Max-Planck-Institut
 für Mathematik in den Naturwissenschaften Leipzig

Verlinde bundles of families of hypersurfaces and their jumping lines

Orlando Marigliano

VERLINDE BUNDLES OF FAMILIES OF HYPERSURFACES AND THEIR JUMPING LINES

Orlando Marigliano

May 2, 2018

Abstract

Verlinde bundles are vector bundles V_{k} arising as the direct image $\pi_{*}\left(\mathcal{L}^{\otimes k}\right)$ of polarizations of a proper family of schemes $\pi: \mathfrak{X} \rightarrow S$. We study the splitting behavior of Verlinde bundles in the case where π is the universal family $\mathfrak{X} \rightarrow|\mathcal{O}(d)|$ of hypersurfaces of degree d in $|\mathcal{O}(d)|$ and calculate the cohomology class of the locus of jumping lines of the Verlinde bundles V_{d+1} in the cases $n=2,3$.

1 Introduction

Let $\pi: \mathfrak{X} \rightarrow S$ be a proper family of schemes with a polarization \mathcal{L}. For $k \geq 1$, if the sheaf $\pi_{*}\left(\mathcal{L}^{\otimes k}\right)$ is locally free, we call it the k-th Verlinde bundle of the family π.

For example ([Iye13]), let $C \rightarrow T$ be a smooth projective family of curves of fixed genus. Consider the relative moduli space $\pi: \mathrm{SU}(r) \rightarrow T$ of semistable vector bundles of rank r and trivial determinant. This family is equipped with a polarization Θ, the determinant bundle. The Verlinde bundles $\pi_{*}\left(\Theta^{k}\right)$ of this family are projectively flat ([Hit90],[ADPW91]), and their rank is given by the Verlinde formula.

In this article, we study the example of the universal family $\pi: \mathfrak{X} \rightarrow\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$ of hypersurfaces of degree d in the complex projective space \mathbb{P}^{n}, with $n>1$. This family comes equipped with the polarization \mathcal{L} given by the pullback of $\mathcal{O}(1)$ along the projection map $\mathfrak{X} \rightarrow \mathbb{P}^{n}$. For $k \geq 1$, the sheaf $\pi_{*} \mathcal{L}^{\otimes k}$ is locally free, as can be seen by considering the structure sequence of an arbitrary hypersurface of degree d in \mathbb{P}^{n}. For $k \geq 1$, we denote the k-th Verlinde bundle of the family π by V_{k}.

To better understand V_{k} we study its splitting type when restricted to lines in $|\mathcal{O}(d)|$.
Let $T \subseteq|\mathcal{O}(d)|$ be a line. On $T=\mathbb{P}^{1}$, we define the vector bundle $V_{k, T}:=\left.V_{k}\right|_{T}$. The splitting type of $V_{k, T}$ is the unique non-increasing tuple $\left(b_{1}, \ldots, b_{r(k)}\right)$ of size $r^{(k)}:=\operatorname{rk} V_{k}$ such that $V_{k, T} \simeq \bigoplus_{i} \mathcal{O}\left(b_{i}\right)$.

The sequence (2.1) puts constraints on the b_{i} : they are all non-negative and they sum up to $d^{(k)}:=\operatorname{deg}\left(V_{k}\right)$. The set of such tuples $\left(b_{i}\right)$ can be ordered by defining the expression $\left(b_{i}^{\prime}\right) \geq\left(b_{i}\right)$ to mean

$$
\sum_{i=1}^{s} b_{i}^{\prime} \geq \sum_{i=1}^{s} b_{i} \text { for all } s=1, \ldots, r
$$

With this definition, smaller types are more general: the vector bundle $\mathcal{O}\left(b_{i}\right)$ on \mathbb{P}^{1} specializes to $\mathcal{O}\left(b_{i}^{\prime}\right)$ in the sense of [Sha76] if and only if $\left(b_{i}^{\prime}\right) \geq\left(b_{i}\right)$.
If $d^{(k)} \leq r^{(k)}$, then the most generic possible type has thus the form $(1, \ldots, 1,0, \ldots, 0)$. We call this the generic splitting type. A computation shows that $d^{(k)} \leq r^{(k)}$ if $k \leq 2 d$.

We have the following result on the cohomology class of the set of jumping lines

$$
Z:=\left\{T \in \mathbb{G r}(1,|\mathcal{O}(d)|) \mid V_{d+1, T} \text { has non-generic type }\right\}
$$

in the Grassmannian of lines in $|\mathcal{O}(d)|$:
Theorem 1.1. Let $n \leq 3$, let Z be set of jumping lines of V_{d+1}, and let $[Z]$ be the class of Z in the Chow ring $\operatorname{CH}(\mathbb{G r}(1,|\mathcal{O}(d)|))$. We have

$$
\operatorname{dim} Z=n+1+\binom{d-1+n}{n}
$$

Furthermore, let b range over the integers with the property $0 \leq b<\frac{\operatorname{dim} Z}{2}$ and define $a=\operatorname{dim} Z-b, a^{\prime}=a+\frac{\operatorname{codim} Z-\operatorname{dim} Z}{2}, b^{\prime}=b+\frac{\operatorname{codim} Z-\operatorname{dim} Z}{2}$.
(i) If $\operatorname{dim} Z$ is odd or $n=2$, we have

$$
\begin{equation*}
[Z]=\sum_{a, b}\left(\binom{a+1}{n}\binom{b+1}{n}-\binom{a+2}{n}\binom{b}{n}\right) \sigma_{a^{\prime}, b^{\prime}} \tag{1.1}
\end{equation*}
$$

(ii) If $\operatorname{dim} Z$ is even and $n=3$, we have

$$
[Z]=\sum_{a, b}\left(\binom{a+1}{n}\binom{b+1}{n}-\binom{a+2}{n}\binom{b}{n}\right) \sigma_{a^{\prime}, b^{\prime}}+\binom{\frac{\operatorname{dim} Z}{2}+2}{n}\binom{\frac{\operatorname{dim} Z}{2}}{n} \sigma_{\frac{\operatorname{dim} Z}{2}, \frac{\operatorname{dim} Z}{2}} .
$$

The computation is carried out by the method of undetermined coefficients, leading into various calculations in the Chow ring of the Grassmannian. The assumption $n \leq 3$ is needed for a certain dimension estimation.

Aknowledgement

This work is a condensed version of my Master's thesis, supervised by Daniel Huybrechts. I would like to take the opportunity to thank him for his mentorship during the writing of the thesis, as well as for his help during the preparation of this article.

2 Attained splitting types

There exists a short exact sequence of vector bundles on $|\mathcal{O}(d)|$

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-1) \otimes H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(k-d)\right) \xrightarrow{M} \mathcal{O} \otimes H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(k)\right) \rightarrow V_{k} \rightarrow 0, \tag{2.1}
\end{equation*}
$$

as can be seen by taking the pushforward of a twist of the structure sequence of \mathfrak{X} on $\mathbb{P}^{n} \times|\mathcal{O}(d)|$. The map M is given by multiplication by the section

$$
\sum_{I} \alpha_{I} \otimes x^{I} \in H^{0}(|\mathcal{O}(d)|, \mathcal{O}(1)) \otimes H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(d)\right)
$$

In particular, we have $r^{(k)}=\binom{k+n}{n}-\binom{k+n-d}{n}$ and $d^{(k)}=\binom{k+n-d}{n}$.
Lemma 2.1. Let \mathcal{E} be a free $\mathcal{O}_{\mathbb{P}^{1}-m o d u l e ~ o f ~ f i n i t e ~ r a n k, ~ a n d ~ l e t ~}^{\text {len }}$

$$
0 \rightarrow \mathcal{E}^{\prime} \xrightarrow{\varphi} \mathcal{E} \xrightarrow{\psi} \mathcal{E}^{\prime \prime} \rightarrow 0
$$

be a short exact sequence of $\mathcal{O}_{\mathbb{P}^{1}}$-modules. Given a splitting $\mathcal{E}^{\prime \prime}=\mathcal{E}_{1}^{\prime \prime} \oplus \mathcal{O}$, we may construct a splitting $\mathcal{E}=\mathcal{E}_{1} \oplus \mathcal{O}$ such that the image of φ is contained in \mathcal{E}_{1}.

Proof. Define $\mathcal{E}_{1}:=\operatorname{ker}\left(\operatorname{pr}_{2} \circ \psi\right)$, which is a locally free sheaf on \mathbb{P}^{1}. By comparing determinants in the short exact sequence $0 \rightarrow \mathcal{E}_{1} \rightarrow \mathcal{E} \rightarrow \mathcal{O} \rightarrow 0$ we see that \mathcal{E}_{1} is free, hence by an Ext ${ }^{1}$ computation the sequence splits. The property $\operatorname{im}(\varphi) \subseteq \mathcal{E}_{1}$ follows from the definition.

Proposition 2.2. Let $f_{1}, f_{2} \in|\mathcal{O}(d)|$ span the line $T \subseteq|\mathcal{O}(d)|$ and let p be the number of zero entries in the splitting type of $V_{k, T}$. We have

$$
p=\operatorname{dim} H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(k)\right)-\operatorname{dim}\left(f_{1} U+f_{2} U\right) .
$$

Proof. Note that the map $\left.M\right|_{T}$ sends a local section $\xi \otimes \theta$ to $s \xi \otimes f_{1} \theta+t \xi \otimes f_{2} \theta$. In particular, the image of $\mathcal{O}(-1) \otimes U$ is contained in $\mathcal{O} \otimes\left(f_{1} U+f_{2} U\right)$. It follows that $p \geq \operatorname{dim} H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(k)\right)-\operatorname{dim}\left(f_{1} U+f_{2} U\right)$.

To prove the other inequality, consider the induced sequence

$$
0 \rightarrow \mathcal{O}(-1) \otimes U \xrightarrow{\left.M\right|_{T}} \mathcal{O} \otimes\left(f_{1} U+f_{2} U\right) \rightarrow \mathcal{E}^{\prime \prime} \rightarrow 0
$$

and assume for a contradiction that $\mathcal{E}^{\prime \prime} \simeq \mathcal{E}_{1}^{\prime \prime} \oplus \mathcal{O}$. By Lemma 2.1, we have a splitting $\mathcal{O} \otimes\left(f_{1} U+f_{2} U\right) \simeq \mathcal{E}_{1} \oplus \mathcal{O}$ such that $\operatorname{im}\left(\left.M\right|_{T}\right) \subseteq \mathcal{E}_{1}$.
Consider the map $\left.\widetilde{M}\right|_{T}:(\mathcal{O} \otimes U) \oplus(\mathcal{O} \otimes U) \rightarrow \mathcal{O} \otimes\left(f_{1} U+f_{2} U\right)$ defined by

$$
\left.\widetilde{M}\right|_{T}\left(a \otimes \theta_{1}, b \otimes \theta_{2}\right)=a \otimes f_{1} \theta_{1}+b \otimes f_{2} \theta_{2} .
$$

We obtain the matrix description of $\left.\widetilde{M}\right|_{T}$ from the matrix description of $\left.M\right|_{T}$ as follows. If $\left.M\right|_{T}$ is represented by the matrix A with coefficients $A_{i, j}=\lambda_{i, j} s+\mu_{i, j} t$, then $\left.\widetilde{M}\right|_{T}$ is represented by a block matrix

$$
B=\left(A^{\prime} \mid A^{\prime \prime}\right)
$$

with $A_{i, j}^{\prime}=\lambda_{i, j}$ and $A_{i, j}^{\prime \prime}=\mu_{i, j}$.
The property $\operatorname{im}\left(\left.M\right|_{T}\right) \subseteq \mathcal{E}_{1}$ implies that after some row operations, the matrix A has a zero row. By the construction of $\left.\widetilde{M}\right|_{T}$, the same row operations lead to the matrix B having a zero row, but this is a contradiction, since the map $\left.\widetilde{M}\right|_{T}$ is surjective.

Corollary 2.3. Let $T \subseteq|\mathcal{O}(d)|$ be a line spanned by the polynomials f_{1}, f_{2}. Assume that $d^{(k)} \leq r^{(k)}$. Let θ range over a monomial basis of $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(k-d)\right)$. The bundle $V_{k, T}$ has the generic splitting type if and only if $\left\langle f_{1} \theta, f_{2} \theta \mid \theta\right\rangle$ is a linearly independent set in $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(k)\right)$.

Corollary 2.4. Let $T \subseteq|\mathcal{O}(d)|$ be a line spanned by the polynomials f_{1}, f_{2}, and let $d^{(k)} \leq$ $r^{(k)}$. The bundle $V_{k, T}$ has not the generic type if and only if $\operatorname{deg}\left(\operatorname{gcd}\left(f_{1}, f_{2}\right)\right) \geq 2 d-k$. In particular, if $d^{(k)} \leq r^{(k)}$ but $k>2 d$ then the generic type never occurs.

Proof. By Corollary 2.3, the bundle $V_{k, t}$ has non-generic type if and only if there exist linearly independent $g_{1}, g_{2} \in H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(k-d)\right)$ such that $g_{1} f_{1}+g_{2} f_{2}=0$. Let $h:=\operatorname{gcd}\left(f_{1}, f_{2}\right)$ and $d^{\prime}:=\operatorname{deg} h$.

If $d^{\prime} \geq 2 d-k$ then $\operatorname{deg}\left(f_{i} / h\right) \leq k-d$ and we may take g_{1}, g_{2} to be multiples of f_{1} / h and f_{2} / h, respectively.

On the other hand, given such g_{1} and g_{2}, we have $f_{1} \mid g_{2} f_{2}$, which implies $f_{1} / h \mid g_{2}$, hence $d-d^{\prime} \leq k-d$.

Proposition 2.5. Let $k=d+1$. No types of V_{k} other than $(1, \ldots, 1,0, \ldots, 0)$ and $(2,1, \ldots, 1,0, \ldots, 0)$ occur.

Proof. Assume that the type of V_{k} at some line $\left(f_{1}, f_{2}\right)$ is other than the two above. Then the type has at least two more zero entries than the general type. By Proposition 2.2, we have $\operatorname{dim}\left\langle f_{1} \theta, f_{2} \theta \mid \theta\right\rangle \leq 2 d^{(k)}-2$, so we find $g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime} \in H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(1)\right)$ and two linearly independent equations

$$
\begin{aligned}
& g_{1} f_{1}+g_{2} f_{2}=0 \\
& g_{1}^{\prime} f_{1}+g_{2}^{\prime} f_{2}=0
\end{aligned}
$$

with both sets $\left(g_{1}, g_{2}\right),\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$ linearly independent. From the first equation it follows that $f_{1}=g_{2} h$ and $f_{2}=-g_{1} h$, for some common factor h. Applying this to the second equation, we find $g_{1}^{\prime} g_{2}=g_{2}^{\prime} g_{1}$, hence $g_{1}^{\prime}=\alpha g_{1}$ and $g_{2}^{\prime}=\alpha g_{2}$ for some scalar α, a contradiction.

Corollary 2.6. Let $k=d+1$, let $T \subset|\mathcal{O}(d)|$ be a line spanned by f_{1}, f_{2}. The type $(2,1, \ldots, 1,0, \ldots, 0)$ occurs if and only if $\operatorname{deg}\left(\operatorname{gcd}\left(f_{1}, f_{2}\right) \geq d-1\right.$.

3 The cohomology class of the set of jumping lines

Definition 3.1. Let $k \geq 1$ and $\left(b_{i}\right)$ be a splitting type for V_{k}. We define the set $Z_{\left(b_{i}\right)}$ of all points $t \in \mathbb{G r}(1,|\mathcal{O}(d)|)$ such that $V_{k, t}$ has splitting type $\left(b_{i}\right)$. For the set of points t where $V_{k, t}$ has generic splitting type, we also write $Z_{\text {gen }}$, and define the set of jumping lines $Z:=\mathbb{G r}(1,|\mathcal{O}(d)|) \backslash Z_{\text {gen }}$.

Now let $k=d+1$. By Corollary $2.6, Z$ is the subvariety given as the image of the finite, generically injective multiplication map

$$
\varphi: \mathbb{G r}(1,|\mathcal{O}(1)|) \times|\mathcal{O}(d-1)| \rightarrow \mathbb{G r}(1,|\mathcal{O}(d)|)
$$

sending the tuple $\left(\left(s g_{1}+t g_{2}\right)_{(s: t) \in \mathbb{P}^{1}}, h\right)$ to the line $\left(s h g_{1}+t h g_{2}\right)_{(s: t) \in \mathbb{P}^{1}}$.
To perform calculations in the Chow ring A of $\mathbb{G r}(1,|\mathcal{O}(d)|)$, we follow the conventions found in [EH16]. We assume $\operatorname{char}(k)=0$ for simplicity. Let $N:=\operatorname{dim} H^{0}(\mathcal{O}(d))=\binom{n+d}{n}$. For $N-2 \geq a \geq b$, we have the Schubert cycle

$$
\Sigma_{a, b}:=\left\{T \in \mathbb{G r}(1,|\mathcal{O}(d)|): T \cap H \neq \varnothing, T \subseteq H^{\prime}\right\}
$$

where $\left(H \subset H^{\prime}\right)$ is a general flag of linear subspaces of dimension $N-a-2$ resp. $N-b-1$ in the projective space $|\mathcal{O}(d)|$. The ring A is generated by the Schubert classes $\sigma_{a, b}$ of the cycles $\Sigma_{a, b}$. The class $\Sigma_{a, b}$ has codimension $a+b$, and we use the convention $\sigma_{a}:=\sigma_{a, 0}$.

Proof of Theorem 1.1. We have $\operatorname{dim} Z=n+1+\binom{d-1+n}{n}$ since Z is the image of the generically injective map φ.

Let $Q \subset|\mathcal{O}(d)|$ be the image of the multiplication map

$$
f:|\mathcal{O}(1)| \times|\mathcal{O}(d-1)| \rightarrow|\mathcal{O}(d)|
$$

The map f is birational on its image, since a general point of Q has the form $g h$ with h irreducible. The Chow group $A^{\operatorname{codim} Z}$ is generated by the classes $\sigma_{a^{\prime}, b^{\prime}}$ with $N-2 \geq a^{\prime} \geq b^{\prime} \geq\left\lfloor\frac{\operatorname{codim} Z}{2}\right\rfloor$ and $a^{\prime}+b^{\prime}=\operatorname{codim} Z$, while the complementary group $A^{\operatorname{dim} Z}$ is generated by the classes $\sigma_{\operatorname{dim} Z-b, b}$ with $b \in 0, \ldots,\left\lfloor\frac{\operatorname{dim} Z}{2}\right\rfloor$. Write

$$
[Z]=\sum_{a^{\prime}, b^{\prime}} \alpha_{a^{\prime}, b^{\prime}} \sigma_{a^{\prime}, b^{\prime}}
$$

We have $\sigma_{a^{\prime}, b^{\prime}} \sigma_{a, b}=1$ if $b^{\prime}-b=\left\lfloor\frac{\operatorname{codim} Z}{2}\right\rfloor$ and 0 else. Hence, multiplying the above equation with the complementary classes $\sigma_{a, b}$ and taking degrees gives

$$
\alpha_{a^{\prime}, b^{\prime}}=\operatorname{deg}\left([Z] \cdot \sigma_{a, b}\right)
$$

Using Giambelli's formula $\sigma_{a, b}=\sigma_{a} \sigma_{b}-\sigma_{a+1} \sigma_{b-1}$ [EH16, Prop. 4.16], we reduce to computing $\operatorname{deg}\left([Z] \cdot \sigma_{a} \sigma_{b}\right)$ for $0 \leq b \leq\left\lfloor\frac{\operatorname{dim} Z}{2}\right\rfloor$. By Kleiman transversality, we have

$$
\operatorname{deg}\left([Z] \cdot \sigma_{a} \sigma_{b}\right)=\left|\left\{T \in Z: T \cap H \neq \varnothing, T \cap H^{\prime} \neq \varnothing\right\}\right|
$$

where H and H^{\prime} are general linear subspaces of $|\mathcal{O}(d)|$ of dimension $N-a-2$ and $N-b-2$, respectively.

To a point $p=g_{p} h_{p} \in Q$ with $g_{p} \in|\mathcal{O}(1)|$ and $h_{p} \in|\mathcal{O}(d-1)|$, associate a closed reduced subscheme $\Lambda_{p} \subset Q$ containing p as follows. If h_{p} is irreducible, let Λ_{p} be the image of the linear embedding $|\mathcal{O}(1)| \times\left\{h_{p}\right\} \rightarrow|\mathcal{O}(d)|$ given by $g \mapsto g h_{p}$.
If h_{p} is reducible, define the subscheme Λ_{p} as the union $\bigcup_{h} \operatorname{im}(|\mathcal{O}(1)| \times\{h\} \rightarrow|\mathcal{O}(d)|)$, where h ranges over the (up to multiplication by units) finitely many divisors of p of degree $d-1$.

Note that for all points p, the spaces $\operatorname{im}(|\mathcal{O}(1)| \times\{h\} \rightarrow|\mathcal{O}(d)|)$ meet exactly at p.
By the definition of Z, all lines $T \in Z$ lie in Q. Furthermore, if T meets the point p, then $T \subseteq \Lambda_{p}$. For $H \subseteq|\mathcal{O}(d)|$ a linear subspace of dimension $N-a-2$, define $Q^{\prime}:=H \cap Q$. For general H, the subscheme Q^{\prime} is a smooth subvariety of dimension $b-n+1$ such that for a general point $p=g h$ of Q^{\prime} with $h \in|\mathcal{O}(d)|$, the polynomial h is irreducible.

Next, we consider the case $n=2$ or $\operatorname{dim} Z$ odd.
Claim 3.1.1. For genereal H, for each point $p \in Q^{\prime}$ we have $\Lambda_{p} \cap H=\{p\}$.

Proof. Let \mathcal{H} denote the Grassmannian $\operatorname{Gr}(\operatorname{dim} H+1, N)$. Define the closed subset $X \subseteq Q \times \mathcal{H}$ by

$$
X:=\left\{(p, H): \operatorname{dim}\left(H \cap \Lambda_{p}\right) \geq 1\right\}
$$

The fibers of the induced map $X \rightarrow \mathcal{H}$ have dimension at least one. Hence, to prove that the desired condition on H is an open condition, it suffices to prove $\operatorname{dim}(X) \leq \operatorname{dim}(\mathcal{H})$.

The fiber of the map $X \rightarrow Q$ over a point p consists of the union of finitely many closed subsets of the form $X_{p}^{\prime}=\left\{H \in \mathcal{H}: \operatorname{dim}\left(H \cap \Lambda_{p}^{\prime}\right) \geq 1\right\}$, where $\Lambda_{p}^{\prime} \simeq \mathbb{P}^{n} \subseteq|\mathcal{O}(d)|$ is one of the components of Λ_{p}. The space X_{p}^{\prime} is a Schubert cycle

$$
\Sigma_{\operatorname{dim} Q-b, \operatorname{dim} Q-b}=\left\{H \in \operatorname{Gr}(\operatorname{dim} H+1, N): \operatorname{dim}\left(H \cap H_{n+1}\right) \geq 2\right\}
$$

with H_{n+1} an $(n+1)$-dimensional subspace of $H^{0}(\mathcal{O}(d))$. The codimension of the cycle is $2(\operatorname{dim} Q-b)$, hence also $\operatorname{codim}\left(X_{p}\right)=2(\operatorname{dim} Q-b)$. Finally, we have $\operatorname{dim}(\mathcal{H})-\operatorname{dim}(X)=$ $\operatorname{codim}\left(X_{p}\right)-\operatorname{dim}(Q)=\operatorname{dim} Q-2 b$.

If $\operatorname{dim} Z$ is odd, then $\operatorname{dim} Q-2 b \geq \operatorname{dim} Q-\operatorname{dim} Z+1=3-n \geq 0$. If $n=2$, we instead estimate $\operatorname{dim} Q-2 b \geq \operatorname{dim} Q-\operatorname{dim} Z=2-n \geq 0$.

Next, let

$$
\Lambda:=\bigcup_{p \in Q^{\prime}} \Lambda_{p}=f\left(|\mathcal{O}(1)| \times \operatorname{pr}_{2} f^{-1}\left(Q^{\prime}\right)\right)
$$

and

$$
\Lambda^{\prime \prime}:=|\mathcal{O}(1)| \times \operatorname{pr}_{2} f^{-1}\left(Q^{\prime}\right)
$$

By the choice of H, the map $f^{-1}\left(Q^{\prime}\right) \rightarrow Q^{\prime}$ is birational and the map $f^{-1}\left(Q^{\prime}\right) \rightarrow$ $\operatorname{pr}_{2} f^{-1}\left(Q^{\prime}\right)$ is even bijective. It follows that $\Lambda^{\prime \prime}$ and hence Λ have dimension $b+1$.
The intersection of Λ with a general linear subspace H^{\prime} of dimension $N-b-2$ is a finite set of points. For each point $p \in Q^{\prime}$, the linear subspace H^{\prime} intersects each component Λ_{p}^{\prime} of Λ_{p} in at most one point. For each point $p^{\prime} \in H^{\prime} \cap \Lambda$ there exists a unique p such that $p^{\prime} \in \Lambda_{p}$.
The only line $T \in Z$ meeting both p and H^{\prime} is the one through p and p^{\prime}. If the intersection $H^{\prime} \cap \Lambda_{p}$ is empty, then there will be no line meeting p and H^{\prime}. Hence, $\operatorname{deg}\left([Z] \cdot \sigma_{a} \sigma_{b}\right)$ is the number of intersection points of Λ with a general H^{\prime}.
Finally, the pre-image $f^{-1}\left(Q^{\prime}\right)=f^{-1}(H)$ is smooth for a general H by Bertini's Theorem. If ζ is the class of a hyperplane section of $|\mathcal{O}(d)|$ we have $f^{*}(\zeta)=\alpha+\beta$, where α and β are classes of hyperplane sections of $|\mathcal{O}(1)|$ and $|\mathcal{O}(d)|$, respectively. Since pr_{2} and f have degree one, we compute

$$
\left[\Lambda^{\prime \prime}\right]=\left[\operatorname{pr}_{2}^{-1} \operatorname{pr}_{2} f^{-1}(H)\right]=\operatorname{pr}_{2}^{*} \operatorname{pr}_{2, *} f^{*}[H]=\binom{\operatorname{codim} H}{n} \beta^{\operatorname{codim} H-n}
$$

Hence, by the push-pull formula:
$\operatorname{deg}\left([\Lambda] \cdot H^{\prime}\right)=\operatorname{deg}\left(\left[\Lambda^{\prime \prime}\right] \cdot(\alpha+\beta)^{\operatorname{codim} H^{\prime}}\right)=\binom{\operatorname{codim} H}{n}\binom{\operatorname{codim} H^{\prime}}{n}=\binom{a+1}{n}\binom{b+1}{n}$.
We then use Giambelli's formula to obtain Equation (1.1).
In case $n=3$ and $\operatorname{dim} Z$ even, we show that for $b=\operatorname{dim} Z / 2$ we have $\operatorname{deg}\left([Z] \cdot \sigma_{b, b}\right)=0$. In this case, the hyperplanes H and H^{\prime} have the same dimension $N-b-2$.

For $p \in Q$, the set Λ_{p} is defined as before.
Claim 3.1.2. for general H of dimension $N-b-2$, we have $\operatorname{dim}\left(\Lambda_{p} \cap H\right)=1$.
Proof. Define as before the closed subset $X \subseteq Q \times \mathcal{H}$ by

$$
X:=\left\{(p, H): \operatorname{dim}\left(H \cap \Lambda_{p}\right) \geq 1\right\} .
$$

The generic fiber of the projection map $\varphi: X \rightarrow \mathcal{H}$ is one-dimensional, hence we have $\operatorname{dim} \varphi(X)=\operatorname{dim}(X)-1=\operatorname{dim} \mathcal{H}$. The last equation holds with $n=3$ and $2 b=\operatorname{dim} Z$. Hence for all $H \in \mathcal{H}$ we have $\operatorname{dim}\left(\Lambda_{p} \cap H\right) \geq 1$.
On the other hand, the equality $\operatorname{dim}\left(\Lambda_{p} \cap H\right)=1$ is attained by some, and hence by a general, H. Indeed, Define the closed subset $X \subseteq Q \times \mathcal{H}$ by

$$
X:=\left\{(p, H): \operatorname{dim}\left(H \cap \Lambda_{p}\right) \geq 1\right\} .
$$

By a similar argument as before, one needs to show that $\operatorname{dim}(\mathcal{H})-\operatorname{dim}(X)+1 \geq 0$. The fiber X_{p} is a Schubert cycle of codimension $3(\operatorname{dim} Q-b+1)$. Lastly, a computation shows $\operatorname{dim}(\mathcal{H})-\operatorname{dim}(\widetilde{X})+1=\operatorname{codim}\left(\widetilde{X}_{p}\right)-\operatorname{dim}(Q)+1=\frac{1}{2}(2 \operatorname{dim} Q+18-5 n) \geq 0$.

Now, define $\Lambda^{\prime \prime}$ as above. We have $\operatorname{dim} \Lambda^{\prime \prime}=\operatorname{dim}|\mathcal{O}(1)|+\operatorname{dim} \operatorname{pr}_{2} f^{-1}\left(Q^{\prime}\right)=b$. Since f is generically of degree one, we still have $\operatorname{dim} \Lambda^{\prime \prime}=\Lambda$, hence $\operatorname{dim} \Lambda+\operatorname{dim} H^{\prime}=N-2<$ $\operatorname{dim}|\mathcal{O}(d)|$. It follows that a generic H^{\prime} does not meet any of the lines $T \subset Z$, hence $\sigma_{b} \sigma_{b} \cdot[Z]=0$.

References

[ADPW91] Scott Axelrod, Steve Della Pietra, and Edward Witten. Geometric quantization of Chern-Simons gauge theory. J. Differential Geom., 33(3):787-902, 1991.
[EH16] David Eisenbud and Joe Harris. 3264 and all that-a second course in algebraic geometry. Cambridge University Press, Cambridge, 2016.
[Hit90] N. J. Hitchin. Flat connections and geometric quantization. Comm. Math. Phys., 131(2):347-380, 1990.
[Iye13] Jaya NN Iyer. Bundles of verlinde spaces and group actions. arXiv preprint arXiv:1309.7562, 2013.
[Sha76] Stephen S. Shatz. Degeneration and specialization in algebraic families of vector bundles. Bull. Amer. Math. Soc., 82(4):560-562, 1976.

