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Abstract

Given a set of predictor variables and a response variable, how much information
do the predictors have about the response, and how is this information distributed
between unique, complementary, and shared components? Recent work has proposed
to quantify the unique component of the decomposition as the minimum value of the
conditional mutual information over a constrained set of information channels. We
present an efficient iterative divergence minimization algorithm to solve this optimiza-
tion problem with convergence guarantees, and we evaluate its performance against
other techniques.

Keywords: Positive information decomposition, mutual information, alternating diver-
gence minimization

1 Introduction

When Shannon proposed to use entropy in order to quantify information, he had in mind a
very specific setting of communication over a noisy channel. Since then, the use of entropic
quantities has been greatly expanded, with successful applications in statistical physics,
complex systems, neural networks, and machine learning. In particular, transfer entropy is
used as a tool to study causality in dynamical systems (Schreiber 2000), and mutual infor-
mation as a criterion in feature selection (Vergara and Estévez 2014). In many applications,
the effort of estimating entropic quantities, which may be considerable, is out-weighed by
the performance gain.

Despite the success of information theory, there are still many open questions about the
nature of information. In particular, since information is not a conservation quantity, it is
difficult to describe how information is distributed over composite systems. Clearly, differ-
ent subsystems may have exclusive (or unique) information, or they may have redundant
information. Moreover, synergy effects complicate the analysis: It may happen that some
information is not known to any subsystem but can only be recovered from knowledge of the
entire system. An example is the checksum of several digits, which can only be computed
when all digits are known. Such synergy effects abound in cryptography, where the goal
is that the encrypted message alone contains no information about the original message
without knowledge of the key. It is also suspected that synergy plays a major role in the
neural code (Latham and Nirenberg 2005).

1

http://arxiv.org/abs/1709.07487v1


In spite of their conceptual importance, so far there is no consensus on how to measure
or extract the unique, shared, and synergistic portions of joint information, even though
there have been several proposals (e.g., McGill 1954, Bell 2003). Williams and Beer (2010)
proposed a principled approach to decomposing the total mutual information of a system
into positive components corresponding to a lattice of subsystems. This was followed up by
the axiomatic approach from Bertschinger et al. (2014), quantifying the unique, shared, and
synergistic information based on ideas from decision theory. We focus on their definitions,
detailed in Section 2.

Although theoretically promising, these definitions involve an optimization problem that
complicates experimentation and applications. Indeed, Bertschinger et al. (2014) note that
the optimization problem, although convex, can be very ill conditioned, and difficulties have
been reported, with out-of-the-box methods or other implementations either failing to pro-
duce the correct results, or taking extremely long to converge. In Section 3, we derive an al-
ternating divergence minimization algorithm for solving the union information optimization
problem. Our algorithm is conceptually similar to the Blahut-Arimoto algorithm (Blahut
1972), which is used for computing the capacity of an information channel as the maximum
of the mutual information over a constrained set of joint probability distributions. However,
there are significant differences, especially in relation to the nature of the constraints.

In Section 4, we run numerical experiments comparing our algorithm with other compu-
tation approaches. Our algorithm consistently returns accurate solutions, while still requir-
ing far less computation time than other methods. We wrap up and give a brief outlook in
Section 5. Relevant notations are included in Appendix B.

2 Quantifying the unique information

While much research has focused on finding an information measure for a single aspect (like
synergy), the seminal paper by Williams and Beer (2010) introduced an approach to find a
complete decomposition of the total mutual information I(S;Y1, . . . , Yk) about a signal S
that is distributed among a family of random variables Y1, . . . , Yk. Here, the total mutual
information is expressed as a sum of non-negative terms with a well-defined interpretation
corresponding to the different ways in which information can have aspects of redundant,
unique, or synergistic information. For example, in the case k = 2, writing Y1 ≡ Y and
Y2 ≡ Z, the decomposition is of the form

I(S;Y, Z) = SI(S;Y, Z)
︸ ︷︷ ︸

shared (redundant)

+ CI(S;Y, Z)
︸ ︷︷ ︸

complementary (synergistic)

+ UI(S;Y \Z)
︸ ︷︷ ︸

unique Y wrt Z

+ UI(S;Z\Y )
︸ ︷︷ ︸

unique Z wrt Y

, (1)

where SI(S;Y, Z), CI(S;Y, Z), UI(S;Y \Z), and UI(S;Z\Y ) are nonnegative functions
that depend continuously on the joint distribution of (S, Y, Z). Furthermore, these functions
are required to satisfy the intuitive equations

I(S;Y ) = SI(S;Y, Z) + UI(S;Y \Z),

I(S;Z) = SI(S;Y, Z) + UI(S;Z\Y ).
(2)

Combining these equations, it follows that the co-information can be written as the differ-
ence of redundant and synergistic information, which agrees with the general interpretation
of co-information:

CoI(S;Y ;Z) := I(S;Y )− I(S;Y |Z) = SI(S;Y, Z)− CI(S;Y, Z). (3)

2



Similarly, the conditional mutual information satisfies

I(S;Y |Z) = I(S;Y, Z)− I(S;Z) = CI(S;Y, Z) + UI(S;Y \Z). (4)

The decomposition is illustrated in Figure 1a.
Although the above framework is very appealing, there is no general agreement on

how to define the corresponding functions for shared, unique, and synergistic information.
When Williams and Beer (2010) presented their information decomposition framework, they
also proposed specific measures. However, their functions have been criticized as over-
estimating redundant and synergistic information, while underestimating unique informa-
tion (Griffith and Koch 2014)1. Another proposal of information measures for the bivariate
case (k = 2) that involves information-geometric ideas is presented in Harder et al. (2013).

Here we follow the approach from Bertschinger et al. (2014) and use the functions SI, UI
and CI defined there, since it is the most principled approach, based on ideas from decision
theory and having an axiomatic characterization. This approach covers only k = 2, but situ-
ations with larger k can be analyzed by grouping the variables. The decomposition is based
on the idea that unique and shared information, UI(S;Y \Z) and SI(S;Y, Z), should de-
pend only on the marginal distributions of the pairs (S, Y ) and (S,Z). It gives similar values
as the functions defined in Harder et al. (2013). Incidentally, the bivariate synergy measure
derived from this approach agrees with the synergy measure defined by Griffith and Koch
(2014) for arbitrary k.

For some finite state spaces Y,Z,S, let PS×Y×Z be the set of all joint distributions of
(S, Y, Z). Given P ∈ PS×Y×Z , let

∆P :=
{
Q ∈ PS×Y×Z : QSY (s, y) = PSY (s, y) and QSZ(s, z) = PSZ(s, z)

}
(5)

denote the set of joint distributions of (Y, Z, S), that have the same marginals on (S, Y ) and
(S,Z) as P . Bertschinger et al. (2014) define the unique information that Y conveys about
S with respect to Z as

UI(S;Y \Z) := min
Q∈∆P

IQ(S;Y |Z). (6)

By (1) and (2), specifying (6) fixes the other three functions in (1), which are then

UI(S;Z\Y ) := min
Q∈∆P

IQ(S;Z|Y ), (7)

SI(S;Y, Z) := I(S;Y )− min
Q∈∆P

IQ(S;Y |Z) = max
Q∈∆P

CoIQ(S;Y ;Z), (8)

CI(S;Y, Z) := SI(S;Y, Z)− CoI(S;Y ;Z) = I(S;Y, Z)− min
Q∈∆P

IQ(S;Y, Z). (9)

Since ∆P is compact and the mutual information is a continuous function, these maxima
and minima are all well-defined.

Example 1 (Census data). We illustrate the mutual information decomposition by a brief
analysis of the US 1994 census income data set (Lichman 2013). Here the task is to relate
a list of predictor variables with a binary response variable. The predictors include: age
(continuous variable divided into 4 categories: < 24, 24–35, 36–50, > 50), sex (binary: Male,

1For example, in the case of two independent variables Y,Z and a copy S = (Y, Z), the measure of
Williams and Beer assigns 0 bit of unique information to Y and Z, and all available information is interpreted
as either redundant or synergistic.
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Female), race (5 values: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black),
education level (4 values: Basic-schooling, Attended-HS, Bachelors-and-above, Vocational),
occupation (14 values: Tech-support, Craft-repair, Other-service, etc.), and hours-per-week
(continuous variable grouped into 2 categories:≤ 40, > 40). The response is the yearly
income, with values > 50K and ≤ 50K.

Figure 1 shows the evaluation of the information decomposition (6)–(9) on this data set,
computed using the algorithm that we will present in Section 3. We see, for instance, that
most of the information that race and occupation have for predicting income, is uniquely
in the occupation. On the other hand, education and sex have about equally large shared
and complementary information. Age has a large unique information about income with
respect to sex, as does occupation with respect to hours-per-week. These results appear
quite reasonable. They illustrate how the information decomposition allows us to obtain a
fine grained quantitative analysis of the relationships between predictors and responses.

3 Computing the information decomposition

We only need to solve one of the optimization problems (6)–(9) in order to obtain all
the terms in the information decomposition. Actually we can solve another equivalent
optimization problem, namely for a function called the union information, defined as

I∪(S;Y, Z) := I(S;Y, Z)− CI(S;Y, Z) = min
Q∈∆P

IQ(S;Y, Z). (10)

We first note that this is a convex minimization problem:

Proposition 1. The optimization problems (6) and (10) are convex. Moreover, (6)–(10)
are equivalent in that a distribution Q solves one of them if and only if it solves all of them.

Proof. The equivalence of the optimization problems is clear by construction. Moreover,

min
Q∈∆P

IQ(S;Y, Z) = H(S)− max
Q∈∆P

HQ(S|Y, Z),

since H(S) is constant on ∆P . Thus, convexity of the optimization problems follows from the
fact that HQ(S|Y, Z) is concave with respect to the joint distribution (Cover and Thomas
1991).

The target function IQ(S;Y, Z) is convex, but not strictly convex. For certain P , the
solution is not unique, and close by, the conditioning number of the optimization problem
becomes very bad (Bertschinger et al. 2014) Even though the optimizing Q ∈ ∆P may not
be unique, convexity guarantees that any local optimizer is a global optimizer and that the
optimum value is unique.

Double minimization formulation. The mutual information can be written in the form
IP (S;Y, Z) = minRY Z∈PY×Z D(P‖PSRY Z), with the minimum attained at R∗

Y Z = PY Z (see,
e.g., Csiszár and Körner 2011; eq. (8.7)). With this expression, we can rewrite (10) as a
double minimization problem:

I∪(S;Y, Z) = min
Q∈∆P

min
RY Z∈PY×Z

D(Q‖QSRY Z). (11)
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CI

UIY \Z UIZ\Y

SI

(a)

hours-per-week (Y ), occupation (Z)

age (Y ), sex (Z)

education (Y ), occupation (Z)

race (Y ), occupation (Z)

education (Y ), race (Z)

education (Y ), sex (Z)

SI CI UI(S;Y \Z) UI(S;Z\Y )

(b)

Figure 1: (a) Illustration of the decomposition (1) of the mutual information of a pair
(Y, Z) and S into the complementary (synergistic) information CI, the unique information
UI of X with respect to Y and conversely, and the shared (redundant) information SI.
(b) Information decomposition evaluated on the US census data set: The attributes Y and
Z predict the income level (S), i.e., whether a person makes over USD 50K per year. In
this figure, each bar is normalized by the total mutual information I(S;Y, Z), to highlight
the relative values of SI, CI and UI.
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Conditional probability formulation. The minimization problem (11) can also be
studied and solved over a set of conditional probabilities, instead of the set ∆P that consists
of joint probability distributions. In fact, ∆P is in bijection with ∆P,S :=×s∈S ∆P,s, where

∆P,s :=
{
QY Z ∈ PY×Z : QY (y) = PY |S(y|s) and QZ(z) = PZ|S(z|s)

}
, s ∈ S. (12)

The set ∆P,s is the linear family of probability distributions of (Y, Z) defined by fixing the
marginal distributions of Y and Z to be those of PY Z|s. Any joint distribution Q ∈ ∆P has
the form Q = PSQY Z|S with QY Z|S ∈ ∆P,S . In turn, the optimization problem (11) can be
written as

I∪(S;Y, Z) = min
QY Z|S∈∆P,S

min
RY Z∈PY×Z

D(PSQY Z|S‖PSRY Z)

= min
RY Z∈PY×Z

∑

s

PS(s) min
QY Z|s∈∆P,s

D(QY Z|s‖RY Z). (13)

Alternating divergence minimization. An alternating algorithm iteratively fixes one

of the two free variables and optimizes over the other. Starting with some R
(0)
Y Z ∈ PY×Z ,

recursively define

Q
(i+1)
Y Z|s = argmin

QY Z|s∈∆P,s

D(QY Z|s‖R
(i)
Y Z) for each s ∈ S, (14a)

R
(i+1)
Y Z = argmin

RY Z∈PY×Z

D(PSQ
(i+1)
Y Z|S‖PSRY Z). (14b)

With suitable initialization, this iteration converges to a pair attaining the global opti-
mum:

Theorem 1. Given P ∈ PS×Y×Z and an initial value R
(0)
Y Z ∈ PY×Z of full support, the it-

eration (14) converges. The limit limi→∞ PSQ
(i)
Y Z|S is a global optimum of the minimization

problem (13).

Proof. For any P , the subsets ∆P and {PSRY Z : RY Z ∈ PY×Z} of PS×Y×Z are compact
and convex. The statement then follows from (Csiszár and Shields 2004; Corollary 5.1).

The optimization problem is convex but not strictly convex and it may have several
global optimizers. Still the sequence of divergence values converges to the minimum (13).

Implementation. Pseudocode for the alternating divergence minimization algorithm for
computing the union information (admUI) is in Algorithm 1. We next discuss the two steps
separately.

Step 1 Using the product structure of ∆P,S , we can break the computation of Q
(i+1)
Y Z|S into

smaller problems as given in (14a). This kind of minimization problem can be solved using
generalized iterative scaling (pseudocode in Algorithm 2):

Theorem 2. The nonnegative functions bn on Y × Z defined recursively by

b0(y, z) = RY Z(y, z), bn+1(y, z) = bn(y, z)

[
PY |S(y|s)
∑

z bn(y, z)

]1/2
[

PZ|S(z|s)
∑

y bn(y, z)

]1/2

, (15)

converge to argminQY Z|s∈∆P,s
D(QY Z|s‖RY Z), that is, the I-projection of RY Z to ∆P,s.
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Proof. The set ∆P,s is a linear family with statistics δy, y ∈ Y and δz, z ∈ Z. The claim
follows from (Csiszár and Shields 2004; Theorem 5.2).

Step 2 Using the variational representation for IPSQY Z|S
(S;Y, Z) discussed prior (11), we

can write the minimizer of (14b) in closed form as

R
(i+1)
Y Z (y, z) =

∑

s∈S

PS(s)Q
(i+1)
Y Z|S(y, z|s). (16)

Stopping criterion The iteration (14) can be stopped when

max
y∈Y,z∈Z

log
Q

(i+1)

Y Z|S
(y,z|s)

Q
(i)

Y Z|S
(y,z|s)

≤ ǫ, for all s ∈ S, (17)

for some prescribed ǫ > 0. When this condition is satisfied, ǫ is an upper bound on the
difference of the current value of the divergence and the minimum (see Csiszár and Shields
2004; Corollary 5.1).

ǫ is a parameter of the algorithm. In our experiments, we chose ǫ = 10−6.
For the I-projection, we propose a heuristic stopping criterion. The iteration (15) can be

stopped when the squared distance between subsequent distributions is less than the square
of some prespecified ǫ1. We found ǫ1 = 10−2ǫ a good standard value.

In general, the distributions returned in Step 1 are not exact, and this needs to be
accounted for in the stopping criterion. In Appendix A we show that it is possible to
guarantee ǫ optimality of the overall optimization, if the outer loop is interrupted when

maxy,z,s log Q̃
(i+1)
Y Z|S(y, z|s)/Q̃

(i)
Y Z|S(y, z|s) ≤

ǫ
3 , and iteration (15) is interrupted when ‖η̃(i)−

η‖1 ≤ Q̃
(i)
Y Z|S(y, z|s)

ǫ
12 . Here η̃(i) and η denote the expectation parameters of the current

iterate and of the target, respectively.

Modifications. There are various obvious modifications of our algorithms that could con-
tribute to an improved performance. The stopping criterion does not need to be evaluated
in every iteration. Evaluating it once every 20 iterations can save about 10% of the total
computation time, as we found in numerical experiments. The optimization problems in
Step 1 are equivalent to maximum likelihood estimation on an exponential family. They
can be solved using negative log likelihood gradient descent, L-BFGS, and others. For large
systems, the optimization can be run in parallel for blocks of s values. The stopping crite-
rion discussed previously will work regardless of the iterative optimization method used on
Step 1.
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Algorithm 1 Alternating divergence minimization for the union information
(admUI)

1: Input: Marginals PSY and PSZ

2: Output: Q∗ = argminQ∈∆P
IQ(S;Y, Z)

3: Initialization: Some R
(0)
Y Z from the interior of PY×Z . Set i = 0.

4: while not converged do
5: for all s ∈ supp(PS) do in parallel

6: Q
(i+1)
Y Z|s ← argminQY Z|s∈∆P,s

D(QY Z|s‖R
(i)
Y Z|s) (Algorithm 2) ⊲ Step 1

7: end for
8: R

(i+1)
Y Z (y, z)←

∑

s∈S PS(s)Q
(i+1)
Y Z|S(y, z|s) ⊲ Step 2

9: i← i+ 1
10: end while
11: return PSQ

(i)
Y Z|S

Algorithm 2 The I-projection of RY Z to ∆P,s

1: Input: Marginals PSY and PSZ , some s ∈ S, and target distribution RY Z

2: Output: Q∗
Y Z|s = argminQY Z|s∈∆P,s

D(QY Z|s‖RY Z)

3: Initialization: b0(y, z)← RY Z(y, z). Set n = 0.
4: while not converged do

5: bn+1(y, z)← bn(y, z)
[

PY |S(y|s)
∑

z
bn(y,z)

]1/2 [ PZ|S(z|s)
∑

y
bn(y,z)

]1/2

6: n← n+ 1
7: end while
8: return bn

8



4 Experiments

Comparison with other methods. We compare the performance of our alternating
divergence minimization algorithm admUI against two other optimization methods. We im-
plemented the admUI algorithm in Matlab R2017a as a Matlab executable (MEX). Our first
baseline is the general purpose optimizer fmincon from the Matlab optimization package.
We also compare it against fmincon including the derivative and the Hessian. Figure 2
shows the mean of the values of the unique information computed on 250 joint distributions
of (S, Y, Z) sampled uniformly at random from the probability simplex. We are interested
in the accuracy of the computations and the required computation time as the state spaces
increase in size. In terms of accuracy, all methods perform similarly (lower values reflect
more accurate outcomes of the minimization). However, our algorithm allows for signifi-
cant savings in terms of computation time. In fact, the black-box fmincon and fmincon

with only the gradient included failed to give any answer beyond |Y| = 12 in a reasonable
amount of time (see last row in Figure 2). We note that for admUI we did not parallelize
the computations in Step 1, which we expect will provide additional savings, especially for
systems with large S (last row in the Figure 2).

Accuracy and stopping criterion. To test the accuracy and efficiency of the admUI
algorithm for high-dimensional systems, we consider the Copy distribution: Y and Z are
independent uniformly distributed random variables and S = (Y, Z). The unique infor-
mation of Y with respect to S for the Copy distribution is just the mutual information
I(S;Y ) = H(Y ) (in the language of Harder et al. (2013), UI satisfies the identity property,
as shown by Bertschinger et al. (2014)). Hence we can use this example to test the accuracy
of the solutions produced by different optimizers. Table 1 compares the admUI algorithm
and fmincon (with gradient and Hessian included) in terms of the error and computation
times for different cardinalities of Y. We chose Z = Y and S = Y ×Y so that overall size of
the system scales as |Y|4. Compared to the admUI, the computation time and error grow
at a much faster rate for fmincon.

For admUI, we consider the two stopping criteria discussed in Section 3, with several
choices of the accuracy parameter ǫ. Stop 1 is the heuristic and Stop 2 is the rigorous
method. The stopping criterion was evaluated in every iteration. As can be seen from the
table, both criteria allow us to control the error. The heuristic has a lower computational
overhead compared to the rigorous stopping criterion. On the other hand, the error bound
of the rigorous criterion appears to be somewhat pessimistic, and seems to perform well
even with a much larger ǫ.
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Figure 2: Comparison of the admUI algorithm ( ) with the general purpose optimizer
fmincon when including the gradient and Hessian ( ), only the gradient ( ), and
when including none ( ). The left panel shows the average values of the computed
unique information, UI(S;Y \Z) for 250 distributions sampled uniformly at random from
the probability simplex. The right panel shows the average computation (wall-clock) time
on an Intel 2.60GHz CPU. Note that the last row corresponds to much larger systems.
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Table 1: Comparison of admUI and fmincon on the Copy example.

Size ǫ admUI fmincon
1

Stop 1 Stop 2

Error Time (ms) Error Time (ms) Error Time (ms)

2
4

10
−8

1.94 · 10
−9 4.38 9.16 · 10

−10
9.03 · 10

1
9.52 · 10

−5
2.38 · 10

2

10
−5

1.97 · 10
−6 5.36 6.67 · 10

−7
6.45 · 10

1

10
−3

1.09 · 10
−4 4.19 5.01 · 10

−5
1.03 · 10

1

4
4

10
−8

1.63 · 10
−9 11.09 7.24 · 10

−10
2.27 · 10

2
1.50 · 10

−4
4.17 · 10

2

10
−5

1.84 · 10
−6 5.77 5.38 · 10

−7
2.67 · 10

2

10
−3

1.03 · 10
−4 5.06 4.13 · 10

−5
2.59 · 10

2

7
4

10
−8

3.15 · 10
−9 6.23 4.93 · 10

−10
2.42 · 10

3
2.32 · 10

−4
8.61 · 10

3

10
−5

1.43 · 10
−6 4.49 3.71 · 10

−7
2.41 · 10

3

10
−3

0.81 · 10
−4 7.68 2.89 · 10

−5
1.97 · 10

3

10
4

10
−8

2.60 · 10
−9 14.67 3.71 · 10

−10
9.38 · 10

3
3.51 · 10

−4
4.86 · 10

5

10
−5

1.18 · 10
−6 12.11 2.82 · 10

−7
9.20 · 10

3

10
−3

0.66 · 10
−4 11.90 2.22 · 10

−5
8.73 · 10

3

1
fmincon with gradient, Hessian, and options: Algorithm = interior-point, MaxIterations = 10

4,
MaxFunctionEvaluations = 10

5, OptimalityTolerance = 10
−6, ConstraintTolerance = 10

−8.

5 Discussion

We developed an efficient algorithm to compute a decomposition of information in compos-
ite systems that was proposed by Bertschinger et al. (2014), but for which the computation
had remained a challenge so far. Our algorithm comes with convergence guarantees and a
rigorous stopping criterion ensuring ǫ optimality of the solution. We tested the computa-
tion time and accuracy of our algorithm against other general purpose constrained convex
optimizers. In various experiments, our algorithm showed a very good performance both in
terms of computation time and accuracy.

One may ask whether the computational complexity of the function UI prohibits its
use in applications, given that already computing or estimating a mutual information is
challenging. One major problem when estimating the mutual information is the difficulty
in estimating the joint distribution of many variables. In this respect, UI compares well,
since UI(S;Y \Z) does not depend on the joint distribution of all variables, but only on
the marginal distributions of pairs (S, Y ) and (S,Z). In those applications where the main
problem is the estimation of the joint distribution given the data at hand, UI is easier to
treat than the mutual information.

We hope that our algorithm will contribute means to test the information decomposi-
tion on larger systems than was possible so far, and also to use it in settings such as feature
selection, robotics (Ghazi-Zahedi and Rauh 2015, Ghazi-Zahedi et al. 2017), and the anal-
ysis of multivariate systems, in particular stochastic neural networks, which so far has been
pursued only with simpler types of measures Tax et al. (2017).
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Appendix

A Stopping criterion

Outer loop with errors. The stopping criterion (17) for the outer loop of Algorithm 1

tests maxs,y,z log
Q(i+1)(y,z|s)
Q(i)(y,z|s)

≤ ǫ, which ensures that the objective function has reached

a value within ǫ of optimal. We need to describe the behavior of this test when using
approximations Q̃(i) and Q̃(i+1) instead of the exact distributions Q(i) and Q(i+1). Consider
any s, y, z and abbreviate q(i) ≡ Q(i)(y, z|s) and q̃(i) ≡ Q̃(i)(y, z|s).

Proposition 2. Let ǫ > 0. If

|q̃(i) − q(i)| ≤ q̃(i)
ǫ

12
, |q̃(i+1) − q(i+1)| ≤ q̃(i+1) ǫ

12
, and log

q̃(i+1)

q̃(i)
≤

ǫ

3
,

then

log
q(i+1)

q(i)
≤ ǫ.

Proof. By direct evaluation.

In turn, testing the stopping criterion with ǫ1 ≤
ǫ
3 allows us to conclude ǫ optimality, if

the approximate distributions plugged in are within ǫ0 ≤ min{q̃(i), q̃(i+1)} ǫ
12 of the actual

distributions, in each entry.

Inner loop. Now we want to find a criterion to interrupt the iteration from Algorithm 2
with the guarantee that |q̃ − q| ≤ ǫ0 for some prespecified ǫ0.

Note that the optimization in Theorem 2 takes place over the set of distributions of the
form 1

Z(R,qY ,qZ)R(y, z)qY (y)qZ(z), where qY and qZ are arbitrary probability distributions

over Y and Z respectively, R is the distribution that we want to approximate with a distri-
bution from the linear family ∆P,s, and Z(R, qY , qZ) is the normalizing partition function.
This is an exponential family with sufficient statistics 1y′ , y′ ∈ Y , 1z′ , z′ ∈ Z, computing
the marginal distributions on Y and Z. (This is similar to an independence model, but with
a non uniform reference measure.) The solution to this optimization problem is the unique
distribution QY Z within the exponential family, that is also contained in ∆P,s, meaning
that its marginal distributions (which correspond to the expectation parameters) satisfy
QY (y) = ηy = PY |S(y|s) and QZ(z) = ηz = PZ|S(z|s). We want to bound the error |q̃ − q|
in terms of the error |η̃ − η| of the expectation parameters.

Conjecture 1. ‖q̃ − q‖∞ ≤ ‖η̃ − η‖1.

Extensive computer experiments seem to confirm that Conjecture 1 is true. Assuming
this, the stopping criterion is

‖η̃ − η‖1 =
∑

z∈Z\{1}

|(
∑

y

1

Z
R(y, z)qY (y)qZ(z))− PZ|S(z|s)|

+
∑

y∈Y \{1}

|(
∑

z

1

Z
R(y, z)qY (y)qZ(z))− PY |S(z|s)|

≤ǫ0.

12



Summarizing, we can guarantee ǫ optimality of the overall optimization, if the outer loop

is interrupted when log q̃(i+1)

q̃(i)
≤ ǫ

3 , and the inner loop is interrupted when ‖η̃(i)−η‖1

min q̃(i)
≤ ǫ

12 .

B Notation

We use capital letters to denote random variables and script for the corresponding finite
alphabets. We write PS for the probability distribution of S, which is a vector with entries
PS(s), s ∈ S. The support of PS is the set supp(PS) = {s ∈ S : PS(s) 6= 0}. The set of
all probability measures on S is denoted PS . A Markov kernel from S to Y is a measurable
function PY |S : S → PY , represented by a matrix with rows PY |S=s = PY |s ∈ PY , s ∈ S.

We use the following quantities:

• The entropy H(PS) of a distribution PS ∈ PS is H(PS) := −
∑

s∈S PS(s) logPS(s).

• The Kullback-Leibler divergence from PS to QS is

D(PS‖QS) :=
∑

s∈S

PS(s) log
PS(s)
QS(s) .

• The conditional divergence is

D(PY |S‖QY |S |PS) := Es∼PS
[D(PY |S=s‖QY |S=s)].

• The mutual information of two random variables S and Y is I(S;Y ) := D(PSY ‖PSPY ).
Equivalently, I(S;Y ) = D(PY |S‖PY |PS) = D(PS|Y ‖PS |PY ). We use a subscript to
specify the underlying distribution, e.g., IQ(S;Y |Z), under Q = QSY Z .

• The conditional mutual information of S and Y given Z is

IQ(S;Y |Z) =
∑

z

QZ(z)
∑

s,y

QSY |Z(s, y|z) log
QSY |Z(s,y|z)

QS|Z(s|z)QY |Z (y|z) .
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