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Abstract

The approximation of the function 1/x by exponential sums has several interesting applications. It
is well known that best approximations with respect to the maximum norm exist. Moreover, the error
estimates exhibit exponential decay as the number of terms increases. Here we focus on the computation
of the best approximations. In principle, the problem can be solved by the Remez algorithm, however,
because of the very sensitive behaviour of the problem the standard approach fails for a larger number
of terms. The remedy described in the paper is the use of other independent variables of the exponential
sum. We discuss the approximation error of the computed exponential sums up to 63 terms and hint to
a webpage containing the corresponding coefficients.

1 Introduction

At the first sight, the problem considered in this paper has an obvious solution. The best approximation of
functions as 1/x by exponential sums

Ek(x) =

k∑
ν=1

aν exp(−bνx) (x ∈ R) (1.1)

with respect to the maximum norm is well studied (cf. Braess [3]). Even rather precise error estimates are
known (cf. Braess–Hackbusch [4]). The approximation problem can be solved by the Remez algorithm which
leads to a system of nonlinear equations. Since there is exactly one solution and the involved functions are
analytic, the Newton method should be a perfect solver ensuring quadratic convergence.

This may be true for small values of k, but for larger k the exponential decay of the approximation error
ek has a negative effect. The Remez algorithm requires exponential sums Ek which interpolate the function
1/x at 2k points (in this case we say that Ek is feasible). Since ek is rather small, tiny perturbations of Ek
can lead to a difference 1/x − Ek with less than 2k zeros. Hence, the subset of feasible exponential sums
is a rather small set. Even if an initial value belongs to this set, small corrections may cause divergence.
Another difficulty is the fact that the error ek may be much smaller that

√
eps (eps: machine precision).

This fact prevents quadratic convergence.
Because of these difficulties1 the best L∞ approximation is often replaced by least squares approximations

(cf. Evans et al. [7], Kammler [13]). Concerning ill-posedness of this least squares problem we refer to [17].
Furthermore, §2.3 will show that there are applications requiring the maximum norm, while the L2 norm is
insufficient.

In §3 we recall the facts about the best approximation by exponential sums. To apply the Remez algorithm
we introduce a crucial ‘trick’ in §4.3. We use other variables than the coefficients in (1.1). As a consequence,
the represented exponential sums are always feasible. The drawback is an increased computational cost,
since we apply an outer Newton method involving several inner Newton iterations per outer iteration step.
The best approximation refers to an underlying interval [1, R]. In §4.6 we describe how to proceed from one
R to another R′ so that always good initial values are available. Another ‘continuation’ is the step from k
to k + 1.

1In Kammler [12] the author writes: In general, the problem of finding a best uniform approximation . . . is quite difficult,
and consequently various schemes . . . have sometimes been used to produce “good” if not best approximations.
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The tables in this contribution show the approximation error in dependence of the parameters k and R.
They are part of a large collection of best approximations as described in §2.4. The obtained approximation
errors are compared with the theoretical bounds.

2 Definition, Properties, and Applications

2.1 Definition

Exponential sums are expressions of the form (1.1) with 2r parameters2 aν and bν . Here we discuss the
approximation of the function 1/x by exponential sums in a positive interval [a, b] ⊂ (0,∞) with respect to
the maximum norm ‖·‖∞,[a,b]. Let E∗k be the best approximation. To be precise, its coefficients aν , bν in

(1.1) depend on the underlying interval [a, b], i.e., aν = aν,[a,b] and b = bν,[a,b]. The minimal error is denoted
by

ε[a,b](k) = min
Ek

∥∥∥∥1

·
− Ek

∥∥∥∥
∞,[a,b]

=

∥∥∥∥1

·
− E∗k

∥∥∥∥
∞,[a,b]

.

2.2 Properties

Using the map of x ∈ [a, b] to x′ := x/a ∈ [1, b/a], one finds that the best approximations in [a, b] and [1, b/a]
and their approximation errors are related by

aν,[a,b] :=
aν,[1,R]

a
, bν,[a,b] :=

bν,[1,R]

a
, ε[a,b](k) =

ε[1,R](k)

a
,

where we introduce R := b/a. Hence, it is sufficient to study the approximation problem for different values
of R and k. It turns out that also the choice

R =∞

makes sense. In this case, [1, R] should be read as [1, R).

The optimal exponential sums allow a stable evaluation since the coefficients aν , bν are positive.

2.3 Applications

The typical property exp(x + y) = exp(x) exp(y) of the exponential function shows that Ek(
∑
µ xµ) =∑k

ν=1 aν
∏
µ exp(−bνxµ) is a sum of separable terms.

A direct application is used in the second-order Møller–Plesset theory (MP2), where the energy is a sum
of terms ...

εa+εb−εi−εj (cf. Ayala–Scuseria [1] and [16]). The effect of using E∗k is demonstrated by a simpler

example. Consider S :=
∑N
i,j=1

vivj
εi+εj

with large N , where εi+εj ∈ [a, b]. The computation of S costs O(N2)

operations. Replacing 1
εi+εj

by E∗k = E∗k,[a,b] yields

S ≈
N∑

i,j=1

vivjEk(εi + εj) =

k∑
ν=1

aν

(
N∑
i=1

vi exp(−bνεi)

) N∑
j=1

vj exp(−bνεj)

 ,

which can be evaluated by O(Nk) operations.

The inverse matrix A−1 can be approximated by E∗k(A) with E∗k = E∗k,[a,b], provided that the spectrum

of A is contained in [a, b]. If A = TDT−1 (D diagonal), the estimate with respect to the spectral matrix is∥∥A−1 − E∗k(A)
∥∥
2
≤ ‖T‖2

∥∥T−1∥∥
2

∥∥ 1
· − E

∗
k

∥∥
∞,[a,b] .

The maximum norm
∥∥ 1
· − E

∗
k

∥∥
∞,[a,b] cannot be replaced by a weaker norm as the L2 norm. The replacement

of the inverse A−1 by E∗k(A) is helpful for Kronecker matrices. Let Ai be positive definite matrices. Then

2Here we only consider real, in particular positive, coefficients.
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the Kronecker matrix A := A1 ⊗ I ⊗ I + I ⊗A2 ⊗ I + I ⊗ I ⊗A3 has the approximate inverse

Bk := E∗k(A) =

k∑
ν=1

aν exp(−bνA1)⊗ exp(−bνA2)⊗ exp(−bνA3)

(cf. [10, Prop. 9.34]) with the spectral norm
∥∥A−1 −Bk

∥∥
2
≤
∥∥ 1
· − E

∗
k

∥∥
∞,[a,b] , where [a, b] contains the

spectrum of A.

2.4 Available Data

This paper contains tables of the approximation errors ε[1,R](k) for 1 ≤ k ≤ 56 and various R. The data
for 1 ≤ k ≤ 7 are shown in Table 2.1. The parameter R takes all values R = n · 10m (n ∈ N, m ∈
N0 := N ∪ {0}), subject to the following bounds. The largest value is R = R∗k, where R∗k is explained in
§3.3. Larger values of R are uninteresting since E∗k,[1,R] = E∗k,[1,R∗k]

for R ≥ R∗k. Besides R ≥ 2 the lower

bound is implicitly given by ε[1,R](k) ≈ 10−16. Such values are available for all 1 ≤ k ≤ 56 (see web page
https://www.mis.mpg.de/scicomp/EXP SUM/1 x/). The tables 2.2–2.8 given here contain only results for
R being powers of 10. The additional table 2.9 is restricted to R =∞ and 57 ≤ k ≤ 63.

The web page https://www.mis.mpg.de/scicomp/EXP SUM/1 x/ contains a complete table (see file
‘tabelle’). For each pair (k,R) contained in the table there is a file3 with the coefficients4 aν , bν (1 ≤ ν ≤ k).
The file contains additional data which are important as input for the computer program. In particular, the
points ξi (1 ≤ i ≤ 2k) with 1/ξi = E∗k(ξi) are given (cf. §4.3).

Approximations of other functions are mentioned in [8].

3 Existence and Error Estimates

3.1 Existence and Equioscillation
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Figure 3.1: Error e4,[1,100]

The approximation problem is closely related to the interpolation
by exponential sums. Because of the nonlinear nature, an inter-
polating exponential may fail to exist (example: f(x) = x cannot
by interpolated by some E1 at x = ±1). For sufficient conditions
we refer to Braess [3, §VI.3].

Since f(x) = 1/x is completely monotone for x > 0, i.e.,
(−1)

n
f (n)(x) > 0 for all n ∈ N0, the unique existence of the

best approximation E∗k is guaranteed (cf. [3, §VII]). Moreover,
E∗k satisfies the equioscillation property which is well known for
polynomials (cf. de la Vallée Poussin [6, page 85], Süli–Mayers
[15, Theorem 8.3]): The error ek := 1

· − E
∗
k is extreme at 2k + 1

points µi with
1 = µ0 < µ1 < . . . < µ2k ≤ R

and
ek(µi) = (−1)

i
ε[1,R](k). (3.1)

Each interval (µi − 1, µi) contains exactly one zero of ek, i.e., there are ξi ∈ (µi − 1, µi) with ek(ξi) = 0. The
latter equation states the interpolation property

1

ξi
= E∗k(ξi) for 1 ≤ i ≤ 2k (cf. Figure 3.1).

3For instance, the file k12.3E5 contains the coefficients corresponding to k = 12 and R = 3105. The file with the largest
value of R (k fixed) yields the best approximation for [1,∞).

4In the file, aν and bν are called omega[ν] and alpha[ν].
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3.2 Error Estimate for Finite R

The precise error estimates involve elliptic integrals (cf. [4, §2]). Estimating these special functions by
exponentials yields

ε[1,R](k) ≤ 16 exp

(
− π2k

log(8R)

)
(cf. Braess–Hackbusch [4, (2.9)], [5, (29)]). A comparison with the numbers from Tables 2.1–2.9 show that

this bound can be improved by O
(

1√
R

exp(− π2k
log(6R) )

)
. All errors computed in §2.4 satisfy

0.0134 <
ε[1,R](k)

1√
R

exp
(
− π2k

log(6R)

) < 12.18.

The small ratios occur for small R.

3.3 Case of R =∞
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Figure 3.2: Error e4,[1,436.1] = e4,[1,∞)

Consider the error ek,[1,R] := 1
· − E∗k,[1,R] for varying R. For

sufficiently small R, the last extremum ek,[1,R](µ2k) = ε[1,R](k)

is located at µ2k = R with d
dxek,[1,R](µ2k) > 0. As R in-

creases, d
dxek,[1,R](µ2k) decreases until, for a certain R = R∗k,

d
dxek,[1,R](µ2k) = 0 holds. Then |ek,[1,R∗k](x)| ≤ ε[1,R∗k](k) also
holds for R ≥ R∗k (cf. Figure 3.2). Hence

E∗k,[1,R∗k]
= E∗k,[1,R] = E∗k,[1,∞) for all R∗k ≤ R <∞.

For R =∞ the error can be proved to be bounded by

ε[1,∞)(k) ≤ 16 exp
(
−π
√
k
)

(cf. [5, (30)]). The values ek,[1,R∗k](k) = ek,[1,∞)(k) shown in the tables behave better. The function

log(2 + k) exp(−π
√

2k ) describing the asymptotic decay is proposed by D. Braess. The approximation
errors for 1 ≤ k ≤ 63 satisfy the two-sided inequality

6.6 log(2 + k) exp(−π
√

2k ) ≤ ε[1,∞)(k) ≤ 6.9 log(2 + k) exp(−π
√

2k ).

4 Computation

4.1 Machine Precision

The coefficients of E∗k given in https://www.mis.mpg.de/scicomp/EXP SUM/1 x/ are computed with ex-
tended precision (eps = 110-19). This fact allows us to reach approximations with ε[1,R] ≈ 10−16 and better.
Of course, using the corresponding coefficients in double precision, the floating-point errors of the function
evaluation may be larger than ε[1,R].

4.2 Remez Algorithm

The equioscillation property yields the necessary 2k equations for the 2k coefficients. Condition (3.1) implies
that

ek(µi−1) + ek(µi) = 0 for i = 1, . . . , 2k. (4.1)

This is the basis of the Remez algorithm5 (cf. Remez [14]). To apply the iterative algorithm, one has to
start from a function Ek as in (1.1) such that the difference ek = 1

· −Ek has 2k simple zeros ξi (1 ≤ i ≤ 2k).
We call such an exponential sum a feasible Ek.

5Usually the Remez algorithm is applied to the L∞ approximation by polynomials or rational functions (cf. Werner [18]).
Approximation by nonlinear families is studied by Barrar–Loeb [2]).
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Next one has to determine the extrema ek(µi). The arguments µi belong to (ξi, ξi+1) for 1 ≤ i ≤ 2k − 1.
The extremum ek(µ0) is taken at the boundary: µ0 = 1. If R ≤ R∗k, the extremum ek(µ2k) belongs to
µ2k = R. If R > R∗k, µ2k lies in (ξ2k,∞) .

Given the values µi, (4.1) represents 2k nonlinear equations for the 2k coefficients. This yields a new
Enew
k . If Enew

k is feasible, one can determine the new µi etc.

4.3 Choice of Variables

It seems to be obvious to use the parameters aν , bν in (1.1) for the computation, i.e., Ek = Ek(·;a), where

a := (a1, b1, . . . , ak, bk) .

Inserting Ek into (4.1) yields 2k nonlinear equations φi(a) = 0 (1 ≤ i ≤ 2k). In theory, Newton’s method
should converge to the desired solution E∗k . However, that does not work in practice. This is why the
computation of best L∞ exponential sums is regarded as hardly solvable.

The cause of the difficulty is explained as follows. Due to the good approximation, ε[1,R](k) is small.

Assume that there is an iterate Ek with ‖ 1· − Ek‖∞ ≤ 10−13. Then a perturbation of Ek by a tiny shift of,
e.g., 2 · 10−13 may yield an Enew

k which does not interpolate 1
· . Hence there are no zeros ξi (or at least not

2k of them), Enew
k is infeasible, and the algorithm cannot be continued.

Instead we introduce other variables describing Ek. Since the interpolating exponential sum is unique,
we describe a feasible exponential sum Ek by the interpolation points ξi. Using the vector

ξ := (ξ1, . . . , ξ2k) with 1 < ξ1 < ξ2 < . . . < ξ2k < R,

we can express a feasible Ek by

Ek(·) = Êk(·; ξ) satisfying Ek(ξi) = 1/ξi for 1 ≤ i ≤ 2k. (4.2)

Given a feasible Ek(·;a), we can determine the zeros ξi of 1
· − Ek(·;a) = 0 and obtain ξ = ξ(a), i.e.,

Ek(·;a) = Êk(·; ξ(a)). On the other hand, given ξ, the interpolating Ek(·;a) can be determined by Newton’s
method. This yields the inverse mapping a = a(ξ); i.e., Êk(·; ξ) = Ek(·;a(ξ)).

4.4 Computation of Êk(·; ξ) – Inner Iteration

For the practical computation, one uses the pair (ξ,a(ξ)). If one wants to determine Êk(·; ξ′) for ξ′ close to
ξ, one has to solve Ek(ξ′i;a

′) = 1/ξ′i with respect to a′. Here we exploit the fact that the Newton method
has a starting value a = a(ξ) very close to a′ = a(ξ′).

The interpolation is harder to compute if ξi ≈ ξi+1 are very close. However, the zeros ξi of the best
approximation E∗k are well separated (cf. Remark 4.2).

Note that the use of the parameters ξ ensures that Êk(·; ξ) is a feasible exponential sum. The drawback
of this approach is a larger computational work. Instead of the evaluation of Ek(·;a) the Newton method
requires several evaluations of exponential sums and their derivatives (which are again exponential sums).

In the following, iterates ξ0, ξ1, . . . of an outer iteration will appear. Each ξν requires an inner iteration
by the Newton method described above. A standard value of the number of inner iteration steps used in
§2.4 is 4.

4.5 Computation of the Extrema

In principle, given ξ and a = a(ξ), the location µi of the extrema can be determined by Newton’s method.
For the results given in the tables the extrema are computed differently. In each interval [ξi−1, ξi] the
values at xν = ξi−1 + ν (ξi − ξi−1) /N are evaluated for ν = 1, . . . , N − 1. Let ν∗ be the index with xν∗ =
argmaxν |ek(xν)| and let P the cubic interpolation at xν−1, xν , xν+1. The location of the maximum of P is
taken as µi.

Remark 4.1 Since the computational work increases with N, only the final data should be performed with
a large N. Intermediate steps can be done with small N.

The values in the tables are based on N = 1000.
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4.6 Newton’s Method for (4.1) and Continuation Principle

4.6.1 The Outer Iteration

The Newton method for solving (4.1) is formulated with respect to the parameters ξ. Equation (4.1) becomes
0 = ek(µi−1) + ek(µi) = 1

µi−1
− Êk(µi−1; ξ) + 1

µi
− Êk(µi; ξ) =: φi(ξ). The evaluation of φi(ξ) is explained

in §4.3. The derivatives ∂
∂ξj

φi(ξ) required by the Newton method are replaced by divided differences.

We call this iteration the outer iteration since each evaluation of Êk(·; ξ) for a new ξ requires inner
iteration steps according to §4.4.

If the Newton iteration is not successful, it is replaced by the damped version. The damping parameter
should be chosen such that

• the approximation error ‖ek‖∞ is decreasing,

• the zeros ξi of ek should not come too close.

The reason for the last advice is the fact that the ξi values of the best approximation E∗k,[1,R](·, ξ) are
well separated. More precisely, the following observation holds.

Remark 4.2 In a first approximation, the zeros behave as ξi ≈ R(i/(2k))c with c between 1.2 and 1.3.

If it happens that ξi and ξi+1 are too close, one should change the positions, e.g., by ξi+1 := (ξi+ξi+2)/2.

The continuation method explained in §4.6.3 ensures that the Newton method can be started with initial
iterates close to the solution.

4.6.2 Start

The process is started by computations for k = 1. Consider, e.g., R = 2. A simple choice of interpolation
points is ξ1 = 4/3 and ξ1 = 5/3. The computation of a(ξ) is harmless. For all initial values 0.1 ≤ a1, b1 ≤ 5,
the Newton method converges (to a1 = 1.831 . . . , b1 = 0.6694 . . .). After 6 steps of the outer Newton method
for solving (4.1), one obtains the best approximation up to machine precision.

Given any best approximation E∗k,[1,R] = E∗k,[1,R](·, ξ
∗) together with the interpolation points ξ∗, one can

obtain E∗k,[1,R′] for other R′ according to §4.6.3.

4.6.3 Change of R

In the following, k is fixed. Assume that a best approximation E∗k,[1,R] is already available for some R.

The first task is to compute E∗k,[1,R′] for a larger R′ > R. The approximation error of E∗k,[1,R] is ε[1,R](k).

Take Ek := E∗k,[1,R] as initial value for the outer iteration of §4.6.1 on [1, R′]. If R′ ≤ R∗k, the maximum in

the last subinterval [ξ2k, R
′] is taken at x = R′. If R′ is not close enough to R, the maximum ek(R′) may be

much larger than ε[1,R](k) and the Newton method may fail. In that case one has apply the continuation
method: compute E∗k,[1,Rm] for a sequence R = R0 < R1 < . . . < RM = R′, where each Rm+1 is sufficiently
close to Rm.

If it happens that the last extremum is at µ2k < R′, one has obtained the best approximation in [1,∞)
and µ2k = R∗k holds (cf. §3.3).

In the case of a smaller R′ < R the same continuation method can be used. However, the new value
R′ should be larger than ξ2k. Otherwise, the interval [1, R′] contains less than 2k values ξi of the vector ξ
defining the initial value E∗k,[1,R] = Ek(·, ξ) and the Newton iteration may fail.

For the intermediate computations with R = R0 < R1 < . . . < RM = R′ one may save computational
work by Remark 4.1.

For k large and R small, the points ξi are rather close. In this case, the restriction ξ2k < R′ < R for the
new value R′ is very restrictive. Here, another strategy can be applied. The affine6 map x 7→ 1+ R′−1

R−1 (x− 1)

6An improvement could be a mapping making use of Remark 4.2.
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maps [1, R] onto [1, R′]. Applying this map to ξ, one obtains a rough approximation of ξ′ corresponding
E∗k,[1,R′] = Ek(·, ξ′). Note that ξ′2k < R′ holds. After defining ξ′, the coefficients a′ = a(ξ′) have to be

computed by the inner iteration of §4.4. If the factor R′−1
R−1 is chosen too small, this iteration may fail to

converge.

If one follows these hints, the outer Newton iteration even works without damping.

We illustrate these hints by two examples. First we start from the best approximation E∗k,[1,R] for
k = 7, R = 1000. This case is less sensitive, i.e., the Newton iteration behaves rather robust. For a
larger R′ ∈ [R, 10 · R] the outer Newton iteration converges. The choice of a smaller R′ is restricted by
R′ > ξ14 = 838. Much smaller R′ can be obtained by the second strategy using new ξ′. Convergence is
observed for amplification factors R′−1

R−1 ∈ [0.5, 2].

A more sensitive example is E∗k,[1,R] for k = 50, R = 2108 since ε[1,2108](50) = 4.4310-14. An increase of

R leads to convergence as long as R′ ≤ 3.5108 = 7
4R. A decrease of R is restricted by R > ξ100 = 1.967108.

The second strategy is more helpful. Using the factor R′−1
R−1 ∈ [0.92, 1.1], the inner iterations converge and

enable the computation for R′ ∈ [1.84108, 2.2108].

4.6.4 Increasing k

The step k 7→ k + 1 is more delicate since two additional parameters must be created. They must be such
that the exponential sum is feasible and has two additional zeros. The difficulty increases with the size
of k. As an example we consider the largest k appearing in Table 2.8: k = 56. Since ε[1,R](56) increases
with increasing R, the largest possible R is the best candidate for starting values: R = R∗56 = 7.51012. The
coefficients of E∗56,[1,R] are

ν 1 2 3 . . . 56
aν 1.6510-12 1.0810-11 4.4410-10 . . . 5.7
bν 5.1610-13 5.6810-12 3.0110-11 . . . 14.4

The ansatz for k = 57 is E57(x) := a0 exp(−b0x) + E∗56,[1,R], i.e., we do not change the above data. The

additional term a0 exp(−b0x) should be so small that the equioscillation structure is not perturbed. Since
ε[1,R](56) ≈ 110-13, we need a0 ≤ 110-13. A look at aν , bν for ν = 1, 2 shows that they decay by a factor of
about 10. This leads to the proposal

a0 = 110-13, b0 = 510-14.

1
· − E

∗
56,[1,R] has the following zeros ξi:

i 1 2 3 . . . 109 110 111 112
ξi 1.003 1.026 1.074 . . . 1591011 3.571011 9.271011 3.261012

One observes that the ratios are increasing. Therefore we introduce the two additional zeros

ξ113 = 11013, ξ114 = 11014.

Since the new value of R must be larger than ξ114, we choose R = 11015.

The first step are many (damped) Newton iterations for computing the coefficients a(ξ) and E57 for the
new ξ. It turns out that the last maximum is taken at µ115 = 1.91014. Accordingly we choose R = 1.91014.

The first outer iteration requires a damping of the Newton correction by 1/8. The values ξi as well as µ115

have decreased and R = µ115 = 5.11013 can be chosen. About 4 damped outer Newton steps are needed,
before the Newton method works without damping.

The choice of the initial values may be a matter of trial and error.
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4.7 Modifications

4.7.1 Wavelet Applications

In [9] an application in quantum mechanics is mentioned which involves exponential sums for 1/
√
x. The

technique explained in [9] works equally well for the function 1/x.

Whenever scalar products
〈
1
· , ϕ
〉

with wavelet functions ϕ appear, we can exploit the following property.
Depending on the vanishing moment M of ϕ, 〈p, ϕ〉 = 0 holds for all polynomials p of degree ≤M − 1. This
leads to the following approximation problem. Let F ∗k,M be the best L∞ approximation of 1

· in the interval
[1, R] within the family of functions

{Fk,M = Ek + p : Ek as in (1.1), p polynomial of degree < M} .

Obviously, the best approximation error improves with increasing M. As an example we show the errors for
k = 7, R = 10 (degree −1 means p = 0):

polynomial degree −1 0 1
approximation error 2.34410-8 6.55410-9 1.93410-9

The best approximation F ∗k,M can be computed analogously to usual exponential sums. Note that the
exponential part Ek in F ∗k,M = Ek + p is different from the best approximation E∗k . After computing
F ∗k,M = Ek + p, the polynomial part p can be omitted, since it is not needed for〈

F ∗k,M , ϕ
〉

= 〈Ek, ϕ〉 .

Therefore the computational work for 〈Ek, ϕ〉 is independent of the degree of p.

4.7.2 Weighted Norm

There may be reasons to prefer approximations with respect to a weighted norm

‖f‖[a,b],ω := max{|f(x)ω(x)| : a ≤ x ≤ b}

with ω > 0. In principle, one can apply the Remez algorithm after replacing ek(µi−1) + ek(µi) = 0 in (4.1)
by ek(µi−1)ω(µi−1) + ek(µi)ω(µi) = 0.

0
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2e-7
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3e-7

1 10 100 1000 10000

Figure 4.1: Approximation error of the
exponential sum for k = 45 obtained by
sinc quadrature.

The computation of a best approximation E∗k,[a,b] is simplified

by the reduction to E∗k,[1,b/a] (cf. §2.2). In the case of a weight ω,

the reduction to [1, b/a] requires that ω is homogeneous:

ω(ax) = ϕ(a)ω(x).

Examples are all powers ω(x) = xγ (γ < 1 if b = ∞). Then the
best approximation E∗k,[1,b/a] in [1, b/a] also determines the best

approximation E∗k,[a,b] in [a, b] by

E∗k,[a,b](x) :=
1

a
E∗k,[1,b/a](x/a)

with the error

‖ 1· − E
∗
k,[a,b]‖[a,b],ω =

ϕ(a)

a
‖ 1· − E

∗
k,[1,b/a]‖[1,a/b],ω.

4.7.3 Quadrature

Since 1
x =

∫∞
0

exp(−xt)dt, any quadrature formula Q(f) =
∑k
ν=1 aνf(bν) applied to the function f(·) =

exp(−x ·) yields an exponential sum of the form (1.1).

A particular choice is the sinc quadrature. It requires an integral over R. For instance, the substitution
t = exp(y) yields an integral of the desired form: 1

x =
∫∞
−∞ exp(−x exp(y)) exp(y)dy. The sinc quadrature is

8



defined and analysed in [11, §D.4]. The drawback is that the quadrature is not adapted to the fact that the
interesting parameters x belong to the interval [1, R]. The L∞ error estimate is of the form ≤ c exp(−c′

√
k)

(cf. [4, (3.6)]). Figure 4.1 shows the error ek for k = 45. The error bound is 2.6310-7, while the best
approximation – say in [1, 106] – is 3.91310-15. It is oscillating, but remains in the positive part, i.e., it is
infeasible. Therefore it is not possible to use the quadrature result as starting value for the Remez algorithm.

References

[1] P. Y. Ayala and G. E. Scuseria. Linear scaling second-order Moller–Plesset theory in the atomic orbital
basis for large molecular systems. J. Chem. Phys., 110:3660, 1999.

[2] R. B. Barrar and H. L. Loeb. On the Remez algorithm for non-linear families. Numer. Math., 15:382–
391, 1970.

[3] D. Braess. Nonlinear Approximation Theory. Springer, Berlin, 1986.

[4] D. Braess and W. Hackbusch. Approximation of 1/x by exponential sums in [1,∞). IMA J. Numer.
Anal., 25:685–697, 2005.

[5] D. Braess and W. Hackbusch. On the efficient computation of high-dimensional integrals and the
approximation by exponential sums. In Ronald A. DeVore and Angela Kunoth, editors, Multiscale,
Nonlinear and Adaptive Approximation, pages 39–74. Springer, Berlin, 2009.
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[15] E. Süli and D. F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, Cam-
bridge, 4th printing edition, 2008.

[16] A. Takatsuka, S. Ten-no, and W. Hackbusch. Minimax approximation for the decomposition of energy
denominators in Laplace-transformed Møller-Plesset perturbation theories. J. Chem. Phys., 129:044112,
2008.

[17] J. M. Varah. On fitting exponentials by nonlinear least squares. SIAM J. Sci. Statist. Comput., 6:30–44,
1985.

[18] H. Werner. Vorlesung über Approximationstheorie, volume 14 of Lect. Notes Math. Springer, Berlin,
1966.

9



R k = 1 2 3 4 5 6 7
2E00 2.128E-02 2.080E-04 1.834E-06 1.542E-08 1.261E-10 1.012E-12 8.020E-15
3E00 4.358E-02 1.035E-03 2.223E-05 4.556E-07 9.088E-09 1.780E-10 3.444E-12
4E00 5.960E-02 2.191E-03 7.279E-05 2.311E-06 7.139E-08 2.167E-09 6.498E-11
5E00 7.075E-02 3.437E-03 1.500E-04 6.258E-06 2.543E-07 1.016E-08 4.007E-10
6E00 7.825E-02 4.659E-03 2.463E-04 1.246E-05 6.143E-07 2.976E-08 1.424E-09
7E00 8.288E-02 5.811E-03 3.553E-04 2.079E-05 1.185E-06 6.643E-08 3.677E-09
8E00 8.516E-02 6.878E-03 4.718E-04 3.098E-05 1.982E-06 1.246E-07 7.741E-09
9E00 8.556E-02 7.857E-03 5.924E-04 4.273E-05 3.004E-06 2.076E-07 1.417E-08
1E01 8.752E-03 7.145E-04 5.577E-05 4.243E-06 3.173E-07 2.344E-08
2E01 1.448E-02 1.819E-03 2.169E-04 2.521E-05 2.880E-06 3.252E-07
3E01 1.699E-02 2.627E-03 3.795E-04 5.336E-05 7.379E-06 1.008E-06
4E01 1.784E-02 3.215E-03 5.230E-04 8.266E-05 1.285E-05 1.973E-06
5E01 3.659E-03 6.469E-04 1.110E-04 1.872E-05 3.121E-06
6E01 4.001E-03 7.541E-04 1.377E-04 2.471E-05 4.382E-06
7E01 4.271E-03 8.474E-04 1.626E-04 3.066E-05 5.711E-06
8E01 4.485E-03 9.293E-04 1.858E-04 3.648E-05 7.077E-06
9E01 4.655E-03 1.002E-03 2.074E-04 4.213E-05 8.458E-06
1E02 4.789E-03 1.066E-03 2.274E-04 4.760E-05 9.841E-06
2E02 1.456E-03 3.707E-04 9.217E-05 2.261E-05
3E02 1.628E-03 4.554E-04 1.235E-04 3.297E-05
4E02 1.695E-03 5.117E-04 1.467E-04 4.141E-05
5E02 5.517E-04 1.649E-04 4.842E-05
6E02 5.811E-04 1.795E-04 5.438E-05
7E02 6.031E-04 1.915E-04 5.952E-05
8E02 6.193E-04 2.016E-04 6.401E-05
9E02 6.309E-04 2.102E-04 6.799E-05
1E03 6.385E-04 2.177E-04 7.153E-05
2E03 2.570E-04 9.365E-05
3E03 1.047E-04
4E03 1.110E-04
5E03 1.146E-04
6E03 1.162E-04
∞ 8.556E-02 1.785E-02 5.052E-03 1.700E-03 6.428E-04 2.646E-04 1.163E-04
R∗k 8.667 41.54 146.8 436.1 1154 2807 6373

k = 1 2 3 4 5 6 7

Table 2.1: ek,[1,R](k) for k = 1, . . . , 7 and various R. The errors corresponding to the empty places are those
shown for R =∞.

R k = 8 9 10 11 12 13 14
1E01 1.716E-09 1.248E-10 9.021E-12 6.492E-13 4.654E-14 3.326E-15 2.371E-16
1E02 2.016E-06 4.103E-07 8.303E-08 1.673E-08 3.357E-09 6.716E-10 1.340E-10
1E03 2.321E-05 7.468E-06 2.389E-06 7.605E-07 2.412E-07 7.623E-08 2.403E-08
1E04 5.271E-05 2.232E-05 9.296E-06 3.844E-06 1.582E-06 6.481E-07 2.648E-07
1E05 6.795E-06 3.379E-06 1.646E-06 7.973E-07
∞ 5.392E-05 2.611E-05 1.312E-05 6.807E-06 3.630E-06 1.984E-06 1.108E-06
R∗k 13749 28387 56502 1.089E+5 2.042E+6 3.737E+5 6.691E+5

Table 2.2: ek,[1,R](k) for k = 8, . . . , 14 and various R.

10



R k = 15 16 17 18 19 20 21
1E01 1.708E-17
1E02 2.667E-11 5.298E-12 1.050E-12 2.079E-13 4.110E-14 8.114E-15 1.600E-15
1E03 7.555E-09 2.371E-09 7.426E-10 2.322E-10 7.251E-11 2.261E-11 7.044E-12
1E04 1.079E-07 4.388E-08 1.780E-08 7.213E-09 2.918E-09 1.179E-09 4.755E-10
1E05 3.847E-07 1.850E-07 8.877E-08 4.251E-08 2.032E-08 9.700E-09 4.624E-09
1E06 6.280E-07 3.445E-07 1.867E-07 1.007E-07 5.421E-08 2.911E-08 1.560E-08
1E07 4.679E-08 2.752E-08
∞ 6.311E-07 3.659E-07 2.155E-07 1.289E-07 7.811E-08 4.794E-08 2.976E-08
R∗k 1.175E+6 2.027E+6 3.440E+6 5.753E+6 9.491E+6 1.546E+7 2.491E+7

Table 2.3: ek,[1,R](k) for k = 15, . . . , 21 and various R.

R k = 22 23 24 25 26 27 28
1E02 3.153E-16 6.218E-17
1E03 2.192E-12 6.813E-13 2.116E-13 6.566E-14 2.036E-14 6.309E-15 1.954E-15
1E04 1.916E-10 7.715E-11 3.103E-11 1.247E-11 5.009E-12 2.010E-12 8.061E-13
1E05 2.201E-09 1.047E-09 4.975E-10 2.362E-10 1.120E-10 5.310E-11 2.515E-11
1E06 8.351E-09 4.464E-09 2.384E-09 1.272E-09 6.777E-10 3.609E-10 1.920E-10
1E07 1.611E-08 9.404E-09 5.481E-09 3.190E-09 1.854E-09 1.076E-09 6.244E-10
1E08 4.802E-09 2.999E-09 1.866E-09 1.159E-09
∞ 1.868E-08 1.185E-08 7.583E-09 4.898E-09 3.190E-09 2.094E-09 1.385E-09
R∗k 3.969E+7 6.258E+7 9.776E+7 1.513E+8 2.325E+8 3.540E+8 5.353E+8

Table 2.4: ek,[1,R](k) for k = 22, . . . , 28 and various R.

R k = 29 30 31 32 33 34 35
1E03 6.048E-16 1.872E-16 6.218E-17
1E04 3.231E-13 1.294E-13 5.181E-14 2.073E-14 8.292E-15 3.315E-15 1.325E-15
1E05 1.191E-11 5.633E-12 2.663E-12 1.259E-12 5.945E-13 2.807E-13 1.325E-13
1E06 1.021E-10 5.426E-11 2.882E-11 1.530E-11 8.114E-12 4.303E-12 2.281E-12
1E07 3.619E-10 2.096E-10 1.213E-10 7.018E-11 4.057E-11 2.344E-11 1.354E-11
1E08 7.188E-10 4.452E-10 2.755E-10 1.704E-10 1.053E-10 6.499E-11 4.011E-11
1E09 6.162E-10 4.053E-10 2.651E-10 1.730E-10 1.128E-10 7.343E-11
∞ 9.227E-10 6.188E-10 4.177E-10 2.837E-10 1.938E-10 1.331E-10 9.194E-11
R∗k 8.036E+8 1.198E+9 1.775E+9 2.614E+9 3.826E+9 5.569E+9 8.063E+9

Table 2.5: ek,[1,R](k) for k = 29, . . . , 35 and various R.

R k = 36 37 38 39 40 41 42
1E04 5.294E-16 2.117E-16 8.451E-17
1E05 6.249E-14 2.947E-14 1.389E-14 6.546E-15 3.084E-15 1.453E-15 6.839E-16
1E06 1.208E-12 6.399E-13 3.388E-13 1.793E-13 9.484E-14 5.016E-14 2.652E-14
1E07 7.814E-12 4.509E-12 2.600E-12 1.499E-12 8.641E-13 4.978E-13 2.867E-13
1E08 2.474E-11 1.525E-11 9.396E-12 5.787E-12 3.563E-12 2.193E-12 1.349E-12
1E09 4.777E-11 3.105E-11 2.018E-11 1.310E-11 8.501E-12 5.515E-12 3.576E-12
1E10 6.365E-11 4.353E-11 2.962E-11 2.011E-11 1.364E-11 9.246E-12 6.262E-12
∞ 6.382E-11 4.452E-11 3.121E-11 2.197E-11 1.554E-11 1.104E-11 7.869E-12
R∗k 1.162E+10 1.665E+10 2.375E+10 3.374E+10 4.772E+10 6.719E+10 9.424E+10

Table 2.6: ek,[1,R](k) for k = 36, . . . , 42 and various R.
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R k = 43 44 45 46 47 48 49
1E05 3.220E-16 1.516E-16
1E06 1.402E-14 7.407E-15 3.913E-15 2.067E-15 1.091E-15 5.763E-16 3.042E-16
1E07 1.651E-13 9.503E-14 5.469E-14 3.146E-14 1.810E-14 1.041E-14 5.983E-15
1E08 8.296E-13 5.100E-13 3.135E-13 1.926E-13 1.183E-13 7.266E-14 4.461E-14
1E09 2.318E-12 1.502E-12 9.725E-13 6.297E-13 4.076E-13 2.637E-13 1.706E-13
1E10 4.238E-12 2.867E-12 1.939E-12 1.310E-12 8.852E-13 5.978E-13 4.036E-13
1E11 5.591E-12 3.938E-12 2.766E-12 1.940E-12 1.360E-12 9.524E-13 6.667E-13
∞ 5.633E-12 4.047E-12 2.919E-12 2.113E-12 1.534E-12 1.118E-12 8.172E-13
R∗k 1.316E+11 1.832E+11 2.540E+11 3.509E+11 4.833E+11 6.631E+11 9.074E+11

Table 2.7: ek,[1,R](k) for k = 43, . . . , 49 and various R.

R k = 50 51 52 53 54 55 56
1E06 1.606E-16
1E07 3.439E-15 1.976E-15 1.136E-15 6.524E-16 3.749E-16 2.154E-16 1.239E-16
1E08 2.739E-14 1.681E-14 1.031E-14 6.327E-15 3.880E-15 2.379E-15 1.459E-15
1E09 1.103E-13 7.135E-14 4.612E-14 2.981E-14 1.926E-14 1.244E-14 8.038E-15
1E10 2.724E-13 1.838E-13 1.240E-13 8.362E-14 5.638E-14 3.800E-14 2.571E-14
1E11 4.664E-13 3.262E-13 2.281E-13 1.594E-13 1.113E-13 7.776E-14 5.429E-14
1E12 5.966E-13 4.321E-13 3.120E-13 2.251E-13 1.622E-13 1.168E-13 8.410E-14
∞ 5.992E-13 4.407E-13 3.251E-13 2.405E-13 1.784E-13 1.327E-13 9.897E-14
R∗k 1.238E+12 1.683E+12 2.281E+12 3.083E+12 4.155E+12 5.587E+12 7.491E+12

Table 2.8: ek,[1,R](k) for k = 50, . . . , 56 and various R.

R k = 57 58 59 60 61 62 63
∞ 7.400E-14 5.547E-14 4.168E-14 3.139E-14 3.139E-14 1.793E-14 1.360E-14
R∗k 1.002E+13 1.337E+13 1.779E+13 2.362E+13 3.064E+13 4.134E+13 5.453E+13

Table 2.9: ek,[1,∞)(k) for k = 57, . . . , 63.
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