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The definition of accessible coherence is proposed. Through local measurement on the other
subsystem and one way classical communication, a subsystem can access more coherence than the
coherence of its density matrix. Based on the local accessible coherence, the part that can not be
locally accessed is also studied, which we call it remaining coherence. We study how the bipartite
coherence is distributed by partition for both l1 norm coherence and relative entropy coherence, and
the expressions for local accessible coherence and remaining coherence are derived. we also study
some examples to illustrate the distribution.

PACS numbers: 03.65.Ud, 03.67.-a

I. INTRODUCTION

Quantum coherence is one of the key features of the
quantum world. It is the origin of many quantum phe-
nomena such as the interference of light, the laser [1],
superconductivity [2], and quantum thermodynamics [3].
Recent researches show that quantum coherence also in-
creases the efficiency of photosynthetic light-harvesting
complexes [4, 5]. Coherence is also the key ingredi-
ent in quantum computation and quantum information
processing [6]. Recently, quantifying coherence as a re-
source in the context of quantum information science has
been extensively investigated [7]. Many different coher-
ence measures have been proposed and their properties
have been studied [8–13]. The relations between coher-
ence and quantum correlations like quantum entangle-
ment [14] and quantum discord [15, 16] are also a research
hot spot [17–22].
The quantum entanglement and quantum discord char-

acterize the correlations between quantum systems. Ba-
sically these correlations are due to the superposition of
quantum states, i.e., the quantum coherence. Neverthe-
less, the quantum coherence exists in a single quantum
system. In this sense, quantum coherence is more funda-
mental. As quantum correlations like entanglement satis-
fy trade-off relations among multipartite systems [23], it
is also natural to ask how coherence is distributed among
the subsystems.
In this paper, we study the distribution of coherence

for bipartite systems. Different from the point of [24],
which regards the entanglement as the intrinsic coher-
ence between subsystems, we study the distribution of
coherence from the point of view of local accessible co-
herence. As an illustration, let us consider a bipar-
tite state 1/2|+⟩⟨+| ⊗ |0⟩⟨0| + 1/2|−⟩⟨−| ⊗ |1⟩⟨1| with
|+⟩ = 1/

√
2(|0⟩ + |1⟩) and |−⟩ = 1/

√
2(|0⟩ − |1⟩). This

bipartite state has nonzero coherence under local com-
putational basis. However, the reduced density matrices
of the state are both identities: both subsystems have no

coherence. The non-zero coherence of the whole system
is due to the states |+⟩ and |−⟩ in the first system. How-
ever, the coherence is eliminated in the reduced state
of the first system. We show that contributing to the
coherence of the whole bipartite system are the coher-
ence of the subsystems and the ‘accessible’ coherence of
the subsystems, together with the ‘remaining’ coherence.
We first propose the concept of accessible coherence, and
analyze the property of accessible coherence. Then we s-
tudy the property of the ‘remaining’ coherence, the part
that besides all the coherence and accessible coherence
of the subsystems. At last, we illustrate how bipartite
coherence is distributed by computing the accessible co-
herence and remaining coherence in detailed examples.

Throughout our paper, we take the reference basis to
be the local computational basis and two important co-
herence measures, the relative entropy coherence and the
l1 norm coherence [7] will be used. The l1 norm coher-
ence Cl1 of a quantum state ρ is defined by the sum of
the absolute value of the density matrix’s off-diagonal
elements,

Cl1(ρ) =
∑
i ̸=j

|ρij |, (1)

where |ρij | is the absolute value of entry ρij of the density
matrix ρ under the reference basis. The relative entropy
coherence is defined by Cr(ρ) = minσ∈I S(ρ||σ), where
S(ρ||σ) is the relative entropy of states ρ and σ, I denotes
the set of incoherent states. Cr(ρ) has a simple form,

Cr(ρ) = S(ρd)− S(ρ), (2)

where S(ρ) = − tr(ρ log ρ) is the von Neumann entropy
of ρ, and ρd is the matrix of ρ eliminating all the off-
diagonal elements.
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II. ACCESSIBLE COHERENCE

Consider a quantum system with state ρ, we define the
accessible coherence of ρ as the difference between the
maximum average coherence of its state ensemble and
the coherence of the state,

CA(ρ) = max
∑
i

piC(ρi)− C(ρ), (3)

where the maximization is taken over all state decompo-
sitions of ρ =

∑
i piρi. The accessible coherence is always

positive since coherence measure is nonincreasing under
mixing of quantum states [7], i.e., C(ρ) ≤

∑
i piC(ρi).

Hence the coherence for a state is always smaller than or
equal to the minimal value of the state’s average coher-
ence, and the accessible coherence quantifies the maxi-
mum extra coherence one can gain when one knows the
corresponding ensemble of the state.
Due to the convexity of the coherence measure and the

compact convexity of the density matrix set, the max-
imum in (3) can actually be achieved by taking over
all pure-state decompositions, i.e., max

∑
i piC(ρi) =

max
∑

i p
′
iC(|ψi⟩), with ρ =

∑
i p
′
i|ψi⟩⟨ψi|. Then the ac-

cessible coherence of ρ actually equals to its coherence
of assistance [17] minus its coherence, and achieves it-
s minimum, zero, when the state ρ is pure. Note that
the coherence of assistance is not a bonafide measure of
quantum coherence for a single system [25], neither is the
accessible coherence then. Take a zero coherence state,
1/2I = 1/2(|+⟩⟨+|+ |−⟩⟨−|), with |+⟩ = 1/

√
2(|0⟩+ |1⟩)

and |−⟩ = 1/
√
2(|0⟩ − |1⟩), for example, it is easy to see

that the state’s accessible coherence and the coherence of
assistance are all nonzero, which violates the conditions
for a bonafide measure of coherence [7]. However, the ac-
cessible coherence reveals the difference between a state’s
coherence of assistance and the quantum coherence itself.
We have defined the accessible coherence in (3) with

a maximization over all ensembles of a state decomposi-
tions. For a specific ensemble of ρ =

∑
i piρi, we denote

CA(ρ) =
∑
i

piC(ρi)− C(ρ), (4)

the accessible coherence for the specific ensemble. Under
the relative entropy measure, the accessible coherence is
tightly connected to the Holevo quantity for the accessi-
ble information [6].
Suppose there is a sender, Alice, who prepares states

ρi with probabilities pi. Through a channel, she sends
these states to a receiver, Bob, who performs a POVM
measurement to distinguish these states to get as much
information as he can. If there is no noise in the chan-
nel, the mutual information between Alice and Bob is
bounded by the Holevo quantity:

χ(ρ) = S(ρ)−
∑
i

piS(ρi), (5)

where ρ =
∑

i piρi. If Alice sends the states through
a decoherence channel Π(·) =

∑
i |i⟩⟨i|(·)|i⟩⟨i|, then the

Holevo quantity decreases to

χ′(ρ) = S(Π(ρ))−
∑
i

piS(Π(ρi)), (6)

where Π(ρ) =
∑

i piΠ(ρi). Using (2), (4), and Π(ρ) = ρd,
we get

CA(ρ) = χ(ρ)− χ′(ρ), (7)

from (5) and (6). Hence we see that the accessible co-
herence with respect to the information source’s ensem-
ble equals to the decrease of Holevo quantity due to the
channel’s decoherence. This relation holds also for CA(ρ).

The accessible coherence plays roles in the distribution
of coherence. As the accessible coherence with respect to
a specific ensemble comes from the information of the
ensemble, for a bipartite system AB, one way to gain the
ensemble of system A is to measure system B and com-
municate each measurement outcome to A [26, 27]. In
this way, the system A can gain an averaged coherence
which is lager than the coherence of its density matrix,
denoting as CA, and the extra part is the accessible coher-
ence of system A, denoting as CAA . The similar analysis
also holds for system B. In the following we consider the
local measurement under the reference basis.

From the analysis above, the coherence contained in
system A (B) are given by CA and CAA (CB and CAB ).
The total coherence of the whole system AB is from
CA, C

A
A , CB , C

A
B and some ‘remaining’ coherence, denot-

ing as CT , between A and B. CT represents the part
that can not be locally accessed under local reference ba-
sis measurement and one way classical communication.
Hence from the point of view of local accessible coher-
ence, we have the partition for the bipartite coherence
CAB of ρAB ,

CAB = CA + CAA + CB + CAB + CT . (8)

Later, we will show that the remaining coherence CT is
always non-negative for relative entropy coherence and
l1 norm coherence measures. Basically CT is due to cor-
relations between systems A and B. In the following we
investigate and calculate the quantities CA, C

A
A , CB, C

A
B

and CT in detail.

III. COHERENCE DISTRIBUTION WITH
RELATIVE ENTROPY MEASURE

The first thing we notice is the connection between
coherence and the measurement dependent quantum dis-
cord D [16] with the measurement basis being the local
reference basis. Here D is distinguished from the orig-
inal discord [15, 16]. The unilateral quantum discord
D←AB with respect to the local projective measuremen-
t Π(·) =

∑
i |i⟩⟨i|(·)|i⟩⟨i| on system B is defined to be
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the difference of mutual information IAB and the mutual
information IAB̃ after the measurement on B [16],

D←AB =IAB − IAB̃

=SA + SB − SAB − SA − SB̃ + SAB̃

=SB − SAB − SB̃ + SAB̃ ,

(9)

where ‘←’ means that the measurement takes on system
B, SX denotes the von Neumann entropy of the system

X and X̃ denotes the measurement Π on system X. Sim-
ilarly, we have unilateral discord D→AB = IAB − IÃB and
bilateral discord D↔AB = IAB − IÃB̃ , where ‘→’ and ‘↔’
denote the measurements on system A and both systems
AB respectively.
The unilateral and bilateral (bipartite) coherence [9] is

defined as

Cr→ = SÃB − SAB ,

Cr← = SAB̃ − SAB ,

Cr↔ = SÃB̃ − SAB ,

which correspond to the measurements on system A, sys-
tem B, and both systems AB respectively. From (2), (9)
and ρBd

= Π(ρB), we have unilateral coherence with re-
spect to the measurement on B, Cr← = Cr

B + D←AB . If
Cr← = 0, which means that the state is a quantum-
incoherent state [21, 28], i.e., ρAB =

∑
i piρ

A
i ⊗|i⟩⟨i|, the

coherence of system B is zero, and there is no right side
quantum correlation D←AB between A and B. Similarly,
we have unilateral coherence with respect to the mea-
surement on A, Cr→ = Cr

A +D→AB . Following the above
steps we also have the coherence with respect to bipartite
local measurements,

Cr↔ = Cr
A + Cr

B +D↔AB . (10)

From equations (8) and (10), we see that the local acces-
sible coherence and the remaining coherence are related
to the quantum discord,

D↔AB = CT
r

+ CA
r

A + CA
r

B . (11)

Next, we find out the expressions for CT
r

, CA
r

A , CA
r

B ,
and their relations with the quantum correlations D and
coherence Cr. Note that IAB̃ in (9) is actually the clas-
sical correlation [15, 16] (the Holevo quantity for system
A), which can be reexpressed as

IAB̃ = SA −
∑
i

piS(ρAi), (12)

where the state ρAi with probability pi corresponds to
system B’s measurement outcome i. If one applies mea-
surement Π on system A too, one gets the bilateral clas-
sical correlation,

IÃB̃ = SÃ −
∑
i

piS(ρ̃Ai), (13)

which corresponds to the bilateral discord D↔AB . Equa-
tions (12) and (13) give rise to∑

i

piC
r(ρAi)− Cr

A = D↔AB −D←AB . (14)

From (4), (11) and (14) we have D←AB = CT
r

+CA
r

B , and

similarly D→AB = CT
r

+ CA
r

A . From the definition (9)
and the relation (14), we have the expression of the local
accessible coherence for system A,

CA
r

A = D↔AB −D←AB

= SÃB̃ − SAB̃ + SA − SÃ.
(15)

Similarly, for system B we also have

CA
r

B = D↔AB −D→AB

= SÃB̃ − SÃB + SB − SB̃.
(16)

Next we compute the remaining coherence CT
r

in
terms of the relative entropy measure of coherence and
discuss its physical implications. From the definition
(9), the bilateral discord can be split into two parts,
D↔AB = D←AB +D→

AB̃
= D→AB +D←

ÃB
. Therefore we have

the following expression for the remaining coherence,

CT
r

= D→AB −D→
AB̃

= D←AB −D←
ÃB

= SAB̃ + SÃB − SAB − SÃB̃.
(17)

Since the quantum discord quantifies the change of mu-
tual information induced by measurement, equation (17)
indicates that the remaining coherence quantifies a kind
of decrease of quantum discord: The quantum discord,
i.e., the amount of mutual information revealed by a mea-
surement on system A, D←AB, decreases if another mea-
surement on system B has already revealed some mutual
information.

The remaining coherence is always non-negative. From
(17) we have

CT
r

= (SAB̃ − SAB)− (SÃB̃ − SÃB)

= S(ρAB ||ρAB̃)− S(ρÃB ||ρÃB̃) ≥ 0,
(18)

where the second equality is due to the fact that for pro-
jective operator Π and matrices A and B, tr[(ΠA)B] =
tr[AΠ(B)] = tr[Π(A)Π(B)], and the inequality is due to
that the relative entropy is contractive under any com-
pletely positive trace preserving map [29, 30].

Moreover, for any incoherent-incoherent, quantum-
incoherent and incoherent-quantum state [21, 28],
CT

r

= 0. An open question is whether the incoherent-
incoherent, quantum-incoherent and incoherent-
quantum states are the necessary and sufficient
conditions such that the equality in (18) holds. Note
that the remaining coherence is different from the intrin-
sic coherence in [24], which actually is the entanglement.
It can be shown that only for some states the remaining
coherence is equal to the entanglement (see state (25) in
examples).
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IV. COHERENCE DISTRIBUTION WITH l1
NORM MEASURE

Let us first analyze the coherence of a bipartite state
ρAB in terms of its entries under local reference basis,

ρAB =
∑
ikjl

ρik,jl|i⟩⟨j| ⊗ |k⟩⟨l|. (19)

The entries ρik,jk(i ̸=j) contribute the coherence for the
system A only. However, the coherence induced by
ρik,jk(i̸=j) may be canceled when we only consider the

marginal state ρA = trB ρAB , since there may exist some
entries such that ρik′,jk′(i̸=j) = −ρik,jk(i ̸=j). This indi-
cates that the coherence induced by the entries ρik,jk(i̸=j)

can be divided into two parts: The first part is not can-
celed and still lives in the density matrix ρA after tracing
over the subsystem B, and the second part is canceled in
ρA. As we will show, the first part actually is the l1 nor-
m coherence of ρA, denoting as Cl1

A , and the second part
actually is the local accessible coherence of system A, de-

noting as CA
l1

A . The same analysis also holds for entries
ρik,il(k ̸=l), which correspond to the coherence partition
for the system B. Hence the above analysis of the entries
of density matrix also shows that, for a subsystem, there
are some accessible coherence besides the coherence of
the subsystem’s density matrix.

Next we find out the expressions for CA
l1

A , CA
l1

B , and

CT
l1
. For the state (19), we have the bipartite coherence

for l1 norm measure,

Cl1
AB =

∑
i̸=j,k ̸=l

|ρik,jl|+
∑
i̸=j,k

|ρik,jk|+
∑
i,k ̸=l

|ρik,il|. (20)

Under local measurement Π on system B, the state
of system A is given by ρAk

=
∑

ij ρik,jk/pk|i⟩⟨j|, with
probability pk =

∑
i ρik,ik. For the middle term of the

right hand side of (20), from (4) it is easy to check∑
i̸=j,k

|ρik,jk| =
∑
k

pkC
l1(ρAk

) = Cl1
A + CA

l1

A . (21)

The above equation means that, for the l1 norm coher-
ence, the total coherence induced only by system A’s ba-
sis,

∑
i̸=j,k |ρik,jk|, equals to the average coherence of A,

which is the summation of coherence and accessible co-
herence of system A. This result is in consist with our for-
mer analysis according to the entries of density matrix.
From (21) we get the expression of accessible coherence
for system A,

CA
l1

A =
∑
i ̸=j

(
∑
k

|ρik,jk| − |
∑
k

ρik,jk|). (22)

Similarly, we have that the average coherence of B equals
to the summation of coherence and accessible coherence
of system B. And the expression of accessible coherence
for system B is given by

CA
l1

B =
∑
k ̸=l

(
∑
i

|ρik,il| − |
∑
i

ρik,il|). (23)

0.5 1.0 1.5 2.0 2.5
J�Λ

0.5

1.0

1.5

2.0
C

(a) Relative entropy
coherence

0.0 0.5 1.0 1.5 2.0
J�Λ0.0

0.5

1.0

1.5

2.0

2.5

3.0
C

(b) l1 norm coherence

FIG. 1. The distribution of coherence for the ground state
of (26) with relative entropy measure (a) and the l1 norm
measure (b). At J/λ = 0, for both relative entropy coher-
ence and l1 norm coherence, the local coherence (blue dots)
and local accessible coherence (green dots) are all zero, and
the bipartite coherence (black dots) is just the remaining co-
herence (red dots). At J/λ → ∞, for the relative entropy
coherence, the local accessible coherence and the remaining
coherence approach to zero. And all the bipartite coherence
is from local coherence. While for the l1 norm coherence the
remaining coherence is nonzero, and the bipartite coherence
is distributed into both local coherence and the remaining
coherence.

The remaining coherence can be obtained from (8),
(20), (22), and (23),

CT
l1

=
∑

i ̸=j,k ̸=l

|ρik,jl|. (24)

Obviously, CT
l1

is always non-negative. Since the en-
tries ρik,jl with i ̸= j and k ̸= l represent the correlation
between the two subsystems, the remaining coherence

CT
l1

quantifies all the correlation induced by these en-

tries. However, CT
l1

is different from the entanglement
in general, although it equals to entanglement for some
states (see examples).

Note that the zero points of the remaining coherence
for the relative entropy measure and l1 norm measure
may be different. For states which do not contain entries

ρik,jl with i ̸= j and k ̸= l, CT
l1

= 0, but possibly

CT
r ̸= 0.

V. EXAMPLES

We now consider some examples for the partition of
coherence in bipartite systems, and show how the local
accessible coherence and the remaining coherence are dis-
tributed for both relative entropy coherence and l1 norm
coherence. First let us consider the Schmidt correlated
state [31],

ρsAB =
∑
ij

ρii,jj |i⟩⟨j| ⊗ |i⟩⟨j|. (25)

The marginal states of (25) are all diagonal, thus the

local coherence Cr
A = Cr

B = Cl1
A = Cl1

B = 0. S-
ince the state becomes diagonal under local measure-
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ment Π on systems A or B, its local accessible coher-

ences are also zero, CA
r

A = CA
r

B = CA
l1

A = CA
l1

B = 0.

The remaining coherence CT
l1
(ρsAB) =

∑
i̸=j |ρii,jj | and

CT
r

(ρsAB) = S(ρs
ÃB̃

) − S(ρsAB), which are actually the

entanglement under negativity measure and relative en-
tropy measure, respectively [32]. Hence for the state (25),
the total coherence is contributed by the remaining co-
herence, here the entanglement between A and B.
For another example we consider the ground state of

N = 2 Ising model described by the Hamiltonian [24],

H = λσx
1σ

x
1 + J(σx

1 + σx
2 ) + ϵλ(σz

1 + σz
2), (26)

where J, λ are the coupling parameters and ϵ is the
symmetry-breaking term. The ground state approach-
es to the Bell state |00⟩ + |11⟩/

√
2 for J ≪ λ and the

product state (|0⟩ + |1⟩)(|0⟩ + |1⟩)/2 for J ≫ λ. The
distribution for both retaliative entropy coherence and l1
norm coherence are shown in Fig. 1.

VI. CONCLUSIONS

We have proposed the concept of accessible coherence
for a single quantum system and studied the proper-
ties of accessible coherence. The accessible coherence
with respect to any given specific ensemble of a state
has been shown to be connected to the decrease of the

Holevo quantity due to the channel’s decoherence. The
accessible coherence also shows its role in the coherence
distribution in bipartite systems. The local accessible
coherence of system A can be gained by measuring the
system B and communicating the measurement results
to A. We have studied the local accessible coherence and
the unaccessible remaining coherence, for both relative
entropy coherence and l1 norm coherence. Their explicit
expressions have been derived analytically. Under the lo-
cal reference basis measurement, for both relative entropy
coherence and l1 norm coherence, we found that the local
average coherence over all the measurement outcomes is
the summation of local accessible coherence and coher-
ence of the local reduced density matrix. We have shown
that the remaining coherence in terms of relative entropy
coherence quantifies the decrease of the basis dependent
discord due to a local decoherence measurement. While
the remaining coherence with l1 norm measure equals to
the sum of absolute values of the density matrix’s entries
with different subscripts for both parties. We finally s-
tudied how the bipartite coherence are distributed into
local coherence, local accessible coherence and remain-
ing coherence through some examples. The results give
us an informational picture of coherence distributions in
bipartite systems.
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