3.
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Using (44) for the numerator and (45) for the denominator of the right-hand side of (39) we
obtain by Fatou’s Lemma in t

lim inf
h→0

T∫
0

|∂Eh( · , χh; ζ)|2(uh) dt ≥ c0
2

T∫
0

sup
ξ

∫
∇ (ζ ξ) : (Id− ν ⊗ ν) |∇χ|√∫

ζ |ξ|2 |∇χ|

2

dt,

which establishes the existence of H ∈ L2(|∇χ| dt) and the estimate stated in the proposition.
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[10] Matt Elsey, Selim Esedoğlu, and Peter Smereka. “Diffusion generated motion for grain growth
in two and three dimensions”. In: Journal of Computational Physics 228.21 (2009), pp. 8015–
8033.
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