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Abstract

In this paper, we introduce a new interpolation scheme to approximate the den-
sity of states (DOS) for a class of rank-structured matrices with application to the
Tamm-Dancoff approximation (TDA) of the Bethe-Salpeter equation (BSE). The pre-
sented approach for approximating the DOS is based on two main techniques. First,
we propose an economical method for calculating the traces of parametric matrix resol-
vents at interpolation points by taking advantage of the block-diagonal plus low-rank
matrix structure described in [6, 3] for the BSE/TDA problem. Second, we show
that a regularized or smoothed DOS discretized on a fine grid of size N can be ac-
curately represented by a low rank quantized tensor train (QTT) tensor that can be
determined through a least squares fitting procedure. The latter provides good ap-
proximation properties for strictly oscillating DOS functions with multiple gaps, and
requires asymptotically much fewer (O(logN)) functional calls compared with the full
grid size N . This approach allows us to overcome the computational difficulties of the
traditional schemes by avoiding both the need of stochastic sampling and interpola-
tion by problem independent functions like polynomials etc. Numerical tests indicate
that the QTT approach yields accurate recovery of DOS associated with problems that
contain relatively large spectral gaps. The QTT tensor rank only weakly depends on
the size of a molecular system which paves the way for treating large-scale spectral
problems.

Key words: Bethe-Salpeter equation, density of states, absorption spectrum, tensor decom-
positions, model reduction, low-rank matrix, QTT tensor approximation.
AMS Subject Classification: 65F30, 65F50, 65N35, 65F10

1 Introduction

Numerical approximation of the density of states (DOS) or spectral density (see §2.2) of
large matrices is one of the challenging problems arising in the prediction of electronic,
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vibrational and thermal properties of molecules and crystals and many other applications.
This topic, first developed in condensed matter physics [14, 44, 41, 13, 43], has long since
attracted interest in the community of numerical linear algebra [42, 16, 40], see also a survey
on commonly used methodology for approximation of DOS for large matrices of general
structure [25]. Most traditional methods are based on a polynomial or fractional-polynomial
interpolation of the DOS regularized by Gaussians or Lorentzians, and computing traces
of certain matrix valued functions, say matrix resolvents or polynomials, defined at a large
set of interpolation points within the spectral interval of interest. Furthermore, the trace
calculations are typically accomplished with stochastic sampling over a large number of
random vectors [25].

Since the size of matrices resulting from real life applications is usually large (in quantum
mechanics it scales as a polynomial of the molecular size), and the DOS of these matrices
often exhibits very complicated shape, the above mentioned methods become prohibitively
expensive. Moreover, the algorithms based on polynomial interpolants have poor approx-
imating properties when the spectrum of a matrix exhibits gaps or highly oscillating non-
regular shapes, as is the case in electronic structure calculations. Furthermore, stochastic
sampling leads to poor Monte Carlo estimates with slow convergence rates and low accuracy.

In this paper we present a new method to efficiently and accurately approximate the
DOS for large rank-structured symmetric matrices. The approach amounts to estimating
the DOS by evaluating matrix functions of structured matrices, in particular traces of the
matrix resolvent. Our main contribution is to perform each function evaluation at low cost
and to reduce the total number of function evaluations in the case of fine representation grid.

We apply this approximation to the Bethe-Salpeter equation (BSE), which is a widely
used model for ab initio estimation of the absorption spectra for molecules or surfaces of solids
[35, 18, 39, 32, 27, 31]. In particular, we use the recently developed low-rank structured
representation of the BSE Hamiltonian, which was introduced and analyzed in [6]. An
efficient and structured eigenvalue solver for this block-diagonal plus low-rank representation
of the BSE Hamiltonian as well as to its symmetric positive definite surrogate obtained by
the Tamm-Dancoff approximation (TDA) is described in [3].

The approach we take here to approximate the DOS of the BSE Hamiltonian relies on
the Lorentzian blurring [17]. The most computationally expensive part of the calculation
is reduced to the evaluation of traces of shifted matrix inverses. Our method is based
on two main ingredients. First, we propose an economical method for calculating traces
of parametric matrix resolvents at interpolation points by taking advantage of the block-
diagonal plus low-rank BSE/TDA matrix structure described in [6, 3], which enables the
direct inversion of the shifted Hamiltonian within the same matrix structure. This allows us
to overcome the computational difficulties of the traditional schemes and avoid the need of
stochastic sampling. Second, we show that a regularized or smoothed DOS can be accurately
approximated by a low rank QTT tensor [23] that can be determined through a least squares
procedure. The accuracy of approximation and interpolation is controlled by ε-truncation
of the corresponding matrix/tensor ranks.

Our fast method for calculating traces of matrix resolvents for the family of rank-
structured matrices exhibits almost linear asymptotic complexity scaling with respect to
the matrix size. We introduce an explicit rank-structured representation of the matrix in-
verse which can be evaluated efficiently by using the Sherman-Morrison-Woodbury formula.
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Note that the diagonal plus low-rank approximation to the BSE Hamiltonian introduced in
[6] employs the low-rank approximation to the two-electron integrals tensor in the form of
a Cholesky factorization [21]. An efficient structured solver designed to calculate a number
of minimal eigenvalues of the block-diagonal plus low-rank representation of the BSE/TDA
matrices is described in [3].

Another novelty of this paper is the application of the QTT tensor approximation to
the DOS sampled on a fine grid, which results in a long vector. The QTT approximation
method was introduced and analyzed for function related vectors in [23]. It was proven
that for a length-N vector obtained from the discretization of a classical function (complex
exponentials, polynomials, Gaussians etc.), its QTT image constructed in the L-dimensional
tensor space with L = log2N exhibits an amazingly low separation rank rqtt. This rank
parameter rqtt appears to be independent of the size of the original vector. Thus the use
of QTT tensor compression reduces the number of representation parameters from N to
2r2qtt log2N , which allows asymptotically a much smaller number of functional calls, O(logN),
to reconstruct the DOS function in the QTT parametrization. This might be beneficial in
the limit of a large number of representation points N since each functional evaluation of
the DOS is highly expensive requiring computation of some matrix valued functions.

For example, for a vector of size N = 2L representing the exponential function, its
reshape (folding) into an L-dimensional tensor of size 2× · · · × 2︸ ︷︷ ︸L−fold with modes equal

to 2, yields a QTT tensor of rank rqtt = 1, which means the reduction of storage from
2L to 2 log2N = 2L. For a complex exponential vector there holds rqtt = 2, then storage
reduces from N to 8 log2N . Similar low rank QTT representations were proven for a wide
class of functions [24], including strongly oscillating functions of nontrivial shape, see for
example [19, 22] and the new results in §4.4 below. For a general class of functional vectors,
one computes an ε-rank QTT approximation which leads to a storage size with logarithmic
scaling in N .

Numerical tests for moderate size molecules confirm the closeness of DOS for the TDA
model to those computed on the exact BSE spectrum. We also justify that the simplified
block-diagonal plus low-rank approximation recovers well the main landscape and shape
details of the DOS curve on the whole energy interval and check the precision of the low-
rank QTT approximation to the length-N vector representing the DOS. We demonstrate
the almost linear complexity scaling of the trace calculation algorithm applied to TDA
matrices of different size. We then show by numerical tests that the low-rank QTT tensor
interpolation scheme requires only a small number of adaptively chosen samples in the N -
vector discretizing the DOS. For instance, a polynomial interpolant of degree p needs p+ 1
interpolation points (functional calls) for the representation of a function on a large N -
grid. However, in the case of highly oscillating DOS functions of interest one should impose
p = O(N). On the contrary, the QTT interpolant overO(logN) interpolation points provides
a rather accurate representation of the functional N -vector of the DOS.

We also discuss the opportunity to reduce the cost of multiple trace calculations for the
parametric matrix resolvent and, finally, describe modifications necessary to calculate the
optical absorption spectrum via a rank-structured BSE model.

The rest of the paper is structured as follows. In Section 2, we recall the main prerequi-
sites for the description of our method including the rank-structured approximation to the
BSE/TDA matrix, basic notions of the regularization of DOS by Lorentzians and a short
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summary on the existing methods for matrices of general structure. Section 3 discusses the
main techniques of the presented method and the corresponding analysis in Theorems 3.1
and 3.2. The numerical tests confirm the linear scaling of our algorithm in the size of the grid
on which the DOS is evaluated. Section 4 presents a summary of the QTT tensor approxi-
mation of function related vectors and the analysis of the QTT tensor ranks of the DOS, see
Theorem 4.1. In Section 4.3 the ACA based QTT interpolation is applied to the discretized
DOS, where the quality of the interpolation is illustrated numerically. The beneficial fea-
tures of the new computational schemes are verified by extensive numerical experiments on
the examples of various molecular systems. Section 5 outlines the extension of the approach
to the case of full BSE system. Conclusions summarize the main results and address the
application perspectives.

2 Main prerequisites and outline of initial applications

2.1 Rank-structured approximation to BSE matrix

In this paper we describe a method for efficient and accurate approximation of the DOS for
large rank-structured symmetric matrices. Our basic application is concerned with estimat-
ing the DOS and the absorption spectrum for the Bethe-Salpeter problem describing the
excitation energies of molecules.

The 2× 2-block matrix representation of the Bethe-Salpeter Hamiltonian (BSH) leads to
the following eigenvalue problem.

H

(
xk
yk

)
≡
(

A B
−B∗ −A∗

)(
xk
yk

)
= ωk

(
xk
yk

)
, (2.1)

where the matrix blocks of size n× n, with n = Nov = No(Nb −No), are defined by

A = ∆ε + V − Ŵ , B = V − W̃ , (2.2)

and eigenvalues ωk correspond to the excitation energies. Here ∆ε is a diagonal matrix and

V = [via,jb] a, b ∈ Iv := {No + 1, . . . , Nb}, i, j ∈ Io := {1, . . . , No},

is the rank-RB two-electron integrals (TEI) matrix projected onto the Hartree-Fock molec-
ular orbital basis, where Nb is the number of Gaussian type orbital (GTO) basis functions
and No denotes the number of occupied orbitals [6].

The method for solving the Bethe-Salpeter equation (BSE) using low-rank factorizations
of the generating matrices has been introduced in [6]. It is based on a tensor-structured
grid-based Hartree-Fock (HF) solver which provides not only the full set of eigenvalues and
HF orbitals, but also the two-electron integrals tensor in the form of a low-rank Cholesky
factorization, see [20] and references therein.

The matrix V inherits its low rank from the two-electron integrals tensor, and W̃ is also
proven to have a small ε-rank (see [6]). In particular, there holds

V ≈ LVL
T
V , LV ∈ Rn×RV , RV ≤ RB, (2.3)
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with the rank estimates RV = RV (ε) = O(Nb| log ε|), and rank(W̃ ) ≤ rank(V ).

In [3], it was shown that the matrix Ŵ , which does not exhibit an accurate low rank
representation, can be well approximated by a block diagonal matrix

Ŵ ≈ blockdiag[B̂,D],

where B̂ is a NW ×NW dense block with NW = O(nα), α < 1. The size of NW is nearly the
same as the rank parameter of LV . As a result, the TDA matrix A can be approximated by
a sum of a block-diagonal matrix and a low rank matrix shown in Figure 2.1, i.e.,

A ≈ Â = ∆ε +QQT − blockdiag[B̂,D] ≡ blockdiag[B0, D0] +QQT .
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Figure 2.1: Diagonal plus low-rank plus reduced-block structure of the matrix Â.

An efficient structured solver designed to calculate a number of minimal eigenvalues of
the block-diagonal plus low-rank representation of the BSE/TDA matrices is described in [3].
It is based on an efficient subspace iteration of the matrix inverse, which for rank-structured
matrix formats can be evaluated efficiently by using the Sherman-Morrison-Woodbury for-
mula, thus reducing the numerical expense of the direct diagonalization down to O(N2

b )
in the size of the atomic orbitals basis set, Nb. Furthermore, this solver also includes a
QTT-based compression scheme, where both eigenvectors and the rank-structured BSE ma-
trix blocks are represented by block-QTT tensors. The block-QTT representation of the
eigenvector is determined by an alternating least squares (ALS) iterative algorithm. The
overall asymptotic complexity for computing several smallest in modulo eigenvalues in the
BSE spectral problem by using the QTT approximation is estimated to be O(log(No)N

2
o ),

where No is the number of occupied orbitals.
Matrices in the form (2.1) are called J-symmetric or Hamiltonian, see [5] for implications

on the algebraic properties of the BSE matrix. In particular, solutions of equation (2.1)
come in pairs: excitation energies ωk with eigenvectors (xk,yk), and de-excitation energies
−ωk with eigenvectors (y∗k,x

∗
k).

The simplification in the BSH, H, defined by the n × n symmetric diagonal block A is
called the Tamm-Dancoff (TDA) approximation. In what follows, we are interested in the
TDA spectral problem,

Auk = λkuk, k = 1, . . . , n,

providing good approximations to ωk,xk.
In general, methods for solving partial eigenvalue problems for matrices with a special

structure as in the BSE setting are conceptually related to the approaches for Hamiltonian
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matrices [4, 7, 15, 9], particularly to those based on minimization principles [1, 2]. A struc-
tured Lanczos algorithm for estimation of the optical absorption spectrum was described in
[37]. Various structured eigensolvers tailored for electronic structure calculations are dis-
cussed in [33, 34, 10, 26, 25, 38].

2.2 Density of states for symmetric matrices

To fix the idea, we first consider the case of symmetric matrices. Following [25], we use the
simple definition of the DOS for symmetric matrices

φ(t) =
1

n

n∑
j=1

δ(t− λj), t, λj ∈ [0, a], (2.4)

where δ is the Dirac distribution and the λj’s are the eigenvalues of A = AT ordered as
λ1 ≤ λ2 ≤ · · · ≤ λn.

Several classes of blurring approximations to φ(t) are used in the literature. One can
replace each Dirac-δ by a Gaussian function with width η > 0, i.e.,

δ(t) gη(t) =
1√
2πη

exp

(
− t2

2η2

)
,

where the choice of the regularization parameter η depends on the particular problem setting.
As a result, (2.4) can be approximated by

φ(t) ≈ φη(t) :=
1

n

n∑
j=1

gη(t− λj), (2.5)

on the whole energy interval [0, a].
We may also replace each Dirac-δ by a Lorentzian, i.e.,

δ(t) Lη(t) :=
1

π

η

t2 + η2
=

1

π
Im

(
1

t− iη

)
, (2.6)

so that an approximate DOS can be written as

φ(t) ≈ φη(t) :=
1

n

n∑
j=1

Lη(t− λj). (2.7)

When η → 0+, both Gaussians and Lorentzians converge to the Dirac distribution, i.e.,

lim
η→0+

gη(t) = lim
η→0+

Lη(t) = δ(t).

However, they exhibit different features of the approximant for small η > 0. In the case of
Gaussians, one expects a sharp resolution of the spectral peaks, while the Lorentzian based
representation aims to resolve better the global landscape of φ(t).

Both functions φη(t) and Lη(t) are continuous, hence, they can be discretized by sampling
on a fine grid Ωh over [0, a]. In the following, we use the uniform cell-centered N -point grid
with the mesh size h = a/N .
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In what follows, we focus on the case of Lorentzian blurring, which will be motivated
later on, and apply it to the TDA approximation of the BSE problem (see §2.1 below). We
use the simplified block-diagonal plus low-rank approximation to the matrix A, see [6, 3],
which allows efficient explicit representation of the shifted inverse matrix.

The numerical illustrations in §2.2 represent the DOS for the H2O molecule and H2

chains broadened by Gaussians (2.5). The data corresponds to the reduced basis approach
via rank-structured approximation applied to the symmetric TDA model [6, 3] described by
the matrix block A of the full BSE system matrix.
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Figure 2.2: DOS for H2O, η = 0.5: exact BSE vs. TDA on the full spectrum (left), the absolute
error (right).

It was numerically demonstrated in [6] that the spectrum of the TDA model provides a
good approximation to the spectrum of the full BSE Hamiltonian. The difference between
the two is on the order of 10−2 for molecules of moderate size.

Figure 2.2, left, compares the DOS for the H2O molecule calculated via the eigenvalues
of the full BSE Hamiltonian and those of the TDA approximation, while on the right we
display the corresponding maximum error.

Figure 2.3, left, compares the same DOS calculations but zoomed on the first compact
energy interval [0, 40] eV. The red curve corresponds to the full BSE data, and the blue
one represents the TDA case. The figure on the right displays the corresponding maximum
error.

Figure 2.4, left, represents the DOS for H2O computed by using the exact TDA spectrum
(blue) and its approximation based on a simplified model obtained via low-rank approxima-
tion to A (red), while the right figure shows the relative error.

Figures 2.5 presents the DOS for H16 (left) and H32 (right) chains of Hydrogen atoms.
We observe the essential similarity in the shapes (only the amplitude is changing) which is
apparently a consequence of quasi-periodicity of the system.

The rank-structured approach to calculation of the molecular absorption spectrum in the
case of full BSE is sketched in §5. This topic will be addressed elsewhere.

2.3 General description of the existing computational schemes

One of the commonly used approaches to the numerical approximation of both functions
gη(t) and Lη(t) is based on the construction of certain polynomial or fractional polynomial
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Figure 2.3: DOS for H2O on the energy sub-interval [0, 40]: exact BSE vs. TDA (left), and the
error (right).
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Figure 2.4: DOS for H2O. Exact TDA vs. simplified TDA (left), zoom of the small spectral interval
(right).

interpolants whose evaluation at each sampling point tk requires the solution of a large linear
system with the BSE/TDA matrix, i.e., remains expensive.

In the case of Lorentzian broadening (2.7) the regularized DOS takes the form

φ(t) ≈ φη(t) :=
1

nπ

n∑
j=1

Im

(
1

(t− λj)− iη

)
=

1

nπ
Im Trace[(tI − A− iηI)−1]. (2.8)

To keep real-valued arithmetics, likewise, we can write the latter in the form

φη(t) :=
1

nπ

n∑
j=1

η

(t− λj)2 + η2
=

1

nπ
Trace[((tI − A)2 + η2I)−1]. (2.9)

In both cases the task of computing the approximate DOS φη(t) reduces to approximating
the trace of the matrix resolvent

(tI − A− iηI)−1 or ((tI − A)2 + η2I)−1.

Here, the price to pay for real-valued arithmetics is to address the more complicated low-rank
structure in (tI − A)2.
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Figure 2.5: DOS for H16 (left) and H32 (right) chains of Hydrogen atoms.

The traditional approach [25] to approximately computing the traces of the matrix-valued
analytic function f(A) reduces this task to the estimation of the mean of vTmf(A)vm over
a sequence of random vectors vm, m = 1, . . . ,mr, satisfying certain condition (see [25],
Theorem 3.1). That is, Trace[f(A)] is approximated by

Trace[f(A)] ≈ 1

mr

mr∑
m=1

vTmf(A)vm. (2.10)

The calculation of (2.10) for

f1(A) = (tI − A− iηI)−1 or f2(A) = ((tI − A)2 + η2I)−1 (2.11)

reduces to solving linear systems in the form of

(tI − iηI − A)x = vm for m = 1, . . . ,mr, (2.12)

or
(η2I + (tI − A)2)x = vm for m = 1, . . . ,mr. (2.13)

These linear systems need to be solved for many target points t = tk ∈ [a, b] in the course of
a chosen interpolation scheme.

In the case of rank-structured matrices A, the solution of equations (2.12) or (2.13) can
be implemented with a lower cost. However, even in this favorable situation one requires
a relatively large number mr of stochastic realizations to obtain satisfactory mean value
approximation. The convergence rate is expected to be on the order of O(1/

√
mr). On

the other hand, with the limited number of interpolation points, the polynomial type of
interpolation schemes applied to highly non-regular shapes as shown, say, in Figure 2.4
(left), can only provide limited resolution and is unlikely to reveal spectral gaps and many
local peaks of interest.
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3 Fast evaluation of DOS for rank-structured matrices

3.1 DOS by the trace of rank-structured matrix inverse

In what follows, we propose an approach that is based on evaluating the trace term in (2.8)
directly (without stochastic sampling). This approach relies on the following two techniques:

(A) using the low-rank BSE matrix structure as in [6], which allows for each fixed t ∈ [0, a]
the direct matrix inversion and computation of the respective traces,

(B) the low-rank QTT tensor interpolation of the function Lη(t) sampled on a fine uniform
grid {t1, . . . , tM} in the whole spectral interval [0, a] or on some subinterval of [0, a].

For the class of block-diagonal plus low-rank matrices arising in the reduced model ap-
proach for BSE problem [6, 3], we have (see §2.1 for more details)

A = E + PQT , with P,Q ∈ Rn×R, E = blockdiag{B0, D0}, (3.1)

where the rank parameter R is small compared to n, the full nB × nB matrix block B0 is of
size nB = O(nα), 0 < α < 1, and D0 is a diagonal matrix of size n− nB.

Notice that even in the case of structured matrices in (3.1) the traditional approach by
(2.10) leads to a sequence of linear systems (2.12) to be solved many times in the course of
stochastic sampling, for each of many interpolation points t ∈ [0, a].

In our approach, for the class of rank-structured matrices (3.1), we propose to avoid
stochastic sampling in (2.10) by introducing a direct scheme that allows us to evaluate the
trace of matrices f1(A) or f2(A) defined in (2.11), corresponding to the matrix resolvent in
(2.8) and (2.9), respectively, by one-step straightforward matrix calculation.

To that end, let us first construct the reduced-model approximation to the matrix inverse
A−1 for the matrix in (3.1), where the block-diagonal part E(t) = blockdiag{B(t), D(t)}
corresponds to the case of (2.8), i.e.,

B(t) = tIB − iηIB +B0, D(t) = tID − iηID +D0. (3.2)

Here B0 and D0 denote the corresponding matrix blocks in the representation of the diag-
onal block A in the initial BSE matrix, see (3.1), and IB, ID denote the identity matrices
corresponding to the respective index subsets. For the ease of exposition, we further assume
that the matrix size of the block B in (3.2) is bounded by nB = O(nα) with α ≤ 1/3. This
assumption on the block size ensures the linear complexity scaling of our algorithm in the
matrix size n.

In what follows, we use the notion 1m for a length-m vector of all ones, and � for the
Hadamard product of matrices.

The following result asserts that the cost of trace calculations is estimated to be O(nR).

Theorem 3.1 Let the matrix family A = A(t), t ∈ [0, a], be given by (3.1), with

E = E(t) = blockdiag{B(t), D(t)},
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where B(t), D(t) are defined in (3.2). Then the trace of the matrix inverse A(t)−1 can be
calculated explicitly by

trace[A(t)−1] = trace[B(t)−1] + trace[D(t)−1]− 1Tn (U(t)� V (t))1R,

where U(t) = E(t)−1PK(t)−1 ∈ Rn×R, V (t) = E(t)−1Q ∈ Rn×R, and

K(t) = IR +QTE(t)−1(t)P

is a small R × R matrix. For fixed t ∈ [0, a], assume that nB = O(nα) with α ≤ 1/3, then
the numerical cost is estimated by O(nR2).

Proof. The analysis relies on the particular structure of the matrix blocks. Indeed, we use
the direct trace representation for both rank-R and block-diagonal matrices. Our argument
is based on the observation that the trace of a rank-R matrix U(t)V (t)T , where U(t), V (t) ∈
Rn×R, U(t) = [u1, . . . ,uR], V (t) = [v1, . . . ,vR], uk,vk ∈ Rn, can be calculated in terms of
skeleton vectors by

trace[U(t)V (t)T ] =
R∑
k=1

〈uk,vk〉 = 1Tn (U(t)� V (t))1R,

at the expense O(Rn). For fixed t, define the rank-R matrices by

U(t) = E(t)−1PK(t)−1, V (t) = E(t)−1Q,

then the Sherman-Morrison scheme leads to the representation, see [3],

A(t)−1 = blockdiag{B(t)−1, D(t)−1} − E(t)−1PK(t)−1QTE(t)−1,

where the last term simplifies to

E(t)−1PK(t)−1QTE(t)−1 = U(t)V (t)T .

Now we apply the above formula for the trace of a rank-R matrix to obtain the desired
representation.

The complexity estimate follows taking into account the bound on the size of matrix
block B. Indeed, forming U(t) involves solving the linear system P1(t) = U(t)K(t), for U(t),
where P1(t) is the pre-computed E(t)−1P , which can be computed by assumptions at the
cost O(nR). Here P1(t) would be re-used to compute K(t) itself, and thus stored. The
cost for solving this system of equations is 2/3R3 (LU factorization of K(t)), plus 2nR2 for
backward/forward solves. This completes the proof.

The above representation has to be applied many times for calculating the trace of
E(tm)−1PK(tm)−1QTE(tm)−1 at each fixed interpolating point tm, m = 1, . . . ,M .

Here, we notice that the price to pay for the real arithmetics in equation (2.13) is that we
compute with squared matrices which, however, do not increase the asymptotic complexity
since there is no increase of the rank in the rank-structured representation of the system
matrix, see the following Theorem 3.2. In our applications we do not expect a loss of
numerical stability of the algorithm since the condition numbers of E(t) are moderate. In
what follows we denote by [U, V ] the concatenation of two matrices of compatible size.
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Theorem 3.2 Given matrix S = (tI−A)2 +η2I, where A is defined by (3.1), then the trace
of the real-valued matrix resolvent S−1(t) can be calculated explicitly by

trace[S−1] = trace[E−10 ]− 1Tn (U � V )12R, (3.3)

with U = E−10 PK−1 ∈ Rn×2R, and V = E−10 Q ∈ Rn×2R, where the real-valued block-diagonal
matrix E0 is given by

E0(t) = η2I + t2I − 2tE + E2 = (η2 + t2)I + blockdiag[B2 − 2tB,D2 − 2tD],

and the rank-2R matrices P ,Q are represented via concatenation

P = [−2tQ+ EQ+QE +Q(QTQ), Q] ∈ Rn×2R, Q = [Q,EQ] ∈ Rn×2R,

such that the small core matrix K(t) ∈ R2R×2R takes the form K(t) = IR +Q
T
E−10 (t)P .

Assume that nB = O(nα) with α ≤ 1/3, then the numerical cost is estimated by O(nR2)
up to a low order term.

Proof. Indeed, given the block-diagonal plus low-rank matrix A in the form (3.1), we obtain

S = (tI − A)2 + η2I = E0 + P Q
T
,

where the block-diagonal matrix E0 and the rank-2R matrix P Q
T

are defined as above.
Applying the Sherman-Morrison scheme as above to the block-diagonal plus rank-2R matrix
structure in S, the representation result follows. Now we take into account that

trace[E−10 ] = trace[(B2 − 2tB)−1] + trace[(D2 − 2tD)−1],

then the restriction on the size of the block B proves the complexity bound similar to the
argument in the proof of the previous theorem.

Based on Theorems 3.1 and 3.2, the calculations in item (A) can be implemented ef-
ficiently in both complex and real arithmetics. The following numerics demonstrates the
efficiency of the DOS calculation for the rank-structured TDA matrix implemented in real
arithmetics as described by (3.3) in Theorem 3.2.

Molecule H2O NH3 H2O2 N2H4 C2H5OH C2H5 NO2 C3H7 NO2

n = Nov 180 215 531 657 1430 3000 4488
Rank R 36 30 68 54 74 129 147

Total time T (s) 6.7 7.7 33 47 219 1084 2223
Scaled time T/R2 (s) 0.005 0.008 0.007 0.017 0.041 0.065 0.103

Table 3.1: Scaled times for the Algorithm in Theorem 3.2.

Figures 3.1 and 3.2 demonstrate that using only the structure-based trace representation
(3.3) in Theorem 3.2, we obtain the approximation which resolves perfectly the DOS function
(for the examples of H2O and Ethanol molecules). The exact DOS is shown by the blue line,

12
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Figure 3.1: Left: DOS for H2O vs. its recovering by using the trace of matrix resolvents; Right:
zoom on the small energy interval.
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Figure 3.2: Left: DOS for Ethanol molecule vs. its recovering by using the trace of matrix
resolvents; Right: zoom on the small energy interval.

while the results of structure-based DOS calculation is indicated by the red line (we use the
acronym “SMW” for the Sherman-Morrison-Woodbury scheme).

Figure 3.3 shows the rescaled CPU time, i.e. T/R2, where T denotes the total CPU
time for computing the DOS by the algorithm implied by Theorem 3.2. This demonstrates
almost linear complexity scaling of the algorithm in n, O(R2n). We applied the algorithm
to molecules of different system size n (i.e. the size of TDA matrix) varying from n = 180
till n = 4488 (see Table 3.1 for more details). In all cases the N -point representation grid
with fixed N = 214 was used.

We conclude that the algorithm based on representation (3.3) demonstrates the perfect
resolution of the DOS function at linear complexity in the system size which allows to treat
large molecules.

The approach in item (B) requires fast trace calculations for many different values of
parameter tm ∈ τ = {t1, . . . , tM} ⊂ [0, a] in the matrix resolvent. Finer resolution of
the spectrum for large molecular systems leads to a considerable increase of the number of
samples M that is practically equal to the grid size, M = N . Hence, the total cost O(MnR2)
may become prohibitively expensive since the trace computation for each fixed value of tm
still requires complicated matrix operations (see Theorems 3.1 and 3.2).

13



500 1000 1500 2000 2500 3000 3500 4000

matrix size

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

re
s
c
a
le

d
 t
im

e
 T

/R
2

Figure 3.3: Algorithm in Theorem 3.2: the rescaled CPU time T/R2 versus n.

3.2 Calculating multiple traces of A−1 with lower cost

In this section, we describe a further enhancement scheme for fast multiple calculation of
traces on the large set of interpolation points. We outline how it is possible to reduce the
complexity of these calculations (reduced model) by using a certain smoothness in t in the
parametric matrix resolvent by introducing the low rank approximation of the large n2×M
matrix

E(t) = [E(t1)
−1, . . . , E(tM)−1] and K(t) = [K(t1)

−1, . . . , K(tM)−1] ∈ RR2×M

obtained by concatenation of vectorized matrices E(tm)−1 and K(tm)−1, m = 1, . . . ,M ,
respectively. The idea is that

E(t)−1 = blockdiag[P (t)−1, D(t)−1]

defines an analytic matrix family on the spectral interval t ∈ [0, a], and so is the family of
core matrices {K−1(t)}. This favorable property allows the model reduction via low rank
approximation of the matrix families E(t) and K(t), t ∈ τ . Suppose that the representations

K(t)−1 =

RK∑
k=1

ck(t)Kk

and

E(t)−1 = blockdiag[P (t)−1, D(t)−1] =

RE∑
m=1

pm(t)Em

are precomputed (this is an additional low-rank approximation procedure which separates
the parameter t), where Em = blockdiag[Pm, Dm] ∈ Rn×n and Kk ∈ RR×R do not depend on
t, and Em inherits the block-diagonal structure that E(t)−1 obeys.

We take into account that Q does not depend on t, and plug the above decompositions
in the main trace-term to obtain

Trace[E−1QK−1QTE−1] = Trace

[
RE∑
m=1

pm(t)EmQ (

RK∑
k=1

ck(t)Kk)Q

RE∑
m′=1

pm′(t)Em′

]
.

14



Now it follows that

Trace[E−1QK−1QTE−1] =

RE∑
m=1

pm(t)

RK∑
k=1

ck(t)

RE∑
m′=1

pm′(t)Trace[EmQKkQEm′ ],

where Kk ∈ RR×R is a small matrix, Q ∈ Rn×R, Em = blockdiag[Pm, Dm] with diagonal Dm

and the full nP × nP matrix Pm, such that nP = O(nα).
With these prerequisites, we pre-compute a set of ”time-independent” traces

Tmkm′ = Trace[EmQKkQEm′ ], m,m′ = 1, . . . , RE, k = 1, . . . , RK , (3.4)

and store the R2
ERK numbers Tmkm′ to obtain the cheap representation of the trace in terms

of only a scalar sum,

Trace[E−1QK−1QTE−1](t) =

RE∑
m=1

RK∑
k=1

RE∑
m′=1

pm(t)ck(t)pm′(t)Tmkm′ .

The cost of precomputing each trace-value Tmkm′ is estimated by O(n3αR2) as proven by
Theorem 3.1, while the number of coefficients to be stored is about O(R2

ERK) and it is
expected to be small or moderate. With these data at hand, the evaluation of the required
trace for the particular tν ∈ τ takes O(R2

ERK) scalar operations independently on n.
Notice that the computations in (3.4) are intrinsically parallel, which can be exploited

on modern computing hardware using multi-threading or distributed computing.

4 QTT approximation of DOS

In what follows, we discuss the QTT approximation of the DOS. We also describe a ten-
sor based heuristic QTT approximation of the DOS by using only an incomplete set of
sampling points, i.e., QTT representation by adaptive cross approximation (ACA) [30, 36].
Furthermore, we derive the upper bound on the QTT ranks of the DOS by the Gaussians
broadening.

4.1 Quantized-TT approximation of function related vectors

In the case of large vector size N , the number of representation parameters for the corre-
sponding high-order QTT tensor can be reduced to the logarithmic scaling O(logN), which
allows the QTT tensor interpolation of the target N -vector by using only O(logN) � N
entries, which are chosen adaptively by the heuristic ACA algorithm [30, 36]. The accuracy
of this kind of “approximate interpolation” is controlled by the ε-truncation of the QTT rank
parameters. In the present paper, we apply this approximation technique to long N -vectors
representing the DOS sampled over the fine representation grid Ωh.

The QTT-type approximation of an N -vector with N = qd
′
, d′ ∈ N, q = 2, 3, ..., is

defined as the tensor decomposition (approximation) in the TT or canonical format applied
to a tensor obtained by the folding (reshaping) of the initial vector to a d′-dimensional
q × · · · × q data array. The latter is thought of as an element of the multi-dimensional
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quantized tensor space Qq,d′ =
⊗d′

j=1 Kq, K ∈ {R,C}, and d′ is the auxiliary dimension
(virtual, in contrary to the real space dimension d) parameter that measures the depth of
the quantization transform. A vector x = [xi]i∈I ∈ RN , is reshaped to its multi-dimensional
quantized image in Qq,d′ by q-adic folding,

Fq,d′ : x→ X = [x(j)] ∈ Qq,d′ , j = {j1, . . . , jd′},

with jν ∈ {1, . . . , q} for ν = 1, . . . , d′. Here, for fixed i, we have x(j) := xi, and jν = jν(i)
is defined via q-coding, jν − 1 = C−1+ν , such that the coefficients C−1+ν are found from the
q-adic representation of i− 1 (binary coding for q = 2),

i− 1 = C0 + C1q
1 + · · ·+ Cd′−1q

d′−1 ≡
d′∑
ν=1

(jν − 1)qν−1.

Assuming that for the rank-r TT approximation of the quantized image X there holds
rk ≤ r, k = 1, . . . , d′, the complexity of this representation for the tensor X reduces to the
logarithmic scale

qr2 logqN � N.

The computational gain of the QTT approximation is justified by the perfect rank decom-
position proven in [23] for a wide class of function-related tensors obtained by sampling
the corresponding functions over a uniform or properly refined grid. This class of functions
includes complex exponentials, trigonometric functions, polynomials and Chebyshev poly-
nomials, as well as wavelet basis functions. We refer to [11, 29, 19, 24] for further results on
QTT approximation of functional vectors and various applications.

In estimating the numerical complexity we use the average QTT rank further denoted
by rqtt calculated as follows,

rqtt =

√√√√ 1

d− 1

d−1∑
k=1

r2k, (4.1)

where the QTT ranks rk are the TT ranks of the quantized image X of a vector.
As an example we present the basic results on the rank-1 (resp. rank-2) QTT represen-

tation (with q = 2) of the exponential (resp. trigonometric) vectors [23]. For given N = 2d
′
,

and z ∈ C, the exponential N -vector, z := {zn = zn−1}Nn=1, can be reshaped by the dyadic
folding to the rank-1, 2⊗d

′
-tensor,

F2,d′ : z 7→ Z = ⊗d′p=1[1 z
2p−1

]T ∈ Q2,d′ . (4.2)

The number of representation parameters specifying the QTT image is reduced dramatically
from N to 2 log2N .

The trigonometric N -vector, t = =m(z) := {tn = sin(ω(n − 1))}Nn=1, ω ∈ R, can be
reshaped by the successive dyadic folding

F2,d′ : t 7→ T ∈ Q2,d′ ,

to the 2⊗d
′
-tensor T, which has both the canonical and the QTT-rank equal to 2, in the

complex and real arithmetics, respectively.
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The explicit rank-2 QTT-representation of the single sin-vector in {0, 1}⊗d′ (see [12, 29])
with kp = 2p−1ip, ip ∈ {0, 1}, reads

t 7→ T = =m(Z) = [sin ωk1 cos ωk1]⊗d
′−1
p=2

[
cos ωkp − sin ωkp
sin ωkp cos ωkp

]
⊗
[

cos ωkd′
sin ωkd′

]
.

The number of representation parameters is 8(d′ − 1). A more detailed discussion of the
QTT approximation for function related vectors can be found in [23, 24].

In cases when the exact low-rank QTT representation is not known, an ε-approximation
in the QTT format can be computed by using the standard TT multi-linear approximation
tools [28]. As a first illustration, we consider the QTT approximation of the DOS for
the 1D finite difference Laplacian operator in [0, π] with Dirichlet boundary conditions,
A = −tridiag{1,−2, 1} ∈ Rn×n, discretized on the uniform grid of size h = π/(n + 1) with
n = 2047. The corresponding eigenvalues are given by

λk = 4 sin2(
πk

2n
), k = 1, . . . , n.

Figure 4.1 represents the Lorentzian-DOS and the corresponding approximation error for its
QTT ε-interpolant with rqtt = 5, computed on the representation grid of size N = 214.
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Figure 4.1: DOS for Laplacian (left), and its QTT approximation with rqtt = 5 (right).

In this paper we apply the QTT approximation method to the DOS regularized by
Gaussians or Lorentzians and sampled on a fine representation grid of size N = 2d

′
. The

QTT approximant can be viewed as the rank structured ε-interpolant to the highly non-
regular function φη regularizing the exact DOS. In this case the application of traditional
polynomial or trigonometric type interpolation is inefficient.

The QTT approach provides a good approximation to φη on the whole spectral interval
and requires only a moderate number of representation parameters r2qtt logN � N , where
the average QTT rank rqtt, see (4.1) is a small rank parameter adaptively depending on the
truncation error ε > 0.
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4.2 QTT approximation to DOS via Lorentzians: proof of concept

In this section we demonstrate the efficiency of the QTT approximation applied to the DOS
via both Gaussian and Lorentzian blurring. We verify by various numerical experiments
that the low-rank QTT approximant resolves perfectly the exact DOS.

200 400 600 800 1000

eV

0

1

2

3

4

5

6

DOS via Gaussians

exact DoS TDA

QTT approx.

5 10 15 20 25 30

eV

-0.5

0

0.5

1

1.5

2
DOS via Gaussians

exact DoS TDA

QTT approx.

Figure 4.2: DOS (in eV) for the H2O molecule via Gaussians (left), and zoom on the left most
part of the spectrum. Here rQTT = 9.4, η = 0.4

In the following numerical examples, we use a sampling vector defined on a grid of size
N ≈ 214. We set the QTT truncation error to εQTT = 0.04, if not explicitly indicated.
For ease of interpretation, we set the pre-factor in (2.4) to 1. It is worth noting that the
QTT-approximation scheme is applied to the full TDA spectrum. Our results demonstrate
that it renders good resolution in the whole range of energies (in eV) including large ”zero
gaps”.

Figure 4.2, left, represents the TDA DOS (blue line) for H2O computed by Gaussian blur-
ring with the parameter η = 0.4, and the corresponding rank-9.4 QTT tensor approximation
(red line) to the discretized function φη(t). For this example, the number of eigenvalues is
given by n = NBSE/2 = 180. Figure 4.2, right, provides a zoom of the corresponding DOS
and its QTT approximant within the small energy interval [0, 40]eV.

Figure 4.3 demonstrates the resolution of the QTT approximation to the DOS via the
Lorentzian blurring indicating similar QTT-ranks as in the case of the Gaussians regulariza-
tion.

Figure 4.4 (Lorentzian blurring) represents similar data, but for the large Glycine amino
acid with n = NTDA = 3000. It is worth noting that the average QTT rank of φη(t) sampled
on N = 214 grid points is about rQTT = 16, (εQTT = 0.04) though the number of eigenvalues
n in this case is about 20 times larger than for the water molecule. This means that for a
fixed η, the QTT-rank remains rather modest relative to the molecular size. This observation
confirms Theorem 4.1 in Section 4.4.

A comparison of Figures 4.2 and 4.3 indicates that the Lorentzian based DOS blurring is
slightly smoother than Gaussian blurring. The moderate size of the QTT ranks in Figures
4.3 and 4.4 clearly shows the potentials of the QTT ε-interpolation for modeling the DOS
of large lattice type clusters.

We observe several gaps in the spectral densities, see Figure 4.2, 4.3 and 4.4 indicating
that polynomial, rational or trigonometric interpolation can be applied only to some energy

18



200 400 600 800 1000

eV

0

1

2

3

4

5

DOS via Lorentzians

exact DoS TDA

QTT approx.

5 10 15 20 25 30

eV

0

0.5

1

1.5

2
DOS via Lorentzians

exact DoS TDA

QTT approx.

Figure 4.3: DOS for H2O molecule via Lorentzians (blue) and its QTT approximation (red) (left).
Zoom on the left most part of the spectrum (right). ε=0.04, rQTT = 10.5.
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Figure 4.4: DOS for Glycine amino acid via Lorentzians (blue) and its QTT approximation (red),
left; (left). Right: zoom of the first part of the spectrum. ε=0.04, rQTT = 16.

sub-intervals, but not in the whole interval [a, b]. Remarkably, the QTT approximant resolves
well the DOS function in the whole energy interval including nearly zero values within the
spectral gaps (hardly possible for polynomial/rational based interpolation).

4.3 Numerics for the QTT interpolation to the DOS function

In the previous section we demonstrated that the QTT tensor approximation provides good
resolution for the DOS function calculated for a number of molecules. In what follows,
we describe a tensor based heuristic QTT approximation of the DOS by using only an
incomplete set of sampling points, i.e., QTT representation by adaptive cross approximation
(ACA) [30, 36]. This allows us to recover the spectral density in controllable accuracy
with M interpolation points, where M asymptotically scales logarithmically in the grid size
N . This heuristic approach can be viewed as a kind of “adaptive QTT ε-interpolation”.
In particular, we show by numerical experiments that the low-rank QTT adaptive cross
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interpolation provides a good resolution of the target DOS with the number of functional
calls that asymptotically scales logarithmically, O(logN), in the size N of the representation
grid.

In the case of large N , the QTT interpolant can be computed by the ACA tensor ap-
proximation procedure (see [30, 36] for the detailed description) that, in general, does not
require the full set of functional values over the N -grid. In the case of large N this beneficial
feature allows to compute the QTT approximation by requiring less than N computationally
expensive functional evaluations of φη(t).

The QTT interpolation via ACA tensor approximation serves to recover the representa-
tion parameters of the QTT tensor approximant and normally requires about

M = Csr
2
qtt log2N (4.3)

samples of the target N -vector1 with a small pre-factor Cs, usually satisfying Cs ≤ 10, that
is independent of the fine interpolation grid size N = 2d

′
, see, for example, [22]. This cost

estimate seems promising in the perspective of extended or lattice type molecular systems,
requiring large spectral intervals and, as a result, a large interpolation grid of size N . Here
the QTT rank parameter rqtt naturally depends on the required truncation threshold ε > 0,
characterizing the L2-error between the exact DOS and its QTT interpolant. The QTT
tensor interpolation reduces the number of functional calls, i.e., M < N , if the QTT rank
parameters (or threshold ε > 0) are chosen to satisfy the condition

M = Csr
2
qtt log2N ≤ N.

The expression on the left-hand side provides a rather accurate estimate on the number of
functional evaluations.

To complete this discussion, we present numerical tests for the low-rank QTT tensor
interpolation applied to the long vector discretizing the Lorentzian-DOS on a fine represen-
tation grid of size N = 2d

′
.

Figure 4.5 represents the results of the QTT interpolating approximation to the
discretized DOS function (H2O molecule). We use the QTT cross approximation
algorithm based on [23, 30, 36, 29] and implemented in the MATLAB TT-toolbox
(https://github.com/oseledets/TT-Toolbox). Here we set ε = 0.08, η = 0.1 and N = 214,
providing rQTT = 9.8. The top two figures display the results on the whole spectral interval,
while the bottom figures show the zoom of the same data in the small spectral interval
[0, 55]eV.

Figure 4.6 illustrates the logarithmic increase in the number of samples required for the
QTT interpolation of the DOS (for the H2O molecule) represented on the grid of size N = 2d

′
,

where d′ = 11, 12, . . . , 16, provided that the rank truncation threshold is chosen by ε = 0.05
and the regularization parameter is η = 0.2. In this example, the effective pre-factor in
(4.3) is estimated by Cs ≤ 10. This pre-factor characterizes the average number of samples
required for the recovery of each of the r2qtt logN representation parameters involved in the
QTT tensor ansatz.

We observe that the QTT tensor interpolant recovers the exact DOS with a high precision.
The logarithmic asymptotic complexity scaling O(logN) (i.e. the number of functional calls

1In our application, this is the DOS functional N -vector corresponding to representations via matrix
resolvents in (2.8) or (2.9).
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Figure 4.5: QTT ACA interpolation of the DOS for H2O (top) and zoom in to a small spectral
interval (bottom).

required for the QTT tensor interpolation) vs. the grid size N can be observed in Figure 4.6
(blue line).

4.4 Upper bounds on the QTT ranks of DOS

In this section we analyze the upper bounds on the QTT ranks of the discretized DOS
obtained by Gaussian broadening. Our numerical tests indicate that Lorentzian blurring
leads to a similar QTT rank compared with Gaussians blurring when both are applied to
the same grid and the same truncation threshold ε > 0 is used in the QTT approximation.
We consider the more general case of a symmetric interval, i.e. t, λj ∈ [−a, a].

Assume that the function φη(t) = 1
n

n∑
j=1

gη(t − λj), t ∈ [−a, a], in equation (2.5) is

discretized by sampling over the uniform N -grid Ωh with N = 2d, where the generating

Gaussian is given by gη(t) = 1√
2πη

exp
(
− t2

2η2

)
. Denote the corresponding N -vector by g =

gη, and the resulting discretized density vector by

φη(t) 7→ p = pη =
1

n

n∑
j=1

gη,j ∈ RN ,

where the shifted Gaussian is assigned by the vector gη(t− λj) 7→ gj = gη,j.

21



1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

7
x 10

4

Figure 4.6: DOS for H2O via Lorentzians: the number of functional calls for QTT cross approxi-
mation (blue) vs. the full grid size N .

Without loss of generality, we suppose that all eigenvalues are situated within the set of
grid points, i.e. λj ∈ Ωh. Otherwise, we can slightly relax their positions provided that the
mesh size h is small enough. This is not a severe restriction for the QTT approximation of
functional vectors since storage and complexity requests depend only logarithmically on N .

Theorem 4.1 Assume that the effective support of the shifted Gaussians gη(t − λj), j =
1, . . . , n, is included in the computational interval [−a, a]. Then the QTT ε-rank of the
vector pη is bounded by

rankQTT (pη) ≤ Ca log3/2(| log ε|),

where the constant C = O(| log η|) > 0 depends only logarithmically on the regularization
parameter η.

Proof. The main argument of the proof is similar to that in [19, 11]: the sum of discretized
Gaussians, each represented in Fourier basis, can be expanded with merely the same number
of Fourier harmonics (uniform basis) as each individual Gaussian.

Now we estimate the number of essential Fourier coefficients of the Gaussian vectors gη,j
with a fixed exponent parameter η,

m0 = O(a| log η| log3/2(| log ε|)),

taking into account their exponential decay. Here ε > 0 denotes the rank truncation thresh-
old. Notice that m0 depends logarithmically on η. Since each Fourier harmonic has exact
rank-2 QTT representation (see Section 4.1), we arrive at the claimed bound.

Notice that the Fourier transform of the Lorentzian in (2.6) is given by

e−|k|η,

thus a similar QTT rank bound can be derived for the case of Lorentzian blurred DOS.
Table 4.1 shows that the average QTT tensor rank remains almost independent of the

molecular size, which confirms Theorem 4.1. The weak dependence of the rank parameter
on the molecular geometry can be observed.
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5 Towards calculation of the BSE absorption spectrum

In this section we describe the generalization of our approach to the case of the full BSE
system. Within the BSE framework, the optical absorption spectrum of a molecule is defined
by

ε(ω) ≡ dHr δ(ωI2n −H)dl =
2n∑
j=1

(dHr (zr)j)((zl)
H
j dl)

(zl)Hj (zr)j
δ(ω − λj), (5.1)

where

dr =

[
d

−d

]
and dl =

[
d

d

]
are the right and left optical transition vectors, respectively, and d is a vector reshaped from
a transition matrix T of dimension No × (Nb − No). The (i, a)th element of T is given by
〈ψi|~x|ψa〉, where ~x is a position operator in the direction of x and ψi and ψa are a pair of
occupied and unoccupied molecular orbitals [8].

Similar to the DOS, the function ε(ω) is a sum of Dirac-δ peaks centered at eigenvalues
of the BSH. However, the height of each peak, which is often referred to as the oscillator
strength, is determined by the projection of the corresponding left and right eigenvectors of
H onto the optical transition vectors dl and dr.

A smooth approximation of (5.1) can be obtained by replacing the Dirac-δ function with
either a Gaussian or a Lorentzian with an appropriate broadening width. If we choose to
smooth by a Lorentzian, we then need to compute

ε(ω) ≈ 1

π
Im

[
dHr (ωI2n −H − iηI2n)−1 dl

]
, (5.2)

where η is related to the width of broadening.
For a fixed frequency ω, (5.2) can be evaluated by solving a linear system of the form

(ωI2n −H − iηI2n)x = dl.

The block sparse and low-rank structure of H can be used to reduce the cost for solving such
a linear system.

The detailed numerical analysis of this scheme for the BSE system will be a topic of a
forthcoming paper.

6 Conclusions

The new approach to approximating the DOS of the TDA of a BSE Hamiltonian is based
on two main techniques. First, we take advantage of the low rank structure of the TDA and

Molecule H2O NH3 H2O2 N2H4 C2H5OH C2H5 NO2 C3H7 NO2

n = Nov 180 215 531 657 1430 3000 4488
QTT ranks 11 11 12 11 15 16 13

Table 4.1: QTT ranks of Lorentzians-DOS for some molecules; ε = 0.04, η = 0.4, N = 16384.

23



evaluate the trace of the resolvent directly instead of using stochastic sampling techniques.
The presented economical algorithm provides an efficient way to calculate the DOS regular-
ized by Lorentzians. The cost of the computation scales linearly with respect to the matrix
size. Second, a QTT based tensor interpolation scheme is used to approximate the DOS
discretized on large representation grids. This approximation scheme allows us to estimate
the DOS with M function evaluations, where M scales logarithmically with respect to the
grid size on which the DOS is evaluated. The approach can be applied to a wide class of
rank-structured symmetric spectral problems.

In Theorems 3.1 and 3.2, we prove linear scaling of the structured trace calculation
algorithm in the matrix size. This result is confirmed by numerical experiments performed
to compute the DOS of BSH associated with some molecular systems as shown in Figure
3.3.

We justify the low rank QTT approximation of the DOS in the case of Gaussian reg-
ularization, see Theorem 4.1. The efficiency of low-rank QTT approximation to DOS is
illustrated numerically on the example of discrete Laplacian as well as for the BSE spectral
problem for several moderate size molecules. Numerical tests demonstrate the logarithmic
complexity of the QTT cross approximation scheme in the grid size, applied to the discretized
DOS as depicted in Figure 4.6.

It is worth noting that our approach serves to recover DOS on the whole spectral interval
which is demonstrated in a number of numerical tests. However, the algorithms are applicable
to any fixed subinterval of interest in the whole spectrum, which will correspondingly reduce
the QTT tensor ranks and the overall computational time.

The presented methods introduce a new efficient tool for numerical approximation to
the DOS for large matrices arising in various applications in condensed matter physics,
computational quantum chemistry as well as in large-scale problems of numerical linear
algebra.
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January 2015.

[25] L. Lin, Y. Saad, and C. Yang. Approximating spectral densities of large matrices. SIAM Review,
58(1):34–5, 2016.

[26] E. Napoli, E. Polizzi, and Y. Y. Saad. Efficient estimation of eigenvalue counts in an interval. Numer.
Lin. Algebra Appl., 23(4):674 – 692, 2016.

[27] G. Onida, L. Reining, and A. Rubio. Electronic excitations: density-functional versus many-body
Green’s-function approaches. Rev. of Modern Physics, 74, 2002.

25



[28] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comp., 33(5):2295–2317, 2011.

[29] I. V. Oseledets. Constructive representation of functions in low-rank tensor formats. Constr. Appr.,
37(1):1–18, 2013.

[30] I. V. Oseledets and E. E. Tyrtyshnikov. TT-cross approximation for multidimensional arrays. Linear
Algebra Appl., 432(1):70–88, 2010.

[31] E. Rebolini, J. Toulouse, and A. Savin. Electronic excitation energies of molecular systems from the
Bethe-Salpeter equation: Example of H2 molecule. In: Concepts and Methods in Modern Theoretical
Chemistry (S. Ghosh and P. Chattaraj eds), vol 1: Electronic Structure and Reactivity, page 367, 2013.

[32] L. Reining, V. Olevano, A. Rubio, and G. Onida. Excitonic effects in solids described by time-dependent
density functional theory. Phys. Rev. Lett., 88:066404, 2002.

[33] D. Rocca, R. Gebauer, Y. Saad, and S. Baroni. Turbo charging time-dependent density-functional
theory with Lanczos chains. J. Chem. Phys., 128:154104, 2008.

[34] D. Rocca, D. Lu, and G. Galli. Ab Initio calculations of optical absorption spectra: Solution of the
Bethe-Salpeter euqation within density matrix perturbation theory. J. Chem. Phys., 133:164109 1–10,
2010.

[35] E. E. Salpeter and H. A. Bethe. A relativistic equation for bound-state problems. Phys. Review,
82(2):309–310, 1951.

[36] D. Savostyanov and I. V. Oseledets. Fast adaptive interpolation of multi-dimensional arrays in tensor
train format. Multidimensional (nD) Systems, 7th International Workshop, pages 1–8, 2011.

[37] M. Shao, F. da Jornada, L. Lin, C. Yang, J. Deslippe, and S. Louie. A structure preserving Lanczos
algorithm for computing the optical absorption spectrum. SIAM J. Matr. Anal., accepted for publication,
2017.

[38] M. Shao, F. H. da Jornada, C. Yang, J. Deslippe, and S. Louie. Structure preserving parallel algorithms
for solving the Bethe-Salpeter eigenvalue problem. Linear Algebra and its Applications, 488:148–167,
2016.

[39] R. E. Stratmann, G. E. Scuseria, and M. J. Frisch. An efficient implementation of time-dependent
density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys.,
109:8218, 1998.

[40] L. N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and
Operators. Princeton University Press, Princeton and Oxford, 2005.

[41] I. Turek. A maximum-entropy approach to the density of states within the recursion method. J. Phys.
C, 21:3251–3260, 1988.

[42] J. L. M. Van Dorsselaer and M. E. Hoschstenbach. Computing probabilistic bounds for extreme eigen-
values of symmetric matrices with the Lanczos method. SIAM J. Matrix Anal. Appl., 22:837–852,
2000.

[43] L.-W. Wang. Calculating the density of states and optical-absorption spectra of large quantum systems
by the plane-wave moments method. Phys. Rev. B, 49:10154–10158, 1994.

[44] J. C. Wheeler and C. Blumstein. Modified moments for harmonic solids. Phys. Rev. B, 6:4380–4382,
1972.

26


