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Random spectrahedra

PAUL BREIDING, KHAZHGALI KOZHASOV AND ANTONIO LERARIO

Abstract. Spectrahedral cones are linear sections of the cone of positive semidefinite sym-
metric matrices. We study statistical properties of random spectrahedral cones (intersected
with the sphere)

S`,n =
{

(x0, . . . , x`) ∈ S` | x01 + x1R1 + · · ·+ x`R` � 0
}

where R1, . . . , R` are independent GOE(n)-distributed matrices rescaled by (2n`)−1/2.
We relate the expectation of the volume of S`,n with some statistics of the smallest eigen-

value of a GOE(n) matrix, by providing explicit formulas for this quantity. These formulas
imply that as `, n→∞ on average S`,n keeps a positive fraction of the volume of the sphere
S` (the exact constant is Φ(−1) ≈ 0.1587, where Φ is the cumulative distribution function of
a standard gaussian variable).

For ` = 2 spectrahedra are generically smooth, but already when ` = 3 singular points
on their boundaries appear with positive probability. We relate the average number Eσn of
singular points on the boundary of a three-dimensional spectrahedron S3,n to the volume of
the set of symmetric matrices whose two smallest eigenvalues coincide. In the case of quartic
spectrahedra (n = 4) we show that Eσ4 = 6 − 4√

3
. Moreover, we prove that the average

number E ρn of singular points on the random symmetroid surface

Σ3,n =
{

(x0, x1, x2, x3) ∈ S3 | det(x01 + x1R1 + x2R2 + x3R3) = 0
}
,

equals n(n− 1). This quantity is related to the volume of the set of symmetric matrices with
repeated eigenvalues.

1. Introduction

A spectrahedron is an affine-linear section of the cone Pn ⊂ Sym(n,R) of positive semidefinite
symmetric matrices. On the space Sym(n,R) of n×n real symmetric matrices there is a partial
order defined by A � B, if and only if A−B ∈ Pn. Every spectrahedron can then be parametrized
as the set of solutions of a linear matrix inequality:

M0 + x1M1 + · · ·+ x`M` � 0, x = (x1, . . . , x`) ∈ R`,
for some symmetric matrices M0, . . . ,M` ∈ Sym(n,R).

Optimization of a linear function over a spectrahedron is called semidefinite programming
[MR95, Ali95]. This is a useful generalization of linear programming, i.e. optimization of a lin-
ear function over a polyhedron. Such problems as finding the smallest eigenvalue of a symmetric
matrix or optimizing a polynomial function on the sphere can be approached using semidefinite
programming. The presence of singularities on the boundary of a three-dimensional spectrahe-
dron is relevant for optimization: with a positive probability a linear function constrained on a
polyhedron attains its maximum in a vertex of the polyhedron, and, similarly, with a positive
probability a linear function constrained on a spectrahedron attains its maximum in a singular
point of the boundary of the spectrahedron. For example, consider the cubic spectrahedron
shown on Figure 1.1:

S =
{

(x, z, y) ∈ R3 |
( 1 x y
x 1 z
y z 1

)
∈ Pn

}
.
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Figure 1.1. On the left is the cubic spectrahedron from the introduction. On the
right is a quartic spectrahedron (in [GB12] it is called the “pillow”). The singularities
on the boundaries of both spectrahedra are visible.

The linear function ψw(x, y, z) = 〈w, (x, y, z)〉, w ∈ S3, constrained on S attains its maximum
at a point (x, y, z) ∈ ∂S on the boundary of S at which the normal cone to ∂S contains w.
At a singular point of the boundary the normal cone has positive dimension and hence the set
of w ∈ S3 for which the maximum of ψw is attained at a singular point of the boundary of the
spectrahedron has positive volume in S3.

Besides mentioned applications spectrahedra also appear in modern real algebraic geometry:
in [JWH06] Helton and Vinnikov gave a beautiful characterization of two-dimensional spectra-
hedra and in [AD11] Degtyarev and Itenberg described all generic possibilities for the number of
singular points on the boundary of a quartic three-dimensional spectrahedron (see Section 1.4
for more details). The reader can also look at [Vin14] for a survey article.

1.1. Random spectrahedra. In order to perform a probabilisitc study, it is more convenient
to work instead with spherical spectrahedra, defined by:

x0M0 + x1M1 + · · ·+ x`M` � 0, x = (x0, x1, . . . , x`) ∈ S`.

A generic spherical spectrahedron has nonempty interior and, after a change of coordinates in
the space of symmetric matrices, it can be presented as:

(1.1) S`,n =
{
x = (x0, . . . , x`) ∈ S` | x0 1 + x1R1 + · · ·+ x`R` � 0

}
.

From now on, for simplicity, we abuse the terminology and use the term “spectrahedron” to refer
to a spherical spectrahedron.

Our choice of random model for spectrahedra is as follows. In the representation (1.1) we
sample the matrices R1, . . . , R` independently and identically distributed from the Gaussian
Orthogonal Ensemble GOE(n) [Meh91, Tao12], rescaled by (2n`)−1/2:

Ri =
1√
2n`

Qi, where Qi ∼ GOE(n), i = 1, . . . , `.

By Q ∼ GOE(n) we mean that the joint probability density of the entries of the symmetric
matrix Q ∈ Sym(n,R) is ϕ(Q) = 1

Cn
exp(− 1

2 tr(Q
2)), where Cn is the normalization constant

with
∫
Sym(n,R)

ϕ(Q) dQ = 1. In other words, the entries of Q are centered gaussian random
variables, the diagonal entries having variance 1 and the off-diagonal entries having variance 1

2 .
The scaling factor (2n`)−1/2 serves to balance the order of magnitudes of eigenvalues of the two
summands x0 1 and x1R1 + · · ·+ x`R`.
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1.2. Statistical properties of random spectrahedra. In the following for a semialgebraic
subset X ⊂ S` of dimension d by |X| we denote the d-dimensional volume of the set of smooth
points ofX and by |X|rel := |X|

|Sd| we denote the relative volume ofX. The first statistic we will be
interested in is the expected value of |S`,n|rel. Furthermore, we will be interested in the expected
number of singular points on ∂S3,n. More specifically, the boundary ∂S3,n of a 3-dimensional
spectrahedron S3,n is in general singular and, generically, has finitely many singular points that
are all nodes. We denote their number by σn. Note that ∂S3,n is a semialgebraic subset of

(1.2) Σ3,n = {x ∈ S3 | det(x01 + x1R1 + x2R2 + x3R3) = 0},
called the symmetroid surface of S`,n. Hence σn is smaller than the number ρn of singular points
on Σ3,n. Summarizing, we will be interested in:

E |S`,n|rel, Eσn and E ρn.
Our main results on those three quantities follow next.

1.3. Main results. To state our first main result, let λmin(Q) denote the smallest eigenvalue
of the matrix Q. For the scaled smallest eigenvalue we write

(1.3) λ̃min(Q) :=
λmin(Q)√

2n
.

The following is proved in Section 3 below.

Theorem 1.1 (Expected volume of the spectrahedron). Let F` denote the cumulative distri-
bution function of the student’s t-distribution with ` degrees of freedom [NLJ95, Chapter 28]
and Φ(x) denote the cumulative distribution function of the normal distribution [JS00, 40:14:2].
Then:

(1) E |S`,n|rel = E
Q∈GOE(n)

F`
(
λ̃min(Q)

)
.

Moreover, we have

(2) E |S`,n|rel = F`(−1) +O(n−2/3) uniformly in `,
(3) E |S`,n|rel = Φ(−1) +O(`−1) +O(n−2/3).

Note that Φ(−1) ≈ 0.1587. This means that asymptotically (in both n and `) the average
volume of a spectrahedron is at least 15% of the volume of the sphere.

For the average number of singular points σn on ∂S3,n and number of singular points ρn on
Σ3,n the result is more delicate to state. We denote the dimension of Sym(n,R) by N := n(n+1)

2

and the unit sphere there by SN−1 := {Q ∈ Sym(n,R) | ‖Q‖2 = tr(Q2) = 1}. Let ∆ ⊂ SN−1 be
the set of symmetric matrices of unit norm and with repeated eigenvalues and let ∆1 ⊂ ∆ be
its subset consisting of symmetric matrices whose two smallest eigenvalues coincide:

∆ := {Q ∈ Sym(n,R) ∩ SN−1 | λi(Q) = λj(Q) for some i 6= j},
∆1 := {Q ∈ Sym(n,R) ∩ SN−1 |λ1(Q) = λ2(Q)}.

Note that ∆ and ∆1 are both semialgebraic subsets of SN−1 of codimension two; ∆ is actually
algebraic. The following theorem relates Eσn and E ρn to the volumes of ∆1 and ∆, respectively.

Theorem 1.2 (The average number of singular points). The average number of singular points
on the boundary of a random 3-dimensional spectrahedron S3,n ⊂ S3 equals

(1) Eσn = 2
|∆1|
|SN−3|

.

The average number of singular points on the symmetroid Σ3,n ⊂ S3 equals

(2) E ρn = 2
|∆|
|SN−3|

.
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We prove Theorem 1.2 in Section 4. As a consequence of the proof of this theorem we will
also derive the following interesting proposition.

Proposition 1.3. For the generic choice of the matrices R1, R2, R3 ∈ Sym(n,R) there is a
one-to-one correspondence between the number of singular points of the projective symmetroid
PΣ3,n = {[x0 : x1 : x2 : x3] ∈ RP3 | det(x01 + x1R1 + x2R2 + x3R3) = 0} and the number of
matrices with multiple eigenvalues in P(span{R1, R2, R3}).

The following theorem whose proof is given in Section 5 implies that the order of magnitude
of E ρn is O(n2). In particular, this gives an upper bound on Eσn.
Theorem 1.4 (The volume of the set of symmetric matrices with repeated eigenvalues). Let
∆1 ⊂ ∆ ⊂ SN−1 be as above. Then

(1)
|∆1|
|SN−3|

=
2n−1

√
π n!

(
n

2

) ∫
u∈R

E
Q∼GOE(n−2)

[
det(Q− u1)21{Q−u1�0}

]
e−u

2

du.

(2)
|∆|
|SN−3|

=
2n−1

√
π n!

(
n

2

) ∫
u∈R

E
Q∼GOE(n−2)

[
det(Q− u1)2

]
e−u

2

du.

The last quantity we compute explicitly:

(3)
|∆|
|SN−3|

=

(
n

2

)
.

The theorem is of independent interest: as we explain at the beginning of Section 5 it gives
some information on the geometry of the set of matrices with repeated eigenvalues. In particular,
from Theorem 1.4 we can extract the following interesting corollary.

Corollary 1.5. Let Q ∈ SN−1 be a random symmetric matrix uniformly distributed in the
sphere SN−1. Let distSN−1(Q,∆) denote the distance in SN−1 between Q and ∆, then

Prob {distSN−1(Q,∆) < ε} ≤ 2π(1− cos ε)
(
n
2

)
|SN−3|.

The proof of Corollary 1.5 is by integrating the volume of a spherical disc of radius ε over ∆.

1.4. Quartic spectrahedra. Quartic spectrahedra are a special case of our study, correspond-
ing to n = 4. In this case the symmetroid surface

Σ3,4 = {x ∈ S3 | det(x01 + x1R1 + x2R2 + x3R3) = 0}
has degree four, since 1, R1, R2, R3 ∈ Sym(4,R). In [AD11] Degtyarev and Itenberg proved
that all possibilities for σ4 and ρ4 are realized by some generic spectrahedra S3,4 and their
symmetroids Σ3,4 under the following constraints:

(1.4) σ4 is even and 2 ≤ σ4 ≤ 10; ρ4 is a multiple of 4 and 4 ≤ ρ4 ≤ 20.

(Degtyarev and Itenberg proved this for the spectrahedron and its symmetroid in projective
space, that is why in our condition (1.4) above we have to double their estimates.) An “average
picture” of this result is given in the following proposition.

Proposition 1.6 (The average number of nodes on the boundary of a quartic spectrahedron).
We have

Eσ4 = 6− 4√
3
≈ 3.69 and E ρ4 = 12.

It would be interesting to understand the distribution of the random variables σ4, ρ4 and
compare it with the “deterministic” picture (1.4). We believe that the study of metric properties
of spectrahedra such as volume is very promising for future research. This lines up with our
discussion presented at the beginning of Section 5.

In the general case we conjecture that limn→∞
Eσn
E ρn = 0, but it is difficult to predict how

small is Eσn compared to E ρn. The main challenge is handling the characteristic function in
the integral from Theorem 1.4 (1).
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1.5. Another possible random model. Another natural model of random spectrahedra is by
defining them as linear sections of Pn ∩ SN−1 by a uniformly distributed (` + 1)-dimensional
plane V in Sym(n,R):

(1.5) S`,n(V ) := Pn ∩ SN−1 ∩ V,

Before proceeding we argue in favor of the model (1.1) over the random linear section model (1.5).
The main reason for this is that the expected volume of S`,n(V ) decays to zero for fixed ` and
n → ∞, which we prove in Proposition 1.7 below. In fact, typically a spherical spectrahedron
of the form S`,n(V ) is empty (this is essentially due to the fact that the volume of the positive
semidefinite cone Pn decays exponentially fast as n → ∞), and this model is inaccessible for
probabilistic studies. For the model introduced in (1.1) this appears differently: for large n
and ` the spectrahedron S`,n keeps a fraction of about 15% of the volume of the sphere S`; cf.
Theorem 1.1. In fact, the spectrahedron S`,n is never empty, as it contains an open neighborhood
of (1, 0, . . . , 0) ∈ S`.

Proposition 1.7 (Decay of the random linear section model). Let V be uniformly distributed
in the Grassmannian of (` + 1)-dimensional subspaces of Sym(n,R). Then for every c > 0 we
have P{S`,n(V ) 6= ∅} ≤ O(n−c).

Proof. Let us denote by µ(V ) the maximum number of positive eigenvalues that a matrix in V
has. For n ≥ 4, we have the simple bound P{S`,n(V ) 6= ∅} = P{µ(V ) = n} ≤ P{µ(V ) ≥ n

2 +
√
n}.

By [AL16, Lemma 4] the last quantity is smaller than O(n−c) for every c > 0. �

1.6. Notation. Throughout the article some symbols are repeatedly used for the same pur-
poses: Sym(n,R) stands for the space of n × n real symmetric matrices. By the symbols
Q = (Q1, . . . , Q`) ∈ Sym(n,R)` and R = (R1, . . . , R`) ∈ Sym(n,R)` we denote a collec-
tion of ` symmetric matrices and its rescaled version respectively, i.e. Ri = 1√

2n`
Qi. The

k-dimensional sphere endowed with the standard metric is denoted Sk. The symbol 1 stands
for the unit matrix (of any dimension). For x = (x0, x1, . . . , x`) ∈ S` we denote the matrices
Q(x) = x1Q1 + · · · + x`Q` and A(x) = x01 + Q(x). By S`,n, ∂S`,n and Σ`,n we denote a
(random) spectrahedron, its boundary and a symmetroid hypersurface respectively. Letters α, λ
and µ are used to denote eigenvalues and λ̃ = 1√

2n
λ stands for the rescaled eigenvalue λ.

1.7. Organization of the article. The organization of the paper is as follows. In the next
section we recall some known deviation inequalities for the smallest eigenvalue of a GOE(n)-
matrix. In Sections 3–5 we prove our main theorems, Section 6 deals with the case of quartic
spectrahedra. In the Appendix we prove a technical result, based on the computation of the
expectation of the square of the characteristic polynomial of a GOE matrix.

Acknowledgements. The authors wish to thank P. Bürgisser, S. Naldi and B. Sturmfels for
helpful suggestions and remarks on the paper.

2. Deviation inequalities for the smallest eigenvalue

In this section we want to summarize known inequalities for the deviation of λmin(Q) from
its expected value in the GOE(n) random matrix model. The results that we present are due to
[ML10]. Note that in that reference, however, the inequalities are given for the largest eigenvalue
λmax(Q). Since the GOE(n)-distribution is symmetric around 0, we have λmax(Q) ∼ −λmin(Q).
Using this we translate the deviation inequalities for λmax(Q) from [ML10] into deviation inequal-
ities for λmin(Q). Furthermore, note that in [ML10, (1.2)] the variance for the GOE(n)-ensemble
is defined differently than it is here: eigenvalues of a random matrix in [ML10] are

√
2 times

eigenvalues in our definition.
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We express the deviation inequalities in terms of the scaled eigenvalue λ̃min(Q), cf. (1.3).
The following Proposition is [ML10, Theorem 1]. We will not need this result in the rest of the
paper directly, but we decided to recall it here because it gives an idea of the behavior of the
smallest eigenvalue of a random GOE(n) matrix, in terms of which our theorem on the volume
of random spectrahedra is stated.

Proposition 2.1. For some constant C > 0, all n ≥ 1 and 0 < ε < 1, we have

Prob
Q∈GOE(n)

{
λ̃min(Q) ≤ −(1 + ε)

}
≤ Ce−C

−1nε
3
2

and
Prob

Q∈GOE(n)

{
λ̃min(Q) ≥ −(1− ε)

}
≤ Ce−C

−1n2ε3 .

Proposition 2.1 shows that for large n the mass of λ̃min(Q) concentrates exponentially around−1.
Thus E λ̃min(Q) converges to −1 as the following proposition shows.

Proposition 2.2. For some constant C > 0 and all n ≥ 1 we have

|E λ̃min(Q) + 1| ≤ E|λ̃min(Q) + 1| ≤ Cn
−2
3 .

Proof. By [ML10, Equation after Corollary 3] we have

(2.1) lim sup
n→∞

2pn
2p
3 E|λ̃min(Q) + 1|p <∞.

The assertion follows from monotonicity of the integral: |E λ̃min(Q) + 1| ≤ E|λ̃min(Q) + 1|
and (2.1) with p = 1. �

Remark. The distribution of the scaled largest eigenvalue of a GOE(n) matrix for n → ∞
is known as the Tracy-Widom distribution [CT96]. Suprisingly, this distribution appears in
branches of probability that at first sight seem unrelated. For instance, the length of the longest
increasing subsequence in a permutation that is chosen uniformly at random in the limit follows
the Tracy-Widom distribution [JB99]. In the survey article [CAT02] Tracy and Widom give
an overview of appearances of the distribution in growth processes, random tilings, statistics,
queuing theory and superconductors. The present article adds spectrehedra to that list.

3. Expected volume of the spectrahedron

3.1. Proof of Theorem 1.1 (1). Note that due to the rotational invariance of the standard
Gaussian distribution N(0, 1) the volume of a spectrahedron S`,n can be computed as follows:

(3.1) |S`,n|rel =
|S`,n|
|S`|

= Prob
ξ0,...,ξ`

iid∼N(0,1)

{
ξ0 1 +

1√
2n`

∑̀
i=1

ξiQi � 0

}
Using this and the following shorthand notation

(3.2) Q(x) =
∑̀
i=1

xiQi, A(x) = x0 1 + 1√
2n`

Q(x).

we now write the expectation E |S`,n|rel of the relative volume of the random spectrahedron as:

E|S`,n|rel = E
Q∈GOE(n)`

Prob
ξ0,...,ξ`

iid∼N(0,1)

{
ξ0 1 +

1√
2n`

∑̀
i=1

ξiQi � 0

}
= E
Q

E
ξ
1{A(ξ)�0} =: (?)

where 1Y denotes the characteristic function of the set Y . Using Tonelli’s theorem the two
integrations can be exchanged:

(3.3) (?) = E
ξ
E
Q

1{A(ξ)�0} = E
ξ

Prob
Q∈GOE(n)`

{
ξ0 1 +

1√
2n`

Q(ξ) � 0

}
.
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For a unit vector x = (x1, . . . , x`) ∈ S`−1 by the orthogonal invariance of the GOE-ensemble we
have Q(x) ∼ GOE(n) which leads to

(?) = E
ξ

Prob
Q∈GOE(n)

{
ξ0

(ξ2
1 + · · ·+ ξ2

` )
1
2

1 +
1√
2n`

Q � 0

}

= E
Q∈GOE(n)

Prob
ξ

{
ξ0
√
`

(ξ2
1 + · · ·+ ξ2

` )
1
2

1 +
1√
2n
Q � 0

}
,

where in the second equality we again used Tonelli’s theorem. Let us put t` := ξ0
√
`

(ξ21+···+ξ2` )
1
2
.

Note that by [NLJ95, (28.1)] the random variable t` follows the Student’s t-distribution with `
degrees of freedom. Since this distribution is symmetric around the origin and t`1 + 1√

2n
Q � 0

is equivalent to −t` ≤ 1√
2n
λmin(Q), we have

(?) = E
Q∈GOE(n)

Prob
t`

{
t` ≤

1√
2n
λmin(Q)

}
= E
Q∈GOE(n)

F`
(
λ̃min(Q)

)
,

where F` is the cumulative distribution function of the random variable t`. This proves Theo-
rem 1.1 (1) since (?) = E |S`,n|rel. �

3.2. Proof of Theorem 1.1 (2). The random variable t` is absolutely continuous. Moreover,
its density F ′` is continuous and bounded uniformly in ` [NLJ95, (28.2)]. This combined with
the following lemma proves Theorem 1.1 (2):

Lemma 3.1. Let f` : R→ R be a sequence of smooth functions such that there exists a constant
c > 0 with ‖f ′`‖∞ ≤ c, ` ≥ 1. Then EQ∈GOE(n) f`

(
λ̃min(Q)) = f`(−1)+O(n−2/3

)
uniformly in `.

Proof. Write f`(λ̃min) as f`(λ̃min) = f`(−1) + f ′`(x)(λ̃min + 1) for some x = x(λ̃min) ∈ R. Taking
expectation we obtain

E f`(λ̃min) = f`(−1) + E(f ′`(x)(λ̃min + 1)) ≤ f`(−1) + cE |λ̃min + 1| = f`(−1) +O(n−3/2)

where the last inequality follows from Proposition 2.2. �

3.3. Proof of Theorem 1.1 (3). In the preceding subsection we have shown the (uniform
in `) asymptotic E|Σ`,n|rel = F`(−1) + O(n−

2
3 ), where F`(x) = Prob {t` ≤ x} and the random

variable t` follows the student’s t-distribution with ` degrees of freedom. By [NLJ95, (28.15)]
for fixed x we have F`(x) = Φ(x)(1 +O(`−1)). where Φ is the cumulative distribution function
of the standard normal distribution. Plugging in x = −1 settles Theorem 1.1 (3). �

4. The average number of singular points

For the study of the average number of singular points on the boundary of a random spec-
trahedron and on a symmetroid surface we will rely on the following proposition, which implies
that this number is finite.

Proposition 4.1. Let S
(k)
`,n be the set of matrices of corank k in the spectrahedron S`,n and Σ

(k)
`,n

the set of matrices of corank k in the symmetroid hypersurface Σ`,n. For a generic choice of
R = (R1, . . . , R`) ∈ Sym(n,R)` the sets S

(k)
`,n ,Σ

(k)
`,n ⊂ S` are semialgebraic of codimension

(
k+1

2

)
.

Proof. In the space Sym(n,R) consider the semialgebraic stratification given by the corank:
Sym(n,R) =

∐n
k=0Z(k), where Z(k) denotes the set matrices of corank k, and the induced

stratification on the cone Pn of positive semidefinite matrices Pn =
∐n
k=0(Z(k)∩Pn). These are

Nash stratifications [AA12, Proposition 9] and the codimensions of both Z(k) and Z(k) ∩Pn are
equal to

(
k+1

2

)
.
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Consider now the semialgebraic map

(4.1) F : S` × (Sym(n,R))` → Sym(n,R), (x,R) 7→ x01 + x1R1 + · · ·+ x`R`.

Then Σ
(k)
`,n = {x ∈ S` |F (R, x) ∈ Z(k)} and S

(k)
`,n = {x ∈ S` |F (R, x) ∈ Z(k) ∩ Pn} and

consequently they are semialgebraic.
We now prove that F is transversal to all the strata of these stratifications. Then the

parametric transversality theorem [Hir94, Chapter 3, Theorem 2.7] will imply that for a generic
choice of R the set S`,n is stratified by the S

(k)
`,n and the same for the set Σ`,n. To see that

F is transversal to all the strata of the stratifications we compute its differential. At points
(x,R) with x 6= e0 = (1, 0, . . . , 0) we have D(x,R)F (0,

•

R) = x1

•

R1 + · · ·+ x`
•

R` and the equation
D(x,R)F (

•
x,

•

Q) = P can be solved by taking •
x = 0 and

•

R = (0, . . . , 0, x−1
i P, 0, . . . , 0) where x−1

i P
is in the i-th entry and i is such that xi 6= 0 (in other words, already variations in R ensure
surjectivity of D(x,R)F ). All points of the form (e0,R) are mapped by F to the identity matrix
1 which belongs to the open stratum Z(0), on which transversality is automatic (because this
stratum has full dimension). This concludes the proof. �

Proposition 4.2. For generic R ∈ Sym(n,R)3 the number of singular points ρn on the sym-
metroid Σ3,n and hence the number of singular points σn on ∂S3,n is finite and satisfies

σn ≤ ρn ≤
n(n+ 1)(n− 1)

3
.

Moreover, for any n ≥ 1 there exists a generic symmetroid Σ3,n with ρn = n(n+1)(n−1)
3 singular

points on it.

Proof. The fact that σn ≤ ρn are generically finite follows from Proposition 4.1 with k = 2, as
remarked before. Observe that ρn is bounded by twice (since Σ3,n is a subset of S3) the number
#Sing(ΣC

3,n) of singular points on the complex symmetroid projective surface

ΣC
3,n = {x ∈ CP3|det(x01 + x1R1 + x2R2 + x3R3)) = 0}

Since Sing(ΣC
3,n) is obtained as a linear section of the set Z(2)

C of n × n complex symmetric
matrices of corank two (using similar transversality arguments as in Proposition 4.1) we have
that generically #Sing(ΣC

3,n) = deg(Z(2)
C ). The latter is equal to n(n+1)(n−1)

6 ; see [JH84].
Now comes the proof of the second claim, we are thankful to Bernd Sturmfels and Simone

Naldi for helping us with this. For a generic collection of n+ 1 linear forms L1, . . . , Ln+1 in `+ 1
variables we denote by p(x) := L1(x) · · ·Ln+1(x) their product and by P = {x ∈ R`+1|Li(x) >
0, i = 1, . . . , n + 1} the polyhedral cone. Let e ∈ int(P ) be any interior point of P . Then
[San13, Thm 1.1] implies that the derivative 〈∇p, e〉 of p along the constant vector field e ∈ R`+1

is a hyperbolic polynomial in direction e and that the closure of the connected component of
R`+1 \ {〈∇p, e〉 = 0} containing e is a spectrahedral cone. Let’s consider the intersection of
this spectrahedral cone with the generic linear 4-space V ⊂ R`+1 and denote by S3,n,Σ3,n

the corresponding spectrahedron and its symmetroid surface respectively. It is straightforward
to check that the triple intersections of the hyperplanes L1, . . . , Ln+1 when intersected with V
produce 2

(
n+1

3

)
= (n+1)n(n−1)

3 singular points on Σ3,n. This completes the proof since the above
number coincides with the complex bound. �

Now we prove Theorem 1.2 (1).

4.1. Proof of Theorem 1.2 (1). Recall that ∆1 ⊂ SN−1 ⊂ Sym(n,R) denotes the set of
unit symmetric matrices such that λ1 = λ2. The ordered eigenvalues α1(x) ≤ · · · ≤ αn(x) of
A(x) = x01 + 1√

2n`

∑3
i=1 xiQi satisfy

αi(x) = x0 +
1√
6n
µi(x),
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W

−e0 = (−1, 0)

(x0,
√

1− x2
0)

e0 = (1, 0)

Figure 4.1. Two-dimensional depiction of R4: The north pole e0 is identified with
the unit matrix 1, while the south pole −e0 is identified with −1. By continuity there
must be a point (x0,

√
1− x2

0) on the arc joining e0 and −e0 that has 0 as eigenvalue.

where µ1(x) ≤ . . . ≤ µn(x) are the ordered eigenvalues of Q(x) =
∑3
i=1 xiQi. Then

Sing(∂S3,n) = {x ∈ S3 |α1(x) = α2(x) = 0}

= {x = (x0, x1, x2, x3) ∈ S3 |µ1(x) = µ2(x) and µ1(x) = −
√

6nx0}.

Consider now the vector space:

W = span{Q1, Q2, Q3} ⊂ Sym(n,R).

Because Q = (Q1, Q2, Q3) ∼ GOE(n)3, with probability one W is three-dimensional. In the
sequel, for fixed Q we will naturally identify R4 with V := span{1, Q1, Q2, Q3} by using the
isomorphism A : R4 → V, x 7→ A(x).

By Proposition 4.1 (for k = 2) the set of symmetric matrices with repeated eigenvalues has
codimension two in Sym(n,R). Hence, with probability one there are finitely many half lines
L1, . . . , Ls where µ1(x) = µ2(x). Because on span{1, Li} we have α1 = α2, every singular point
in ∂S3,n maps into span{1, Li} for some i ∈ {1, . . . , s}.

We examine now the condition for one of the half lines L1, . . . , Ls actually contributing to a
singular point. The construction we make for this is depicted in Figure 4.1. Let V0 := A(S3)
(an ellipsoid), and let A(y) be the point of intersection of some fixed L ∈ {L1, . . . , Ls} with V0.
Note that, because L ⊂ W , we have A(y) ∈ W , i.e., the first coordinate of y is zero. Moreover,
by orthogonal invariance of the GOE(n) distribution we can assume that y = (0, 1, 0, 0). The
arc on the sphere S3 through y joining the north pole e0 = (1, 0, 0, 0) ∈ S3 and the south pole
−e0 = (−1, 0, 0, 0) ∈ S3 is then parametrized by [−1, 1]→ S3, x0 7→ (x0,

√
1− x2

0, 0, 0). For the
smallest eigenvalue we get

x0 7→ α1(x0) := x0 +

√
1− x2

0√
6n

λ1,

where λ1 is the smallest eigenvalue of the first matrix Q1. This function is strictly monotone
with α1(−1) = −1 and α1(1) = 1. Hence it has exactly one zero, which correspond to a point
on this arc where α1 = α2 = 0, i.e. a singular points.

The above considerations show that the number of singular points on ∂S3,n = ∂S3,n(Q)
equals the number s of half-lines on W = span{Q1, Q2, Q3} that intersect ∆1. Let us write
s(Q) := s to put emphasis on its dependence on Q. Observe that s(Q) is equal to the number
of lines (not half-lines) that intersect ∆1, unless there exists a matrix in W , where both the
two smallest and the two largest eigenvalues coincide. Since the latter is a non-generic property,
s(Q) = #(W ∩∆1) with probability one. By the kinematic formula from [How93] we have:

Eσn =

∫
GOE(n)3

s(Q) dQ = E
W∈G(3,Sym(n,R))

#(W ∩∆1) = 2
|∆1|

|S
n(n+1)

2 −3|
since the GOE(n) distribution of the Qi induces the uniform distribution on W . This shows the
assertion. �
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4.2. Proof of Theorem 1.2 (2) and Proposition 1.3. Recall that ∆ ⊂ SN−1 ⊂ Sym(n,R)
denotes the set of unit symmetric matrices with repeated eigenvalues.

By the same argument as in the proof of Theorem 1.2 (1) singular points of the symmetroid
Σ3,n = Σ3,n(Q) are in one-to-one correspondence with matrices in span{Q1, Q2, Q3} ∩ ∆. In-
voking again the kinematic formula from [How93] we obtain:

E ρn = E
W∈G(3,Sym(n,R))

#(W ∩∆) = 2
|∆|

|S
n(n+1)

2 −3|
.(4.2)

This finishes the proof of Theorem 1.2 and at the same time proves Proposition 1.3. �

5. The volume of the set of symmetric matrices with repeated eigenvalues

In this section we give a proof of Theorem 1.4. That is, we compute the volume of the set of
symmetric matrices with repeated eigenvalues and of its subset consisting of matrices whose two
smallest eigenvalues coincide. Before, however, we want to discuss some of it’s consequences.

5.1. The degree of the set of complex symmetric matrices with repeated eigenvalues.
Let us consider the complex hypersurface ∆C ⊂ PSym(n,C) consisting of complex symmetric
matrices with repeated eigenvalues. Its ideal is generated by the discriminant D of the character-
istic polynomial of a matrix: D(Q) =

∏
i<j(λi(Q)−λj(Q))2. The discriminant is a homogeneous

polynomial of degree n(n − 1) in the entries of Q and it’s a sum of squares of real polynomials
[Par02, Chapter 2]. By definition of the degree for a generic line L ⊂ P Sym(n,C) we have

#
(
L ∩ P∆C) = deg(∆C) = n(n− 1).

On the other hand, from the integral geometry formula [How93] and Theorem 1.4 (3) it follows
that

E# (W ∩ P∆) =
n(n− 1)

2
=

1

2
deg(∆C)

where W is a uniformly distributed projective 2-plane in P Sym(n,R).

Note, however, that since the real zero locus P∆ ⊂ P Sym(n,R) of the discriminant hypersur-
face ∆C ⊂ PSym(n,C) is of codimension two the degree deg(∆C) does not give an upper bound
on the number #(W ∩ P∆) of real symmetric matrices with repeated eigenvalues in a generic
projective 2-plane W . Indeed, by Proposition 1.3 for generic R1, R2, R3 ∈ Sym(n,R) matrices in
P span(R1, R2, R3)) ∩ P∆ are in one-to-one correspondence with singular points on the projec-
tive symmetroid PΣ3,n = {x ∈ RP3 | det(x01 + x1R1 + x2R2 + x3R3) = 0}. This together with
Proposition 4.2 implies that the number #(W ∩ P∆) of matrices with repeated eigenvalues in
the generic projective 2-plane W is bounded by

(
n+1

3

)
. Moreover, this bound is sharp: for some

generic W we have #(W ∩ P∆) =
(
n+1

3

)
which is bigger than deg(∆C) = n(n− 1) for n > 5.

The number of symmetric matrices with repeated eigenvalues in a generic projective 2-plane
can be estimated using general Milnor-type bounds, i.e. estimates for the sum of Betti numbers
of a real algebraic variety in terms of the degree of defining it polynomial. Indeed, for any 3-
dimensional space W̃ ⊂ Sym(n,R) the set W̃ ∩∆ ⊂ S3 = W̃ ∩SN−1 is given by a homogeneous
equation of degree n(n−1). Therefore by [Ler16, Proposition 14] we have b(W̃∩∆) ≤ 4n4+O(n3),
where b(·) denotes the sum of Betti numbers with Z2 coefficients. In particular, when W̃ ∩∆ is
finite we have #(W̃ ∩∆) = b(W̃ ∩∆) ≤ 4n4 +O(n3). Hence, for generic projective 2-plane W
general techniques give the fourth order bound #(W ∩ P∆) ≤ 2n4 + O(n3) whereas the above
discussion shows that

(
n+1

3

)
is the sharp cubic bound for #(W ∩ P∆).
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5.2. Proof of Theorem 1.4. As before let us denote by λ1(Q) ≤ · · · ≤ λn(Q) the ordered
eigenvalues of a symmetric matrix Q ∈ Sym(n,R), by N := dim(Sym(n,R)) = n(n+1)

2 the
dimension of the set of n×n real symmetric matrices and by SN−1 the unit sphere in the space
Sym(n,R). Let ∆j , j = 1, . . . , n − 1 denote the set of n × n real symmetric matrices of unit
norm, whose j-th and (j + 1)-th eigenvalues are equal:

∆j := {Q ∈ SN−1 | λj(Q) = λj+1(Q)}, j = 1, . . . , n− 1(5.1)

It is easily seen that ∆j is a semialgebraic subset of SN , and from Section 4 one can deduce
that it is of codimension two. The smooth locus (∆j)sm of ∆j consists of matrices of unit norm
whose j-th and (j + 1)-th eigenvalues are equal and all other eigenvalues are of multiplicity one:

(∆j)sm = {Q ∈ SN−1 | λ1(Q) < · · · < λj(Q) = λj+1(Q) < · · · < λn(Q)}(5.2)

Recall that ∆ denotes the algebraic set of n×n real symmetric matrices of unit norm that have
at least one repeated eigenvalue. Observe that ∆ is a union of the sets ∆j , j = 1, . . . , n− 1 and
its smooth locus ∆sm is a disjoint union of (∆j)sm, j = 1, . . . , n − 1. Furthermore, denote by
Zn the normalization constant for the density of eigenvalues of the GOE(n)-ensemble:

Zn :=

∫
Rn
e−
‖λ‖2

2 |∆(λ)|dλ

where ∆(λ) =
∏

1≤i<j≤n(λj − λi) is the Vandermonde determinant. It is equal to

(5.3) Zn =
√

2π
n

n∏
i=1

Γ(1 + i
2 )

Γ( 3
2 )

,

see, e.g., [Meh91, (17.5.9) for γ = 1
2 ]. The proof of Theorem 1.4 is based on the following

proposition, which we prove in the subsequent subsection.

Proposition 5.1. Let 1 ≤ j < n. Then

|∆j |
|SN−3|

=
4

Zn

(
n

2

)(
n− 2

j − 1

)∫
µ1,...,µj−1<u
u<µj ,...,µn−2

n−2∏
i=1

(µi − u)2 e−
‖µ‖2

2 −u2

|∆(µ)|d(µ, u),

Before proving the proposition we first use it to finish the proof of Theorem 1.4:

Proof of Theorem 1.4. According to Proposition 5.1 we have

|∆1|
|SN−3|

=
4

Zn

(
n

2

) ∫
u<µ1,...,µn−2

n−2∏
i=1

(µi − u)2 e−
‖µ‖2

2 −u2

|∆(µ)|d(µ, u).

Interpreting µ1, . . . , µn−2 as the eigenvalues of a GOE(n − 2) matrix we can rewrite this as
follows:

|∆1|
|SN−3|

=
4Zn−2

Zn

(
n

2

) ∫
u∈R

E
Q∼GOE(n−2)

[
1{Q−u1�0} det(Q− u1)2

]
e−u

2

du.

From (5.3) it’s easy to see that Zn = 8 Γ(n+1
2 )Γ(n+2

2 )Zn−2 or, using the duplication formula for
Gamma function, Zn = 2−n+3

√
π n!Zn−2. From this we get

(5.4)
|∆1|
|SN−3|

=
2n−1

√
π n!

(
n

2

) ∫
u∈R

E
Q∼GOE(n−2)

[
1{Q−u1�0} det(Q− u1)2

]
e−u

2

du.

which proves Theorem 1.4 (1).

For Theorem 1.4 (2) note that since ∆sm = ∪n−1
j=1 (∆j)sm is a disjoint union we have that

|∆| =
∑n−1
j=1 |∆j | and hence, by Proposition 5.1,

|∆|
|SN−3|

=
4

Zn

(
n

2

) n−1∑
j=1

(
n− 2

j − 1

)∫
µ1,...,µj−1<u
u<µj ,...,µn−2

n−2∏
i=1

(µi − u)2 e−
‖µ‖2

2 −u2

|∆(µ)|d(µ, u),
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This, together with the summation lemma [Bre17, Lemma E.3.5], gives

|∆|
|SN−3|

=
4

Zn

(
n

2

) ∫
u∈R

∫
µ∈Rn−2

n−2∏
i=1

(µi − u)2 e−
‖µ‖2

2 −u2

|∆(µ)|dµdu,

Again, treating µ1, . . . , µn−2 as the eigenvalues of a GOE(n− 2) matrix and then proceeding as
we did to get (5.4) we obtain

(5.5)
|∆|
|SN−3|

=
2n−1

√
π n!

(
n

2

) ∫
u∈R

E
Q∼GOE(n−2)

[
det(Q− u1)2

]
e−u

2

du.

This proves Theorem 1.4 (2).

Finally, Theorem A.1 entails that the integral on the right-hand-side of (5.5) is equal to
√
π n!

2n−1 ,
which implies that |∆|

|SN−3| =
(
n
2

)
. This finishes the proof. �

5.3. Proof of Proposition 5.1. Recall that

(∆j)sm = {Q ∈ SN−1 | λ1(Q) < · · · < λj(Q) = λj+1(Q) < · · · < λn(Q)}.

In the following, we denote for brevity λi := λi(Q). In order to compute |∆j | = |(∆j)sm| define
for δ > 0

Xj(δ) := {Q ∈ (∆j)sm | λj − λj−1 > δ, λj+2 − λj+1 > δ}(5.6)

Then (∆j)sm =
⋃
δ>0Xj(δ) and by continuity of the Lebesgue measure

(5.7) |∆j | = lim
δ→0
|Xj(δ)|.

For a fixed δ > 0 and for any ε > 0 let T⊥(Xj(δ), ε) ⊂ SN−1 denote the ε-tube around
Xj(δ) ⊂ SN−1. Weyl’s formula [Wey39] gives the expansion of the volume of the ε-tube around
a submanifold of the sphere. Here it is enough to have it in the following simplified form.

Theorem 5.2 (Weyl’s tube formula forXj(δ)). For any ε > 0, such that the fibres of T⊥(Xj(δ), ε)
do not intersect, the volume of the ε-tube around Xj(δ) is |T⊥(Xj(δ), ε)| = πε2|Xj(δ)|+O(ε3).

In the lemma below we describe the ε-tube around Xj(δ) and show that for a sufficiently
small ε > 0 its fibers do not intersect. We postpone its proof to the next subsection.

Lemma 5.3. For 0 < ε < arctan(
√

2δ) we have

T⊥(Xj(δ), ε) =

Q ∈ S
N−1

∣∣∣∣∣
λ1 < · · · < λj ≤ λj+1 < · · · < λn,

λj+1 − λj <
√

2 sin ε,

λj+2 −
λj + λj+1

2
> δ cos ε,

λj + λj+1

2
− λj−1 > δ cos ε


and the fibers of T⊥(Xj(δ), ε) do not intersect.

Combining this lemma with Weyl’s formula we are allowed to compute the volume of Xj(δ)
as |Xj(δ)| = limε→0

1
πε2 |T

⊥(Xj(δ), ε)| and, consequently, by (5.7):

(5.8) |∆j | = lim
δ→0

lim
ε→0

1

πε2
|T⊥(Xj(δ), ε)|.

To actually compute this limit, we will rewrite the volume of T⊥(Xj(δ), ε) in terms of a
GOE(n) random variable. The following formula gives the relation between the volume of a
measurable set E ⊂ SN−1 and the GOE(n)-measure of the homogeneous cone C(E) = {A ∈
Sym(n,R) |A/‖A‖ ∈ E} over E

|E|
|SN−1|

= Prob
Q∼GOE(n)

C(E).
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Applying this to the measurable set T⊥(Xj(δ), ε) we get

|T⊥SN−1(Xj(δ), ε)|
|SN−1|

= Prob
Q∼GOE(n)



λ1 < · · · < λj ≤ λj+1 < · · · < λn,

λj+1 − λj <
√

2‖Q‖ sin ε,

λj+2 −
λj + λj+1

2
> δ‖Q‖ cos ε

λj + λj+1

2
− λj−1 > δ‖Q‖ cos ε


= (?)(5.9)

In the following we denote the event

E(λ) :=



λ1 < · · · < λj ≤ λj+1 < · · · < λn,

λj+1 − λj <
√

2‖Q‖ sin ε,

λj+2 −
λj + λj+1

2
> δ‖Q‖ cos ε

λj + λj+1

2
− λj−1 > δ‖Q‖ cos ε


.

Writing (5.9) in terms of the density of eigenvalues of the GOE(n) ensemble it becomes

(?) =
n!

Zn

∫
Rn

1E(λ) e
− ‖λ‖

2

2 |∆(λ1, . . . , λn)|dλ,

see [Mui82, Theorem 3.2.17]. Here, ∆(λ1, . . . , λn) =
∏

1≤i<j≤n(λj − λi) is the Vandermonde
determinant, 1E(λ) is the characteristic function of the set E(λ), and Zn is the normalization
constant from (5.3). We express now the integral in terms of the following event:

Ẽ(λ) :=



λ1, . . . , λj−1 < λj , λj+1 < λj+1, . . . , λn,

|λj+1 − λj | <
√

2‖λ‖ sin ε,

λi −
λj + λj+1

2
> δ‖λ‖ cos ε for i ≥ j + 2,

λj + λj+1

2
− λi > δ‖λ‖ cos ε for i ≤ j − 1


.

There are (j − 1)! possibilities to arrange the first j − 1 eigenvalues, 2 possibilities to arrange λj
and λj+1 and (n− (j + 1))! possibilities to arrange the last n− (j + 1) eigenvalues. Hence,

(?) =
n!

Zn

1

2(j − 1)!(n− (j + 1))!

∫
Rn

1Ẽ(λ) e
− ‖λ‖

2

2 |∆(λ1, . . . , λn)|dλ

=
1

Zn

(
n

2

)(
n− 2

j − 1

)∫
Rn

1Ẽ(λ) e
− ‖λ‖

2

2 |∆(λ1, . . . , λn)|dλ

Next, we perform the following orthogonal change of variables

µ1 := λ1, . . . , µj−1 := λj−1, µj := λj+2, . . . , µn−2 := λn and

x =
λj + λj+1√

2
, y =

λj+1 − λj√
2

(µ1, . . . , µn−2 now become the eigenvalues of a new GOE(n−2) matrix and we treat the variables
x, y separately). We get

(?) =
1

Zn

(
n

2

)(
n− 2

j − 1

)∫
(µ,x,y)∈Rn−2×R×R

1Ê(µ,x,y)g(µ, x, y)e−
‖µ‖2+y2+x2

2 |∆(µ)|d(µ, x, y)(5.10)

where

g(µ, x, y) =
√

2|y|
n−2∏
i=1

((
µi −

x√
2

)2

− y2

2

)
(5.11)
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and

Ê(µ, x, y) :=



µ1, . . . , µj−1 <
1√
2
(x− y), 1√

2
(x+ y) < µj , . . . , µn−2,

|y| < ‖(µ, x, y)‖ sin ε,

µi −
x√
2
> δ‖(µ, x, y)‖ cos ε for i ≥ j,

x√
2
− µi > δ‖(µ, x, y)‖ cos ε for i ≤ j − 1


.

We perform another change of varables:

(5.12)
t = y

sin ε ‖(µ,x,y)‖ dy =
sin ε‖(µ, x)‖

(1− (sin ε)2t2)3/2

x, µ1, . . . , µn−2 are as before

Note that after this change a factor of (sin ε)2 appears and the function y(t, x, µ, ε) → 0 in the
limits ε → 0. We multiply the integral in (5.10) by 1

πε2 and, thereafter, invoke the dominated
convergence theorem that allows us to pass to the limit ε→ 0 under the integral:

lim
ε→0

1

πε2

∫
(µ,x,y)∈Rn−2×R×R

1Ê(µ,x,y)g(µ, x, y)e−
‖µ‖2+y2+x2

2 |∆(µ)|d(µ, x, y)

=

√
2

π

∫
(µ,x)∈Rn−2×R

∫ 1

t=−1

1Ē(µ,x)|t|‖µ, x‖2
n−2∏
i=1

(
µi −

x√
2

)2

e−
‖µ‖2+x2

2 |∆(µ)|dtd(µ, x),

where

Ē(µ, x) :=


µ1, . . . , µj−1 <

x√
2
< µj , . . . , µn−2,

µi −
x√
2
> δ‖(µ, x)‖ for i ≥ j,

x√
2
− µi > δ‖(µ, x)‖ for i ≤ j − 1

 .

Using that
∫ 1

t=−1
|t|dt = 1 we have

lim
ε→0

1

πε2
|T⊥(Xj(δ), ε)|

=

√
2|SN−1|
πZn

(
n

2

)(
n− 2

j − 1

)∫
Rn−2×R

1Ē(µ,x)‖µ, x‖2
n−2∏
i=1

(
µi −

x√
2

)2

e−
‖µ‖2+x2

2 |∆(µ)|d(µ, x),

Plugging this into (5.8) and again using the dominated convergence theorem we get

|∆j | = lim
δ→0

lim
ε→0

1

πε2
|T⊥(Xj(δ), ε)|

=

√
2|SN−1|
πZn

(
n

2

)(
n− 2

j − 1

)∫
D

‖µ, x‖2
n−2∏
i=1

(
µi −

x√
2

)2

e−
‖µ‖2+x2

2 |∆(µ)|d(µ, x),

where the region of integration is D = {µ1, . . . , µj−1 <
x√
2
< µj , . . . , µn−2}. Next, we use the

fact that for a homogeneous function f of degree d in m variables one has∫
x∈Rm

‖x‖2f(x)e−
‖x‖2

2 dx = (d+m)

∫
x∈Rm

f(x)e−
‖x‖2

2 dx

(the proof is straightforward using polar coordinates). In our case, we have m = n − 1 and
d = 2(n− 2) + (n−2)(n−3)

2 = (n−2)(n+1)
2 . Thus d+m = n2+n−4

2 and

|∆j | =
(n2 + n− 4)|SN−1|√

2πZn

(
n

2

)(
n− 2

j − 1

)∫
D

n−2∏
i=1

(
µi −

x√
2

)2

e−
‖µ‖2+x2

2 |∆(µ)|d(µ, x).
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Finally, we make a change of variables u := x√
2
and use (n2 + n − 4)|SN−1| = 4π|SN−3| to

conclude that

|∆j |
|SN−3|

=
4

Zn

(
n

2

)(
n− 2

j − 1

)∫
µ1,...,µj−1<u
u<µj ,...,µn−2

n−2∏
i=1

(µi − u)2 e−
‖µ‖2

2 −u2

|∆(µ)|d(µ, u).

This completes the proof of Proposition 5.1. �

5.4. Proof of Lemma 5.3. We can assume without loss of generality that Q ∈ Xj(δ) is di-
agonal: Q = diag(λ1, λ2, . . . , λn) and λ1 < · · · < λj = λj+1 < · · · < λn. Then, the fiber
NQ ⊂ TQSN−1 of the normal bundle to Xj(δ) ⊂ SN−1 at Q is described as follows. For a, b ∈ R
let Va,b = (vi,j) ∈ Sym(n,R) be the matrix that has zeros everywhere except for the following
block on the diagonal:

( vj,j vj,j+1
vj+1,j vj+1,j+1

)
= 1√

2

(
a b
b −a

)
. Note that Va,b ∈ SN−1 if and only if

a2 + b2 = 1. We claim that

(5.13) NQ = {Va,b | a, b ∈ R}.

It is easy to see that Va,b is orthogonal to Q, i.e., Va,b ∈ TQSN−1, and that the tangent space
TQXj(δ) ⊂ TQSN−1 to Xj(δ) at Q is spanned by the following

(
n+1

2

)
− 3 vectors:

diag(λ2e1 − λ1e2),

...
diag(λj−1ej−2 − λj−2ej−1)

diag(λj+2ej−1 − λj−1ej+2).

diag(λj+3ej+2 − λj+2ej+3).

...
diag(λnen−1 − λn−1en),

and

diag
(
− 2λj

∑
i 6=j,j+1

λiei +
∑

i 6=j,j+1

λ2
i (ej + ej+1)

)
,

and



r s
...

...
r . . . 0 . . . λs − λr . . .

...
...

s . . . λs − λr . . . 0 . . .
...

...

, r, s = 1, . . . n, r 6= s, {r, s} 6= {j, j + 1}.

It is immediate to see that these vectors are all orthogonal to Va,b. Thus, NQ = {Va,b | a, b ∈ R}.

Now we prove that T⊥(Xj(δ), ε) has the asserted form and that the fibers of the normal
ε-tube T⊥(Xj(δ), ε) do not intersect provided that ε < arctan(

√
2δ). The fibers are swept out

by geodesics of length less than ε starting at Q in the direction of some Va,b ∈ SN−1, in formulas:
15



{cos tQ+ sin t Va,b | 0 ≤ t < ε}. We write explicitly the matrix cos tQ+ sin t Va,b:

λ1 cos t
. . .

λj−1 cos t
λj cos t+ a√

2
sin t b√

2
sin t

b√
2

sin t λj+1 cos t− a√
2

sin t

λj+2 cos t
. . .

λn cos t


Provided that ε < arctan(

√
2δ) the eigenvalues of this matrix are

(5.14) λ1 cos t < · · · < λj−1 cos t < λj cos t ± sin t√
2
< λj+2 cos t < · · · < λn cos t

since Q ∈ Xj(δ) (see (5.6)). Moreover, for 0 ≤ t < ε these eigenvalues satisfy the inequalities

(λj cos t+ sin t√
2

) + (λj cos t− sin t√
2

)

2
− λj−1 cos t = (λj − λj−1) cos t > δ cos ε,

(λj cos t+
sin t√

2
)− (λj cos t− sin t√

2
) =
√

2 sin t <
√

2 sin ε,

λj+2 cos t−
(λj+1 cos t+ sin t√

2
) + (λj+1 cos t− sin t√

2
)

2
= (λj+2 − λj+1) cos t > δ cos ε

This shows that T⊥(Xj(δ), ε) is contained in the set we claim it to be. To show the other inclusion
let A ∈ SN−1 be a matrix whose eigenvalues α1 < · · · < αj−1 < αj ≤ αj+1 < αj+2 < · · · < αn
satisfy

αj + αj+1

2
− αj−1 > δ cos ε,

αj+1 − αj <
√

2 sin ε,

and αj+2 −
αj + αj+1

2
> δ cos ε.

We can assume again that A = diag(α1, α2, . . . , αn) is diagonal. Let 0 ≤ t < ε be such that
αj+1 − αj =

√
2 sin t. One can easily verify that A = cos tQ+ sin t V−1,0 for

Q =
1

cos t
diag(α1, . . . , αj−1,

1
2 (αj + αj+1), 1

2 (αj + αj+1), αj+2, . . . , αn) ∈ Xj(δ)

This implies that A ∈ T⊥(Xj(δ), ε) and T⊥(Xj(δ), ε) has the claimed form.

It remains to show that the fibers of the normal ε-tube T⊥(Xj(δ), ε) do not intersect when ε <
arctan(

√
2δ). For this assume there is another representation A = cos t̃ Q0 +sin t̃ V of the matrix

A = diag(α1, . . . , αn) ∈ T⊥(Xj(δ), ε), where Q0 ∈ Xj(δ), V ∈ NQ0
and 0 ≤ t̃ < ε. We will prove

that actually Q0 = Q,V = V−1,0 and t̃ = t. To show this, we consider the diagonalization of
Q0; that is, Q0 = CT1 Q1C1, where Q1 = diag(λ1, . . . , λn) is diagonal and C1 is orthogonal. We
may assume λ1 < · · · < λj−1 < λj = λj+1 < λj+2 < · · · < λn. Note that the normal bundle
NQ0 to Xj(δ) at Q0 = CT1 Q1C1 is given by NCT1 Q1C1

= CT1 NQ1C1 = {CT1 Va,bC1 | a, b ∈ R}. It
follows that V = CT1 Va,bC1 for some a, b ∈ R and we can write A = CT1 (cos t̃ Q1 + sin t̃ Va,b)C1.
Note that the eigenvalues of the inner matrix are given as in (5.14). Therefore, we can write
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A = CT1 C
T
2 Q2C2C1, where the orthogonal matrix C2 commutes with Q1 and

Q2 = diag
(
λ1 cos t̃, . . . , λj−1 cos t̃, λj cos t̃− sin t̃√

2
, λj cos t̃+

sin t̃√
2
, λj+2 cos t̃, . . . , λn cos t̃

)
= cos t̃ Q1 + sin t̃ V−1,0

The condition ε < arctan(
√

2δ) together with Q1 ∈ Xj(δ) ensures λj−1 cos t̃ < λj cos t̃ − sin t̃√
2

and λj cos t̃ + sin t̃√
2
< λj+2 cos t̃. Now since the diagonal matrices A and Q2 both have ordered

entries it follows that C2C1 can be taken to be the identity matrix. Therefore αi = λi cos t̃

for i = 1, . . . , j − 1, j + 2, . . . , n, and αj = λj cos t̃ − sin t̃√
2

and αj+1 = λj cos t̃ + sin t̃√
2
. It is

straightforward now to see that t̃ = t, Q0 = Q and V = V−1,0. �

6. Proof of Proposition 1.6

The identity E ρ4 = 12 follows immediately from Theorem 1.2 and Theorem 1.4 for n = 4.
For the other identity we apply again Theorem 1.2 and Theorem 1.4 and write:

Eσ4 = 2
|∆1|
SN−3

=
24

√
π

1

4!

(
4

2

) ∫
u∈R

E
Q∼GOE(2)

[
1{Q−u1�0} det(Q− u1)2

]
e−u

2

du

=
4√
π

∫
R

(
1

Z2

∫
R2

(λ1 − u)2(λ2 − u)2|λ1 − λ2|e−
λ21+λ22

2 1{λ1−u>0,λ2−u>0}dλ1dλ2

)
e−u

2

du

= (?).

We apply now the change of variable α1 = λ1 − u and α2 = λ2 − u in the innermost integral,
obtaining:

(?) =
4√
π

∫
R

(
1

Z2

∫
R2

+

(α1α2)2|α1 − α2|e−
α2
1+α2

2
2 e−u

2−u(α1+α2) dα1 dα2

)
e−u

2

du

=
4√
π

1

Z2

∫
R2

+

(α1α2)2|α1 − α2|e−
α2
1+α2

2
2

(∫
R
e−2u2−u(α1+α2)du

)
dα1 dα2

=
4√
π

Γ
(

3
2

)
2π

∫
R2

+

(α1α2)2|α1 − α2|e−
α2
1+α2

2
2

(√
π

2
e

(α1+α2)2

8

)
dα1 dα2

=
1√
2π

∫
R2

+

(α1α2)2|α1 − α2|e−
α2
1+α2

2
2 +

(α1+α2)2

8 dα1 dα2

=
2√
2π

∫
R2

+∩{α1<α2}
(α1α2)2|α1 − α2|e−

α2
1+α2

2
2 +

(α1+α2)2

8 dα1 dα2.

In the last equality we have used the fact that the integrand is invariant under the symmetry
(α1, α2) 7→ (α2, α1). Consider now the map F : R2

+ ∩ {α1 < α2} → R[x] ' R2 given by

F (α1, α2) = (x− α1)(x− α2) = x2 − (α1 + α2)x+ α1α2.

Essentially, F maps the pair (α1, α2) to a monic polynomial of degree two whose ordered roots
are (α1, α2). Observe that F is injective on the region R2

+ ∩ {α1 < α2} with never-vanishing
Jacobian |JF (α1, α2)| = |α1 − α2|. What is the image of F in the space of polynomials R[x]?
Denoting by a1, a2 the coefficients of a monic polynomial p(x) = x2 − a1x + a2 ∈ R[x], we see
first that the conditions α1, α2 > 0 imply a1, a2 > 0. Moreover the polynomial p(x) = F (α1, α2)
has by construction real roots, hence its discriminant a2

1−4a2 must be positive. Viceversa, given
(a1, a2) such that a1, a2 > 0 and a2

1 − 4a2 > 0, the roots of p(x) = x2 − a1x + a2 are real and
17



positive. Hence, F (R2
+ ∩ {α1 < α2}) = {(a1, a2) ∈ R2 | a1, a2 > 0, a2

1 − 4a2 > 0}. Thus we can
write the above integral as

(?) =
2√
2π

∫ ∞
0

∫ a21
4

0

a2
2e
− a

2
1−2a2

2 +
a21
8 da2da1 =

2√
2π

∫ ∞
0

e−
3a21
8

∫ a21
4

0

a2
2e
a2da2

 da1

and performing elementary integration we obtain (?) = Eσ4 = 6− 4√
3
. �

Appendix.

In this section we will give a proof for the following formula, that is needed in the proof of
Theorem 1.4.

Theorem A.1. For a fixed positive integer k we have∫
u∈R

E
Q∼GOE(k)

det(Q− u1)2 e−u
2

du =
√
π

(k + 2)!

2k+1
.

Before proving Theorem A.1 below we give definition of Hermite polynomials, recall their
properties that we will need and then prove an auxiliary proposition.

A.1. Hermite polynomials. The (physicist’s) Hermite polynomials Hi(x), i = 0, 1, 2, . . . form
a family of orthogonal polynomials on the real line with respect to the measure e−x

2

dx. They
are defined by

Hi(x) = (−1)iex
2 di

dxi
e−x

2

, i ≥ 0(A.1)

and satisfy

(A.2)
∫
u∈R

Hi(u)Hj(u)e−u
2

du =

{
2ii!
√
π, if i = j

0, else.

A Hermite polynomial is either odd (if the degree is odd) or even (if the degree is even) function:

(A.3) Hi(−x) = (−1)iHi(x);

and its derivative satisfies

(A.4) H ′i(x) = 2iHi−1(x)

(see [JS00, (24:5:1)], [IG15, (8.952.1)] for these properties).

A.2. The expected value of the square of the characteristic polynomial of a GOE-
matrix. The following proposition is crucial for the proof of Theorem A.1.

Proposition A.2 (Expected value of the square of the characteristic polynomial). For a fixed
positive integer k and a fixed u ∈ R the following holds.

(1) If k = 2m is even, then

E
Q∼GOE(k)

det(Q− u1)2 =
(2m)!

22m

m∑
j=0

2−2j−1

(2j)!
detXj(u),

where

Xj(u) =

(
H2j(u) H ′2j(u)

H2j+1(u)−H ′2j(u) H ′2j+1(u)−H ′′2j(u)

)
.
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(2) If k = 2m+ 1 is odd, then

E
Q∼GOE(k)

det(Q− u1)2 =

√
π(2m+ 1)!

24m+2 Γ(m+ 3
2 )

m∑
j=0

2−2j−2

(2j)!
detYj(u),

where

Yj(u) =


(2j)!
j! H2j(u) H ′2j(u)

0 H2j+1(u)−H ′2j(u) H ′2j+1(u)−H ′′2j(u)
(2m+2)!
(m+1)! H2m+2(u) H ′2m+2(u)

 .

For the proof of Proposition A.2 we need the following lemma.

Lemma A.3. Let Pm = 21−m2√
π
m∏m

i=0(2i)! and let Z2m denote the normalization constant
from (5.3). Then Pm = 21−2m Z2m.

Proof. By (5.3) we have Z2m = (2π)m
∏2m
i=0

Γ(
i
2 +1)

Γ(
3
2 )

. Use the duplication formula for Gamma

functions to transform this into

Z2m = (2π)m
m∏
i=0

Γ( 2i−1
2 + 1)Γ( 2i

2 + 1)

Γ( 3
2 )2

.

Now we use the formula Γ(z)Γ(z + 1
2 ) = 21−2zΓ(2z)

√
π [JS00, 43:5:7] with z = 2i−1

2 to get

Z2m = (2π)m
m∏
i=0

21−(2i−1)−2
√
π Γ(2i− 1 + 2)

Γ( 3
2 )

= (2π)m
m∏
i=0

2−2i
√
π Γ(2i+ 1)

Γ( 3
2 )

.

Using furthermore Γ( 3
2 ) =

√
π

2 we get Z2m = 22m−m2 √
π
m ∏m

i=0(2i)!. Therefore,

Pm
Z2m

=
21−m2√

π
m∏m

i=0(2i)!

22m−m2 √πm
∏m
i=0(2i)!

= 21−2m

as claimed. �

Now we prove Proposition A.2.

Proof of Proposition A.2. In [Meh91, Section 2.2] one finds two different formulas for the cases
k = 2m even and k = 2m+ 1 odd.

If k = 2m, we have by [Meh91, (2.2.38)] that

Edet(Q− u1)2 =
(2m)!Pm
Z2m

m∑
j=0

22j−1

(2j)!
det

(
R2j(u) R′2j(u)
R2j+1(u) R′2j+1(u)

)
,

where Pm = 21−m2√
π
m∏m

i=0(2i)! is as in Lemma A.3, Z2m is the normalization constant (5.3)
and where R2j(u) = 2−2jH2j(u) and R2j+1(u) = 2−(2j+1)(H2j+1(u) − H ′2j(u)). Using the
multilinearity of the determinant we get

Edet(Q− u1)2 =
(2m)!Pm
Z2m

m∑
j=0

2−2j−2

(2j)!
detXj(u).

By Lemma A.3 we have Pm
Z2m

= 21−2m. Putting everything together yields the first claim.

In the case k = 2m+ 1 we get from [Meh91, (2.2.38)] that

Edet(Q− u1)2 =
(2m+ 1)!Pm

Z2m+1

m∑
j=0

22j−1

(2j)!
det

 g2j R2j(u) R′2j(u)
g2j+1 R2j+1(u) R′2j+1(u)
g2m+2 R2m+2(u) R′2m+2(u)

 ,
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where Pm, R2j(u), R2j+1(u) are as above and

gi =

∫
u∈R

Ri(u) exp(−u
2

2 ) du.

Note that by (A.3) H2j+1(u) is an odd function. Hence, we have g2j+1 = 0. For even indices we
use [IG15, (7.373.2)] to get g2j = 2−2j

√
2π (2j)!

j! . By the multilinearity of the determinant:

(A.5) Edet(Q− u1)2 =

√
2π(2m+ 1)!Pm
22m+2Z2m+1

m∑
j=0

2−2j−2

(2j)!
detYj(u).

By (5.3) we have Z2m+1 = 2
√

2 Γ(m+ 3
2 )Z2m. Using also Lemma A.3 we see that

Pm
Z2m+1

=
2−2m

√
2 Γ(m+ 3

2 )
.

Plugging this into (A.5) we get

E det(Q− u1)2 =

√
π(2m+ 1)!

24m+2 Γ(m+ 3
2 )

m∑
j=0

2−2j−2

(2j)!
detYj(u).

This finishes the proof. �

A.3. Proof of Theorem A.1. Due to the nature of Proposition A.2 we also have to make a
distinction in the proof of Theorem A.1.

In the case k = 2m we use the formula from Proposition A.2 (1) to write∫
u∈R

E det(Q− u1)2e−u
2

du =
(2m)!

22m

m∑
j=0

2−2j−1

(2j)!

∫
u∈R

detXj(u) du.

By (A.4) we have H ′i(u) = 2iHi−1(u). Hence, Xj(u) can be written as(
H2j(u) 4jH2j−1(u)

H2j+1(u)− 4jH2j−1(u) 2(2j + 1)H2j(u)− 8j(2j − 1)H2j−2(u)

)
.

From (A.2) we can deduce that∫
u∈R

detXj(u) du = 2(2j + 1)22j(2j)!
√
π + 16j222j−1(2j − 1)!

√
π

= 22j+1(2j)!
√
π(4j + 1).

From this we see that
m∑
j=0

2−2j−1

(2j)!

∫
u∈R

detXj(u) du =
√
π

m∑
j=0

(4j + 1) =
√
π (m+ 1)(2m+ 1).(A.6)

and hence,∫
u∈R

E det(Q− u1)2e−u
2

du =
(2m)!

22m

√
π (m+ 1)(2m+ 1) =

(2m+ 2)!

22m+1

√
π.

Plugging back in m = k
2 finishes the proof of the case k = 2m.

In the case k = 2m+ 1 we use the formula from Proposition A.2 (2) to see that∫
u

E det(Q− u1)2 e−u
2

du =

√
π(2m+ 1)!

24m+2 Γ(m+ 3
2 )

m∑
j=0

2−2j−2

(2j)!

∫
u

detYj(u) e−u
2

du.

Note that the top right 2× 2-submatrix of Yj(u) is Xj(u), so that detYj(u) is equal to

(A.7)
(2m+ 2)!

(m+ 1)!
detXj(u) +

(2j)!

j!
det

(
H2j+1(u)−H ′2j(u) H ′2j+1(u)−H ′′2j(u)

H2m+2(u) H ′2m+2(u)

)
.
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Because taking derivatives of Hermite polynomials decreases the index by one (A.4) and because
the integral over a product of two Hermite polynomials is only non-vanishing, if their indices
agree, the integral of the determinant in (A.7) is only non-vanishing for j = m, in which case it
is equal to ∫

u∈R
H2m+1(u)H ′2m+2(u) e−u

2

du = 2(2m+ 2)22m+1(2m+ 1)!
√
π,

by (A.2) and (A.4). Hence,∫
u∈R

detYj(u) e−u
2

du

=


(2m+2)!
(m+1)!

∫
u∈R detXm(u) e−u

2

du+ (2m)!
m! 22m+2(2m+ 2)!

√
π, if j = m,

(2m+2)!
(m+1)!

∫
u∈R detXj(u) e−u

2

du, else.

We find that
m∑
j=0

2−2j−2

(2j)!

∫
u

detYj(u) e−u
2

du

=
(2m+ 2)!

m!

√
π +

(2m+ 2)!

(m+ 1)!

m∑
j=0

2−2j−2

(2j)!

∫
u

detXj(u) e−u
2

du

=
(2m+ 2)!

m!

√
π +

(2m+ 2)!

(m+ 1)!

√
π

2
(m+ 1)(2m+ 1)

=

√
π

2

(2m+ 3)!

m!
;

the second-to-last line by (A.6). It follows that∫
u∈R

Edet(Q− u1)2 e−u
2

du =

√
π(2m+ 1)!

24m+2 Γ(m+ 3
2 )

√
π

2

(2m+ 3)!

m!

=
π(2m+ 1)!(2m+ 3)!

24m+3 Γ(m+ 3
2 )m!

.

Using the duplication formula for Gamma function, it is not difficult to verify that the last term
is 2−2m−2

√
π (2m+ 3)!. Substituting 2m+ 1 = k shows the assertion in this case.
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