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The absolutely maximally entangled (AME) states play key roles in quantum information pro-
cessing. We provide an explicit expression of the generalized Bloch representation of AME states
for general dimension d of individual subsystems and arbitrary number of partite n. Based on this
analytic formula, we prove that the trace of the squared support for any given weight is given by
the so-called hyper-geometric function and is irrelevant with the choices of the subsystems. The
optimal point for the existence of AME states is obtained.

PACS numbers: 03.67.-a, 03.65.Ud, 03.65.Yz

Multipartite entanglement is not only an interesting phenomenon in quantum physics, but also a key resource
in quantum information theory, which can allow for novel quantum advantages in quantum information processing.
One of the most striking phenomena in multipartite entangled systems is that although one knows the completed
knowledge of the whole system, one can not say all the knowledge of its subsystems [1]. In particular, for a maximally
or genuinely entangled multipartite pure state, its reduced subsystems may be maximally mixed ones.
The family of absolutely maximally entangled (AME) states is the class of n-partite pure states such that all

of the reduced ⌊n/2⌋-partite states are maximally mixed [2, 3]. AME states play an important role in quantum
information processing like quantum teleportation [4–6] and quantum error correction [10–15]. AME states have also
deep connections with apparently irrelevant areas of mathematics such as combinatorial designs [16] and holography
[17, 18]. Furthermore, AME states are the special cases of k-uniform states for k = ⌊n/2⌋ [19, 20], while the k-uniform
states also play a central role in quantum error correction [21].
A well known related open question is to determine the existence of AME states for given dimension and number of

partites [22]. For multiqubit systems (dimension d = 2), the two-qubit Bell state, the three-qubit Greenberger-Horne-
Zeilinger state are the AME states since all the one-qubit reduced density matrices are maximally mixed. However,
the four-qubit AME states are shown to be not existing [3, 23]. The five and six-qubit AME states are constructed
explicitly in [10, 24, 25]. While it has been shown that AME states do not exist for more than eight-qubit systems
[26, 27], the existence of AME states for seven-qubit systems had been a longstanding open problem. Very recently,
Huber et.al proved that seven-qubit AME states do not exist [28], which completely solves the existence problem of
AME states for multi-qubit case.
For the case that the dimension of each individual subsystem is great than two (d > 2), it has been shown that

the AME states exist for any multipartite systems for suitably chosen d. These states can be constructed from graph
states, and used for various quantum information tasks [4–9]. Partial results have been also obtained for particular
cases such as even number of partite [20] and with minimal support [16]. For general d and n-partite systems, a
necessary condition for the existence of AME states has been presented in [7, 10],

n ≤
{
2(d2 − 1) n even,

2d(d+ 1)− 1 n odd.
(1)

For systems such that n and d do not satisfy the above inequality, there will be no AME states.
In this note, from a detailed analysis on the generalized Bloch representation of AME states, we provide explicit

formulae for the operator P 2
⌊n/2⌋+i appeared in the generalized Bloch representation of AME states for arbitrarily n

partite system with each dimension d. We derive two striking things, one is that the critical point for the existence of
AME states is always i = 2 by taking into account the positivity of tr(P 2

⌊n/2⌋+i), the another is that the eigenvalues

of P⌊n/2⌋+i should always be positive. Our method generalize the one used in [28] and can be used to estimate the
existence of AME states.
An AME state [5, 6] is a pure state of n-partite, P = {1, . . . , n}, with each dimension d. LetHi, Hi

∼= Cd, i = 1, ..., n,
denote d-dimensional vector spaces. Consider a pure state |Φ⟩ ∈ H1 ⊗ . . . ⊗Hn. Under a bipartite partition A and
B, A ∪B = P , the state |Φ⟩ can be written in the following Schmidt form,

|Φ⟩ =
dk∑
i=1

√
d−k|ϕi⟩A ⊗ |ψi⟩B1 ⊗ |ψi⟩B2 ⊗ . . .⊗ |ψi⟩Bk

,
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where B is a k-partite system and A is an (n− k)-partite system such that k ≤ n− k, ⟨ϕi|ϕi′⟩A = δii′ , and |ψi⟩Bk
is

the local orthogonal base of the subsystem Bk. The (n− k)-partite reduced state ρA is given by

ρA =

dk∑
i=1

d−k|ϕi⟩A⟨ϕi|, (2)

which has dk nonzero eigenvalues λ = d−k. By definition, the reduced state ρB needs to be maximally mixed,

ρB =

dk∑
i=1

d−k|ϕi⟩B1⟨ϕi| ⊗ . . .⊗ |ϕi⟩Bk
⟨ϕi| = d−kIdk

for k = ⌊n/2⌋.
It is obvious that if the Schmidt form of |Φ⟩ holds true for k = ⌊n/2⌋, then it is also true for all k ≤ ⌊n/2⌋. From

Eq.(2), we can obtain the following projector property

ρ2A = d−kρA, (3)

where ρA is any n− k reduced state of |Φ⟩, 0 < k ≤ ⌊n/2⌋ ≤ n− k.
By Bloch representation any n-qudit state can be written as

ρ = d−n
∑

α1...αn

rα1...αnλα1 ⊗ . . .⊗ λαn , (4)

where αi = 0, 1, . . . , d2 − 1, i = 1, ..., n, rα1...αn are real coefficients, and λαi are the traceless Hermitian generators
of SU(d). For simplicity, we group the terms in (4) according to their weights, the number of nontrivial SU(d)
generators. Let Pj denote the summation of all the terms containing j number of nontrivial SU(d) generators (the
remaining part are all identities), see [28]. We can rewrite the state ρ as

ρ = d−n(I +

n∑
j=1

Pj), (5)

where, and also in the following, I denotes the corresponding identity operator.
If ρ is an AME state, then all ⌊n/2⌋-partite reduced states of ρ are maximally mixed. Namely, in (5) all Pj = 0 for

j ≤ ⌊n/2⌋. Then the (⌊n/2⌋+ 1)-partite reduced state of ρ is given by

ρ(⌊n/2⌋+1) = d−(⌊n/2⌋+1)(I + P(⌊n/2⌋+1)). (6)

On the other hand, from (3) we have

ρ2(⌊n/2⌋+1) = d−(n−(⌊n/2⌋+1))ρ(⌊n/2⌋+1). (7)

Substituting (6) into (7) and tracing over the whole system, we obtain that for every (⌊n/2⌋+1)-partite subsystem,
the tr(P 2

⌊n/2⌋+1) are all equal and is given by

tr(P 2
⌊n/2⌋+1) = d⌊n/2⌋+1(

d2(⌊n/2⌋+1)

dn
− 1),

which means that the term P⌊n/2⌋+1 exists in any (⌊n/2⌋ + 1)-partite reduced density matrices, and moreover,

tr(P 2
⌊n/2⌋+1) is irrelevant with the choices of ⌊n/2⌋+ 1 subsystems.

Now let us consider tr(P 2
⌊n/2⌋+2) in the (⌊n/2⌋ + 2)-partite reduced state ρ(⌊n/2⌋+2). ρ(⌊n/2⌋+2) satisfies the

property (3) and has the Bloch representation with all Pj = 0 for j ≤ ⌊n/2⌋. The terms P⌊n/2⌋+1 existed in

ρ(⌊n/2⌋+1) all appear in ρ(⌊n/2⌋+2). By tracing the equation ρ2(⌊n/2⌋+2) = d−(n−(⌊n/2⌋+2))ρ(⌊n/2⌋+2), while noticing that

tr((P⌊n/2⌋+2)(
∑
P⌊n/2⌋+1 ⊗ I)) = 0, we can prove that the term P⌊n/2⌋+2 exists in any (⌊n/2⌋ + 2)-partite reduced

density matrices and tr(P 2
⌊n/2⌋+2) is irrelevant with the choices of ⌊n/2⌋+ 1 subsystems.

By mathematical reduction, we can prove for any ⌊n/2⌋ + i reduced subsystem, tr(P 2
⌊n/2⌋+i) are all equal and

irrelevant with the choices of ⌊n/2⌋+i subsystems. Moreover, the number of terms like P⌊n/2⌋+1⊗I in the summations∑
P⌊n/2⌋+1 ⊗ I in ρ(⌊n/2⌋+i) is

(⌊n/2⌋+i
⌊n/2⌋+1

)
. We have the following Proposition.
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Proposition 1. Let |Φ⟩ ∈ H1 ⊗ . . .⊗Hn be an AME state. The density matrix |Φ⟩⟨|Φ| is given by

ρ = d−n(I +
∑

j1...j⌊n/2⌋+1

P
(j1...j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗ I(j1...j⌊n/2⌋+1)

+
∑

j1...j⌊n/2⌋+2

P
(j1...j⌊n/2⌋+2)

⌊n/2⌋+2 ⊗ I(j1...j⌊n/2⌋+2))

+ . . .+ Pn), (8)

where, e.g., P
(j1...j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗I(j1...j⌊n/2⌋+1) denotes terms with ⌊n/2⌋+1 nontrivial generators acting on the j1 . . . j⌊n/2⌋+1

subsystems, and I(j1...j⌊n/2⌋+1) represent the corresponding identities I on the remaining subsystems. The value

of tr((P
(j1...j⌊n/2⌋+1)

⌊n/2⌋+1 )2) are all equal and independent on choices of j1 . . . j⌊n/2⌋+1. There are C
⌊n/2⌋+1
n terms like

P
(j1...j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗ I(j1...j⌊n/2⌋+1) in the summation
∑

j1...j⌊n/2⌋+1
P

(j1...j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗ I(j1...j⌊n/2⌋+1), and C
⌊n/2⌋+2
n terms like

P
(j1...j⌊n/2⌋+2)

⌊n/2⌋+2 ⊗ I(j1...j⌊n/2⌋+2)) in the summation
∑

j1...j⌊n/2⌋+2
P

(j1...j⌊n/2⌋+2)

⌊n/2⌋+2 ⊗ I(j1...j⌊n/2⌋+2)) and so on.

In addition, taking into account that tr(PsPt) = 0 for s ̸= t, and

tr((
∑

j1...j⌊n/2⌋+1

P
(j1...j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗ I(j1...j⌊n/2⌋+1)) ·

(
∑

j1...j⌊n/2⌋+1

P
(j1...j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗ I(j1...j⌊n/2⌋+1)))

= Cn−(⌊n/2⌋+1)
n × (n− (⌊n/2⌋+ 1))!

×dn−(⌊n/2⌋+1) × trP 2
⌊n/2⌋+1,

we have

tr(ρ2) = d(−2n)(dn +

(
n

⌊n/2⌋+ 1

)
× dn−(⌊n/2⌋+1)

×tr(P 2
⌊n/2⌋+1) +

(
n

⌊n/2⌋+ 2

)
× dn−(⌊n/2⌋+2)

×tr(P 2
⌊n/2⌋+2) + . . .+ tr(P 2

n)), (9)

which is equal to one, as for any pure state ρ, tr(ρ2) = 1.
Note that for k ≥ ⌊n/2⌋+ 1, the reduces states still satisfy the Eq.(3). In particular, let us consider the ⌊n/2⌋+ i

reduced states ρ(⌊n/2⌋+i) of ρ, where i ≥ 1, ⌊n/2⌋+ i < n. Since ρ is an AME state, similar to Eq. (8), ρ(⌊n/2⌋+i) can
be expressed as

ρ(⌊n/2⌋+i) = d−(⌊n/2⌋+i)(I +∑
j1...j⌊n/2⌋+1

P
(j1...j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗ I(j1...j⌊n/2⌋+1)

+
∑

j1...j⌊n/2⌋+2

P
(j1...j⌊n/2⌋+2)

⌊n/2⌋+2 ⊗ I(j1...j⌊n/2⌋+2)

+ . . .+ P(⌊n/2⌋+i)), (10)

It should be noted that the term
∑

j1...j⌊n/2⌋+1
P

(j1...j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗ I(j1...j⌊n/2⌋+1) in (10) are (⌊n/2⌋ + i)-partite states .

Combining Eq. (9) and (10) we have

tr(ρ2(⌊n/2⌋+i)) = d−2(⌊n/2⌋+i)(d⌊n/2⌋+i + u2), (11)

where

u2 =

(
⌊n/2⌋+ i

⌊n/2⌋+ 1

)
di−1tr(P 2

⌊n/2⌋+1) (12)

+

(
⌊n/2⌋+ i

⌊n/2⌋+ 2

)
di−2tr(P 2

⌊n/2⌋+2)

+ · · ·+ tr(P 2
⌊n/2⌋+i).
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Eq.(11) actually gives rise to a set of linear equations,
A11x1 =T1,
A21x1+A22x2 =T2,

· · · · · · · · ·
Ai1x1+Ai2x2+ · · ·+Aiixi =Ti,

(13)

where xj = tr(P 2
⌊n/2⌋+j), Tl = d−(n−(⌊n/2⌋+l)) − d−(⌊n/2⌋+l), j, l = 1, . . . , i, and

Alj =

{
d−2⌊n/2⌋−l−j

(⌊n/2⌋+l
⌊n/2⌋+j

)
, 1 ≤ j ≤ l ≤ i,

0. 1 ≤ l < j ≤ i.
(14)

Let A denote the coefficient matrix with elements Alj . The inverse matrix A−1 can be obtained by substituting d
with (−d)−1 for nonzero Alj , and keeping the rest elements zero. For l < j, one easily verifies that (AA−1)lj = 0. For
l ≥ j, we have

(AA−1)lj =

i∑
k=1

AlkA
−1
kj

= dj−l
l∑

k=j

(−1)k+j

(
⌊n/2⌋+ l

⌊n/2⌋+ k

)(
⌊n/2⌋+ k

⌊n/2⌋+ j

)

= dj−l

(
⌊n/2⌋+ l

⌊n/2⌋+ j

) l∑
k=j

(−1)k−j

(
l − j

k − j

)

= dj−l

(
⌊n/2⌋+ l

⌊n/2⌋+ j

)
(1− 1)l−j

= δlj .

(15)

Thus we have the following theorem

Theorem 2. Let |Φ⟩ be an AME state given in the form of (8). We have

tr(P 2
⌊n/2⌋+i) =

i∑
j=1

(A−1)ijTj

=
(−1)idi+⌊n/2⌋(i+⌊n/2⌋

1+⌊n/2⌋
) (

1 + ⌊n/2⌋ − d2(1+⌊n/2⌋)−n(i+ ⌊n/2⌋)2F1(1, 1− i; 2 + ⌊n/2⌋; d2)
)

i+ ⌊n/2⌋
,

(16)

where 2F1(a, b; c; z) is the so-called ordinary hyper-geometric function [29].

Theorem 2 provide us an explicit formula to characterize the Bloch representation of AME states. For each d and
n, tr(P 2

⌊n/2⌋+i) can be calculated easily and can be used to estimate the existence of AME states. For i = 2, we have

tr(P 2
⌊n/2⌋+2) =

{
1
2 (−1 + d)d(3+n)/2(−1 + 2d+ 2d2 − n), n is odd;
1
2 (−1 + d2)d2+n/2(−2 + 2d2 − n), n is even.

(17)

The positivity of (17) yields the bound (1) given by Scott [10]. If for given n, d and i, tr(P 2
⌊n/2⌋+i) is negative, then

we can rule out the existence of AME states in this case. For d = 2, by calculating tr(P 2
⌊n/2⌋+i) for different n and i,

an interesting thing shows up that the negative value appears first for i = 2, see Table I.
Besides the property of the projector P 2

⌊n/2⌋+i, there is also another important property of AME states,

ρ(⌊n/2⌋+i) ⊗ I⊗(n−k)|ψ⟩ = d−(n−k)|ψ⟩. (18)

Recall that the density matrix of an AME state always has the following form:

ρ(⌊n/2⌋+i) = d−(⌊n/2⌋+i)I + ∑
j1···j⌊n/2⌋+1

P
(j1···j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗ I(j1···j⌊n/2⌋+1) +
∑

j1···j⌊n/2⌋+2

P
(j1···j⌊n/2⌋+2)

⌊n/2⌋+2 ⊗ I(j1···j⌊n/2⌋+2) + · · ·+ P(⌊n/2⌋+i)

 (19)
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TABLE I: tr(P 2
⌊n/2⌋+i) for n-qubit AME states, n = 2, ..., 13.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

n = 2 12

n = 3 4 32

n = 4 24 48

n = 5 8 48 192

n = 6 48 0 1152

n = 7 16 64 256 2816

n = 8 96 −192 2688 768

n = 9 32 64 384 4864 11264

n = 10 192 −768 6912 −12288 141312

n = 11 64 0 768 8192 6144 294912

n = 12 384 −2304 18432 −61400 405504 −663552

n = 13 128 −256 2048 12288 −12288 614400 −98304

(i.e. all operators Pj with 1 ≤ j ≤ ⌊n/2⌋ vanish).
Inserting (18) into (19), for any l = 1, · · · , i, we have the following equation,

d−(⌊n/2⌋+l)

 ∑
j1···j⌊n/2⌋+1

P
(j1···j⌊n/2⌋+1)

⌊n/2⌋+1 ⊗ I(j1···j⌊n/2⌋+1) + · · ·+ P(⌊n/2⌋+l)

⊗ I⊗(n−(⌊n/2⌋+l))|ψ⟩

=
(
d−(n−(⌊n/2⌋+l)) − d−(⌊n/2⌋+l)

)
|ψ⟩.

(20)

One can see that |ψ⟩ is the eigenvector of each P(⌊n/2⌋+l)⊗ I⊗(n−(⌊n/2⌋+l)). Suppose P(⌊n/2⌋+l)⊗ I⊗(n−(⌊n/2⌋+l))|ψ⟩ =
λ(⌊n/2⌋+l)|ψ⟩. Then equations (20) leads to the following linear equations,

B11x1 =R1,

B21x1+B22x2 =R2,

· · ·
Bi1x1+Bi2x2+ · · ·+Biixi =Ri

(21)

where xj = λ(⌊n/2⌋+j), Rl = d−(n−(⌊n/2⌋+l)) − d−(⌊n/2⌋+l), j, l = 1, · · · , i, and

Blj =

{
d−⌊n/2⌋−l

(⌊n/2⌋+l
⌊n/2⌋+j

)
, 1 ≤ j ≤ l ≤ i,

0, 1 ≤ l < j ≤ i.
(22)

Let B denote the coefficient matrix with elements Blj . The inverse matrix B−1 is given by

B−1
lj =

{
(−1)l+jd⌊n/2⌋+j

(⌊n/2⌋+l
⌊n/2⌋+j

)
, 1 ≤ j ≤ l ≤ i,

0, 1 ≤ l < j ≤ i.
(23)
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One can easily verify that for l < j, (BB−1)lj = 0, and for l ≥ j,

(BB−1)lj =
l∑

k=j

BlkB
−1
kj

= dj−l
l∑

k=j

(−1)k+j

(
⌊n/2⌋+ l

⌊n/2⌋+ k

)(
⌊n/2⌋+ k

⌊n/2⌋+ j

)

= dj−l

(
⌊n/2⌋+ l

⌊n/2⌋+ j

) l∑
k=j

(−1)k−j

(
l − j

k − j

)

= dj−l

(
⌊n/2⌋+ l

⌊n/2⌋+ j

)
(1− 1)l−j

= δlj .

(24)

And the constant vector is given as Rl = d−(n−(⌊n/2⌋+l)) − d−(⌊n/2⌋+l).(???) Thus we have the following theorem

Theorem 3. Let |Φ⟩ be an AME state given in the form of (8). The eigenvalues of λ(⌊n/2⌋+i) in P(⌊n/2⌋+i) ⊗
I⊗(n−(⌊n/2⌋+i))|ψ⟩ = λ(⌊n/2⌋+i)|ψ⟩ are given by

λ(⌊n/2⌋+i) =
i∑

j=1

(B−1)ijRj

=
(−1)i

(
i+⌊n/2⌋
1+⌊n/2⌋

)
(1 + ⌊n/2⌋ − d2(1+⌊n/2⌋)−n(i+ ⌊n/2⌋)2F1(1, 1− i; 2 + ⌊n/2⌋; d2))

i+ ⌊n/2⌋
,

(25)

where 2F1(a, b; c; z) is the ordinary hyper-geometric function.

Notice that the only difference between the right hand sides of equations (16) and (25) is the factor d(⌊n/2⌋+i),
which means that λ(⌊n/2⌋+i) ≥ 0 for any AME states.
In summary, from the generalized Bloch representation of AME states, we have proved that the trace of the squared

support for any given weight is determined and irrelevant with the choice of the subsystems, that is, tr(P 2
⌊n/2⌋+i) is

an invariant for any ⌊n/2⌋ + i subsystems. Based on this fact, we have obtained an explicit formula on tr(P 2
⌊n/2⌋+i)

and λ(⌊n/2⌋+i) for arbitrary AME states given by the so-called hyper-geometric function. A deep connection between
these two quantities is also obtained. Moreover, we find that i = 2 is always optimal on verifying the existence of
AME states. That is, the results obtained in [28] are already the best, where the authors only studied the case of
i = 2. Further more, it has been also shown that the eigenvalues of the projectors are always positive for any AME
states. Our results improve the knowledge on the non-existence of AME states for given d and n, and may be used
to provide improved criterion on the existence of AME states, as well as benefit to the construction of the so-called
k-uniform (k < ⌊n/2⌋) states [20].
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