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Abstract

It is challenging task to detect and measure genuine multipartite entanglement.

We investigate the problem by considering the average based positive partial transpo-

sition(PPT) criterion and the realignment criterion. Sufficient conditions for detecting

genuine tripartite entanglement are presented. We also derive lower bounds for the

genuine tripartite entanglement concurrence with respect to the conditions. While the

PPT criterion and the realignment criterion are powerful for detecting bipartite entan-

glement and for providing lower bounds of bipartite concurrences, our results give an

effective operational way to detect and measure the genuine tripartite entanglement.

Quantum entanglement is recognized as a remarkable resource in the rapidly expanding

field of quantum information science, with various applications [1]. A multipartite quantum

state that is not separable with respect to any bi-partition is said to be genuinely multipartite

entangled(GME) [2], which is one of the important type of entanglement, and offers signifi-

cant advantage in quantum tasks comparing with bipartite entanglement [3]. In particular,

it is the basic ingredient in measurement-based quantum computation [4], and is beneficial

in various quantum communication protocols, including secret sharing [5, 6], extreme spin

squeezing [7], high sensitivity in some general metrology tasks [8], quantum computing using
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cluster states [9], and multiparty quantum network [10]. Although its significance, detecting

and measuring such kind of entanglement turns out to be quite difficult. To certify GME, an

abundance of linear and nonlinear entanglement witnesses [11–19], generalized concurrence

for multi genuine entanglement [20–23], and Bell-like inequalities [24]entanglement witness-

es were derived (see e.g. reviews [2, 25]) and a characterisation in terms of semi-definite

programs (SDP) was developed [26, 27]. Nevertheless, the problem remains far from being

satisfactorily solved.

For bipartite systems, Peres in [28]has presented a much stronger separability criterion,

which is called positive partial transpose (PPT) criterion. It says that if ρAB is separable,

then the partial transposition ρTBAB with matrix elements defined as: (ρTBAB)ij,kl = ρil,kj is a

density operator (i.e. has nonnegative spectrum). It has interpretation as a partial time

reversal [29]. There is yet another strong class of criteria based on linear contractions on

product states. They stem from the new criterion discovered in [30, 31] called computable

cross norm criterion or matrix realignment criterion(CCNR) which is operational and inde-

pendent on PPT test [28]. In terms of matrix elements it can be stated as follows: if the

state ρAB is separable then the matrix R(ρ) with elements R(ρ)ij,kl = ρik,jl has trace norm

not greater than one, i.e. ||R(ρ)||KF ≤ 1. Quite remarkably, the realignment criterion has

been found to be able to detect some PPT entangled states [30, 31] and to be useful for

construction of some nondecomposable maps. It also provides nice lower bound on concur-

rence [32]. Further more, a necessary and sufficient criterion of the local unitary equivalence

for general multipartite states based on matrix realignment has been presented in [33].

In this manuscript, we investigate the detection of GME for arbitrary tripartite quantum

systems. We will derive an effective criterion based on PPT and CCNR. A lower bound for

GME concurrence will be also obtained. We then compute examples to show the effectiveness

of our results.

Results

In the following, we present a criterion to detect GME for tripartite qudits systems

by using the PPT and CCNR criteria. A lower bound for GME concurrence of tripartite

quantum systems will be also obtained. We start with some definitions and notations.

Let Hd
i , i = 1, 2, 3, denote d-dimensional Hilbert spaces. A tripartite state ρ ∈ Hd

1 ⊗Hd
2 ⊗

Hd
3 can be expressed as ρ =

∑

pα |ψα〉 〈ψα|, where 0 < pα ≤ 1,
∑

pα = 1, |ψα〉 ∈ Hd
1⊗Hd

2⊗Hd
3

are normalized pure states. If all |ψα〉 are biseparable, namely, either |ψα〉 = |ϕ1
α〉 ⊗ |ϕ23

α 〉 or
|ψβ〉 =

∣

∣ϕ2
β

〉

⊗
∣

∣ϕ13
β

〉

or |ψγ〉 =
∣

∣ϕ3
γ

〉

⊗
∣

∣ϕ12
γ

〉

, where
∣

∣ϕiγ
〉

and
∣

∣ϕijγ
〉

denote pure states in Hd
i

and Hd
i ⊗ Hd

j respectively, then ρ is said to be bipartite separable. Otherwise, ρ is called

genuine multipartite entangled.

Define that M(ρ) = 1

3
(
∥

∥ρT1
∥

∥ +
∥

∥ρT2
∥

∥ +
∥

∥ρT3
∥

∥), N(ρ) = 1

3
(
∥

∥R1|23(ρ)
∥

∥ +
∥

∥R2|13(ρ)
∥

∥ +
∥

∥R3|12(ρ)
∥

∥), where Tis are the partial transposition over the ith subsystem, i = 1, 2, 3 and

R i|jk stands for the bipartite realignment with respect to subsystem i and subsystems jk,

i, j, k = 1, 2, 3. ‖·‖ denotes the trace norm of a matrix.
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To derive GME criterion, we first obtain the following lemma.

Lemma: Let d = min{m,n}. For a bipartite quantum state |ϕ〉 ∈ Hm
A ⊗Hn

B, we have
∥

∥

∥
(|ϕ〉 〈ϕ|)TA

∥

∥

∥
≤ d, and

∥

∥RA|B(|ϕ〉 〈ϕ|)
∥

∥ ≤ d.

Proof. By Schmidt decomposition, we set |ϕ〉 =
d
∑

i=1

√
ui |ii〉 with

d
∑

i=1

ui = 1, ui ≥ 0. By

the Cauchy-Schwarz inequality one computes
∥

∥

∥
(|ϕ〉 〈ϕ|)TA

∥

∥

∥
=

∥

∥RA|B(|ϕ〉 〈ϕ|)
∥

∥ = (
∑

i

√
ui)

2 ≤ d(
∑

i

ui)
2 = d. (1)

Then we are ready to show the theorems.

Theorem 1: Let ρ ∈ H123 = Hd
1 ⊗ Hd

2 ⊗ Hd
3 be a tripartite qudits quantum state.

If ρ is bipartite separable, then max{M(ρ), N(ρ)} ≤ 1+2d
3

must hold. Or equivalently, if

max{M(ρ), N(ρ)} > 1+2d
3
, then ρ is GME.

See Methods for the proof of theorem 1.

The GME concurrence for tripartite quantum systems, which is defined as follows, is

proved to be a well defined measure [20,21]. For a pure state |ψ〉 ∈ Hd
1 ⊗Hd

2 ⊗Hd
3 , the GME

concurrence is defined by

CGME(|ψ〉) =
√

min{1− tr(ρ21), 1− tr(ρ22), 1− tr(ρ23)},

where ρi is the reduced matrix for the ith subsystem. For mixed state ρ ∈ Hd
1 ⊗Hd

2 ⊗Hd
3 ,

the GME concurrence is then defined by the convex roof

CGME(ρ) = min
∑

{pα,|ψα〉}
pαCGME(|ψα〉). (2)

The minimum is taken over all pure ensemble decompositions of ρ. Since one has to find

the optimal ensemble to do the minimization, the GME concurrence is hard to compute. In

the following we derive an effective lower bound for GME concurrence in terms of the PPT

criterion and the CCNR criterion.

Theorem 2: Let ρ ∈ H123 = Hd
1 ⊗Hd

2 ⊗Hd
3 be a tripartite qudits quantum state. Then

one has

CGME(ρ) ≥
1

√

d(d− 1)
(max{M(ρ), N(ρ)} − 1 + 2d

3
). (3)

See Methods for the proof of theorem 2.

Applications

The following two examples show that the criterion and the lower bound of GME con-

currence above are much effective for detecting and measuring GME in tripartite quantum

systems.

Example 1: Consider quantum state ρ ∈ H3
1 ⊗H3

2 ⊗H3
3 , ρ = 1−x

27
I + x |ϕ〉 〈ϕ| , where

|ϕ〉 = 1√
3
(|000〉+|111〉+|222〉) is the GHZ state. By Theorem 1 in [13] we can detect GME for
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0.894427 < x ≤ 1. Using the Theorem 1 in this manuscript, we compute max{M(ρ), N(ρ)} =
1

9
(8 + 10x+ |10x− 1|). Thus GME is detected for 0.7 < x ≤ 1.

Example 2: We consider the mixture of the GHZ state and W state in three-qubit

quantum systems ρ = 1−x−y
8

I+x|GHZ〉〈GHZ|+y|W 〉〈W |,where |GHZ〉 = 1√
2
(|000〉+|111〉)

and |W 〉 = 1√
3
(|001〉 + |010〉 + |100〉). As shown in Figure 1, our criterion detect some

GME(blue region) that can not be detected by Vicente criteria.

Figure 1: GME Detected by Vicente criterion (pink region by Theorem 1 and yellow region

by Theorem 2 in [13]) and by the theorem 1 in this manuscript(blue region).

The lower bound of GME concurrence in Theorem 2 for ρ is computed to be

g(x, y) = (1/(24
√
2))(−40 + 3

√

(−1− 3α + β)2 + 6
√

(−1 + α+ β)2 +
√

(3− 3α+ 13β)2

+

√

9 + 153α2 + 6β + 17β2 − 6α(3 + β)− 8
√

(3− 3α + β)2(9α2 + β2)

+

√

9 + 153α2 + 6β + 17β2 − 6α(3 + β) + 8
√

(3− 3α+ β)2(9α2 + β2)

+

√

9 + 45α2 − 18α(−1 + β)− 18β + 137β2 − 12
√

(1 + α− β)2(9α2 + 32β2)

+

√

9 + 45α2 − 18α(−1 + β)− 18β + 137β2 + 12
√

(1 + α− β)2(9α2 + 32β2))

as ploted in Figure 2.

Discussions It is a basic and fundamental question in quantum information theory to detect

and measure GME. In this manuscript we have presented a GME criterion based on the PPT

and Realignment criteria. A lower bound of GME concurrence for tripartite quantum system

has also been obtained. Examples show that our criterion is independent of Vicente criteria

and can detect more genuine entangled quantum states. Our results are derived by average
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Figure 2: The lower bound of GME concurrence for ρ in example 2. g(x, y) stands for the

lower bound.

based PPT and CCNR criteria. One can construct more effective criteria to detect GME

and lower bounds of GME concurrence by taking the average of the correlation matrices or

covariance matrices and so on. It is also of interesting to investigate the implementation of

the criterion with measurements or to extend the results to systems consisting of more than

three parties.

Methods

Proof of Theorem 1 Lets consider a pure state ρ = |ψ〉 〈ψ| first. Assume that |ψ〉 ∈
H123 = Hd

1 ⊗ Hd
2 ⊗ Hd

3 be bipartite separable, which will be in one of the following three

forms: |ψ〉 = |ϕ1〉 ⊗ |ϕ23〉, |ψ〉 = |ϕ2〉 ⊗ |ϕ13〉, or |ψ〉 = |ϕ3〉 ⊗ |ϕ12〉. If |ψ〉 = |ϕ1〉 ⊗ |ϕ23〉,
then by using the first two equations in (1) we have

∥

∥ρT1
∥

∥ =
∥

∥R1|23(ρ)
∥

∥ =
∥

∥

∥
(|ϕ1〉 〈ϕ1|)T1 ⊗ |ϕ23〉 〈ϕ23|

∥

∥

∥
= 1;

∥

∥ρT2
∥

∥ =
∥

∥R2|13(ρ)
∥

∥ = ‖|ϕ1〉 〈ϕ1|‖ ·
∥

∥

∥
(|ϕ23〉 〈ϕ23|)T2

∥

∥

∥
=

∥

∥

∥
(|ϕ23〉 〈ϕ23|)T2

∥

∥

∥
≤ d;

∥

∥ρT3
∥

∥ =
∥

∥R3|12(ρ)
∥

∥ = ‖|ϕ1〉 〈ϕ1|‖ ·
∥

∥

∥
(|ϕ23〉 〈ϕ23|)T2

∥

∥

∥
≤ d.

Similarly, one has

∥

∥ρT1
∥

∥ =
∥

∥R1|23(ρ)
∥

∥ ≤ d;
∥

∥ρT2
∥

∥ =
∥

∥R2|13(ρ)
∥

∥ = 1;
∥

∥ρT3
∥

∥ =
∥

∥R3|12(ρ)
∥

∥ ≤ d

for |ψ〉 = |ϕ2〉 〈ϕ13| and
∥

∥ρT1
∥

∥ =
∥

∥R1|23(ρ)
∥

∥ ≤ d;
∥

∥ρT2
∥

∥ =
∥

∥R2|13(ρ)
∥

∥ ≤ d;
∥

∥ρT3
∥

∥ =
∥

∥R3|12(ρ)
∥

∥ = 1
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for |ψ〉 = |ϕ3〉 〈ϕ12| respectively. Thus for any type bipartite separable pure quantum state,

we always have M(ρ) ≤ 1+2d
3
, and N(ρ) ≤ 1+2d

3
.

For mixed bipartite separable state ρ, by using the convex property of M(ρ) and N(ρ)

we obtain

M(ρ) ≤
∑

pαM(|ψα〉 〈ψα|) ≤
1 + 2d

3
, (4)

and

N(ρ) ≤
∑

pαN(|ψα〉 〈ψα|) ≤
1 + 2d

3
, (5)

which proves the theorem.

Proof of Theorem 2

Still we consider a pure state first. Let ρ = |ψ〉〈ψ| ∈ Hd
1 ⊗Hd

2 ⊗Hd
3 be a pure quantum

state. From the result in [32], we have

√

1− trρ21 ≥
1

√

d(d− 1)
(||ρT1 || − 1); (6)

√

1− trρ22 ≥
1

√

d(d− 1)
(||ρT2 || − 1); (7)

√

1− trρ23 ≥
1

√

d(d− 1)
(||ρT3 || − 1). (8)

One computes

3
√

d(d− 1)
√

1− trρ21 − 3max{M(ρ), N(ρ)} + 1 + 2d

= 3
√

d(d− 1)
√

1− trρ21 − (||ρT1 ||+ ||ρT2 ||+ ||ρT3 ||) + 1 + 2d

≥ 3
√

d(d− 1)
√

1− trρ21 −
√

d(d− 1)(
√

1− trρ21 +
√

1− trρ22 +
√

1− trρ23)− 2 + 2d

= 2
√

d(d− 1)
√

1− trρ21 −
√

d(d− 1)(
√

1− trρ22 +
√

1− trρ23)− 2 + 2d

≥ 2
√

d(d− 1)

√

d− 1

d
− 2 + 2d = 0,

where we have used
√

1− trρ21 ≥ 0 and
√

1− trρ2k ≤ 1 − 1

d
, k = 2 or 3 to obtain the last

inequality above.

Thus we get

√

1− trρ21 ≥
1

√

d(d− 1)
(max{M(ρ), N(ρ)} − 1 + 2d

3
). (9)

Similarly we obtain

√

1− trρ22 ≥
1

√

d(d− 1)
(max{M(ρ), N(ρ)} − 1 + 2d

3
). (10)

√

1− trρ23 ≥
1

√

d(d− 1)
(max{M(ρ), N(ρ)} − 1 + 2d

3
). (11)
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Then according to the definition of GME concurrence, we derive

CGME(|ψ〉) ≥
1

√

d(d− 1)
(max{M(ρ), N(ρ)} − 1 + 2d

3
). (12)

Now we consider a mixed state ρ ∈ Hd
1 ⊗Hd

2 ⊗Hd
3 with the optimal ensemble decompo-

sition ρ =
∑

α pα|ψα〉〈ψα| s.t. the GME concurrence attains its minimum. One gets

CGME(ρ) =
∑

pα,|ψα〉
pαCGME(|ψα〉)

≥ 1
√

d(d− 1)
(max{M(ρ), N(ρ)} − 1 + 2d

3
)
∑

α

pα

=
1

√

d(d− 1)
(max{M(ρ), N(ρ)} − 1 + 2d

3
)

which ends the proof of the theorem.
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