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The wave-particle duality demonstrates a competition relation between wave and particle behavior for a par-
ticle going through an interferometer. This duality can be formulated as an inequality, which upper bounds the
sum of interference visibility and path information. However, if the particle is entangled with a quantum mem-
ory, then the bound may decrease. Here, we find the duality relation between coherence and path information
for a particle going through a multipath interferometer in the presence of a quantum memory, offering an upper
bound on the duality relation which is directly connected with the amount of entanglement between the particle
and the quantum memory.

I. INTRODUCTION

Quantum coherence, defined as the degree of superposi-
tion in a given reference basis, can be used to characterize
the quantumness in a single system, and plays an important
role in a variety of applications, ranging from metrology [1]
to thermodynamics [2, 3]. Recently, the development of a re-
source theory of coherence has attracted much attention [4–
10]. One of the main advantages that a resource theory offers
is the lucid quantitative and operational description at ones
disposal. In order to quantify the amount of coherence, two
coherence measures have been proposed, namely, l1 norm of
coherence and relative entropy of coherence [4]. As coher-
ence can be used to characterize the wave behavior of a parti-
cle, here we investigate the duality relation between coherence
and path information for a particle going through a multipath
interferometer with the access to a quantum memory, where
the coherence is quantified by l1 norm and relative entropy of
coherence.

The wave-particle duality illustrates that a particle can ex-
hibit both wave and particle behavior when it goes through an
interferometer. A number of quantitative formulations for this
duality have been proposed [11–20]. One well-known duality
relation for a two-path interferometer is given in [13, 14] as
follows,

D2 +V 2 ≤ 1, (1)

where particle behavior is quantified by the path information
(or path distinguishability) D and wave behavior is quanti-
fied by the interference visibility V . This tradeoff relation
shows that the path information D will give a limitation on
the interference visibility V and vice versa. Besides, the con-
nection between wave-particle duality and Heisenberg’ uncer-
tainty principle has been investigated [21–24], where Heisen-
berg’ uncertainty principle demonstrates that the complemen-
tary observables cannot be measured precisely at the same
time. The equivalence between these two concepts in certain
formulation, where the particle and wave behavior are cap-
tured by the measurements on the so-called particle and wave
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observables, illustrates the significance of wave-particle dual-
ity in the operational tasks [24].

The wave-particle duality for multipath interferometers is
first investigated in [25] in terms of the density matrix of the
particle represented in the path basis. In a similar scenario,
the duality relations between path coherence and path infor-
mation have been proposed in terms of the coherence mea-
sures in the resource theory of coherence [26–28]. For a
given reference basis { | i〉}N

i=1, l1 norm of coherence is de-
fined as Cl1(ρ) = ∑i6= j |ρi j| with ρi j = 〈i |ρ| j〉 and relative
entropy of coherence is defined as Cr(ρ) = S(ρ(d))− S(ρ)
where S(ρ) = −Tr [ρ logρ] is the von Neumann entropy and
ρ(d) = ∑i ρii|i〉〈i| is the diagonal part of ρ [4]. The wave be-
havior of the particle is quantified by these two coherence
measures. To detect path information, detectors are used to
interact with the particle and the path information is quanti-
fied by the discrimination of detector states [26, 27]. It has
been proved that the sum of path coherence and the optimal
success probability of discriminating detector states (by un-
ambiguous state discrimination) is less than or equal to one
[26]. Later an improved duality relation between coherence
and path information in N-path interferometer is proved, with
the path information quantified by the ambiguous (or minimal
error) state discrimination,

(Ps−
1
N
)2 +X2 ≤ (1− 1

N
)2, (2)

where Ps is the optimal success probability to discriminate
detector states by ambiguous state discrimination and X is
the normalized l1 norm coherence of the particle defined by
X = 1

N Cl1(ρ) [27]. The quantity Ps− 1/N quantifies the ad-
vantage to discriminate detector states by prior knowledge
compared with random guessing [27].

Equation (2) bounds the duality between coherence and
path information without quantum memory. However, this
bound may decrease if the particle is entangled with a quan-
tum memory. Here, we show a duality relation between coher-
ence and path information for a particle A going through an
N-path interferometer in the presence of a quantum memory B
(see Fig.1), which provides an upper bound on the sum of the
coherence and path information that depends on the amount of
entanglement between the particle A and the quantum memo-
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FIG. 1. Schematic diagram of an N-path interferometer. The particle
A goes through an N-path interferometer while A is entangled with a
quantum memory B. The detector D is used to detect which path the
particle A goes through.

ry B,(
PA

s − 1
N

)2
+X2

A ≤
(
1− 1

N

)2

+ 2(N−1)
N2

(
Tr
[
ρ2

A

]
−Tr

[
ρ2

AB

])
.

(3)

The extra term Tr
[
ρ2

A

]
−Tr

[
ρ2

AB

]
on the right-hand side of (3)

quantifies the amount of entanglement between particle A and
the memory B, as

Tr
[
ρ

2
A
]
−Tr

[
ρ

2
AB
]
< 0 (4)

only if ρAB is entangled [29]. Inequality (4) provides a pow-
erful tool in experimental detection of entanglement [30, 31].
Moreover, for N = 2, the relation (3) becomes an equality.

Let us begin with a pure bipartite state |ψ〉AB between par-
ticle A and quantum memory B. Note that we can always
consider a pure bipartite state between particle A and a lager
quantum memory B′ even if the initial bipartite state between
A and B is not pure.

In an N-path interferometer, if the orthonormal basis states
{ | i〉}N

i=1 correspond to the N possible slits or paths, then the
state of the particle A after crossing the slit can be described in
terms of { | i〉}N

i=1, and thus the bipartite pure state |ψ〉AB can
be represented as |ψ〉AB =∑

N
i=1 ∑

dB
j=1 ai j |i〉A | j〉B, with ai j ∈C,

∑i, j |ai j|2 = 1 and dB being the dimension of quantum memory
B. Denote pi = ∑ j |ai j|2 and |ui〉B = ∑ j ai j | j〉B /

√
pi. |ψ〉AB

can also be written as

|ψ〉AB =
N

∑
i=1

√
pi |i〉A |ui〉B , (5)

where pi is the probability to take the ith path and |ui〉B is
the normalized pure state on memory B for any i∈ {1, ...,N }.
Here |ui〉B are not necessary orthogonal. In order to detect par-
ticle A, another quantum system called detector interacts with

the particle A inside the interferometer, and the interaction is
described as the controlled unitary U(|i〉A |φ0〉D) = |i〉A |φi〉D
with |φ0〉D being the initial state of the detector. After the in-
teraction, the state of the whole system becomes

|Ψ〉ABD =
N

∑
i=1

√
pi |i〉A |ui〉B |φi〉D . (6)

Thus the reduced density matrix of the combined system A,B
is

ρAB = TrD [|Ψ〉〈Ψ|ABD]

=
N

∑
i, j=1

√
pi p j〈φ j|φi〉 |i〉〈 j|A⊗|ui〉〈u j|B , (7)

and the reduced density matrix of the particle A is

ρA = TrBD [|Ψ〉〈Ψ|ABD]

=
N

∑
i, j=1

√
pi p j〈φ j|φi〉〈u j|ui〉 |i〉〈 j|A . (8)

Hence the normalized l1 norm of coherence measure XA is

XA =
1
N

Cl1(ρA) =
1
N

N

∑
i, j=1
i6= j

√
pi p j|〈φ j|φi〉||〈u j|ui〉|. (9)

Besides, the path information is stored in the detector states
and the density matrix of the detector can be expressed as

ρD = TrAB [|Ψ〉〈Ψ|ABD] =
N

∑
i=1

pi|φi〉〈φi|D. (10)

In order to obtain the path information, we need perform s-
tate discrimination on the set of quantum states { | φi〉D }

N
i=1

with the probability { pi }N
i=1. For a positive operator val-

ued measure (POVM) {Πi }N
i=1 with Πi ≥ 0 and ∑i Πi = I,

the success probability to discriminate the states { | φi〉D } is
∑

N
i=1 pi Tr [Πi|φi〉〈φi|]. Thus the optimal success probability a-

mong all POVMs is

PA
s = max

{Πi }

N

∑
i=1

pi Tr [Πi|φi〉〈φi|] . (11)

For ambiguous state discrimination, an upper bound for the
optimal success probability PA

s is given by [27],

PA
s ≤

1
N
+

1
2N

N

∑
i, j=1

∥∥Ti j
∥∥

1 , (12)

where the operators {Ti j } are given by Ti j = pi|φi〉〈φi| −
p j|φ j〉〈φ j| and trace norm of Ti j for i 6= j is given by

∥∥Ti j
∥∥

1 = 2

√(
pi + p j

2

)2

− pi p j|〈φi|φ j〉|2.

Here, the quantum memory B is not involved in the discrim-
ination of the detector states, as the quantum memory may
be far away from the interferometer and one may not be able
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to perform a joint measurement on both the memory B and
the detector D. Note that, if the joint measurement on B and
D is allowed, then the memory B would be able to increase
the optimal success probability to discriminate states and the
relation (3) will reduce to (2) following the method in [27].

The bound (12) gives an upper bound for the sum of path
information

(
PA

s −1/N
)2 and the square of the normalized l1

norm of coherence X2
A for particle A,

(
PA

s −
1
N

)2

+X2
A ≤

1
N2

 N

∑
i, j=1
i6= j

1
2

∥∥Ti j
∥∥

1


2

+
1

N2

 N

∑
i, j=1
i6= j

√
pi p j|〈φi|φ j〉||〈ui|u j〉|


2

. (13)

Due to the Schwarz inequality, we can get some upper bounds
for the two terms on the right-hand side of (13), where the
trace norm of Ti j is upper bounded as follows,

 N

∑
i, j=1
i 6= j

1
2

∥∥Ti j
∥∥

1


2

=

 N

∑
i, j=1
i 6= j

√(
pi + p j

2

)2

− pi p j|〈φi|φ j〉|2


2

≤

 N

∑
i, j=1
i 6= j

pi + p j

2


 N

∑
i, j=1
i6= j

pi + p j

2
−2

pi p j

pi + p j
|〈φi|φ j〉|2



= (N−1)

(N−1)−
N

∑
i, j=1
i 6= j

2
pi p j

pi + p j
|〈φi|φ j〉|2

 , (14)

and the l1 norm of coherence is upper bounded as

 N

∑
i, j=1
i 6= j

√
pi p j|〈φi|φ j〉||〈ui|u j〉|


2

≤

 N

∑
i, j=1
i 6= j

pi + p j

2


 N

∑
i, j=1
i6= j

2
pi p j

pi + p j
|〈φi|φ j〉|2|〈ui|u j〉|2



= (N−1)

 N

∑
i, j=1
i 6= j

2
pi p j

pi + p j
|〈φi|φ j〉|2|〈ui|u j〉|2

 , (15)

where the relation ∑
N
i 6= j=1

pi+p j
2 = N− 1 has been taken into

account. Substituting (14) and (15) into (13), we have(
PA

s −
1
N

)2

+X2
A

≤
(

1− 1
N

)2

−2
N−1

N2

N

∑
i, j=1
i6= j

pi p j

pi + p j
|〈φi|φ j〉|2

(
1−|〈ui|u j〉|2

)

≤
(

1− 1
N

)2

−2
N−1

N2

N

∑
i, j=1
i6= j

pi p j|〈φi|φ j〉|2
(
1−|〈ui|u j〉|2

)

=

(
1− 1

N

)2

−2
N−1

N2

(
Tr
[
ρ

2
D
]
−Tr

[
ρ

2
A
])
, (16)

where second inequality comes from the fact that pi + p j ≤ 1
and |〈ui|u j〉| ≤ 1 for any i 6= j and the last equality comes from
the fact that Tr

[
ρ2

D
]

and Tr
[
ρ2

A

]
can be expressed as

Tr
[
ρ

2
A
]
=

N

∑
i, j=1
i6= j

pi p j|〈φi|φ j〉|2|〈ui|u j〉|2 +
N

∑
i=1

p2
i , (17)

and

Tr
[
ρ

2
D
]
=

N

∑
i, j=1
i 6= j

pi p j|〈φi|φ j〉|2 +
N

∑
i=1

p2
i . (18)

Besides, since ρAB and ρD are the reduced states of the pure
state |Ψ〉ABD, the purity of ρAB and ρD are equal, Tr

[
ρ2

AB

]
=

Tr
[
ρ2

D
]
. Therefore, we obtain the duality relation (3) in the

presence of a quantum memory. In view of the equations
(17) and (18), we find that Tr

[
ρ2

A

]
≤ Tr

[
ρ2

D
]

which means
Tr
[
ρ2

A

]
≤Tr

[
ρ2

AB

]
. Thus the right-hand side of (3) is less than

or equal to (1−1/N)2. Furthermore, if Tr
[
ρ2

A

]
< Tr

[
ρ2

AB

]
,

then ρAB is entangled and the right-hand side of (3) is strict-
ly less than (1−1/N)2. Note that if the initial bipartite state
|ψ〉AB is separable, |ψ〉AB = |ψ ′〉A |u〉B where |ui〉B in (5) is
equal to |u〉B up to a phase, then Tr

[
ρ2

A

]
= Tr

[
ρ2

AB

]
and the

relation (3) reduces to (2).
For N = 2, the equality in (12) holds [32], that is, the opti-

mal success probability is given by

PA
s =

1
2
+

√
1
4
− p1 p2|〈φ1|φ2〉|2,

and the normalized l1 norm coherence can be written as

XA =
√

p1 p2|〈φ1|φ2〉||〈u1|u2〉|.

In this case we have(
PA

s −
1
2

)2

+X2
A =

1
4
− p1 p2|〈φ1|φ2〉|2(1−|〈u1|u2〉|2)

=
1
4
+

1
2
(
Tr
[
ρ

2
A
]
−Tr

[
ρ

2
AB
])
. (19)

That is, the equality in duality relation (3) holds for two-path
interferometer.

If the particle A has no quantum memory and the initial s-
tate is |ψ̃〉A = ∑

N
i=1
√

pi |i〉A, then after the interaction with the
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detector, the reduced state ρ̃A = ∑i, j
√pi p j〈φ j|φi〉 |i〉〈 j|A and

ρ̃D is just given by the equation (10). According to [27], the
coherence X̃A and the path information P̃A

s satisfy the relation
(2). Compared with the case that A has a quantum memory,
the difference between the bounds of (2) and (3) comes from
the loss of coherence of particle in the presence of entangle-
ment, where the amount of coherence-loss can be quantified
as

1
N2

(
Tr
[
ρ2

AB

]
−Tr

[
ρ2

A

])
≤ ∆X2

A

≤ 2(N−1)2

N

(
Tr
[
ρ2

AB

]
−Tr

[
ρ2

A

])
,

(20)

where ∆X2
A = X̃2

A −X2
A is the amount of coherence-loss, ρAB

and ρA are given by (7) and (8) respectively. The first inequal-
ity comes from the fact that

C2
l1(ρ̃A)−C2

l1(ρA)

≥
N

∑
i, j=1
i6= j

pi p j|〈φi|φ j〉|2(1−|〈ui|u j〉|2)

= Tr
[
ρ

2
AB
]
−Tr

[
ρ

2
A
]
,

and the second inequality is due to that

C2
l1(ρ̃A)−C2

l1(ρA)

= (Cl1(ρ̃A)+Cl1(ρA))(Cl1(ρ̃A)−Cl1(ρA))

≤ 2(N−1)(
N

∑
i, j=1
i6= j

√
pi p j|〈φi|φ j〉|(1−|〈ui|u j〉|))

≤ 2(N−1)(
N

∑
i, j=1
i6= j

√
pi p j|〈φi|φ j〉|(

√
1−|〈ui|u j〉|2))

≤ 2(N−1)N(N−1)(
N

∑
i, j=1
i 6= j

pi p j|〈φi|φ j〉|2(1−|〈ui|u j〉|2)

≤ 2(N−1)2N(Tr
[
ρ

2
AB
]
−Tr

[
ρ

2
A
]
),

where the third line comes from the fact that
Cl1(ρ̃A),Cl1(ρA) ≤ N − 1. Hence, the loss of coherence
in particle A depends on the entanglement between A and
B. This provides an interpretation for the decrease of duality
bound in (3): in the presence of quantum memory B, part of
the coherence in particle A is encoded in the entanglement
between A and B, which leads to the loss of coherence in the
particle A and the decrease of the bound for duality relation
between coherence and path information.

The duality relation (3) also provides a tighter bound on d-
uality relation (2) for mixed states without quantum memory.
Suppose a particle A goes through an N-path interferometer
while the initial state of particle A is a mixed state ρ0

A. The or-
thonormal basis states { | i〉}N

i=1 correspond to the N possible
paths. Then there exists another quantum system B such that
the bipartite state between A and B can be expressed as in (5).
Thus the initial density matrix of particle A is

ρ
0
A =

N

∑
i, j=1

√
pi p j〈u j|ui〉 |i〉〈 j|A .

After the interaction with detector, the bipartite state between
A and D is given by

ρAD =U
(
ρ

0
A⊗|φ0〉〈φ0|D

)
U†

=
N

∑
i, j=1

√
pi p j〈u j|ui〉 |i〉〈 j|A⊗|φi〉〈φ j|D ,

where U(|i〉A |φ0〉D) = |i〉A |φi〉D. Then the reduced density
matrix of particle A and detector D are given by (8) and (10),
respectively. Therefore, according to (16), we get the duality
relation for mixed state ρA without quantum memory,(

PA
s −

1
N

)2

+X2
A

≤
(

1− 1
N

)2

+2
N−1

N2

(
Tr
[
ρ

2
A
]
−Tr

[
ρ

2
D
])
. (21)

Since Tr
[
ρ2

A

]
≤ Tr

[
ρ2

D
]
, the right-hand side of (21) is less

than (1−1/N)2, which provides a tighter bound than that of
relation (2) for mixed states. If ρ0

A is pure, Tr
[
ρ2

A

]
and Tr

[
ρ2

D
]

are equal to ρA and ρD, which are the reduced states of the
pure state ρAD = U

(
ρ0

A⊗|φ0〉〈φ0|D
)

U†. Also, the relation
(21) becomes an equality for N=2.

Now, let us recall an entropic version of duality relation be-
tween path coherence and the path information without quan-
tum memory, that is, the duality relation between relative en-
tropy coherence of the particle A and the mutual information
between detector states and measurement outcomes [27],

I(D : M)+Cr(ρA)≤ H({ pi }), (22)

where H({ pi }) = −∑i pi log pi is the Shannon entropy,
Cr(ρA) is the relative entropy coherence of particle A, and
D,M are two random variables corresponding to the detec-
tor states and the measurement outcomes of a POVM M =
{Πi }N

i=1 respectively, where the joint distribution for D,M
is pi j = p(D = i,M = j) = pi Tr [|φi〉〈φi|Π j] [27]. Note that
the path information is quantified by the mutual information
I(D : M) defined by

I(D : M) = H(D)+H(M)−H(D,M), (23)

where H(D) = H({ pi }) and H(M) = H({q j }) with q j =
∑i pi j.

In the following, we show an entropic duality relation be-
tween coherence and path information in the presence of a
quantum memory B,

I(D : M)+Cr(ρA)≤ H({ pi })+S(B|A), (24)

where I(D : M) is the mutual information between detector s-
tates and measurement outcomes of a POVM M = {Πi }N

i=1
as defined in [27] and the conditional entropy S(B|A) =
S(ρAB)−S(ρA). The extra term S(B|A) on the right-hand side
of (24) quantifies the amount of entanglement between parti-
cle A and the memory B, as S(B|A) < 0 indicates the entan-
glement of ρAB [33].

Due to the presence of the quantum memory B, equation (6)
is the state of the whole system after particle A interacts with
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the detector. Equations (8) and (10) are the reduced density
matrix of particle ρA and ρD respectively. The relative entropy
of coherence for ρA is given by

Cr(ρA) = S(ρ(d)
A )−S(ρA) = H({ pi })−S(ρA). (25)

In view of the Holevo bound, the path information I(D : M) is
upper bounded as

I(D : M)≤ S(ρD)−
N

∑
i=1

piS(|φi〉〈φi|) = S(ρD),

where the von Neumann entropy for pure state is zero. Thus,

I(D : M)+Cr(ρA)≤ H({ pi })−S(ρA)+S(ρD). (26)

Since ρAB and ρD are the reduced states of the pure state
|Ψ〉ABD, the von Neumann entropy of ρAB and ρD are equal,
S(ρD) = S(ρAB). Therefore, we obtain the duality relation
(24) for the case of the presence of a quantum memory. If
S(B|A) < 0, ρAB is entangled and the right-hand side of (24)
is strictly less than H({ pi }). That is, it provides a tighter
bound than (22) in this case. Also, if the initial bipartite s-
tate |ψ〉AB between A and B is separable, |ψ〉AB = |ψ ′〉A |u〉B,
where |ui〉 in (5) is equal to |u〉 up to a phase, then the whole
state of A,B and D after the interaction between particle A
and D is of the form, |Ψ〉ABD = U(|ψ ′〉A |φ0〉D)⊗|u〉B. Thus
S(ρA) = S(ρAB) and the duality relation (24) reduces to the re-
lation (22). Besides, as the accessible information is defined
as Acc(D) = maxPOV MM H(D : M) and the duality relation
holds for any POVM on detector state ρD, we obtain the fol-
lowing relation between the accessible information and rela-
tive entropy of coherence in the presence of quantum memory,

Acc(D)+Cr(ρA)≤ H({ pi })+S(B|A). (27)

For N = 2, the von Neumman entropies of ρA and ρAB can
be analytically calculated,

S(ρAB) =−
(

1
2
+λ1

)
log
(

1
2
+λ1

)
−
(

1
2
−λ1

)
log
(

1
2
−λ1

)
,

S(ρA) =−
(

1
2
+λ2

)
log
(

1
2
+λ2

)
−
(

1
2
−λ2

)
log
(

1
2
−λ2

)
,

where

λ1 =

(
p1− p2

2

)2

+ p1 p2|〈φ1|φ2〉|2,

λ2 =

(
p1− p2

2

)2

+ p1 p2|〈φ1|φ2〉|2|〈u1|u2〉|2.

As λ2 ≤ λ1, we have S(ρA) ≥ S(ρAB) or S(B|A) ≤ 0. Hence
the right-hand side of (24) is less than H({ pi }) for two-path
interferometer.

Similar to the case of l1 norm measure, the duality rela-
tion (24) with quantum memory also gives a tighter bound for
mixed states without quantum memory. The duality relation
for mixed states without quantum memory is described by the
equation (26), with the reduced density matrices of particle A
and detector D given by (8) and (10), respectively. It is easy
to see that S(ρA)≥ S(ρD) for N = 2.

As another interesting scenario, we may also consider two
entangled particles A and B, such that A goes through an N-
path interferometer and B goes through another. Then coher-
ence and path information of A and B both satisfy the relation
(3). We have

(
PA

s −
1
N

)2

+

(
PB

s −
1
N

)2

+X2
A +X2

B

≤ 2
(

1− 1
N

)2

+
2(N−1)

N2

(
Tr
[
ρ

2
A
]
+Tr

[
ρ

2
B
]
−2Tr

[
ρ

2
AB
])
,

where ρA, ρB and ρAB are the reduced states of A, B and the
system AB after the interaction with the individual detectors.
The relation (28) becomes an inequality for N = 2. Note that
in this scenario, the relation between the single-particle visi-
bility and the mutual information of the two particles has also
been investigated [34].

In conclusion, we have obtained two duality relations be-
tween path information and coherence for a particle going
through a multipath interferometer in the presence of a quan-
tum memory, for both coherence quantifier l1 norm of co-
herence and relative entropy of coherence. We have shown
that the entanglement between the particle and the quantum
memory will lower down the upper bounds of these duality
relations, due to the decrease of coherence in the presence of
entanglement. Moreover, our bonds for wave-particle duality
relations with quantum memory also provide the correspond-
ing bonds for particles in mixed initial states without quantum
memory. These results provide a new insight into the wave-
particle duality and reveal the role of quantum entanglement
in the wave-particle duality.
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