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Abstract

We investigate the behavior of the maximal violations of the CHSH inequality and

Vèrtesi’s inequality under the local filtering operations. An analytical method has

been presented for general two-qubit systems to compute the maximal violation of the

CHSH inequality and the lower bound of the maximal violation of Vértesi’s inequality

over the local filtering operations. We show by examples that there exist quantum

states whose non-locality can be revealed after local filtering operation by the Vértesi’s

inequality instead of the CHSH inequality.

Quantum mechanics is inherently nonlocal. After performing local measurements on a

composite quantum system, non-locality, which is incompatible with local hidden variable

theory [1] can be revealed by Bell inequalities. The non-locality is of great importance

both in understanding the conceptual foundations of quantum theory and in investigating

quantum entanglement. It is also closely related to certain tasks in quantum information

processing, such as building quantum protocols to decrease communication complexity [2,3]

and providing secure quantum communication [4, 5]. We refer to [6] for more details.
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To determine whether a quantum state has non-locality, it is sufficient to construct a

Bell inequality [7–13] which can be violated by the quantum state. For two qubits systems,

Clauser-Horne-Shimony-Holt have presented the famous CHSH inequality [7].

Let BCHSH denote the Bell operator for the CHSH inequality,

BCHSH = A1 ⊗B1 + A1 ⊗B2 + A2 ⊗B1 − A2 ⊗B2, (1)

with Ai and Bj being the observables of the form Ai =
∑3

k=1 aikσk and Bj =
∑3

l=1 bjlσl

respectively, i, j = 1, 2,

σ1 =

(
−1 0

0 1

)
, σ2 =

(
0 1

1 0

)
and σ3 =

(
0 i

−i 0

)
(2)

are the Pauli matrices. For any two-qubit quantum state ρ, the maximal violation of the

CHSH inequality (MVCI) is given by [14]

max
BCHSH

|⟨BCHSH⟩ρ| = 2
√
τ1 + τ2, (3)

where τ1 and τ2 are the two largest eigenvalues of the matrix T †T , T is the matrix with

entries Tαβ = tr[ρ σα ⊗ σβ], α, β = 1, 2, 3, † stands for transpose and conjugation. For a

state admitting local hidden variable (LHV) model, one has maxBCHSH |⟨BCHSH⟩LHV | ≤ 2.

Another effective Bell inequality for two-qubit system is given by the Bell operator [15]

Vértesi

BV =
1

n2
[

n∑
i,j=1

Ai ⊗Bj +
∑

1≤i<j≤n

Cij ⊗ (Bi −Bj) +
∑

1≤i<j≤n

(Ai − Aj)⊗Dij], (4)

where Ai, Bj, Cij and Dij are observables of the form
∑3

α=1 xασα with x⃗ = (x1, x2, x3) the

unit vectors.

The maximal violation of Vértesi’s inequality(MVVI) is lower bounded by the following

inequality [20]. For arbitrary two-qubit quantum state ρ, we have

max
BV

|⟨BV⟩ρ| ≥ max
a,b,c,d

[
1

sabscd
|
∫
Ωb

a×Ωd
c

< x⃗, T y⃗ > dµ(x⃗)dµ(y⃗)|+ 1

2s2cd

∫
Ωd

c×Ωd
c

|T (x⃗− y⃗)|dµ(x⃗)dµ(y⃗)

+
1

2s2ab

∫
Ωb

a×Ωb
a

|T †(x⃗− y⃗)|dµ(x⃗)dµ(y⃗)
]
, (5)

where sαβ =
∫
Ωβ

α
dµ(x⃗). The maximum on the right side of the inequality goes over all the

integral area Ωb
a × Ωd

c with 0 ≤ a < b ≤ π
2
and 0 ≤ c < d ≤ π

2
. Here the maximal value

maxBV |⟨BV⟩ρ| of a state ρ admitting LHV model is upper bounded by 1.

The maximal violation of a Bell inequality above is derived by optimizing the observables

for a given quantum state. With the formulas (3) and (5) one can directly check if a two-qubit

quantum state violates the CHSH or the Vértesi’s inequality. It has been shown that the
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maximal violation of a Bell inequality is in a close relation with the fidelity of the quantum

teleportation [17] and the device-independent security of quantum cryptography [18].

The maximal violation of a Bell inequality can be enhanced by local filtering operations

[21]. In [22], the authors present a class of two-qubit entangled states admitting local hidden

variable models, and show that the states after local filtering violate a Bell inequality. Hence,

there exist entangled states, the non-locality of which can be revealed by using a sequence

of measurements.

In this manuscript, we investigate the behavior of the maximal violations of the CHSH

inequality and Vértesi’s inequality under local filtering operations. An analytical method

has been presented for any two-qubit system to compute the maximal violation of the CHSH

inequality and the lower bound of the maximal violation of Vértesi’s inequality under local

filtering operations. The corresponding optimal local filtering operation is derived. We show

by examples that there exist quantum states whose nonlocality can be revealed after local

filtering operation by Vértesi’s inequality instead of the CHSH inequality.

Results

We consider the CHSH inequality for two-qubit systems first. Before the Bell test, we

apply the local filtering operation on a state ρ ∈ H = HA⊗HB with dimHA = dimHB = 2.

ρ is mapped to the following form under local filtering transformations [19,22]:

ρ′ =
1

N
(FA ⊗ FB)ρ(FA ⊗ FB)

†, (6)

where N = tr[(FA ⊗ FB)ρ(FA ⊗ FB)
†] is a normalization factor, and FA/B are positive

operators acting on the subsystems respectively. Such operations can be a local interaction

with the dichroic environments [23].

For two-qubit systems, let FA = UΣAU
† and FB = V ΣBV

† be the spectral decomposi-

tions of FA and FB respectively, where U and V are unitary operators. Define that

δk = ΣAσkΣA, ηl = ΣBσlΣB (7)

and X be a matrix with entries given by

xkl = tr[ϱδk ⊗ ηl], k, l = 1, 2, 3, (8)

where ϱ is locally unitary with ρ.

we have the following theorem.

Theorem 1: The maximal quantum bound of a two-qubit quantum state ρ′ = 1
N
(FA ⊗

FB)ρ(FA ⊗ FB)
† is given by

max
BCHSH

|⟨BCHSH⟩ρ′ | = max
ϱ

2
√
τ ′1 + τ ′2, (9)

where τ ′1 and τ
′
2 are the two largest eigenvalues of the matrix X†X/N2 with X given by (8).

The left max is taken over all BCHSH operators, while the right max is taken over all ϱ that

are locally unitary equivalent to ρ.
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See Methods for the proof of theorem 1.

Now we investigate the behavior of the Vèrtesi-Bell inequality under local filtering oper-

ations. In [20] we have found an effective lower bound for the MVVI by considering infinite

many measurements settings, n → ∞. Then the discrete summation in (4) is transformed

into an integral of the spherical coordinates over the sphere S2 ⊂ R3. We denote the spher-

ical coordinate of S2 by (ϕ1, ϕ2). A unit vector x⃗ = (x1, x2, x3) can be parameterized by

x1 = sinϕ1 sinϕ2, x2 = sinϕ1 cosϕ2, x3 = cosϕ1. For any 0 ≤ a ≤ b ≤ π
2
, we denote

Ωb
a = {x ∈ S2 : a ≤ ϕ1(x) ≤ b}.
Theorem 2: For two-qubit quantum state ρ′ given by (6), we have

max
BV

|⟨BV⟩ρ′| ≥ max
a,b,c,d

1

N

[
1

sabscd
|
∫
Ωb

a×Ωd
c

< x⃗,Xy⃗ > dµ(x⃗)dµ(y⃗)|

+
1

2s2cd

∫
Ωd

c×Ωd
c

|X(x⃗− y⃗)|dµ(x⃗)dµ(y⃗) + 1

2s2ab

∫
Ωb

a×Ωb
a

|X t(x⃗− y⃗)|dµ(x⃗)dµ(y⃗)
]
,(10)

where X is defined by (8). X t stands for the transposition of X, and sαβ =
∫
Ωβ

α
dµ(x⃗). The

maximization on the right side of the inequality goes over all the integral area Ωb
a ×Ωd

c with

0 ≤ a < b ≤ π
2
and 0 ≤ c < d ≤ π

2
.

See Methods for the proof of theorem 2.

Remark: The right hand sides of (9) and (10) depend just on the state σ which is local

unitary equivalent to ρ. Thus to compare the difference of the maximal violation for ρ and

that for ρ′, it is sufficient to just consider the difference between σ and ρ′.

Without loss of generality, we set

ΣA =

(
x 0

0 1

)
and ΣB =

(
y 0

0 1

)
(11)

with x, y ≥ 0. According to the definition of δk and ηl in (7), one computes that

δ1 =

(
−x2 0

0 1

)
, δ2 =

(
0 x

x 0

)
and δ3 =

(
0 ix

−ix 0

)
; (12)

η1 =

(
−y2 0

0 1

)
, η2 =

(
0 y

y 0

)
and η3 =

(
0 iy

−iy 0

)
. (13)

Let σ0 =

(
1 0

0 1

)
. Set δ⃗ = (δ1, δ2, δ3), η⃗ = (η1, η2, η3), and σ⃗ = (σ0, σ1, σ2, σ3). We have

δ⃗ = Cσ⃗ and η⃗ = Dσ⃗, where

C =


1
2
(1− x2) 1

2
(1 + x2) 0 0

0 0 x 0

0 0 0 x

 and D =


1
2
(1− y2) 1

2
(1 + y2) 0 0

0 0 y 0

0 0 0 y

 respectively.

(14)
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Then one has xkl = (CWD†), where W is a 4×4 matrix with entries wαβ = tr[σσα⊗σβ].

Let ÕA =

(
1 0

0 OA

)
and ÕB =

(
1 0

0 OB

)
where OA and OB are 3 × 3 orthogonal

operators. Define that r⃗ and s⃗ be three dimensional vectors with entries ri = tr[ρσ0 ⊗ σi]

and sj = tr[ρσj ⊗ σ0] respectively. And let T̃ =

(
1 r⃗

s⃗ T

)
. One can further show that

X = CWD† = CÕAT̃ Õ
†
BD

†, (15)

and

N = x+y+ + 4x−y+(OAs⃗)1 + 4x+y−(OB r⃗)1 + 4x−y−(OATO
t
B)11, (16)

where x+ = 1
2
(1+ x2), x− = 1

2
(1− x2), y+ = 1

2
(1+ y2) and y− = 1

2
(1− y2). Numerically, one

can parameterize OA and OB and then search for the maximization in theorem 1. For the

lower bound in theorem 2, we refer to [20].

Corollary: For two-qubit Werner state [27] ρw = p|ψ−⟩⟨ψ−| + (1 − p) I
4
, with |ψ−⟩ =

(|01⟩ − |10⟩)/
√
2, one computes T =

 −p 0 0

0 −p 0

0 0 −p

 . Then by using the symmetric

property of the state, (15) and (16), together with theorem 1, we have

max
BCHSH

|⟨BCHSH⟩ρ′ | = 2
√
τ ′1 + τ ′2, (17)

where τ ′1 and τ ′2 are the two largest eigenvalues of the matrix X†X/N2 with X given by

xkl = tr[ρwδk ⊗ ηl], k, l = 1, 2, 3. (18)

Applications

In the following we discuss the applications of local filtering. First we show that a

state which does not violate the CHSH and the Vértesi’s inequalities could violate these

inequalities after local filtering. Consider the following density matrix for two-qubit systems:

ϱ1 =
1

4
(I ⊗ I + rσ1 ⊗ I − p

3∑
i

σi ⊗ σi), (19)

where −0.3104 ≤ p ≤ 0.7 to ensure the positivity of ϱ1. By using the positive partial

transposition criteria one has that ϱ1 is separable for −0.3104 ≤ p ≤ 0.3104.

Case 1: Set r = 0.3. It is direct to verify that both the CHSH inequality and Vértesi’s

inequalities fail to detect the non-locality for the whole region −0.3104 ≤ p ≤ 0.7. After

filtering, non-locality can be detected for 0.6291 ≤ p ≤ 0.7 (by Theorem 2) and 0.6164 ≤
p ≤ 0.7 (by Theorem 1) respectively, see Fig.1.

Case 2: Set p = 0.7050 and r = 0.0400. The MVCI of ϱ1 is 1.994 without local filtering

and 1.9988 after local filtering, which means that the CHSH inequality is always satisfied
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Non-localitydetected by Vertesi's

inequality after Local filtering

Non-localitydetected by CHSH

after Local filtering

Separable

0.7000
- -0.3104 0.62910.61640.3104

Figure 1: For r = 0.3, both the CHSH inequality and Vértesi’s inequality fail to detect

the non-locality of ϱ1 for the whole parameter region of p. After local filtering, non-locality

is detected for 0.6291 ≤ p ≤ 0.7 (by Theorem 2) and 0.6164 ≤ p ≤ 0.7 (by Theorem 1)

respectively.

before and after local filtering. The lower bound (5) for ϱ1 is computed to be less than one,

implying the non-locality can not be detected by the lower bound for MVVI derived in [20]

without local filtering. However, by taking x = y = 1.1, a = c = 0.1671, b = d = 1.1096, from

Theorem 2 we have the maximal violation value 1.0005 which is larger than one. Therefore,

after local filtering the state’s non-locality is detected.

Next we give an example that a state admits local hidden variable model (LHV) can

violate the Bell inequality under local filtering. Consider two-qubit quantum states with

density matrices of the following form:

ϱ2 =
1

4
(I ⊗ I + pσ1 ⊗ I + p

3∑
i

σi ⊗ σi). (20)

According to the positivity of a density matrix, we have −0.5 ≤ p ≤ 0.3090. By using the

positive partial transposition criteria [24], one checks that ϱ2 is entangled for −0.5 ≤ p ≤
−0.3090. The quantum state satisfies the CHSH inequality for the whole parameter region.

We first show that the state ϱ2 admits LHV models for −0.5 ≤ p ≤ −0.3090.

First we rewrite ϱ2 as a convex combination of singlet and separable states,

ϱ2 = q|ψ−⟩⟨ψ−|+ (1− q)[
1

2
(I − q

1− q
σ1)⊗

I

2
], (21)

where |ψ−⟩⟨ψ−| = 1
4
(I ⊗ I −

∑3
i=1 σi ⊗ σi) and q = −p. According to [16], with a visibility

of q = 1
2
, the correlations of measurement outcomes produced by measuring the observables

A = −→a ·−→σ and B =
−→
b ·−→σ on the singlet state can be simulated by an LHV model in which
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the hidden variable
−→
λ s ∈ S2 is biased distributed with probability density

ρ(
−→
λ s|−→a ) =

|−→a ·
−→
λ s|

2π
. (22)

With probability 0 < q ≤ 1
2
, Alice and Bob can share the biased distributed variable

resource and output a = −sgn(−→a ·
−→
λ s) and b = sgn(

−→
b ·

−→
λ s), respectively. With probability

1 − q, Alice outputs a = ±1 with probability p(a|−→a ) = tr[1
2
(I − q

1−q
σz)

I±−→a ·
−→
λ s

2
], and Bob

outputs ±1 with probability p(b|
−→
b ) = 1

2
. Then we can simulate the correlations produced

by measuring obesrvables A and B on ϱ2,

p(a, b|−→a ,
−→
b , ϱ2) = tr(

I + a−→a −→σ
2

⊗ I + b
−→
b −→σ

2
ρ) =

1− qab−→a ·
−→
b

4
− aa3q

4
, (23)

which can be given by the following LHV model,

p(a, b|−→a ,
−→
b , ϱ2) =q

∫
S2

p(a|−→a ,
−→
λ s)p(b|

−→
b ·

−→
λ s)ρ(

−→
λ s)d

−→
λ s + (1− q)p(a|−→a )p(b|

−→
b )

=q

∫
Ωa,b

|−→a ·
−→
λ s|

2π
d
−→
λ s + (1− q)p(a|−→a )p(b|

−→
b ),

(24)

where Ωa,b = {
−→
λ s| − sgn(−→a ·

−→
λ s) = a} ∩ {

−→
λ s|b = sgn(

−→
b ·

−→
λ s)}. Explicitly,

p(1, 1|−→a ,
−→
b ,

−→
λ s) = q

∫
Ω1,1

|−→a ·
−→
λ s|

2π
d
−→
λ s +

1− q

2
tr[

1

2
(I − q

1− q
σz)

I +−→a ·
−→
λ s

2
],

p(1,−1|−→a ,
−→
b ,

−→
λ s) = q

∫
Ω1,−1

|−→a ·
−→
λ s|

2π
d
−→
λ s +

1− q

2
tr[

1

2
(I − q

1− q
σz)

I +−→a ·
−→
λ s

2
],

p(−1, 1|−→a ,
−→
b ,

−→
λ s) = q

∫
Ω−1,1

|−→a ·
−→
λ s|

2π
d
−→
λ s +

1− q

2
tr[

1

2
(I − q

1− q
σz)

I −−→a ·
−→
λ s

2
],

p(−1,−1|−→a ,
−→
b ,

−→
λ s) = q

∫
Ω−1,−1

|−→a ·
−→
λ s|

2π
d
−→
λ s +

1− q

2
tr[

1

2
(I − q

1− q
σz)

I −−→a ·
−→
λ s

2
],

where Ω1,1 = {
−→
λ s|−→a ·

−→
λ < 0}∩{

−→
λ s|

−→
b ·

−→
λ ≥ 0}, Ω1,−1 = {

−→
λ s|−→a ·

−→
λ < 0}∩{

−→
λ s|

−→
b ·

−→
λ < 0},

Ω−1,1 = {
−→
λ s|−→a ·

−→
λ ≥ 0} ∩ {

−→
λ s|

−→
b ·

−→
λ ≥ 0}, Ω−1,−1 = {

−→
λ s|−→a ·

−→
λ ≥ 0} ∩ {

−→
λ s|

−→
b ·

−→
λ < 0}.

Therefore the state ϱ2 admits LHV model for −0.5 ≤ p ≤ −0.309. However, after local

filtering, non-locality (violation of the CHSH inequality) is detected for −0.5 ≤ p ≤ −0.4859,

see Fig.2.

Remark: In [17] Horodeckis have presented the connection between the maximal viola-

tion of the CHSH inequality and the optimal quantum teleportation fidelity:

Fmax ≥ 1

2
(1 +

1

12
max
BCHSH

|⟨BCHSH⟩ρ|) (25)

which means that any two-qubit quantum state violating the CHSH inequality is useful for

teleportation and vice versa. Aćin et al. have derived the relation between the maximal
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- -0.500 - -0.498 - -0.496 - -0.494 - -0.492 - -0.490 - -0.488
p

1.4

1.6

1.8

2.0

2.2

2.4

f H H p LL

Figure 2: The MVCI of ϱ2 (dashed line) v.s. the MVCI after Local filtering (solid line). f(p)

stands for the MVCI. Note that the classical bound of the CHSH inequality is 2.

violation of the CHSH inequality and the Holevo quantity between Eve and Bob in device-

independent Quantum key distribution(QKD) [18]:

χ(B1 : E) ≤ h(
1 +

√
(maxBCHSH |⟨BCHSH⟩ρ|/2)2 − 1

2
), (26)

where h is the binary entropy. From our theorem, maxBCHSH |⟨BCHSH⟩ρ| can be enhanced by

implementing a proper local filtering operation from smaller to larger than 2, which makes a

teleportation possible from impossible, or can be improved to obtain a better teleportation

fidelity. The proper(optimal) local filtering operation can be selected by the optimizing

process in (9) together with the double cover relationship between the SU(2) and SO(3).

For application in the QKD, Eve can enhance the upper bound of Holevo quantity by local

filtering operations which makes a chance for attacking the protocol.

Discussions

It is a fundamental problem in quantum theory to recognize and explore the non-locality

of a quantum system. The Bell inequalities and their maximal violations supply powerful

ability to detect and qualify the non-locality. Furthermore, the constructing and the com-

putation of the maximal violation of a Bell inequality is in close relationship with quantum

games, minimal Hilbert space dimension and dimension witnesses, as well as quantum com-

munications such as communication complexity, quantum cryptography, device-independent

quantum key distribution etc. [6]. A proper local filtering operation can generate and en-

hance the non-locality. We have investigated the behavior of the maximal violations of the

CHSH inequality and the Vértesi’s inequality under local filtering. We have presented an

analytical method for any two-qubit system to compute the maximal violation of the CHSH

inequality and the lower bound of the maximal violation of Vértesi’s inequality under local
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filtering. We have shown by examples that there exist quantum states whose nonlocality can

be revealed by local filtering operations in terms of the Vértesi’s inequality instead of the

CHSH inequality.

Methods

Proof of Theorem 1 and Theorem 2

The normalization factor N has the following form,

N = tr[UΣ2
AU

† ⊗ V Σ2
BV

†ρ] = tr[Σ2
A ⊗ Σ2

BU
† ⊗ V †ρU ⊗ V ]

= tr[Σ2
A ⊗ Σ2

Bϱ], (27)

where ϱ = U † ⊗ V †ρU ⊗ V . Since ρ and ϱ are local unitary equivalent, they must have the

same value of the maximal violation for CHSH inequality.

We have that

t′ij = tr[ρ′σi ⊗ σj] =
1

N
tr[(FA ⊗ FB)ρ(F

†
A ⊗ FB)

†σi ⊗ σj]

=
1

N
tr[ρUΣAU

†σiUΣAU
† ⊗ V ΣBV

†σjV ΣBV
†]

=
1

N

∑
kl

tr[U † ⊗ V †ρU ⊗ V ΣAO
A
ikσkΣA ⊗ ΣBO

B
jlσlΣB]

=
1

N

∑
kl

OA
ikO

B
jltr[ϱΣAσkΣA ⊗ ΣBσlΣB]

=
1

N

∑
kl

OA
ikO

B
jltr[ϱδk ⊗ ηl]

=
1

N

∑
kl

OA
ikxklO

B
jl =

1

N
(OAXO

T
B)ij. (28)

In deriving the fourth equality in (28) we have used the double cover relation between

the special unitary group SU(2) and the special orthogonal group SO(3): for any given

unitary operator U , UσiU
† =

3∑
j=1

Oijσj, where the matrix O with entries Oij belongs to

SO(3) [25, 26].

Finally, one has that

T ′ =
1

N
OAXO

†
B, (29)

and

(T ′)†T ′ =
1

N2
OBX

†O†
AOAXO

†
B =

1

N2
OBX

†XO†
B. (30)

By noticing the orthogonality of the operator OB we have that the eigenvalues of (T ′)†T ′

and X†X/N2 must be the same, which proves theorem 1.

We can further obtain theorem 2 by substituting (29) into (5).
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[15] Vértesi T. More efficient Bell inequalities for Werner states. Phys. Rev. A 78, 032112

(2008).

10



[16] Degorre J., Laplante S., & Roland J. Simulating quantum correlations as a distributed

sampling problem. Phys. Rev. A 72, 062314 (2005).

[17] Horodecki R., Horodecki M., & Horodecki P. Teleportation, Bell’s inequalities and in-

separability. Phys. Lett. A 222, 21 (1996).
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