
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Numerical approximation of Poisson

problems in long domains

by

Michel Chipot, Wolfgang Hackbusch, Stefan A. Sauter,

and A. Veit

Preprint no.: 101 2018

Numerical approximation of Poisson problems in long

domains

M. Chipot∗ W. Hackbusch† S. Sauter‡ A. Veit§

Abstract

In this paper, we consider the Poisson equation on a “long” domain which is the Cartesian
product of a one-dimensional long interval with a (d− 1)-dimensional domain. The right-
hand side is assumed to have a rank-1 tensor structure. We will present methods to construct
approximations of the solution which have tensor structure and the computational effort is
governed by only solving elliptic problems on lower-dimensional domains. A zero-th order
tensor approximation is derived by using tools from asymptotic analysis (method 1). The
resulting approximation is an elementary tensor and, hence has a fixed error which turns
out to be very close to the best possible approximation of zero-th order. This approximation
can be used as a starting guess for the derivation of higher-order tensor approximations by
an alternating-least-squares (ALS) type method (method 2). Numerical experiments show
that the ALS is converging towards the exact solution (although a rigorous and general
theoretical framework is missing for our application).

Method 3 is based on the derivation of a tensor approximation via exponential sums
applied to discretised differential operators and their inverses. It can be proved that this
method converges exponentially with respect to the tensor rank. We present numerical
experiments which compare the performance and sensitivity of these three methods.

AMS subject classifications: 15A69, 35B40, 35J2, 65K05
Keywords: Poisson problem, long domain, asymptotic analysis, tensor approximation,

alternating least squares.

1 Introduction

In this paper, we consider elliptic partial differential equations on domains which are the Carte-
sian product of a “long” interval I` = (−`, `) with a (d− 1)-dimensional domain ω, the cross
section - a typical application is the modelling of a flow in long cylinders. As a model problem
we consider the Poisson equation with homogeneous Dirichlet boundary conditions and a right-
hand side which is an elementary tensor ; i.e., the product of a univariate function (on the long
interval) and a (d− 1)-variate function on the cross section. Such problems have been studied
by using asymptotic analysis, see., e.g., [2]. Our first approximation (method 1) is based on this
technique and approximates the solution by an elementary tensor where the function on the cross
section is the solution of a Poisson-problem on the cross section and the corresponding univariate
function is determined afterwards as the best approximation in the Sobolev space H1

0 on the long

∗Institute for Mathematics, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich
m.m.chipot@math.uzh.ch
†Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, wh@mis.mpg.de
‡Institute for Mathematics, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich stas@math.unizh.ch
§Institute for Mathematics, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich

alexander.veit@math.uzh.ch

1

interval. In Lemma 2 below, it is shown that this approximation converges exponentially with
respect to the length of the cylinder for any subdomain I`0 × ω for fixed `0 < `. However, for
fixed ` this is a one-term approximation with a fixed error.

Method 2 uses the result of method 1 as the initial guess for an iterative procedure which
is an alternating least squares (ALS) method. Recursively, one assumes that a rank-k tensor
approximation of the solution has already been derived and then starts an iteration to compute
the k + 1 term: a) one chooses an univariate function on I` as an initial guess for this iteration
and determines the function on the cross section as the best approximation in H1

0 of the cross-
section. In step b) the iteration is flipped and one fixes the new function on the cross section
and determines the corresponding best approximation in H1

0 of the interval. Steps a) and b)
are iterated until a stopping criterion is reached and this gives the k + 1 term in the tensor
approximation. We have performed numerical experiments which are reported in Section 4 which
show that this method leads to a convergent approximation also for fixed ` as the tensor rank
of the approximation increases. However, it turns out that this method is quite sensitive and
requires that the inner iteration a), b) leads to an accurate approximation of the (k + 1) term in
order to ensure that the outer iteration is converging. Furthermore, the numerical experiments
that we have performed indicate, that the convergence speed can slow down as the number
of outer iterations increases. Thus, this method is best suited when a medium approximation
accuracy of the Poisson problem is required. An analysis of this method is available in the
literature for the case that the higher-dimensional Hilbert space norms are generated from one-
dimensional Hilbert space norms In this case, the ALS converges for any initial guess; we refer
for this and more details to [10]. In our application however, the norms are not generated from
one-dimensional norms and convergence is still an open theoretical question. Further results on
the alternating least squares approach can be found in [3, 8, 9].

Method 3 is based on a different approach which employs numerical tensor calculus (see [4]).
First one defines an exponential sum approximation of the function 1/x. Since the differential
operator −∆ is of tensor form, the exponential sum, applied to the inverse of a discretisation
of the Laplacian by a matrix which must preserve the tensor format, directly leads to a tensor
approximation of the solution u. We emphasize that the explicit computation of the inverse of
the discretisation matrix can be avoided by using the hierarchical format for their representation
(see [5]). An advantage of this method is that a full theory is available which applies to our
application and allows us to choose the tensor rank via an a priori error estimate. It also can
be shown that the tensor approximation converges exponentially with respect to the tensor rank
(cf. [4]).

The paper is structured as follows. In Section 2 we formulate the problem on the long
product domain and introduce the assumptions on the tensor format of the right-hand side. The
three different methods for constructing a tensor approximation of the solution are presented in
Section 3. The results of numerical experiments are presented in Section 4 where the convergence
and sensitivity of the different methods is investigated and compared. For the experiments we
consider first the case that the cross section is the one-dimensional unit interval and then the
more complicated case that the cross section is an L-shaped polygonal domain. Finally, in the
concluding section we summarize the results and give an outlook.

2 Setting

Let ω be an open, bounded and connected Lipschitz domain in Rn−1, n ≥ 1. In the following we
consider Poisson problems on domains of the form

Ω` := I` × ω with I` := (−`, `) ,

2

where ` is large. More specifically we are interested in Dirichlet boundary value problems of the
form

−∆u` = F in Ω`,

u` = 0 on ∂Ω` (1)

with weak formulation{
find u` ∈ H1

0 (Ω`) s.t.

(∇u`,∇v)L2(Ω`) = (F, v)L2(Ω`) ∀v ∈ H1
0 (Ω`).

Specifically we are interested in right-hand sides f which have a tensor structure of the form
F = 1 ⊗ f or more generally F =

∑n
k=0 gk ⊗ fk, where gk is a univariate function and f , fk

are functions which depend only on the (d− 1)-dimensional variable x′ ∈ ω. Here, we use the

standard tensor notation (g ⊗ f) (x) = g (x1) f (x′) with x′ = (xk)
d
k=2. In this paper, we will

present and compare methods to approximate u` in tensor form.
We consider a right-hand side of the form

F = 1⊗ f for some f ∈ L2 (ω) (2)

and derive a first approximation of u` as the solution of the (n− 1)-dimensional problem on ω:

−∆′u∞(x′) = f(x′) in ω,

u∞ = 0 on ∂ω (3)

with weak form {
find u∞ ∈ H1

0 (ω) s.t.

(∇′u∞,∇′v)L2(ω) = (f, v)L2(ω) ∀v ∈ H1
0 (ω).

3 Numerical Approximation

In this section we derive three different methods to approximate problem (1). In all three methods
we exploit the special structure of the domain Ω` and the right-hand side F . Our goal is to reduce
the original n-dimensional problem on Ω` to one or more (n− 1)-dimensional problems on ω.
Compared to standard methods like finite elements methods or finite difference methods, which
solve the equations on Ω`, this strategy can significantly reduce the computational cost since `
is considered large and the discretisation in the x1 direction can be avoided.

3.1 Method 1: A one-term approximation based on an asymptotic
analysis of problem (1)

Although the right-hand side F in (1) is independent of x1, it is easy to see that this is not the
case for the solution u`, i.e., due to the homogeneous Dirichlet boundary conditions it is clear
that u` depends on x1. However, if ` is large one can expect that u` is approximately constant
with respect to x1 in a subdomain Ω`0 , where 0 < `0 � ` and thus converges locally to a function
independent of x1 for ` → ∞. The asymptotic behaviour of the solution u` when ` → ∞ has
been investigated in [1]. It can be shown that

u` −→ 1⊗ u∞ in Ω`0 ,

where u∞ is the solution of (3), with an exponential rate of convergence. More precisely, the
following theorem holds:

3

Theorem 1 There exist constants c, α > 0 independent of ` s.t.∫
Ω`/2

|∇(u` − 1⊗ u∞)|2dx ≤ c e−α` ‖f‖22,ω,

where ‖ · ‖2,ω refers to the L2(ω)-norm.

For a proof we refer to [1, Theorem 6.6].
Theorem 1 shows that 1 ⊗ u∞ is a good approximation of u` in Ω`/2 when ` is large. This

motivates to seek approximations of u` in Ω` which are of the form

u` ≈ uM1

` := ψ` ⊗ u∞,

where ψ` ∈ H1
0 (−`, `). Here, we choose ψ` to be the solution of the following best approximation

problem: Given u` ∈ H1
0 (Ω`) and u∞ ∈ H1

0 (ω), find ψ ∈ H1
0 (−`, `) s.t.

‖∇ (u` − ψ ⊗ u∞) ‖2 ≤ inf
θ∈H1

0 (−`,`)
‖∇ (u` − θ ⊗ u∞) ‖2. (4)

In order to solve problem (4) we define the functional

J(u`, u∞)(θ) := ‖∇ (u` − θ ⊗ u∞)‖22

and consider the variational problem of minimizing it with respect to θ ∈ H1
0 (−`, `).

A simple computation shows that this is equivalent to finding θ̃ ∈ H1
0 (I`) such that(

∇ (θ ⊗ u∞) ,∇
(
θ̃ ⊗ u∞

))
2

=
(
∇u`,∇

(
θ̃ ⊗ u∞

))
2

⇐⇒
((

θ′ ⊗ u∞
θ ⊗∇′u∞

)
,

(
θ̃′ ⊗ u∞
θ̃ ⊗∇′u∞

))
2

=
(
−∆u`, θ̃ ⊗ u∞

)
2

⇐⇒ α2
∞

(
θ′, θ̃′

)
2,I`

+ β2
∞

(
θ, θ̃
)

2,I`
=
(

1⊗ f, θ̃ ⊗ u∞
)

2

⇐⇒ α2
∞

(
θ′, θ̃′

)
2,I`

+ β2
∞

(
θ, θ̃
)

2,I`
=
(

1⊗ (−∆′u∞) , θ̃ ⊗ u∞
)

2

⇐⇒ α2
∞

(
θ′, θ̃′

)
2,I`

+ β2
∞

(
θ, θ̃
)

2,I`
= β∞

∫
I`
θ̃.

∀θ̃ ∈ H1

0 (I`)

with
α∞ := ‖u∞‖2,ω , β∞ := ‖∇′u∞‖2,ω .

The strong form of the resulting equation is

−α2
∞θ
′′ + β2

∞θ = β2
∞ on (−`, `),

θ(−`) = θ(`) = 0.

The solution of this one-dimensional boundary value problem is given by

θ (x1) := 1−
cosh

(
β∞
α∞

x1

)
cosh

(
β∞
α∞

`
) .

This shows that an approximation of our original problem (1) is given by

uM1

` := ψ` (λ∞, ·)⊗ u∞, with ψ`(a, x1) := 1− cosh (ax1)

cosh (a`)
(5)

4

and

λ∞ =
β∞
α∞

=

√
(f, u∞)2,ω

α∞
. (6)

Note that ψ` (a, ·) satisfies

−ψ′′` (a, ·) + a2ψ` (a, ·) = a2 and ψ` (±`) = 0. (7)

In Section 4 we report on various numerical experiments that show the approximation properties
of this rather simple one-term approximation.

Figure 1: Plot of ψ` (λ∞, ·) for ` = 20 and λ∞ = 2

Figure 1 shows a plot of ψ` (λ∞, ·) for ` = 20 and λ∞ = 2. Since ψ` approaches 1 with an
exponential rate as x1 moves away from ±` towards the origin, an analogous result to Theorem
1 can be shown for uM1

` .

Lemma 2 There exist constants c, c̃ > 0 independent of ` such that, for δ` < `,

‖∇ (u` − ψ` (λ∞, ·)⊗ u∞)‖22,Ω`−δ` ≤ C
(1)
ω,δ`
‖u∞‖22,ω + C

(2)
ω,δ`
‖∇′u∞‖

2
2,ω , (8)

with

C
(1)
ω,δ`

:= 4 e−2λ1δ` , C
(2)
ω,δ`

:= 4

(
1

λ1
e−2λ1δ` +6 (`− δ`) e−2λ1`

)
and

λ1 := inf
v∈H1

0 (ω)\{0}

‖∇′v‖2,ω
‖v‖2,ω

. (9)

The right-hand side in (8) goes to 0 with an exponential rate of convergence if δ` is bounded from
below when `→∞.

Proof. For i = 1, 2, . . ., let wi be the i-th eigenfunction of −∆′, i.e., wi ∈ H1
0 (ω) is a solution of

(∇′wi,∇′v)2,ω = λ2
i (wi, v)2,ω ∀v ∈ H1

0 (ω) (10)

and we normalize the eigenfunctions such that (wi, wj)2,ω = δi,j and order them such that (λi)i
is increasing monotonously. Furthermore let u`,i ∈ H1

0 (Ω`) be the solution of

(∇u`,i,∇v)2 = λ2
i (1⊗ wi, v)2 ∀v ∈ H1

0 (Ω`) .

5

Then one concludes from (7) and (10) that

u`,i = ψ` (λi, ·)⊗ wi. (11)

If f ∈ L2(ω) it holds

f =

∞∑
i=1

(f, wi)2,ωwi.

This shows that the solutions of (3) and (1) can be expressed as

u∞ =

∞∑
i=1

(f, wi)2,ω

λ2
i

wi,

u` =

∞∑
i=1

(f, wi)2,ω

λ2
i

u`,i =

∞∑
i=1

(f, wi)2,ω

λi
ψ` (λi, ·)⊗ wi.

With ψ` as in (5) we get

u` − ψ` (λ∞, ·)⊗ u∞ =

∞∑
i=1

(f, wi)

λ2
i

φ`,i ⊗ wi, φ`,i(x1) :=
cosh(λ∞x1)

cosh(λ∞`)
− cosh(λix1)

cosh(λi`)
.

Let δ` < `. Then, since
∫
ω
wiwjdx

′ = δi,j , we get

|∇ (u` − ψ` (λ∞, ·)⊗ u∞) |22,Ω`−δ` =

∫ `−δ`

−`+δ`

∫
ω

|∇(u` − ψ` (λ∞, ·)⊗ u∞)|2 dx

=

∞∑
i=1

(f, wi)
2

λ4
i

∫ `−δ`

−`+δ`

((
φ′`,i
)2

+ λ2
iφ

2
`,i

)
. (12)

One has for any α > 0∫ `−δ`

−`+δ`

(
cosh(αx1)

cosh(α`)

)2

dx1 = 2

∫ `−δ`

0

(
cosh(αx1)

cosh(α`)

)2

dx1

=
1

2

∫ `−δ`

0

e2αx1 +2 + e−2αx1

cosh(α`)2
dx1

≤ 2

∫ `−δ`

0

e2αx1 +3

e2α`
dx1

≤ 1

α
e−2αδ` +6(`− δ`) e−2α`

and similarly ∫ `−δ`

−`+δ`

(
sinh(αx1)

cosh(α`)

)2

dx1 ≤
1

α
e−2αδ` .

Since λ1 ≤ λi for all i ∈ N and

λ1 = inf
v∈H1

0 (ω)\{0}

‖∇′v‖2,ω
‖v‖2,ω

≤
‖∇′u∞‖2,ω
‖u∞‖2,ω

= λ∞

we get ∫ `−δ`

−`+δ`

(
φ′`,i
)2 ≤ 2 e−2λ∞δ` +2 e−2λ1δ` ≤ 4 e−2λ1δ` = C

(1)
ω,δ`

(13)

6

and ∫ `−δ`

−`+δ`
φ2
`,i ≤ 2

∫ `−δ`

−`+δ`

(∣∣∣∣cosh(λ∞x1)

cosh(λ∞`)

∣∣∣∣2 +

∣∣∣∣cosh(λix1)

cosh(λi`)

∣∣∣∣2
)

≤ 2

(
1

λ∞
e−2λ∞δ` +

1

λi
e−2λiδ` +6 (`− δ`) e−2λ∞` +6 (`− δ`) e−2λi`

)
≤ 4

(
1

λ1
e−2λ1δ` +6 (`− δ`) e−2λ1`

)
= C

(2)
ω,δ`

. (14)

We employ the estimates (13) and (14) in (12) and obtain

‖∇ (u` − ψ` (λ∞, ·)⊗ u∞)‖22,Ω`−δ` ≤ C
(1)
ω,δ`

∞∑
i=1

(f, wi)
2

λ4
i

+ C
(2)
ω,δ`

∞∑
i=1

(f, wi)
2

λ2
i

= C
(1)
ω,δ`
‖u∞‖22,ω + C

(2)
ω,δ`
‖∇′u∞‖

2
2,ω ,

which shows the assertion.
Lemma 2 suggests that one cannot expect convergence of the approximation ψ` (λ∞, ·)⊗u∞ on

the whole domain Ω`. Indeed it can be shown that, in general, ‖∇ (u` − ψ` (λ∞, ·)⊗ u∞)‖2,Ω` 9
0 as `→∞. Setting δ` = 0 in Lemma 2 shows that the error on Ω` can be estimated as follows:

Corollary 3 It holds

‖∇ (u` − ψ` (λ∞, ·)⊗ u∞)‖22,Ω` ≤ 4
(
‖u∞‖22,ω + 6` e−2λ1` ‖∇′u∞‖

2
2,ω

)
,

where λ1 is as in (9).

3.2 Method 2: An alternating least squares type iteration

Method 1 can be interpreted as a 2-step algorithm to obtain an approximation uM1

` of u`.

• Step 1: Solve (3) in order to obtain an approximation of the form 1 ⊗ u∞ which is non-
conforming, i.e., does not belong to H1

0 (Ω`).

• Step 2: Using u∞, find a function ψ` that satisfies (4) in order to obtain the conforming
approximation uM1

` := ψ` (λ∞, ·)⊗ u∞ ∈ H1
0 (Ω`).

In this section we extend this idea and seek approximations of the form

uM2

`,m =

m∑
j=0

p(j) ⊗ q(j) (15)

by iteratively solving least squares problems similar to (4). We denote by

Resm = u` − uM2

`,m = u` −
m∑
j=0

p(j) ⊗ q(j)

the residual of the approximation and suggest the following iteration to obtain uM2

`,m:

• m = 0: Set q(0) = u∞ and p(0) = ψ` (λ∞, ·).

7

• m > 0: Find q(m) ∈ H1
0 (ω) s.t.

q(m) = arg min
q∈H1

0 (ω)

∥∥∥∇(Resm−1−p(m−1) ⊗ q
)∥∥∥

2
. (16)

Then, given q(m), find p(m) ∈ H1
0 (I`) s.t.

p(m) = arg min
p∈H1

0 (I`)

∥∥∥∇(Resm−1−p⊗ q(m)
)∥∥∥

2
. (17)

Iterate (16) and (17) until a stopping criterion is reached (inner iteration). Then set
Resm = Resm−1−p(m) ⊗ q(m).

The algorithm exhibits properties of a greedy algorithm. It is easy to see that in each step of
the iteration the error decreases or stays constant. We focus here on its accuracy in comparison
with the two other methods via numerical experiments. We emphasize that for tensors of order
at least 3, local convergence (under suitable conditions) can be shown for the ALS iteration (see
[3, 8, 9, 10]). One assumption in these papers is that the scalar product of the tensor space
is generated by the scalar products of the single spaces – this, however, is not the case in our
setting. We note that an analysis of the approximation (15) by the theory of singular value
decomposition (SVD) is also not feasible since the function u is unknown.

In each step of the (outer) iteration above we need to solve at least two minimization problems
(16) and (17). In the following we derive the strong formulations of these problems.

3.2.1 Resolution of (16)

As before an investigation of the functional

J(q(m)) :=
∥∥∥∇(Resm−1−p(m−1) ⊗ q(m))

∥∥∥2

2

shows that q(m) needs to satisfy(
∇
(
p(m−1) ⊗ q(m)

)
,∇
(
p(m−1) ⊗ q

))
2

=
(
∇Resm−1,∇

(
p(m−1) ⊗ q

))
2

⇐⇒ p0,m−1

(
−∆′q(m), q

)
2,ω

+ p1,m−1

(
q(m), q

)
2,ω

=
(
−∆ Resm−1, p

(m−1) ⊗ q
)

2

for all q ∈ H1
0 (ω), where

p0,m−1 := ‖p(m−1)‖22,I` , p1,m−1 := ‖
(
p(m−1)

)′
‖22,I` .

For the right-hand side we obtain

(
−∆ Resm−1, p

(m−1) ⊗ q
)

2
=

−∆

u` − m−1∑
j=0

p(j) ⊗ q(j)

 , p(m−1) ⊗ q

2

=
(

1⊗ f, p(m−1) ⊗ q
)

2
+

m−1∑
j=0

(
p(j)
)′′
⊗ q(j) + p(j) ⊗∆′q(j), p(m−1) ⊗ q

2

= p̃m−1 (f, q)2,ω +

m−1∑
j=0

(
p̃2,j,m−1

(
q(j), q

)
2,ω

+ p̃0,j,m−1

(
∆′q(j), q

)
2,ω

)
,

8

where

p̃m−1 :=

∫ `

−`
p(m−1), p̃2,j,m−1 :=

((
p(j)
)′′
, p(m−1)

)
2,I`

, p̃0,j,m−1 :=
(
p(j), p(m−1)

)
2,I`

.

In order to compute (16) we therefore have to solve in ω

−p0,m−1∆′q(m) + p1,m−1q
(m) = p̃m−1f +

m−1∑
j=0

(
p̃2,j,m−1q

(j) + p̃0,j,m−1∆′q(j)
)
. (18)

3.2.2 Resolution of (17)

Setting the derivative of the functional

J(p(m)) := ‖∇(Resm−1−p(m) ⊗ q(m))‖22
to zero, shows that p(m) needs to satisfy(

∇
(
p(m) ⊗ q(m)

)
,∇
(
p⊗ q(m)

))
2

=
(
∇Resm,∇

(
p⊗ q(m)

))
2

−q0,m

((
p(m)

)′′
, p

)
2,I`

+ q1,m

(
p(m), p

)
2,I`

=
(
−∆ Resm, p⊗ q(m)

)
2

for all p ∈ H1
0 (−`, `), where

q0,m = ‖q(m)‖22,ω, q1,m = ‖∇′q(m)‖22,ω.

For the right-hand side we obtain

(
−∆ Resm−1, p⊗ q(m)

)
2

=

−∆

u` − m−1∑
j=0

p(j) ⊗ q(j)

 , p⊗ q(m)

2

=
(

1⊗ f, p⊗ q(m)
)

2
+

m−1∑
j=0

((
p(j)
)′′
⊗ q(j) + p(j) ⊗∆′q(j)

)
, p⊗ q(m)

2

= q̃m

∫ `

−`
p+

m−1∑
j=0

(
q̃0,j,m

((
p(j)
)′′
, p

)
2,I`

+ q̃2,j,m

(
p(j), p

)
2,I`

)
,

where

q̃m :=
(
f, q(m)

)
2,ω

, q̃2,j,m :=
(

∆′q(j), q(m)
)

2,ω
, q̃0,j,m :=

(
q(j), q(m)

)
2,ω

.

In order to obtain the solution of (17) we therefore have to solve in I`

−q0,m

(
p(m)

)′′
+ q1,mp

(m) = q̃m +

m−1∑
j=0

(
q̃2,j,mp

(j) + q̃0,j,m

(
p(j)
)′′)

. (19)

Remark 4 The constants p1,m−1, p̃2,j,m−1, q1,m and q̃2,j,m involve derivatives and Laplace-
operators. Note that after solving (18) and (19) for q(m) and p(m), discrete versions of ∆′q(m)

and
(
p(m)

)′′
can be easily obtained via the same equations. Furthermore, since

q1,m = ‖∇′q(m)‖22,ω =
(
−∆′q(m), q(m)

)
2,ω

= −q̃2,m,m

9

and

p1,m−1 = ‖
(
p(m−1)

)′
‖22,I` =

(
−
(
p(m−1)

)′′
, p(m−1)

)
2,I`

= −p̃2,m−1,m−1

a numerical computation of the gradients can be avoided.

3.3 Method 3: Exploiting the tensor product structure of the operator

In this section we exploit the tensor product structure of the Laplace operator and the domain
Ω`. Recall that

Ω` = I` × ω.

Note, that we do not assume that ω has a tensor product structure. Furthermore the Laplace
operator in our original problem (1) can be written as

−∆ = −∂2
1 −∆′. (20)

We discretise (1) with F as in (2) on a mesh G, e.g., by finite elements or finite differences on a
tensor mesh, i.e., each mesh cell has the form (xi−1, xi)× τj , where τj is an element of the mesh
for ω. The essential assumption is that the system matrix for the discrete version of −∆ in (20)
is of the tensor form

A = A1 ⊗M ′ +M1 ⊗A′. (21)

If we discretise with a finite difference scheme on an equidistant grid for I` with step size h, then
A1 is the tridiagonal matrix h−2 tridiag [−1, 2,−1] and M1 is the identity matrix. A finite element
discretisation with piecewise linear elements leads as well to A1 = h−2 tridiag [−1, 2,−1], while
Mx1 = tridiag [1/6, 2/3, 1/6]. It can be shown that the inverse of the matrix A can be efficiently
approximated with a sum of matrix exponentials. More precisely the following Theorem holds
which is proved in [4], Proposition 9.34.

Theorem 5 Let M (j), A(j) be positive definite matrices with λ
(j)
min and λ

(j)
max being the extreme

eigenvalues of the generalized eigenvalue problem A(j)x = λM (j)x and set

A =A(1) ⊗M (2) ⊗ . . .⊗M (n) +M (1) ⊗A(2) ⊗ . . .⊗M (n) + . . .

+M (1) ⊗ . . .⊗M (n−1) ⊗A(n).

Then A−1 can be approximated by

B :=

 r∑
ν=1

aν,[a,b]

n⊗
j=1

exp

(
−αν,[a,b]

(
M (j)

)−1

A(j)

) n⊗
j=1

(
M (j)

)−1

 ,

where the coefficients aν , αν > 0 are such that

ε(
1

x
, [a, b], r) :=

∥∥∥∥∥ 1

x
−

r∑
ν=1

aν,[a,b] e−αν,[a,b]x

∥∥∥∥∥
[a,b]

= inf

∥∥∥∥∥ 1

x
−

r∑
ν=1

bν e−βνx

∥∥∥∥∥
[a,b],∞

: bν , βν ∈ R

10

with a :=
∑n
j=1 λ

(j)
min and b :=

∑n
j=1 λ

(j)
max. The error can be estimated by

‖A−1 −B‖2 ≤ ε(
1

x
, [a, b], r)‖M−1‖2,

where M = ⊗nj=1M
(j).

Theorem 5 shows how the inverse of matrices of the form (21) can be approximated by sums
of matrix exponentials. It is based on the approximability of the function 1/x by sums of expo-
nentials in the interval [a, b]. We refer to [4, 6] for details how to choose r and the coefficients
aν,[a,b], αν,[a,b] in order to reach a given error tolerance ε(1

x , [a, b], r). Note that the interval [a, b]

where 1/x needs to be approximated depends on the matrices A(j) and M (j). Thus, if A changes
a and b need to be recomputed which in turn has an influence on the optimal choice of the
parameters aν,[a,b] and αν,[a,b].

Numerical methods based on Theorem 5 can only be efficient if the occurring matrix ex-
ponential can be evaluated at low cost. In our setting we will need to compute the matrices

exp
(
−αν,[a,b]M−1

1 A1

)
and exp

(
−αν,[a,b] (M ′)

−1
A′
)

. The evaluation of the first matrix will typ-

ically be simpler. In the case where a finite difference scheme is employed and A1 is a tridiagonal
Toeplitz matrix while M1 is the identity, the matrix exponential can be computed by diagonal-
izing A1, e.g., A1 = SD1S

−1, and using exp
(
−αν,[a,b]M−1

1 A1

)
= S exp

(
−αν,[a,b]D1

)
S−1. The

computation of exponentials for general matrices is more involved. We refer to [7] for an overview
of different numerical methods. Here, we will make use of the Dunford-Cauchy integral (see [5]).
For a matrix M̃ we can write

exp
(
−M̃

)
=

1

2π i

∮
C

(
ζI − M̃

)−1

e−ζ dζ (22)

for a contour C = ∂D which encircles all eigenvalues of M̃ . We assume here that M̃ is positive
definite. Then the spectrum of M̃ satisfies σ(M̃) ⊂ (0, ‖M‖] and the following (infinite) parabola{

ζ(s) = x(s) + i y(s) : x(s) := s2, y(s) := −s for s ∈ R
}

can be used as integration curve C. The substitution ζ → s2 − i s then leads to

exp
(
−M̃

)
=

∫ ∞
−∞

(
1

2π i
(s2 − i s)I − M̃

)−1

e−s
2+i s(2s− i)︸ ︷︷ ︸

=:G(s)

ds. (23)

The integrand decays exponentially for s→ ±∞. Therefore (23) can be efficiently approximated
by sinc quadrature, i.e.,

exp
(
−M̃

)
=

∫ ∞
−∞

G(s)ds ≈ h

N∑
ν=−N

G(νh), (24)

where h > 0 and should be chosen s.t. h = O
(
(N + 1)−2/3

)
. We refer to [5] for an introduction

to sinc quadrature and for error estimates for the approximation in (24). The parameters h
and N in our implementation have been chosen such that quadrature errors become negligible
compared to the overall discretisation error. For practical computations, the halving rule (cf .
[5, §14.2.2.2]) could be faster while the Dunford-Schwartz representation with sinc quadrature is
more suited for an error analysis.

11

f(x′) = 1 f(x′) = sin(2x′ + 0.5) f(x′) = tanh(4x′ + 1) f(x′) = |x′|
` = 1 3.30 · 10−2 2.44 · 10−1 2.48 · 10−1 1.15 · 10−1

` = 5 6.34 · 10−3 5.24 · 10−2 5.39 · 10−2 2.22 · 10−2

` = 10 4.24 · 10−3 3.53 · 10−2 3.63 · 10−2 1.51 · 10−2

` = 20 2.92 · 10−3 2.44 · 10−2 2.51 · 10−2 1.03 · 10−2

` = 50 1.82 · 10−3 1.52 · 10−2 1.56 · 10−2 6.45 · 10−3

Table 1: Relative L2
(
Ω2D

`

)
-errors of the approximations uM1

2D,` for different values of ` and f .

4 Numerical Experiments

4.1 The case of a planar cylinder

In this subsection we apply the methods derived in Section 3 to a simple model problem in two
dimensions. We consider the planar cylinder

Ω2D
` = I` × (−1, 1)

and solve (1) for different right-hand sides F = 1 ⊗ f (cf. (2)) and different lengths `. The
reduced problem (3) on ω = (−1, 1) is solved using a standard finite difference scheme. We
compare the approximations of (1) to a reference solution uref

2D,` that is computed using a finite
difference method on sufficiently refined two-dimensional grid.
In Table 1 we state the L2

(
Ω2D
`

)
-errors of the approximations uM1

2D,` for various values of ` and

right-hand sides f . Having in mind that uM1

2D,` is a rather simple one-term approximation that
only requires the solution of one (n − 1)-dimensional problem (plus some postprocessing), the
accuracy of the approximation is satisfactory especially for larger values of `.

Figure 2 shows the pointwise, absolute error |uM1

2D,` − uref
2D,`| in Ω` for ` = 10 and f(x′) =

tanh(4x′ + 1). As expected the accuracy of the approximation is very high in the interior of the
planar cylinder (away from ±`).

Figure 2: Absolute error |uM1
2D,` − u

ref
2D,`| for ` = 10 and f(x′) = tanh(4x′ + 1).

Lemma 2 (and Figure 2) suggests that the approximation in the interior of the cylinder is
significantly better than on the whole domain Ω`. Indeed, if the region of interest is only a
subdomain Ω`0 ⊂ Ω`, where `0 < `, the error decreases exponentially as `0 → 0. Figure 3 shows
the relative error ‖uM1

2D,` − uref
2D,`‖L2(Ω`0)/‖uref

2D,`‖L2(Ω`0) with respect to `0 for ` = 20, 50 and
the right-hand side f(x′) = tanh(4x′ + 1). We can see that the exponential convergence sets in
almost immediately as l0 moves away from `.

To conclude, Method 1 can be used in applications where

12

(a) ` = 20 (b) ` = 50

Figure 3: Relative L2-errors of the approximation uM1
2D,` in Ω`0 for f(x′) = tanh(4x′ + 1).

• only a limited approximation accuracy is required,

• a good starting point for more accurate methods is needed,

• the region of interest is a subdomain Ω`0 of Ω` with `0 < `.

In Method 2 we use uM1

2D,` as starting value of the iteration which is then successively refined by

approximating the residual in each step with a series of L2 best approximations. In Table 2 we
state the relative errors of this approach in the case f(x′) = tanh(4x′ + 1) for different values
of ` and iteration steps. We can see that five iterations are sufficient to reduce the error of the
initial approximation uM1

2D,` by a factor 100 for all considered values of `. However, in this case
more iterations do not lead to significantly better results and the convergence seems to flatten.
One explanation for this is that the residuals are increasingly difficult to approximate with each
step of the iteration. After a few iterations a one-term approximation of these residuals of the
form p(m) ⊗ q(m) therefore is not sufficiently accurate which leads to reduced decay of the error
in the overall scheme.
Note that in the case ` = 1, Ω` cannot be considered as a “long” domain. Therefore, the initial
approximation uM1

2D,` only exhibits a low accuracy. Nevertheless the error of uM2

2D,`,m decays
quickly as m increases and reaches a similar level of accuracy as for larger `. This suggests that
Method 2 can also be used for more general domains Ω`.

In Table 3 we show the relative errors of the approximations uM3

2D,`,r for f(x′) = tanh(4x′+ 1)
and different values of ` and r. As the theory predicts the error decays exponentially in r and
is governed by the approximability of the function 1/x by exponential sums. Note that in this
two-dimensional example the arising matrix exponentials could be computed via diagonalization
of the involved finite difference matrices. An approximation of the Dunford-Cauchy integral was
not necessary in this case.

13

` = 1 ` = 5 ` = 10 ` = 20 ` = 50
m = 1 2.48 · 10−1 5.39 · 10−2 3.63 · 10−2 2.51 · 10−2 1.57 · 10−2

m = 2 1.96 · 10−2 1.32 · 10−2 9.33 · 10−3 6.58 · 10−3 8.16 · 10−3

m = 3 7.44 · 10−3 2.66 · 10−3 1.85 · 10−3 1.29 · 10−3 8.16 · 10−4

m = 4 1.18 · 10−3 7.73 · 10−4 5.46 · 10−4 3.87 · 10−4 2.44 · 10−4

m = 5 3.80 · 10−4 3.74 · 10−4 2.71 · 10−4 1.96 · 10−4 1.25 · 10−4

m = 6 1.68 · 10−4 3.05 · 10−4 2.23 · 10−4 1.63 · 10−4 1.04 · 10−4

m = 7 1.33 · 10−4 2.90 · 10−4 2.12 · 10−4 1.55 · 10−4 9.95 · 10−5

Table 2: Relative L2-errors of the approximations uM2
2D,`,m for different values of ` and iterations m.

We used f(x′) = tanh(4x′ + 1) throughout.

` = 1 ` = 5 ` = 10 ` = 20
r = 1 1.48 · 10−1 1.02 · 10−1 9.76 · 10−2 9.60 · 10−2

r = 2 2.87 · 10−2 3.32 · 10−2 3.14 · 10−2 3.09 · 10−3

r = 3 9.06 · 10−3 9.78 · 10−3 9.88 · 10−3 9.79 · 10−3

r = 4 2.07 · 10−3 3.06 · 10−3 2.81 · 10−3 2.70 · 10−3

r = 5 1.24 · 10−3 1.11 · 10−3 1.16 · 10−3 1.16 · 10−3

Table 3: Relative L2-errors of the approximations uM3
2D,`,r for different values of ` and r. We used

f(x′) = tanh(4x′ + 1) throughout.

4.2 A three-dimensional domain with a non-rectangular cross section

In this section we consider the three-dimensional domain

Ω` = (−`, `)× [(0, 2)× (0, 1) ∪ (0, 1)× (1, 2)]︸ ︷︷ ︸
=ω

where ω is not a rectangle (see Figure 4). As before we solve problem (1) for different right-hand
sides f and different values of `. The reduced problem (3) on ω is solved using a standard
2D finite difference scheme. As 3D reference solution we use an accurate approximation using
method 3, i.e. uM3

3D,`,r for r = 30, which is known to converge exponentially in r.

Table 4 shows the relative errors of the approximations uM1

3D,` for different values of ` and
right-hand sides f . As the theory predicts we cannot observe an exponentially decreasing error
as ` gets large, since we measure the error on the whole domain Ω` and not only a subdomain
Ω`−δ` . As before we only have to solve one two-dimensional problem on ω in order to obtain the
approximation uM1

3D,`.

In Table 5 we show the relative errors of the approximations uM2

3D,`,m for f(x′) = tanh(x′1x
′
2)

f(x′) = 1 f(x′) = sin(x′1 + 0.5)x′2 f(x′) = tanh(x′1x
′
2)

` = 1 3.49 · 10−2 5.52 · 10−2 5.59 · 10−2

` = 5 1.12 · 10−2 1.77 · 10−2 1.79 · 10−2

` = 10 7.73 · 10−3 1.22 · 10−2 1.23 · 10−2

` = 20 5.37 · 10−3 8.51 · 10−3 8.86 · 10−2

` = 50 3.37 · 10−3 5.34 · 10−3 5.54 · 10−2

Table 4: Relative L2-errors of the approximations uM1
3D,` for different values of ` and f .

14

(a) Ω` (b) ω

Figure 4: Plot of domain Ω` and cross-section ω.

` = 1 ` = 5 ` = 10 ` = 20 ` = 50
m = 1 5.59 · 10−2 1.79 · 10−2 1.24 · 10−2 8.63 · 10−3 5.42 · 10−3

m = 2 9.82 · 10−3 4.38 · 10−3 3.08 · 10−3 2.18 · 10−3 1.37 · 10−3

m = 3 2.86 · 10−3 1.09 · 10−3 7.64 · 10−4 5.37 · 10−4 3.39 · 10−4

m = 4 8.03 · 10−4 3.37 · 10−4 2.37 · 10−4 1.63 · 10−4 1.03 · 10−4

m = 5 3.46 · 10−4 1.38 · 10−4 9.93 · 10−5 7.08 · 10−5 4.50 · 10−5

m = 6 2.73 · 10−4 1.03 · 10−4 7.50 · 10−5 5.37 · 10−5 3.42 · 10−5

m = 7 2.59 · 10−4 9.51 · 10−5 6.92 · 10−5 4.96 · 10−5 3.16 · 10−5

Table 5: Relative L2-errors of the approximations uM2
3D,`,m for different values of ` and iterations m.

We used f(x′) = tanh(x′1x
′
2) throughout.

and different values of ` and m (number of iterations). As in the 2D case this method signif-
icantly improves the initial approximation uM2

3D,`,1 = uM1

3D,` using the alternating least squares
type iteration. However, also here we observe that the convergence slows down when a certain
accuracy is reached. We remark that a good starting point for the iteration is crucial for this
method. In all our experiments uM1

3D,` was a good choice which leads to a convergence behaviour
similar to the ones in Table 5. Other choices often did not lead to satisfactory results.

In Table 6 we show the relative errors of the approximations uM3

3D,`,r again for f(x′) =
tanh(x′1x

′
2) and different values of ` and r. As before the error decays exponentially with respect

to r. The arising matrix exponentials exp
(
−αν,[a,b]Ax′

)
in these experiments were computed us-

ing the sinc quadrature approximation (24). The number of quadrature points N was chosen such
that the corresponding quadrature error had an negligible effect on the overall approximation.

5 Conclusion

We have presented three different methods for constructing tensor approximations to the solution
of a Poisson equation on a long product domain for a right-hand side which is an elementary
tensor.

The construction of a one-term tensor approximation is based on asymptotic analysis. The

15

` = 1 ` = 5 ` = 10 ` = 20
r = 1 1.10 · 10−1 1.06 · 10−1 1.06 · 10−1 1.06 · 10−1

r = 2 2.18 · 10−2 1.94 · 10−2 1.92 · 10−2 1.92 · 10−2

r = 3 6.21 · 10−3 6.63 · 10−3 6.63 · 10−3 6.62 · 10−3

r = 4 2.36 · 10−3 2.02 · 10−3 2.02 · 10−3 2.01 · 10−3

r = 5 7.91 · 10−4 7.39 · 10−4 7.15 · 10−4 7.15 · 10−4

Table 6: Relative L2-errors of the approximations uM3
3D,`,r for different values of ` and r. We used

f(x′) = tanh(x′1x
′
2) throughout.

approximation converges exponentially (on a fixed subdomain) as the length of the cylinder
goes to infinity. However, the error is fixed for fixed length since the approximation consists of
only one term. The cost for computing this approximation is very low – it consists of solving a
Poisson-type problem on the cross section and a cheap post-processing step to find the univariate
function in the one-term tensor approximation.

The ALS method uses this elementary tensor and generates step-by-step a rank-k approxi-
mation. The computation of the m–th term in the tensor approximation itself requires an inner
iteration. If one is interested in only a moderate accuracy (but improved accuracy compared to
the initial approximation) this method is still relatively cheap and significantly improves the ac-
curacy. However, the theory for ALS for this application is not fully developed and the definition
of a good stopping criterion is based on heuristics and experiments.

Finally the approximation which is based on exponential sums is the method of choice if a
higher accuracy is required. A well developed a priori error analysis allows us to choose the tensor
rank in the approximation in a very economic way. Since the method is converging exponentially
with respect to the tensor rank, the method is also very efficient (but more expensive than the first
two methods for the very first terms in the tensor representation). However, its implementation
requires the realization of inverses of discretisation matrices in a sparse H-matrix format and a
contour quadrature approximation of the Cauchy-Dunford integral by sinc quadrature by using
a non-trivial parametrisation of the contour.

We expect that these methods can be further developed and an error analysis which takes
into account all error sources (contour quadrature, discretisation, iteration error, asymptotics
with respect to the length of the cylinder, H-matrix approximation) seems to be feasible. Also
the methods are interesting in the context of a-posteriori error analysis to estimate the error due
to the truncation of the tensor representation at a cost which is proportional to the solution of
problems on the cross sections. We further expect that more general product domains of the

form ×d
m=1 ωm for some ωm ∈ Rdm with dimensions 1 ≤ dm ≤ d such that

∑d
m=1 dm = d and

domains with outlets can be handled by our methods since also in this case zero-th order tensor
approximation can be derived by asymptotic analysis (see [2]).

Acknowledgment. This work was performed, in part, when the first author was visiting
the USTC in Hefei and during his part time employment at the S. M. Nikolskii Mathematical
Institute of RUDN University, 6 Miklukho-Maklay St, Moscow, 117198. The publication was
supported by the Ministry of Education and Science of the Russian Federation.

References

[1] M. Chipot. Elliptic equations: an introductory course. Birkhäuser Verlag, Basel, 2009.

16

[2] M. Chipot. Asymptotic Issues for Some Partial Differential Equations. Imperial College
Press, 2016.

[3] M. Espig, W. Hackbusch, and A. Khachatryan. On the convergence of alternating least
squares optimisation in tensor format representations. arXiv preprint arXiv:1506.00062,
2015.

[4] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer, 2012.

[5] W. Hackbusch. Hierarchical matrices: algorithms and analysis, volume 49. Springer, 2015.

[6] W. Hackbusch. Computation of Best l∞ Exponential Sums for 1/x by Remez’ Algorithm.
to appear in Comput. Vis. Sci., 2018.

[7] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM review, 45(1):3–49, 2003.

[8] I. Oseledets, M. Rakhuba, and A. Uschmajew. Alternating least squares as moving subspace
correction. arXiv preprint arXiv:1709.07286, 2017.

[9] A. Uschmajew. Local convergence of the alternating least squares algorithm for canonical
tensor approximation. SIAM Journal on Matrix Analysis and Applications, 33(2):639–652,
2012.

[10] A. Uschmajew. A new convergence proof for the higher-order power method and general-
izations. Pac. J. Optim., 11(2):309–321, 2015.

17

