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Abstract

Monogamy relations characterize the distributions of entanglement in multipartite systems. We

investigate monogamy relations for multiqubit generalized W -class states. We present new analyt-

ical monogamy inequalities for the concurrence of assistance, which are shown to be tighter than

the existing ones. Furthermore, analytical monogamy inequalities are obtained for the negativity

of assistance.
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INTRODUCTION

Quantum entanglement [1–8] is an essential feature of quantum mechanics. As one of

the fundamental differences between quantum entanglement and classical correlations, a key

property of entanglement is that a quantum system entangled with one of other subsystems

limits its entanglement with the remaining ones. The monogamy relations give rise to the

distribution of entanglement in the multipartite setting. Monogamy is also an essential

feature allowing for security in quantum key distribution [9].

For a tripartite system A, B and C, the usual monogamy of an entanglement measure E

implies that [10] the entanglement between A and BC satisfies EA|BC ≥ EAB + EAC . In Ref.

[11, 12], the monogamy of entanglement for multiqubitW -class states has been investigated,

and the monogamy relations for tangle and the squared concurrence have been proved. It

gives the general monogamy relations for the x-power [13] of concurrence of assistance for

generalized multiqubit W -class states.

In this paper, we show that the monogamy inequalities for concurrence of assistance

obtained so far can be made tighter. We establish entanglement monogamy relations for

the x-th (x ≥ 2) and y-th (y < 0) power of the concurrence of assistance which are tighter

than those in [13], which give rise to finer characterizations of the entanglement distributions

among the multipartiteW -class states. Furthermore, we also present the general monogamy

relations for the x-power of negitivity of assistance for generalized multiqubitW -class states.

TIGHTER MONOGAMY RELATIONS FOR CONCURRENCE OF ASSISTANCE

We first consider the monogamy inequalities related to concurrence. Let HX denote a

discrete finite dimensional complex vector space associated with a quantum subsystem X.

For a bipartite pure state |ψ⟩AB in vector space HA⊗HB, the concurrence is given by [14–16]

C(|ψ⟩AB) =
√
2 [1− Tr(ρ2A)], (1)

where ρA is the reduced density matrix by tracing over the subsystem B, ρA =

TrB(|ψ⟩AB⟨ψ|). The concurrence for a bipartite mixed state ρAB is defined by the convex

roof extension

C(ρAB) = min
{pi,|ψi⟩}

∑
i

piC(|ψi⟩),
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where the minimum is taken over all possible decompositions of ρAB =
∑

i pi|ψi⟩⟨ψi|, with

pi ≥ 0 and
∑

i pi = 1 and |ψi⟩ ∈ HA ⊗HB.

For a tripartite state |ψ⟩ABC , the concurrence of assistance is defined by [17, 18]

Ca(|ψ⟩ABC) ≡ Ca(ρAB) = max{pi,|ψi⟩}
∑
i

piC(|ψi⟩),

where the maximum is taken over all possible decompositions of ρAB = TrC(|ψ⟩ABC⟨ψ|) =∑
i pi|ψi⟩AB⟨ψi|. When ρAB = |ψ⟩AB⟨ψ| is a pure state, then one has C(|ψ⟩AB) = Ca(ρAB).

For an N -qubit pure state |ψ⟩AB1···BN−1
∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1

, the concurrence

C(|ψ⟩A|B1···BN−1
) of the state |ψ⟩A|B1···BN−1

, viewed as a bipartite state under the partition

A and B1, B2, · · · , BN−1, satisfies [19]

Cα(ρA|B1,B2··· ,BN−1
) ≥ Cα(ρAB1) + Cα(ρAB2) + · · ·+ Cα(ρABN−1

),

for α ≥ 2, where ρABi
= TrB1···Bi−1Bi+1···BN−1

(|ψ⟩AB1···BN−1
⟨ψ|). It is further improved that

for α ≥ 2, one has [20],

Cα(ρA|B1B2···BN−1
) ≥ Cα(ρAB1) +

α

2
Cα(ρAB2) + · · ·+

(α
2

)m−1

Cα(ρABm) (2)

+
(α
2

)m+1 (
Cα(ρABm+1) + · · ·+ Cα(ρABN−2

)
)
+
(α
2

)m
Cα(ρABN−1

)

and

Cα(ρA|B1B2···BN−1
) < K

(
Cα(ρAB1) + Cα(ρAB2) + · · ·+ Cα(ρABN−1

)
)

(3)

for all α < 0, where K = 1
N−1

.

Dual to the Coffman-Kundu-Wootters inequality, the generalized monogamy relation

based on the concurrence of assistance do not satisfy the monogamy relation. But, for an

N -qubit generlized W -class states |ψ⟩AB1···BN−1
∈ HA⊗HB1 ⊗ · · · ⊗HBN−1

, the concurrence

of assistance Ca(|ψ⟩A|B1···BN−1
) of the state |ψ⟩AB1···BN−1

satisfies the inequality [13],

Cx
a (ρA|B1,B2··· ,BN−1

) ≥ Cx
a (ρAB1) + Cx

a (ρAB2) + · · ·+ Cx
a (ρABN−1

), (4)

and

Cy
a(ρA|B1,B2··· ,BN−1

) < Cy
a(ρAB1) + Cy

a(ρAB2) + · · ·+ Cy
a(ρABN−1

), (5)

where x ≥ 2, y ≤ 0.

In fact, as the characterization of the entanglement distribution among the subsystems,

the monogamy inequalities satisfied by the concurrence of assistance can be further refined

and become tighter.
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In the following, we study the monogamy property of the concurrence of assistance for

the N -qubit generalized W -class states |ψ⟩ ∈ HA ⊗HB1 ⊗ · · · ⊗HBN−1
defined by

|ψ⟩ = a|00 · · · 0⟩+ b1|10 · · · 0⟩+ · · ·+ bN |00 · · · 1⟩, (6)

with |a|2 +
∑N

i=1 |bi|2 = 1. For the N -qubit generalized W -class states (6), one has [13],

C(ρABi
) = Ca(ρABi

), i = 1, 2, ..., N − 1, (7)

where ρABi
= TrB1···Bi−1Bi+1···BN−1

(|ψ⟩⟨ψ|).

[Theorem 1]. For the N -qubit generalized W -class states |ψ⟩ ∈ HA ⊗ HB1 ⊗ · · · ⊗

HBN−1
, let ρABj1

···Bjm−1
denote the m-qubit, 2 ≤ m ≤ N , reduced density matrix of |ψ⟩.

If C(ρABji
) ≥ C(ρABji+1

···Bjm−1
) for i = 1, 2, · · · t, and C(ρABjk

) ≤ C(ρABjk+1
···Bjm−1

) for

k = t+ 1, · · · ,m− 2, ∀ 1 ≤ t ≤ m− 3, m ≥ 4, the concurrence of assistance satisfies

Cx
a (ρA|Bj1

···Bjm−1
) ≥ Cx

a (ρABj1
)

+
x

2
Cx
a (ρABj2

) + · · ·+
(x
2

)t−1

Cx
a (ρABjt

)

+
(x
2

)t+1 (
Cx
a (ρABjt+1

) + · · ·+ Cx
a (ρABjm−2

)
)

+
(x
2

)t
Cx
a (ρABjm−1

) (8)

for all x ≥ 2.

[Proof]. For the N -qubit generalized W -class states |ψ⟩, according to the definitions of

C(ρ) and Ca(ρ), one has Ca(ρA|Bj1
···Bjm−1

) ≥ C(ρA|Bj1
···Bjm−1

). When x ≥ 2, we have

Cx
a (ρA|Bj1

···Bjm−1
) ≥ Cx(ρA|Bj1

···Bjm−1
) ≥ Cx(ρABj1

)

+
x

2
Cx(ρABj2

) + · · ·+
(x
2

)t−1

Cx(ρABjt
)

+
(x
2

)t+1 (
Cx(ρABjt+1

) + · · ·+ Cx(ρABjm−2
)
)

+
(x
2

)t
Cx(ρABjm−1

)

= Cx
a (ρABj1

) +
x

2
Cx
a (ρABj2

) + · · ·+
(x
2

)t−1

Cx
a (ρABjt

)

+
(x
2

)t+1 (
Cx
a (ρABjt+1

) + · · ·+ Cx
a (ρABjm−2

)
)

+
(x
2

)t
Cx
a (ρABjm−1

), (9)

where we have used in the first inequality the relation ax ≥ bx for a ≥ b ≥ 0, x ≥ 2. The

second inequality is due to (2). The equality is due to (7).
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FIG. 1: y is the value of Ca(|ψ⟩A|B1B2B3). Solid (red) line is the exact value of

Ca(|ψ⟩A|B1B2B3), dashed (blue) line is the lower bound of Ca(|ψ⟩A|B1B2B3) in (8), and

dot-dashed (green) line is the lower bound in [13] for x ≥ 2.

As for x ≥ 2, (x/2)t ≥ 1 for all 1 ≤ t ≤ jm−3, comparing with the monogamy relations

for concurrence of assistance (4), our formula (8) in Theorem 1 gives a tighter monogamy

relation with larger lower bounds. In Theorem 1 we have assumed that some C(ρABji
) ≥

C(ρABji+1
···Bjm−1

) and some C(ρABk
) ≤ C(ρABk+1···Bm−1) for the N -qubit generalized W -class

states. If all C(ρABji
) ≥ C(ρABji+1

···Bjm−1
) for i = 1, 2, · · · ,m− 2, then we have the following

conclusion:

[Theorem 2]. If C(ρABji
) ≥ C(ρABji+1

···Bjm−1
) for i = 1, 2, · · · ,m− 2, then we have

Cx
a (ρA|Bj1

···Bjm−1
) ≥ Cx

a (ρABj1
) +

x

2
Cx
a (ρABj2

) + · · ·+
(x
2

)m−2

Cx
a (ρABjm−1

) (10)

for all x ≥ 2.

Example 1. Let us consider the 4-qubit generlized W -class states,

|W ⟩AB1B2B3 =
1

2
(|1000⟩+ |0100⟩+ |0010⟩+ |0001⟩). (11)

We have Cx
a (|ψ⟩A|B1B2B3) = (

√
3
2
)x. From our result (8) we have Cx

a (|ψ⟩A|B1B2B3) ≥[
1 + x

2
+ (x

2
)2
]
(1
2
)x, and from (4) one has Cx

a (|ψ⟩A|B1B2B3) ≥ 3(1
2
)x, x ≥ 2. One can see

that our result is better than that in [13] for x ≥ 2, see Fig. 1.

We can also derive a tighter upper bound of Cy
a(ρA|B1···BN−1

) for y < 0.

[Theorem 3]. For the N -qubit generalizedW -class states |ψ⟩ ∈ HA⊗HB1⊗· · ·⊗HBN−1
,

let ρABj1
···Bjm−1

be them-qubit, 2 ≤ m ≤ N , reduced density matrix of |ψ⟩ with C(ρABji
) ̸= 0

for 1 ≤ i ≤ m− 1, we have

Cy
a(ρA|Bj1

···Bjm−1
) < M̃

(
Cy
a(ρABj1

) + Cy
a(ρABj2

) + · · ·+ Cy
a(ρABjm−1

)
)

(12)
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FIG. 2: f(y) is the value of Cy
a(|ψ⟩A|B1B2B3). Solid (red) line is the exact value of

Cy
a(|ψ⟩A|B1B2B3), dashed (blue) line is the upper bound of Cy

a(|ψ⟩A|B1B2B3) in (12), and

dotdashed (green) line is the upper bound in [13].

for all y < 0, where M̃ = 1
m−1

.

[Proof]. For y < 0, we have

Cy
a(ρA|Bj1

···Bjm−1
) ≤ Cy(ρA|Bj1

···Bjm−1
)

< M̃
(
Cy(ρABj1

) + Cy(ρABj2
) + · · ·+ Cy(ρABjm−1

)
)

= M̃
(
Cy
a(ρABj1

) + Cy
a(ρABj2

) + · · ·+ Cy
a(ρABjm−1

)
)
, (13)

where we have used in the first inequality the relation ax ≤ bx for a ≥ b ≥ 0, x ≤ 0. The

second inequality is due to (3). The equality is due to (7).

As the factor M̃ = 1
m−1

is less than one, the inequality (12) is tighter than the one in

[13]. This factor M̃ depends on the number of partite N . Namely, for larger multipartite

systems, the inequality (12) gets even tighter than the one in [13].

Example 2. Let us consider again the 4-qubit generlized W -class states (11). We have

Cy
a(|ψ⟩A|B1B2B3) = (

√
3
2
)y. From our result (12) we have Cy

a(|ψ⟩A|B1B2B3) ≤ (1
2
)y, while from

(5) one gets Cy
a(|ψ⟩A|B1B2B3) ≤ 3(1

2
)y. It can be seen that our result is better than that in

[13] for y < 0, see Fig. 2.

Remark 1. In (12) we have assumed that all C(ρABji
), i = 1, 2, · · · ,m − 1, are

nonzero. In fact, if one of them is zero, the inequality still holds by removing this

term from the inequality. Namely, if C(ρABji
) = 0, then one has Cy

a(ρA|Bj1
···Bjm−1

) <

1
2
Cy
a(ρABj1

) + · · · +
(
1
2

)i−1
Cy
a(ρABji−1

) +
(
1
2

)i
Cy
a(ρABji+1

) + · · · +
(
1
2

)m−3
Cy
a(ρABjm−2

) +(
1
2

)m−3
Cy
a(ρABjm−1

). By cyclically permuting the sub-indices in Bj1 · · ·Bjm−1 , we can

get a set of inequalities. Summing up these inequalities we have Cy
a(ρA|Bj1

···Bjm−1
) <

6



1
m−1

(
Cy
a(ρABj1

) + · · ·+ Cy
a(ρABji−1

) + Cy
a(ρABji+1

) + · · ·+ Cy
a(ρABjm−2

) + Cy
a(ρABjm−1

)
)

for

y < 0.

MONOGAMY RELATIONS FOR NAGATIVITY OF ASSISTANCE

Another well-known quantifier of bipartite entanglement is the negativity. Given a bi-

partite state ρAB in HA ⊗HB, the negativity is defined by [21], N(ρAB) = (||ρTAAB|| − 1)/2,

where ρTAAB is the partial transpose with respect to the subsystem A, ||X|| denotes the trace

norm of X, i.e ||X|| = Tr
√
XX†. Negativity is a computable measure of entanglement,

and is a convex function of ρAB. It vanishes if and only if ρAB is separable for the 2 ⊗ 2

and 2 ⊗ 3 systems [22]. For the purpose of discussion, we use the following definition of

negativity, N(ρAB) = ||ρTAAB||−1. For any bipartite pure state |ψ⟩AB, the negativity N(ρAB)

is given by N(|ψ⟩AB) = 2
∑

i<j

√
λiλj = (Tr

√
ρA)

2 − 1, where λi are the eigenvalues for the

reduced density matrix of |ψ⟩AB. For a mixed state ρAB, the convex-roof extended negativity

(CREN) is defined as

Nc(ρAB) = min
∑
i

piN(|ψi⟩AB), (14)

where the minimum is taken over all possible pure state decompositions {pi, |ψi⟩AB} of ρAB.

CREN gives a perfect discrimination of positive partial transposed bound entangled states

and separable states in any bipartite quantum systems [23, 24]. For a mixed state ρAB, the

convex-roof extended negativity of assistance (CRENOA) is defined as [25]

Na(ρAB) = max
∑
i

piN(|ψi⟩AB), (15)

where the maximum is taken over all possible pure state decompositions {pi, |ψi⟩AB} of

ρAB.

Let us consider the relation between CREN and concurrence. For any bipartite pure

state |ψ⟩AB in a d ⊗ d quantum system with Schmidt rank 2, |ψ⟩AB =
√
λ0|00⟩ +

√
λ1|11⟩,

one has N(|ψ⟩AB) =∥ |ψ⟩⟨ψ|TB ∥ −1 = 2
√
λ0λ1 =

√
2(1− Trρ2A) = C(|ψ⟩AB). In other

words, negativity is equivalent to concurrence for any pure state with Schmidt rank 2, and
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consequently it follows that for any two-qubit mixed state ρAB =
∑
pi|ψi⟩AB⟨ψi|,

Nc(ρAB) = min
∑
i

piN(|ψi⟩AB) (16)

= min
∑
i

piC(|ψi⟩AB)

= C(ρAB),

Na(ρAB) = max
∑
i

piN(|ψi⟩AB) (17)

= max
∑
i

piC(|ψi⟩AB)

= Ca(ρAB),

where the minimum and the maximum are taken over all pure state decompositions

{pi, |ψi⟩AB} of ρAB.

Combing (7), (16) and (17), we can get the following Lemma.

[Lemma 1]. For N -qubit generlized W -class states (6), we have

Nc(ρABi
) = Na(ρABi

). (18)

As is already known, the negativity satisfies the monogamy relation for N-qubit pure

state [25]. In fact, for any N-qubit state, the monogamy relation of the negativity always

holds. Therefore, we can get the following Lemma.

[Lemma 2]. For any N-qubit state ρ ∈ HA ⊗HB1 ⊗ · · · ⊗HBN−1
, we have

Nx
c (ρA|B1···BN−1

) ≥
N−1∑
i=1

Nx
c (ρABi

), x ≥ 2. (19)

[Proof]. From Ref [25], one has

N2
c (|ψ⟩A|B1···BN−1

) ≥
N−1∑
i=1

N2
c (ρABi

), (20)

for N-qubit pure state. Applying the similar approach in Ref [19], one can get

Nx
c (|ψ⟩A|B1···BN−1

) ≥
N−1∑
i=1

Nx
c (ρABi

), (21)

for N-qubit pure state with x ≥ 2.
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Let ρ =
∑

i pi|ψi⟩AB1···BN−1
⟨ψi| be the optimal decomposition of Nc(ρA|B1···BN−1

) for the

N-qubit mixed state, we have

Nx
c (ρA|B1···BN−1

) =

(∑
i=1

piNc(|ψ⟩A|B1···BN−1
)

)x

(22)

≥

∑
i=1

pi

√√√√N−1∑
k=1

N2
c (ρABk

)

x

≥

∑
k

(∑
i

piNc(ρABk
)

)2
x

2

≥
N−1∑
i=1

Nx
c (ρABi

),

where the first inequality is due to (20). The second inequality is due to Minkowski in-

equality: (
∑

k(
∑

i xik))
1
2 ≤

∑
i(
∑

k x
2
ik)

1
2 . The last inequality is due to (

∑
i ai)

α ≥
∑

i a
α
i for

ai ≥ 0, α ≥ 1.

In the following, we can derive a better monogamy relation for CREN.

[Lemma 3]. For any N-qubit state ρ ∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1
, if Nc(ρABi

) ≥

Nc(ρA|Bi+1···BN−1
) for i = 1, 2, · · · ,m, and Nc(ρABj

) ≤ Nc(ρA|Bj+1···BN−1
) for j = m +

1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, we have

Nx
c (ρA|B1B2···BN−1

) ≥ Nx
c (ρAB1) (23)

+
x

2
Nx
c (ρAB2) + · · ·+

(x
2

)m−1

Nx
c (ρABm)

+
(x
2

)m+1

(Nx
c (ρABm+1) + · · ·+Nx

c (ρABN−2
))

+
(x
2

)m
Nx
c (ρABN−1

)

for all x ≥ 2.

[Proof]. From (19), one has N2
c (ρA|BC) ≥ N2

c (ρAB)+N2
c (ρAC). If Nc(ρAB) ≥ Nc(ρAC), we

have

Nx
c (ρA|BC) ≥ (N2

c (ρAB) +N2
c (ρAC))

x
2 = Nx

c (ρAB)

(
1 +

N2
c (ρAC)

N2
c (ρAB)

)x
2

(24)

≥ Nx
c (ρAB)

[
1 +

x

2

(
N2
c (ρAC)

N2
c (ρAB)

)x
2

]
= Nx

c (ρAB) +
x

2
Nx
c (ρAC),

where the second inequality is due to the inequality (1 + t)x ≥ 1 + xt ≥ 1 + xtx for x ≥

1, 0 ≤ t ≤ 1.
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By using the inequality (24) repeatedly, one gets

Nx
c (ρA|B1B2···BN−1

) ≥ Nx
c (ρAB1) +

x

2
Nx
c (ρA|B2···BN−1

) (25)

≥ Nx
c (ρAB1) +

x

2
Nx
c (ρAB2) +

(x
2

)2
Nx
c (ρA|B3···BN−1

)

≥ · · · ≥ Nx
c (ρAB1) +

x

2
Nx
c (ρAB2) + · · ·+

(x
2

)m−1

Nx
c (ρABm)

+
(x
2

)m
Nx
c (ρA|Bm+1···BN−1

).

As Nc(ρABj
) ≤ Nc(ρA|Bj+1···BN−1

) for j = m+ 1, · · · , N − 2, by (24) we get

Nx
c (ρA|Bm+1···BN−1

) ≥ x

2
Nx
c (ρABm+1) +Nx

c (ρA|Bm+2···BN−1
)

≥ x

2
(Nx

c (ρABm+1) + · · ·+Nx
c (ρABN−2

)) +Nx
c (ρABN−1

). (26)

Combining (25) and (26), we have Lemma 3.

We can also derive a bound of Nx
c (ρA|B1B2···BN−1

) for x < 0.

[Lemma 4]. For any N-qubit state ρ ∈ HA ⊗HB1 ⊗ · · · ⊗HBN−1
, we have

Nx
c (ρA|B1B2···BN−1

) < M ′ (Nx
c (ρAB1) +Nx

c (ρAB2) + · · ·+Nx
c (ρABN−1

)
)

(27)

for all x < 0, where M ′ = 1
N−1

.

[Proof]. For arbitrary tripartite state, from (19) we have

Nx
c (ρA|B1B2) ≤

(
N2
c (ρAB1) +N2

c (ρAB2)
)x

2 (28)

= Nx
c (ρAB1)

(
1 +

N2
c (ρAB2)

N2
c (ρAB1)

)x
2

< Nx
c (ρAB1),

where the first inequality is due to x < 0 and the second inequality is due to(
1 +

N2
c (ρAB2

)

N2
c (ρAB1

)

)x
2
< 1. On the other hand, we have

Nx
c (ρA|B1B2) ≤

(
N2
c (ρAB1) +N2

c (ρAB2)
)x

2 (29)

= Nx
c (ρAB2)

(
1 +

N2
c (ρAB1)

N2
c (ρAB2)

)x
2

< Nx
c (ρAB2).

From (28) and (29) we obtain

Nx
c (ρA|B1B2) <

1

2
(Nx

c (ρAB1) +Nx
c (ρAB2)). (30)
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By using the inequality (30) repeatedly, one gets

Nx
c (ρA|B1B2···BN−1

) <
1

2

(
Nx
c (ρAB1) +Nx

c (ρA|B2···BN−1
)
)

(31)

<
1

2
Nx
c (ρAB1) +

(
1

2

)2

Nx
c (ρAB2) +

(
1

2

)2

Nx
c (ρA|B3···BN−1

)

< · · · < 1

2
Nx
c (ρAB1) +

(
1

2

)2

Nx
c (ρAB2) + · · ·

+

(
1

2

)N−2

Nx
c (ρABN−2

) +

(
1

2

)N−2

Nx
c (ρABN−1

).

By cyclically permuting the sub-indices B1, B2, · · · , BN−1 in (31) we can get a set of

inequalities. Summing up these inequalities we obtain (27).

In the following, we study the monogamy property of the CRENOA for the N -qubit

generalized W -class states (6). We can obtain the following theorem.

[Theorem 4]. For the N -qubit generalized W -class states |ψ⟩ ∈ HA ⊗ HB1 ⊗ · · · ⊗

HBN−1
, with ρABj1

···Bjm−1
the m-qubit, 2 ≤ m ≤ N , reduced density matrix of |ψ⟩. If

Nc(ρABji
) ≥ Nc(ρABji+1

···Bjm−1
) for i = 1, 2, · · · t, and Nc(ρABjk) ≤ Nc(ρABjk+1

···Bjm−1
) for

k = t+ 1, · · · ,m− 2, ∀ 1 ≤ t ≤ m− 3, m ≥ 4, then the CRENOA satisfies

Nx
a (ρA|Bj1

···Bjm−1
) ≥ Nx

a (ρABj1
)

+
x

2
Nx
a (ρABj2

) + · · ·+
(x
2

)t−1

Nx
a (ρABjt

)

+
(x
2

)t+1 (
Nx
a (ρABjt+1

) + · · ·+Nx
a (ρABjm−2

)
)

+
(x
2

)t
Nx
a (ρABjm−1

) (32)

for all x ≥ 2.

[Proof]. For the N -qubit generalized W -class states |ψ⟩, according to the definitions of

11



Nc(ρ) and Na(ρ), one has Na(ρA|Bj1
···Bjm−1

) ≥ Nc(ρA|Bj1
···Bjm−1

). When x ≥ 2, we have

Nx
a (ρA|Bj1

···Bjm−1
) ≥ Nx

c (ρA|Bj1
···Bjm−1

) ≥ Nx
c (ρABj1

)

+
x

2
Nx
c (ρABj2

) + · · ·+
(x
2

)t−1

Nx
c (ρABjt

)

+
(x
2

)t+1 (
Nx
c (ρABjt+1

) + · · ·+Nx
c (ρABjm−2

)
)

+
(x
2

)t
Nx
c (ρABjm−1

)

= Nx
a (ρABj1

) +
x

2
Nx
a (ρABj2

) + · · ·+
(x
2

)t−1

Nx
a (ρABjt

)

+
(x
2

)t+1 (
Nx
a (ρABjt+1

) + · · ·+Nx
a (ρABjm−2

)
)

+
(x
2

)t
Nx
a (ρABjm−1

), (33)

where we have used in the first inequality the relation ax ≥ bx for a ≥ b ≥ 0, x ≥ 2. Using

the result of Lemma 3, one gets the second inequality. The equality is due to the Lemma 2.

In Theorem 4 we have assumed that some Nc(ρABji
) ≥ Nc(ρABji+1

···Bjm−1
) and some

Nc(ρABjk
) ≤ Nc(ρABjk+1

···Bjm−1
) for the N -qubit generalized W -class states. If all

Nc(ρABji
) ≥ Nc(ρABji+1

···Bjm−1
) for i = 1, 2, · · · ,m− 2, then we have the following con-

clusion:

[Theorem 5]. If Nc(ρABji
) ≥ Nc(ρABji+1

···Bjm−1
) for i = 1, 2, · · · ,m− 2, we have

Nx
a (ρA|Bj1

···Bjm−1
) ≥ Nx

a (ρABj1
) +

x

2
Nx
a (ρABj2

) + · · ·+
(x
2

)m−2

Nx
a (ρABjm−1

) (34)

for all x ≥ 2.

We can also derive a tighter upper bound of N y
a (ρAB1···BN−1

) for y < 0.

[Theorem 6]. For the N -qubit generalized W -class states |ψ⟩ ∈ HA⊗HB1 ⊗· · ·⊗HBN−1

with Nc(ρABji
) ̸= 0 for 1 ≤ i ≤ m− 1, we have

N y
a (ρA|Bj1

···Bjm−1
) < M̃

(
Ny
a (ρABj1

) +N y
a (ρABj2

) + · · ·+Ny
a (ρABjm−1

)
)

(35)

for all y < 0, where M̃ = 1
m−1

.

[Proof]. For y < 0, we have

N y
a (ρA|Bj1

···Bjm−1
) ≤ Ny

c (ρA|Bj1
···Bjm−1

)

< M̃
(
Ny
c (ρABj1

) +Ny
c (ρABj2

) + · · ·+Ny
c (ρABjm−1

)
)

= M̃
(
Ny
a (ρABj1

) +Ny
a (ρABj2

) + · · ·+Ny
a (ρABjm−1

)
)
, (36)
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where we have used in the first inequality the relation ax ≤ bx for a ≥ b ≥ 0, x ≤ 0. The

second inequality is based on Lemma 4. The equality is due to the Lemma 2.

Remark 2. In (35) we have assumed that all Nc(ρABji
), i = 1, 2, · · · ,m − 1, are

nonzero. In fact, if one of them is zero, the inequality still holds if one simply removes

this term from the inequality. Namely, if Nc(ρABji
) = 0, then one has N y

a (ρA|Bj1
···Bjm−1

) <

1
2
Ny
a (ρABj1

) + · · · +
(
1
2

)i−1
Ny
a (ρABji−1

) +
(
1
2

)i
Ny
a (ρABji+1

) + · · · +
(
1
2

)m−3
Ny
a (ρABjm−2

) +(
1
2

)m−3
Ny
a (ρABjm−1

). By cyclically permuting the sub-indices in Bj1 · · ·Bjm−1 , we can

get a set of inequalities. Summing up these inequalities we have N y
a (ρA|Bj1

···Bjm−1
) <

1
m−1

(
N y
a (ρABj1

) + · · ·+Ny
a (ρABji−1

) +Ny
a (ρABji+1

) + · · ·+N y
a (ρABjm−2

) +Ny
a (ρABjm−1

)
)
,

for y < 0.

CONCLUSION

Entanglement monogamy is a fundamental property of multipartite entangled states. We

have presented tighter monogamy inequalities for the x-power of concurrence of assistance

Cx
a (ρA|Bj1

···Bjm−1
) of the m-qubit reduced density matrices, 2 ≤ m ≤ N , for the N -qubit

generalized W -class states, when x ≥ 2. A tighter upper bound of y-power of concurrence

of assistance is also derived for y < 0. The monogamy relations for the x-power of negativ-

ity of assistance for the N -qubit generalized W -class states have been also investigated for

x ≥ 2 and x < 0, respectively. These relations give rise to the restrictions of entanglement

distribution among the qubits in generalized W -class states. It should be noted that en-

tanglement of assistances like concurrence of assistance and negativity of assistance are not

genuine measures of quantum entanglement. They quantify the maximum average amount

of entanglement between two parties, Alice and Bob, which can be extracted given assistance

from a third party, Charlie, by performing a measurement on his system and reporting the

measurement outcomes to Alice and Bob. Nevertheless, similar to quantum entanglement,

we see that the entanglement of assistances also satisfy certain monogamy relations.
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