
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Numerical Tensor Techniques for

Multidimensional Convolution Products

by

Wolfgang Hackbusch

Preprint no.: 4 2018

Numerical Tensor Techniques for Multidimensional Convolution

Products

Wolfgang Hackbusch
Max-Planck-Institut Mathematik in den Naturwissenschaften

Inselstr. 22, D-04103 Leipzig

Abstract

In order to treat high-dimensional problems, one has to find data-sparse representations. Starting
with a six-dimensional problem, we first introduce the low-rank approximation of matrices. One purpose
is the reduction of memory requirements, another advantage is that now vector operations instead of
matrix operations can be applied. In the considered problem the vectors correspond to grid functions
defined on a three-dimensional grid. This leads to the next separation: these grid functions are tensors
in Rn ⊗ Rn ⊗ Rn and can be represented by the hierarchical tensor format. Typical operations as the
Hadamard product and the convolution are now reduced to operations between Rn vectors.

Standard algorithms for operations with vectors from Rn are of orderO(n) or larger. The tensorisation
method is a representation method introducing additional data-sparsity. In many cases the data size can
be reduced from O(n) to O(logn). Even more important, operations as the convolution can be performed
with a cost corresponding to these data sizes.

AMS Subject Classifications: 15A69, 15A99, 44A35, 65F99, 65T99
Key words: tensorisation, convolution, tensor representation, hierarchical representation

1 Introduction

In this paper we recapitulate the numerical techniques which are needed to handle high-dimensional prob-
lems. As discussion starter we use an example from quantum chemistry. The following function h is to be
determined:

h(x, z) =

∫
R3

f(x, x− y) g(y, z) dy (x, z ∈ R3) (1.1)

(for instance, f and g describe the pair amplitude and the pair interaction; cf. Flad–Flad-Harutyunyan [5]).
A discretisation by a uniform grid {ih = (i1h, i2h, i3h,) : 0 ≤ i1, i2, i3 ≤ n− 1} (h: grid size) in a cube leads
to the discrete problem

hik = h3
∑

j
fi,i−jgj,k (i = (i1, i2, i3), k = (k1, k2, k3), 0 ≤ iν , kν ≤ n− 1). (1.2)

Equation (1.2) describes an unusual matrix multiplication of convolution type:

H = F ? G (H = (hik), F = (fi,j), G = (gj,k)). (1.3)

The size of the matrices (number of entries) is n6. Taking n of the size 210 ≈ 103 to 220 ≈ 106, it becomes
obvious that naive methods cannot be used to perform the multiplication (1.3).

In §2 we shall consider the matrices in (1.3) as tensors of the space1 RN ⊗ RN with

N = n3. (1.4)

Then problem (1.3) reduces to operations of vectors in RN .

1Throughout the paper, R may be replaced by C.

1

In a second step (§3), RN is regarded as the tensor space Rn⊗Rn⊗Rn. For such tensors we describe an
efficient representation and show how operations are performed. In our example, we need two operations in
Rn:

– the Hadamard product v � w defined by the componentwise product (v � w)i = viwi, and

– the convolution v ? w defined by (v ? w)i =
∑
` vi−`w`.

The convolution v ? w is a discretisation of the convolution of functions,
∫
R v(x − y)w(y) dy, provided

that vi (wi) are the nodal values of v (w) in an equidistant grid. For instance, the convolution in Rn can be
performed by the fast Fourier transform (FFT) requiring O(n log n) operations. However, as explained in
§4, we can perform the convolution (as well as the Hadamard product) much faster using the tensorisation
technique. Here Rn for n = 2L is replaced by the isomorphic tensor space ⊗LR2. In many cases, grid functions
in Rn — in particular those from quantum chemistry — can be approximated by a tensor representation
using only O(log∗ n) data.2 Then the exact convolution of v?w requires not more than O(log∗ n) operations.

The convolution algorithm mentioned above is also interesting outside of quantum chemistry applications.
Often, the functions v and w in

∫
R v(x − y)w(y) dy are represented by finite elements using locally refined

grids or even hp techniques to reduce the number of degrees of freedom. If FFT is used for the convolution,
one must transfer the finite-element functions to a uniform grid corresponding to the minimal grid size
and thus one is destroying the advantages of the nonuniform finite-element approach.3 The tensorisation
technique is able to represent the data at least as efficient as in the finite-element case. Then the operation
cost is determined by the data sizes of the representations. Moreover, it yields the optimal representation of
the result v ? w.

2 Low-Rank Techniques for Matrices

2.1 Low-Rank Representation

In quantum chemistry it is more usual to write the integral (1.1) as

h(x, z) =

∫
R3

f̃(x, y) g(y, z) dy (x, z ∈ R3) (2.1)

by introducing f̃(x, y) := f(x, x − y) (cf. [5, (1.4)]). Then the discrete analogue is the standard matrix
product F̃G instead of (1.3). However, this notation is less appropriate since the properties of the function
f and of the matrix F are swept under the carpet.

R
NxN

R
N

R
N

Figure 2.1: Tensor space
RN ⊗ RN ∼= RN×N and its
factors RN ,RN

The function f has a (representation) rank r if f(x, y) =
∑r
ν=1 aν(x)bν(y),

where {aν} and {bν} are linearly independent univariate functions. The latter
identity is also written in tensor form as

f =

r∑
ν=1

aν ⊗ bν .

For instance the function f(x, y) = ϕ(x)/ ‖y − y0‖ (y0 position of a nucleus)
has rank r = 1. However, the function f̃(x, y) := ϕ(x)/ ‖y0 + x− y‖ involved
in (2.1) has infinite rank.

If the matrix F ∈ RN×N has the rank r, it allows a representation F =∑r
ν=1 aνb

T
ν (aν , bν ∈ RN). Again we write

F =

r∑
ν=1

aν ⊗ bν . (2.2)

2log∗(n) denotes some (not specified) power of log(n).
3Appropriate algorithms are described in [7], [8].

2

The splitting of the tensor space RN ⊗ RN ∼= RN×N (∼= denotes isomorphy) into the two factors RN is
depicted in Figure 2.1. In general, the tensor product v = v(1)⊗v(2)⊗ . . .⊗v(d) with v(j) ∈ Rnj is a quantity
indexed by d-tuples i = (i1, . . . , id) with the values

v[i] = v(1)[i1] · v(2)[i2] · . . . · v(d)[id] (1 ≤ ij ≤ nj). (2.3)

Here and in the sequel, we use bold-face letters for tensors and tensor spaces, while vectors, matrices, and
vector spaces are denoted by standard letters.

If r is much smaller than N, (2.2) describes the low-rank representation of F. Note that the right-hand
side of (2.2) requires only 2rN � N2 data.

v(1)⊗ v(2)⊗ . . .⊗ v(d) is called an elementary tensor. In general, v(j) may be elements of arbitrary vector
spaces Vj . The (algebraic) tensor space V = V1 ⊗ V2 ⊗ . . . ⊗ Vd =

⊗d
j=1 Vj is defined as the span of all

elementary tensors (cf. [10, §3.2]).

Remark 2.1 As a consequence, linear maps on V are uniquely defined by their values of elementary tensors.
The same holds for bilinear maps on Cartesian products V ×W of two tensor spaces.

2.2 SVD Truncation

Even if F has maximal rank N , it might be well approximated by a low-rank matrix Fε with rank rε. For
the precise analysis, we need the singular-value decomposition (SVD) of F which is

F =
∑r

ν=1
σν aν ⊗ bν , {aν}, {bν} orthonormal systems,

with the singular values σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The traditional formulation is F = UΣV T, where the
columns of U and V are defined by aν and bν , respectively, and Σ is the diagonal matrix containing the
singular values.

If σrε ≤ ε for some rε < r, the truncated matrix Fε :=
∑rε
ν=1 σν aν ⊗ bν has rank rε and satisfies the

spectral norm estimate ‖F − Fε‖2 ≤ ε.
Now we assume

F =

r∑
ν=1

aν ⊗ bν , G =

s∑
µ=1

cµ ⊗ dµ

for the matrices in (1.3). We denote the entries of the vectors aν , bν , . . . by aν [i], bν [i], . . . , where i abbreviates
the triple (i1, i2, i3) . Since Fi,j =

∑r
ν=1 aν [i]bν [j] etc., the operation described in (1.2) becomes

hik = h3
r∑

ν=1

s∑
µ=1

∑
j

aν [i] bν [i− j] cµ[j] dµ[k].

∑
j bν [i − j] cµ[j] is the component of the convolution bν ? cµ at index i. Set qνµ := bν ? cµ. Then the

expression
∑

j aν [i] bν [i− j] cµ[j] is the i-component of the Hadamard product aν � qνµ. Together, we obtain
the representation of the matrix H in (1.3) by

H =

s∑
µ=1

(
h3

r∑
ν=1

[aν � (bν ? cµ)]

)
⊗ dµ. (2.4)

Hence the following has to be calculated:

(a) determine the vectors qνµ := bν ? cµ ∈ RN ,
(b) calculate the Hadamard products aν � qνµ ∈ RN ,
(c) determine the sum eµ := h3

∑r
ν=1 aν � qνµ.

Then H =
∑s
µ=1 eµ ⊗ dµ is the representation of the resulting matrix. This shows that H is again a

low-rank matrix if G is so. Nevertheless, one may apply a singular-value decomposition and truncate H to
a lower rank.

3

Since N = n3 holds with a large value of n, even the simple Hadamard product in Step (b) is too costly
when using the standard vector format. Instead we shall exploit the tensor structure of RN .

For later use we return to the representation (2.2). Let

U := span{aν : 1 ≤ ν ≤ r}, V := span{bν : 1 ≤ ν ≤ r}.

Then the tensor (matrix) F satisfies

F ∈ U ⊗ V with dim(U) = dim(V) = r. (2.5)

Comparing (2.5) with F ∈ RN ⊗RN , we see that the full space RN of dimension N is replaced by subspaces
of dimension r � N.

3 The Hierarchical Tensor Format

3.1 Separation and Bilinear Operations

Here we make use of the Cartesian product structure of the grid {(i1h, i2h, i3h) : 0 ≤ i1, i2, i3 ≤ n − 1}.
The tensor product of three vectors a, b, c ∈ Rn is defined in (2.3). These tensors span the tensor space
Rn ⊗ Rn ⊗ Rn which is isomorphic to RN (both spaces have dimension N = n3).

The analogue of the decomposition (2.2) would be the representation of v ∈ V := Rn ⊗ Rn ⊗ Rn by

v =

r∑
ν=1

aν ⊗ bν ⊗ cν . (3.1)

R
N

R
n

R
n

R
n

R
n2

Figure 3.1: De-
composition of
Rn ⊗ Rn ⊗ Rn

The smallest possible value of r is called the rank of the tensor v. The fact that in general
the determination of this rank is NP hard (cf. H̊astad [12]) already shows that the case of
tensors of order ≥ 3 is much more involved. In particular, there is no direct analogue of
the singular-value decomposition. This leads to difficulties when one wants to truncate a
tensor to lower order (cf. Espig–Hackbusch [4]).

The Hadamard product (componentwise product) � is a bilinear operation V×V→ V.
Another bilinear map is the matrix-vector multiplication. For a unified approach let �
be the symbol of a general bilinear operation between two tensor spaces. An efficient

computation of such a tensor operation � : X×Y → Z (with X =
⊗d

j=1
Xj , etc.) can be

based on the following property (3.2), provided this property holds. Let x =
⊗d

j=1
x(j) and y =

⊗d

j=1
y(j)

be elementary tensors4 with x(j) ∈ Xj , y
(j) ∈ Yj . Then d⊗

j=1

x(j)

�
 d⊗
j=1

y(j)

 =

d⊗
j=1

(
x(j) �j y

(j)
)

(3.2)

reduces the operation � to simpler bilinear operations �j : Xj × Yj → Zj on the individual vector spaces.

In the case of the Hadamard product, � = � is the componentwise product of tensors, while �j = � is
the componentwise product of vectors. In fact, the property

(a⊗ b⊗ c)� (a′ ⊗ b′ ⊗ c′) = (a� a′)⊗ (b� b′)⊗ (c� c′) (3.3)

follows since {(a⊗ b⊗ c)� (a′ ⊗ b′ ⊗ c′)} [i] = (a⊗ b⊗ c) [i] · (a′ ⊗ b′ ⊗ c′) [i] = a[i1]b[i2]c[i3]a′[i1]b′[i2]c′[i3]
and {(a� a′)⊗ (b� b′)⊗ (c� c′)} [i] = (a� a′) [i1] (b� b′) [i2] (c� c′) [i3] = a[i1]a′[i1]b[i2]b′[i2]c[i3]c′[i3] co-
incide. Note that on the left-hand side of (3.3) � acts on V ×V, whereas on the right-hand side � acts on
Rn × Rn.

4According to Remark 2.1 it is sufficient to investigate the mapping for elementary tensors.

4

Another example is the canonical scalar product of a (pre-)Hilbert tensor space X satisfying〈
d⊗
j=1

x(j),

d⊗
j=1

y(j)

〉
=

d∏
j=1

〈
x(j), y(j)

〉
. (3.4)

This corresponds to (3.2) with Y = X and Z = R (the field R is considered as a tensor space of order d = 0).

The notation (x ? y) [i] =
∑

j x[i − j] y[j] of the multivariate convolution involving multiindices i ∈ Nd0
shows that also � = ? satisfies (3.2). For d = 3 we have

(aν ⊗ bν ⊗ cν) ? (a′ν ⊗ b′ν ⊗ c′ν) = (aν ? a
′
ν)⊗ (bν ? b

′
ν)⊗ (cν ? c

′
ν) . (3.5)

Hence, the Hadamard and convolution operations can be reduced to operations acting on vectors in
Rn. If v and w are given in the form (3.1), all pairs of elementary terms can be treated by (3.3) or (3.5),
respectively.

3.2 Introduction of the Hierarchical Format

In the following we use the hierarchical format, which has the additional advantage that a SVD truncation
can be performed (cf. [10, §11]). For that purpose we need tensors of order 2 (matrix case) and rewrite

Rn ⊗ Rn ⊗ Rn as (Rn ⊗ Rn) ⊗ Rn ∼= Rn2 ⊗ Rn. In a second step we split Rn2

into Rn ⊗ Rn. This leads to
the binary tree shown in Figure 3.1.

In the first step we regard the components v[i] = v[i1, i2, i3] of v ∈ RN as entries V [(i1, i2), i3] of the

matrix V ∈ Rn2×n ∼= Rn2 ⊗ Rn. As in §2 we may write V as
∑s
ν=1 v

(12)
ν ⊗ v(3)ν (cf. (2.2)) with v

(12)
ν ∈ Rn2

and v
(3)
ν ∈ Rn. In the second step we regard v

(12)
ν as n× n matrices or equivalently as tensors of Rn ⊗Rn of

the form
∑r
ν=1 v

(1)
ν ⊗ v(2)ν .

R
N

R
n

R
n

R
n

R
n2

R
n

R
n

R
n

R
n2

R
N

R
NxN

Figure 3.2: Decomposition
of RN×N

Combining the structures of Figures 2.1 and 3.1 yields the splitting depicted
in Figure 3.2. At the top of the tree we see the matrix space RN×N ∼= RN ⊗RN
with the sons RN on both sides. RN ∼= Rn2 ⊗ Rn is split into Rn2

and Rn.
Finally, Rn2 ∼= Rn ⊗ Rn is split in two factors Rn.

Following the construction (2.5), we associate each vertex of the tree with
a subspace. The leaves of the tree correspond to Rn. Therefore there are six
subspaces U1, . . . , U6 ⊂ Rn. U12 and U45 are subspaces of Rn ⊗ Rn ∼= Rn2

,
while U123 and U456 are subspaces of Rn ⊗ Rn ⊗ Rn ∼= RN . Also the root
RN×N has a subspace U1−6. The hierarchical structure is given by

Uα ⊂ Uα1
⊗Uα2

(α1, α2 sons of α), (3.6)

U1 U2

U3

U4 U5

U6U12

U123

U45

U456

U1−6

Figure 3.3: Corresponding
subspaces

where α belongs to the index set {12, 123, 45, 456, 1-6}, i.e., U12 ⊂ U1 ⊗ U2,
U123 ⊂ U12 ⊗ U3, . . . , U1-6 ⊂ U123 ⊗ U456 (cf. Figure 3.3). The condition
(2.5) becomes

F ∈ U1-6 (1-6 is the index of the root). (3.7)

The subspaces are (in principle) described by a basis (or at least a generating
system). The bases of U1, . . . , U6 corresponding to the leaves must be given
explicitly. For the other indices we avoid an explicit description since the basis
vectors of Rn2

, RN = Rn3

, etc. are too large. Instead we make use of (3.6).
Let α be an index of an inner vertex of the tree (no leaf) and α1, α2 its sons.

Let {b(α1)
i : 1 ≤ i ≤ rα1} and {b(α2)

j : 1 ≤ j ≤ rα2
} be the bases of Uα1

and Uα2
. Then {b(α1)

i ⊗ b
(α2)
j :

1 ≤ i ≤ rα1 , 1 ≤ j ≤ rα2} is a basis of Uα1 ⊗Uα2 . A basis vector b
(α)
` ∈ Uα ⊂ Uα1 ⊗Uα2 must have a

representation

b
(α)
` =

∑
i,j

c
(α,`)
ij b

(α1)
i ⊗ b

(α2)
j (3.8)

5

with coefficients c
(α,`)
ij forming an rα1

×rα2
matrix

C(α,`) = (c
(α,`)
ij). (3.9)

It is sufficient to store C(α,`) instead of b
(α)
` . Note that the necessary memory is independent of the vector

size n.

If (3.7) holds, the subspace U1-6 can be reduced to the one-dimensional space Uroot = span{F}. Let

b
(root)
1 be the only basis vector. Then only one additional factor c

(root)
1 is needed to characterise

F = c
(root)
1 b

(root)
1 . (3.10)

Remark 3.1 (a) In the given example, we have to store the bases of U1, . . . , U6 with the memory size∑6
j=1 njrj . The matrices C(α,`) require the memory size r12r1r2+r45r4r5+r123r12r3+r456r45r6+1 ·r123r456.

c
(root)
1 is only one real number. If nj≤n and rj≤r, the required memory size is bounded by 6nr+4r3+r2+1.

(b) In the general case of tensors of order d (instead of 6 as above), the bound is dnr + (d− 1) r3 + 1.

Below we shall demonstrate that we can perform the required operations although we only have an
indirect access to the bases.

3.3 Matricisation

The above construction gives rise to two questions: Do subspaces with the properties (3.6), (3.7) exist and
what are their dimensions

rα = dim(Uα)

in the best case? The answer is given by the matricisation which maps a tensor isomorphically into a matrix.
We explain this isomorphism for the example α = 45. The tensor F ∈

⊗6
j=1 Rn has six indices (we write

F [i1, . . . , i6] instead of F [i1, i2, i3, j1, j2, j3] = F [i, j]). The matrix M (45) is of the size Rn2×n4

and has the
entries

M (45)[(i4, i5) , (i1, i2, i3, i6)] := F [i1, i2, i3, i4, i5, i6].

The subspace
U45 := range(M (45)) with r45 = dim(U45) = rank(M (45))

is the smallest subspace satisfying (3.6), (3.7). For a more general description of the minimal subspaces see
[10, §6]

For v ∈
⊗d

j=1 Rnj let ∅ 6= α $ {1, . . . , d} be a subset with the complement αc := {1, . . . , d}\α. In

general, the minimal subspace Umin
α (v) := range(M (α)) involves the matricisation M (α) = M (α)(v) which

is defined by M (α)[(ij)j∈α, (ij)j∈αc] = v[i1, . . . , id]. Note that the index sets need not be ordered, since we
only use properties of M (α) which do not depend on the ordering. The (matrix) rank of M (α) is called the
α-rank of v (cf. Hitchcock [13]):

rankα(v) := rank(M (α)(v)).

3.4 Hadamard Product and General Bilinear Operations

In the following, the Hadamard product � can be replaced by a general bilinear operation � (cf. (3.2)).

In (2.4) we need the Hadamard product v �w of two tensors in
⊗3

j=1 Rn. We assume that both v and
w are represented in the hierarchical format corresponding to the tree depicted in Figure 3.1. v uses the

bases {b(j)i : 1 ≤ i ≤ rj}, 1 ≤ j ≤ 3, at the leaves and the coefficients c
(α,`)
ij , c

(root)
1 , whereas w is represented

by {b′(j)i }, c
′(α,`)
ij , c

′(root)
1 . Also the ranks rα and r′α may be different.

We start at the leaves and determine the Hadamard product of the basis vectors explicitly:

b
′′(j)
(i,i′) := b

(j)
i � b

′(j)
i′ (1 ≤ j ≤ 3, 1 ≤ i ≤ rj , 1 ≤ i′ ≤ r′j).

6

By induction we assume that the products b
′′(α1)
(i,i′) and b

′′(α2)
(j,j′) are (directly or indirectly) determined. Then

(3.8) and (3.3) prove that

b
′′(α)
(`,m) := b

(α)
` � b′(α)m =

∑
i,j

c
(α,`)
ij b

(α1)
i ⊗ b

(α2)
j

�
∑
i′,j′

c
′(α,m)
i′j′ b

′(α1)
i′ ⊗ b

′(α2)
j′

 (3.11)

=
∑
i,j

∑
i′,j′

c
(α,`)
ij c

′(α,m)
i′j′

(
b
(α1)
i � b

′(α1)
i′

)
⊗
(
b
(α2)
j � b

′(α2)
j′

)
=
∑
(i,i′)

∑
(j,j′)

c
(α,`)
ij c

′(α,m)
i′j′ b

′′(α1)
(i,i′) ⊗ b

′′(α2)
(j,j′) .

The result x := v � w is represented by the generating system {b′′(j)(i,i′)}, 1 ≤ j ≤ 3, at the leaves. Here

the pairs (i, i′) are the indices; thus the index set has the size r′′j := rjr
′
j . The equation (3.8) for the

new vector contains the coefficients c
′′(α,(`,m))
(i,i′),(j,j′) := c

(α,`)
ij c

′(α,m)
i′j′ . The coefficient c

′′(root)
1 is c

(root)
1 c

′(root)
1 , since

v �w =
(
c
(root)
1 b

(root)
1

)
�
(
c
′(root)
1 b

′(root)
1

)
= c

(root)
1 c

′(root)
1 b

(root)
1 � b

′(root)
1 = c

(root)
1 c

′(root)
1 b

′′(root)
(1,1) .

We call {b′′(α)(i,i′)} a generating system (or frame) since these vectors are not necessarily linearly independ-

ent. If not, the system {b′′(α)(i,i′)} is larger than necessary and we can shorten the system. Even if {b′′(α)(i,i′)}
forms a basis, the question remains whether we can truncate the basis within a given tolerance. This will be
the subject of §3.6.

Remark 3.2 The computation of all b
′′(j)
(i,i′) requires 3nrjr

′
j multiplications. If all coefficients c

′′(α,(`,m))
(i,i′),(j,j′) are

computed explicitly, we need rαr
′
αrα1

r′α1
rα2

r′α2
multiplications. The resulting cost is the product of the data

sizes of v and w.

In §4 the ranks r′α, r
′
α1
, r′α2

will be equal to 2.

3.5 Scalar Product, Orthonormalisation, Transformations

As mentioned above, the linear independence of the new frame {b′′(α)(i,i′)} has to be checked. This can be done

by the QR algorithm, provided we are able to determine scalar products
〈
b
′′(j)
(i,i′),b

′′(j)
(m,m′)

〉
of the vectors

determined in (3.11). We simplify the notation (index i instead of (`,m)) and consider the bases {b(α)
i } at

the vertex α and their connection by (3.8). We proceed from the leaves to the root as in §3.4.

At the leaves the bases are explicitly given so that the scalar products

σ
(α)
ij :=

〈
b
(α)
i ,b

(α)
j

〉
(3.12)

can be determined as usual. As soon as σ
(α1)
ij and σ

(α2)
ij are known for the sons of α, σ

(α)
`m can be determined

by

σ
(α)
`m =

〈
b
(α)
` ,b(α)

m

〉
=

〈∑
i,j

c
(α,`)
ij b

(α1)
i ⊗ b

(α2)
j ,

∑
i′,j′

c
(α,m)
i′j′ b

(α1)
i′ ⊗ b

(α2)
j′

〉
(3.13)

=
∑
i,j

∑
i′,j′

c
(α,`)
ij c

(α,m)
i′j′

〈
b
(α1)
i ,b

(α1)
i′

〉〈
b
(α2)
j ,b

(α2)
j′

〉
=
∑
i,j

∑
i′,j′

c
(α,`)
ij c

(α,m)
i′j′ σ

(α1)
ii′ σ

(α2)
jj′ ,

since the Euclidean scalar product satisfies the rule 〈v ⊗ w, x⊗ y〉 = 〈v, x〉 〈w, y〉 . The induction (3.13)
terminates at the vertex α, where the scalar products (3.12) are desired.

Of particular interest are orthonormal bases: σ
(α)
ij = δij . Using (3.8), we obtain the following result.

Remark 3.3 Let α be a non-leaf vertex. The basis {b(α)
` } is orthonormal, if (a) the bases {b(α1)

i } and

{b(α2)
j } of the sons α1, α2 are orthonormal and (b) the matrices C(α,`) in (3.9) are orthonormal with respect

to the Frobenius scalar product:
〈
C(α,`), C(α,m)

〉
F

=
∑
ij c

(α,`)
ij c

(α,m)
ij = δ`m.

7

The bases (or frames) can be orthonormalised as follows. Orthonormalise the explicitly given bases at the

leaves (e.g., by QR). As soon as {b(α1)
i } and {b(α2)

j } are orthonormal, orthonormalise the matrices C(α,`).

The new matrices C
(α,`)
new define a new orthonormal basis {b(α)

`,new}. The cost is described in [10, Remark
11.32].

The above mentioned calculations require basis transformations. Here the following has to be taken into
account (cf. [10, §11.3.1.4]).

• Case A1. Let α1 be the first son of α. Assume that the basis {b(α1)
i } is transformed into a new

basis {b(α1)
i,new} so that b

(α1)
i =

∑
k Tki b

(α1)
k,new. Changing C(α,`) into C

(α,`)
new := TC(α,`), the basis {b(α)

` }
remains unchanged.

• Case A2. If b
(α2)
i =

∑
k Tkib

(α2)
k,new is a transformation of the second son of α, C(α,`) must be changed

into C(α,`)TT.

• Case B. Consider a non-leaf vertex α. If the basis {b(α)
` } should be transformed into b

(α)
`,new :=∑

i T`ib
(α)
i , one has to change the coefficient matrices C(α,`) by C

(α,`)
new :=

∑
i T`iC

(α,i). (In addition,
this transformation causes changes at the father vertex according to Case A1 or Case A2).

3.6 SVD Truncation

The example in §3.4 shows that the Hadamard product is given by means of a generating system of increased
size r′′j := rjr

′
j . This size may be larger than necessary and should be truncated. The truncation is prepared

by an orthonormalisation as described in §3.5.

In principle, the SVD truncation is based on the singular-value decompositions of the matricisations5

M (α) (cf. §3.3). However, the singular values and singular vectors can be determined without the explicit
knowledge of the huge matrix M (α).

Having generated orthonormal bases at all nodes, the singular value decomposition starts at the root

and proceeds to the leaves. It produces a basis {b(α)
`,new} together with singular values σ

(α)
` indicating the

importance of b
(α)
`,new. At the start α = root there is only one (normalised) basis vector b

(root)
1 = b

(root)
1,new

which remains unchanged. The corresponding weight factor is σ
(root)
1 = |c(root)1 | (cf. (3.10)).

Assume that the new basis {b(α)
`,new} is already computed at the vertex α and that α is not a leaf but has

sons α1, α2. The basis {b(α)
` } is characterised by the matrices C(α,`). Together with the given values σ

(α)
`

we define the matrices6

Z1 :=
[
σ
(α)
1 C(α,1), σ

(α)
2 C(α,2), . . . , σ(α)

rα C
(α,rα)

]
∈ Rrα1×(rαrα2),

Z2 :=

[
σ
(α)
1

(
C(α,1)

)T
, σ

(α)
2

(
C(α,2)

)T
, . . . , σ(α)

rα

(
C(α,rα)

)T]T
∈ R(rαrα1)×rα2 .

The SVD of these matrices yields Z1 =
∑
i σ

(α1)
i u

(α1)
i ⊗v(α1)

i and Z2 =
∑
i σ

(α2)
i u

(α2)
i ⊗v(α2)

i with orthonormal

vectors u
(α1)
i ∈ Rrα1 and v

(α2)
i ∈ Rrα2 . Now we have to transform the bases at the son nodes: {b(α1)

i,new} :=

{u(α1)
i } becomes the new basis for α1, and {b(α2)

i,new} := {v(α2)
i } becomes the new basis for α2. The new bases

are called the HOSVD bases (cf. Footnote 5).

The procedure is repeated for the sons of α1, α2 until we reach the leaves. Then at all vertices HOSVD

bases are introduced together with singular values σ
(α)
ν . As in §2.2 the SVD truncation consists of omitting

all basis vectors corresponding to small enough singular values. Let σ
(α)
ν , 1 ≤ ν ≤ rα, be all singular values

at α. Assume that we keep σ
(α)
ν for 1 ≤ ν ≤ sα and omit those for ν > sα. This means that (3.8) is reduced

to b
(α)
` with ` ≤ sα and that the double sum in (3.8) is taken over i ≤ sα1

and j ≤ sα2
. Let v be the input

5Such SVDs are called the higher order singular-value decompositions (HOSVD) by De Lathauwer–De Moor–Vandevalle [2].
6At the root we have the special situation that Z1 = Z2 because rroot = 1.

8

tensor, while vHOSVD denotes the truncated version. Then the following estimate holds (cf. [10, Theorem
11.58]):

‖v − vHOSVD‖ ≤
√∑

α

∑
ν≥sα+1

(σ
(α)
ν)2 ≤

√
2d− 3 ‖v − vbest‖ . (3.14)

The first inequality allows us to explicitly control the error with respect to the Euclidean norm by the choice
of the omitted singular values. The second inequality proves quasi-optimality of this truncation. vbest is the
best approximation with the property that vbest satisfies rankα(vbest) ≤ sα. The parameter d is the order of
the tensor, i.e., d = 6 in the case of Figure 3.2 and d = 3 for Figure 3.1. Only in the (matrix) case of d = 2,
vHOSVD coincides with vbest.

3.7 Convolution

The treatment of §3.4 for the Hadamard operation � holds for any binary operation with the property (3.2).
Because the multivariate convolution satisfies the analogous condition (3.5), the constructions of §3.4 also
hold for the convolution ? instead of �. Therefore we can perform the convolution in Rn ⊗ Rn ⊗ Rn ∼= RN ,
provided that we are able to perform the convolution (v ? w)i =

∑
` vi−`w` in Rn.

The standard approach is the use of FFT (fast Fourier transform): First the vectors v, w are mapped into
their (discrete) Fourier images v̂, ŵ, then the Hadamard product x := v̂ � ŵ is back-transformed into the
convolution result x̌ = v ? w (with suitable scaling). As well known, the corresponding work is O(n log n).
For large n this is still expensive. In the next chapter we shall describe a much cheaper algorithm for v ? w.

4 Tensorisation

The tensorisation has been introduced by Oseledets [17] (but for matrices instead of vectors). Examples of
this technique can be found in Khoromskij [15].7 Tensorisation together with truncation can be considered as
an algebraic data compression method which is at least as successful as particular analytical compressions,
e.g., by means of wavelets, hp methods, etc. The analysis by Grasedyck [6] shows that under suitable
conditions, the data size N(ṽε) = O(log n) can be expected. Compression by tensorisation can be seen as a
quite general multi-scale approach.

Here, we consider operations between vectors. The crucial point is that the computational work of the
operations should be related to the data size of the operands. Assuming a data size � n, the cost should
also be much smaller than the operation cost in the standard Rn vector format. In particular we discuss the
Hadamard product and the (one-dimensional) convolution operation u := v ? w with ui =

∑
k vkwi−k. We

shall show that the convolution procedure can be applied directly to the tensor approximations ṽε and w̃ε.
The algorithm developed in §4.4 has a cost related to the data sizes N(ṽε), N(w̃ε).

4.1 Grid Functions in Rn

The following algorithms will apply to vectors in Rn with n = 2L. The connection to the previous part is

given by the fact that in §3 we have to perform various operations with the basis vectors b
(j)
i ∈ Rn. However,

more general, the techniques of this chapter can be used for computations in Rn without connection to the
tensor problems in §§2–3.

Tensorisation is an interpretation of an usual Rn vector as a tensor. Since n = 2L, there is a representation
of the indices 0 ≤ k ≤ n− 1 by the binary numeral (iL, iL−1, . . . , i1)2:

k =

L∑
`=1

i`2
`−1, i` ∈ {0, 1}. (4.1)

7In this and later papers the name QTT (quantised TT) is used. We avoid this name since it is inappropriate. The transition
from Rn to ⊗LR2 is not a quantisation. Vectors in Rn are as discrete as tensors in ⊗LR2. Another appropriate name would be
‘factorisation’.

9

We map the vector v ∈ Rn into the tensor v ∈ ⊗LR2 :=
⊗L

j=1 R2 of order L by means of

v[i1, . . . , iL] = vk with k and ij as in (4.1). (4.2)

Since n = dim(Rn) = dim(⊗LR2) = 2L, (4.2) describes an isomorphism

Φ : ⊗LR2 → Rn, v 7→ v. (4.3)

On the side of tensors we shall introduce a hierarchical tensor representation (cf. §3). This allows a
simple truncation procedure v 7→ vε (cf. §3.6). Often, the data size N(vε) of vε is much smaller than
n (see Example 4.4). As a consequence, the tensorisation together with the truncation yields a black-box
compression method for vectors in Rn.

4.2 TT Format

R
2

R
2

R
2

U
1

U
2

U
3

U
4

Figure 4.1: Linear tree for
the TT format

The underlying tree of the hierarchical representation is the linear tree8 depicted
in Figure 4.1. Hierarchical representations based on a linear tree are introduced
by Oseledets [17] as TT format (cf. Oseledets–Tyrtyshnikov [18]). In principle
the hierarchical format requires subspaces at the leaves. Since R2 is extremely

low-dimensional, we take the full space R2 and fix the basis by b
(j)
1 =

(
1
0

)
and

b
(j)
2 =

(
0
1

)
. Figure 4.1 corresponds to L = 4 (i.e., n = 16). We replace the index

α = {1, 2, . . . , µ} for the inner vertices by µ ∈ {2, . . . , L}. The subspaces Uµ

belong to ⊗µR2 ∼= R2µ (in particular U1 = R2).

Since the TT-rank rµ = rank(M (µ)) is the minimal dimension of the re-
quired subspace Uµ ⊂ ⊗µR2, the matricisation M (µ) of a tensor v is of interest.
In fact, M (µ) can be expressed by means of the corresponding vector v = Φ(v) :

M (µ) =

v0 v2µ . . . v2L−1

v1 v2µ+1 . . . v2L−1+1
...

...
. . .

...
v2µ−1 v2µ+1−1 . . . v2L−1

 (4.4)

Since we use the spaces R2 at the leaves, condition (3.6) becomes

Uµ+1 ⊂ Uµ ⊗ R2 (1 ≤ µ ≤ L− 1) , (4.5)

while (3.8) is

b
(µ+1)
` =

rµ∑
i=1

[
c
(µ+1,`)
i1 b

(µ)
i ⊗

(
1

0

)
+ c

(µ+1,`)
i2 b

(µ)
i ⊗

(
0

1

)]
for 1 ≤ ` ≤ rµ+1. (4.6)

Before we discuss the operations, we want to show that grid functions appearing in practice may have
ranks of the order O(L) = O(log n)� n.

Remark 4.1 Let f be an analytic function in (0, 1] with a singularity at x = 0. An efficient approximation
is given by the hp finite-element approach. In a simplified version, one uses polynomials of degree g to
interpolate f in [1/2, 1], [1/4, 1/2],. . . , [2−L, 2 · 2−L], [0, 2−L]. The data size is D = (L+ 1) (g + 1) since
there are L+ 1 intervals and the polynomials have g + 1 coefficients. For the typical asymptotically smooth
functions (cf. [11, Appendix E]) one obtains an error estimate decaying exponentially in D. Let F be
the piecewise interpolation polynomial and evaluate F at the equidistant grid points: vi := F (i · 2−L) for
0 ≤ i ≤ n−1. Inspection of the matrix M (µ) shows that all columns except the first one contain grid values of
a polynomial of degree g. Hence this part has at most the rank g + 1. The first column can increase the rank
only by one so that rµ = rank(M (µ)) ≤ g + 2. Therefore the TT format representing v = Φ−1(F) is of the
same size as the hp approach. The optimal approximation of f by the TT format with rank(M (µ)) ≤ g + 2
yields an error which is as most as large as the hp error, i.e., it is exponentially decreasing with g. More
details can be found in Grasedyck [6].

8All binary trees for tensors of order ≤ 3 are linear trees, cf. Figure 3.1.

10

Example 4.2 A particular function is the exponential zx, where z 6= 0 may be any complex number. The

grid values vi are ζi with ζ = z2
−L
. For this vector the columns of M (µ) in (4.4) are linearly dependent so

that rank(M (µ)) = 1. In fact, v = Φ−1(v) is the elementary tensor v =
⊗L

j=1

(
1

ζ2
j−1

)
. Since sin(ax) =

exp(iax)−exp(−iax)
2i , any trigonometric function leads to rank(M (µ)) = 2.

This example (mentioned in [15]) implies the next remark.

Remark 4.3 All functions with a limited number of exponential terms lead to a constant bound of
rank(M (µ)) (e.g., f(x) =

∑r
ν=1 αν exp(−βνx) yields rank(M (µ)) ≤ r). A similar result holds for functions

involving a fixed number of trigonometric terms (band-limited functions).

An example of a band-limited function can be found in Khoromskij–Veit [16].

The next example again shows that exponential sums can approximate functions with point singularities
(Remark 4.1 is another approach to this problem). This fact is important for applications in quantum
chemistry where singularities appear at the positions of the nuclei. This is an indication that the basis
vectors appearing in Uj (1 ≤ j ≤ 6) for the problem (1.1) allow a tensorisation with moderate ranks.

Example 4.4 For n = 2L set v =
(
f(k · 2−L)

)n−1
k=0
∈ Rn for the function f(x) = 1/(1−x) in [0, 1). For any

r ∈ N, there is an approximation v(r) ∈ Rn such that v(r) := Φ−1(v(r)) yields ranks rµ = rank(M (µ)) ≤ r
and satisfies the componentwise error estimate∣∣v[k]− v(r)[k]

∣∣ ≤ C1n exp(−C2r) with C1, C2 > 0 for all 0 ≤ k < n.

Hence, for a given error bound ε > 0, the choice r = O(log(n) + log 1
ε) is sufficient. The storage size of the

tensor v(r) is O(log2(n) + log(n) log 1
ε).

Proof. The function 1/t can be approximated in [2−L, 1] by an expression of the form
∑r
ν=1 αν exp(−βνx).

The error estimates follow from Braess–Hackbusch [1].

4.3 Hadamard Product in Rn

R
N

R
n

R
n

R
n

R
n2

R
n

R
n

R
n

R
n2

R
N

R
NxN

Figure 4.2: Extended tree

Since it does not matter whether the componentwise multiplication is realised
via vk · wk or v[i1, . . . , iL] · w[i1, . . . , iL], the property (3.2) holds also in the
case of the artificial tensor product ⊗LR2; more precisely,

Φ

(⊗L

j=1
v(j)
)
� Φ

(⊗L

j=1
w(j)

)
= Φ

(⊗L

j=1

(
v(j) � w(j)

))
= Φ (v �w) .

Conclusion 4.5 Assume v = Φ(v) and w = Φ(w). Let v,w be represented
by the TT format. Then the Hadamard product v � w can be computed as
explained in §3.4. Since Φ(v � w) = v � w, the result is the tensorisation of
v � w. The computational cost is discussed in §3.4.

We return to the hierarchical format for true tensors as in Figures 3.1 or 3.2. The subspaces at the
leaves are described by bases containing Rn vectors. The application of the tensorisation to these vectors
corresponds to an extended tree as sketched in Figure 4.2.

The combination of the tree in Figure 3.1 with the TT tree corresponds to RN ∼= ⊗3
(
⊗LR2

) ∼= ⊗3LR2.
For tensors represented in this format we can again apply the algorithm in §3.4 to compute v � w for
v,w ∈ RN .

11

4.4 Convolution in Rn

4.4.1 Definition of the Convolution

We take a closer look to the convolution operation. The sum in (v ? w)i =
∑
` vi−`w` is restricted to those

` with 0 ≤ i− `, ` ≤ n− 1, i.e.,

(v ? w)i =

min{n−1,i}∑
`=max{0,i+1−n}

vi−`w`. (4.7)

If i varies in [0, n − 1] ∩ Z, the sum can be written as
∑i
`=0 . For i < 0 the empty sum yields (v ? w)i = 0,

but for n ≤ i ≤ 2n− 2 the sum in (4.7) is not empty. This shows the following remark.

Remark 4.6 The convolution of two Rn vectors yield an R2n−1 vector.

The notation becomes simpler if we replace the vector v ∈ Rn by the infinite sequence v = (vi)i∈N0
with

N0 = N ∪ {0} and vi := 0 for all i ≥ n. The set `0 = `0(N0) consists of all sequences with only finitely many
nonzero components. Now the sum becomes

(v ? w)i =

i∑
`=0

vi−`w` for all i ∈ N0 and all v, w ∈ `0. (4.8)

Remark 4.7 The n-periodic convolution is (v ?per w)i =
∑i
`=0 vi−`w` (0 ≤ i ≤ n− 1) , where all indices are

understood modulo n. These values can be obtained by (v ?per w)i = (v ? w)i + (v ? w)n+i for 0 ≤ i ≤ n− 1.

4.4.2 Principal Idea of the Algorithm

For multivariate (grid) functions the definition of the convolution implies the property (3.2): the convolution
of elementary tensors can be reduced to the tensor product of one-dimensional convolutions.

Since now the vector v is replaced by the tensor v ∈ ⊗LR2, an obvious question is whether the product
of v = ⊗Lj=1v

(j) and w = ⊗Lj=1w
(j) can be expressed by x := ⊗Lj=1

(
v(j) ? w(j)

)
corresponding to (3.2), i.e.,

whether the corresponding vectors satisfy Φ(v) ? Φ(w) = Φ(x). In the naive sense, this cannot be true by
the simple reason that v(j) ? w(j) is a vector with three nontrivial components (cf. Remark 4.6). Therefore
the result does not belong to ⊗LR2. Furthermore, we must expect a result in ⊗L+1R2 since v ? w has the
length 2n− 1 > 2L and < 2L+1.

4.4.3 Extension to ⊗L`0
According to §4.4.1, R2 can be considered as a subspace of `0. Hence ⊗LR2 is contained in ⊗L`0. The linear
map Φ defined in (4.3) can be extended to Φ : ⊗L`0 → `0 by

a = Φ

(⊗L

j=1
v(j)
)
∈ `0 with ak =

∑
i1,...,iL∈N0

k=
L∑
j=1

ij2
j−1

d∏
j=1

v(j)[ij] (4.9)

(cf. Remark 2.1). In the case of v(j) ∈ R2, the sum on the right-hand side of (4.9) contains only one term

for 0 ≤ k ≤ n− 1 and the product
∏L
j=1 v

(j)[ij] coincides with v[i1, . . . , iL] for v :=
⊗L

j=1 v
(j) (cf. (4.2)).

For a better understanding we look at the case of L = 2.

Remark 4.8 Let ei ∈ `0 be the i-th unit vector, i.e., ei[j] = δij (i, j ∈ N0). Then b := Φ (a⊗ ei) is the
vector a ∈ `0 shifted by 2i positions: bk := 0 for 0 ≤ k < 2i and bk = ak−2i for k ≥ i.

The shift by p positions is denoted by Sp. Thus we can write b = S2ia.

12

4.4.4 Polynomials

Next we use the isomorphism between `0 and the space P of polynomials described by

π : `0 → P with v 7→ π[v](x) :=
∑
k∈N0

vkx
k. (4.10)

The connection with the convolution is given by the property that the product of two polynomials has the
coefficients of the convolution product:

π[v]π[w] = π[v ? w] for v, w ∈ `0. (4.11)

We define an extension of π : `0 → P to π̂ : ⊗L`0 → P by

π̂ : ⊗L`0 → P with π̂

[⊗L

j=1
v(j)
]

(x) :=
∏L

j=1
π[v(j)](x2

j−1

) (4.12)

A shift of v by i positions corresponds to the product π[Siv] = π[v](x) ·xi. This result together with Remark
4.8 shows that

π̂

[⊗L

j=1
v(j)
]

= π

[
Φ

(⊗L

j=1
v(j)
)]

. (4.13)

The extended map Φ : ⊗L`0 → `0 is not injective. Two tensors v′,v′′ ∈ ⊗L`0 are called equivalent —
denoted by v′ ∼ v′′ — if they represent the same vector: Φ(v′) = Φ(v′′). From (4.13) we learn that the
equivalence of v′,v′′ can also be expressed by π̂[v′] = π̂[v′′].

By comparing the values under the map π̂, we obtain the following result.

Lemma 4.9 Φ

(
L⊗
j=1

Smjv(j)

)
= SmΦ

(
L⊗
j=1

v(j)

)
holds for m =

L∑
j=1

mj2
j−1.

According to (3.2), we define the convolution of two (elementary) tensors in ⊗L`0 by(⊗L

j=1
v(j)
)
?

(⊗L

j=1
w(j)

)
:=
⊗L

j=1

(
v(j) ? w(j)

)
. (4.14)

Now the product v(j) ? w(j) makes sense since it belongs to `0. Next we have to prove that the convolution
introduced in (4.14) is consistent with the usual convolution of vectors.

Lemma 4.10 Let v = Φ
(⊗L

j=1 v
(j)
)

and w = Φ
(⊗L

j=1 w
(j)
)

be vectors in `0. Then (4.14) implies

Φ

(⊗L

j=1

(
v(j) ? w(j)

))
= v ? w.

Proof. Since π : `0 → P is an isomorphism, the statement is equivalent to π
[
Φ
(⊗L

j=1

(
v(j) ? w(j)

))]
=

π [v ? w] . The left-hand side of this equation is

π

[
Φ

(⊗L

j=1

(
v(j) ? w(j)

))]
(x) =

(4.13)
π̂

[⊗L

j=1

(
v(j) ? w(j)

)]
(x) =

(4.12)

∏L

j=1
π[v(j) ? w(j)](x2

j−1

)

=
(4.11)

∏L

j=1
π[v(j)](x2

j−1

) · π[w(j)](x2
j−1

)

=

(∏L

j=1
π[v(j)](x2

j−1

)

)
·
(∏L

j=1
π[w(j)](x2

j−1

)

)
=

(4.12)
π̂

[⊗L

j=1
v(j)
]

(x) · π̂
[⊗L

j=1
w(j)

]
(x)

=
(4.13)

π[v](x) · π[w](x) =
(4.11)

π[v ? w](x).

13

4.5 Carry-over Procedure

The result
⊗L

j=1

(
v(j) ? w(j)

)
is still unsatisfactory because v(j), w(j) ∈ R2 produce v(j) ? w(j) ∈ R3. A

solution can be as follows. Let L = 2 as in Remark 4.8. Consider a ⊗ b with a, b ∈ `0. We want to find an
equivalent tensor with factors in R2. Assume that aK 6= 0, but ai = 0 for i > K, which implies a ∈ RK+1.
If K = 1, a belongs to R2 and nothing has to be done. If K > 1 set a′ ∈ R2 with a′i = ai for i = 0, 1 and
a′′ ∈ `0 with a′′i = ai+2 for i ∈ N0. Using Remark 4.8, one checks that a ⊗ b represents the same vector as
a′ ⊗ b+ a′′ ⊗ Sb, where Sb is the shifted version of b:

Φ(a⊗ b) = Φ(a′ ⊗ b+ a′′ ⊗ Sb).

a′ ∈ R2 is already of the desired form. a′′ belongs to RK−1. This procedure can again be applied to a′′ ⊗ b′′
until all first factors belong to R2.

In the case of a general tensor
⊗L

j=1 v
(j), this procedure is applied to the first factor v(1) and yields sums

of elementary tensors of the form w(1)⊗
⊗L

j=2 w
(j) with w(1) ∈ R2. Then the procedure is repeated with the

second factor resulting in sums of the terms x(1) ⊗ x(2) ⊗
⊗L

j=3 x
(j) with x(1), x(2) ∈ R2, etc. In the case of

the last factor, we may have to add an (L + 1)-th factor. Since we know that v ? w belongs to R2n−1 the
(L+ 1)-th factor must belong to R2.

4.6 Convolution Algorithm

We recall Remark 4.6: If v,w ∈
⊗L

j=1 R2, the result is a tensor u := v ? w in
⊗L+1

j=1 R2. Lemma 4.11
describes the start at δ = 1, while Lemma 4.12 characterises the recursion. In the following the vector
notation v =

[
α
β

]
means v0 = α, v1 = β, i.e., the components must be read from the top to the bottom. By

v ∼ w we denote the equivalence Φ(v) = Φ(w).

Lemma 4.11 The convolution of v =
[
α
β

]
and w =

[
γ
δ

]
∈ R2 =

⊗1
j=1 R2 yields

[
α
β

]
?
[
γ
δ

]
=

αγ

αδ + βγ
βδ
0

 ∼ [αγ
αδ+βγ

]
⊗
[
1
0

]
+
[
βδ
0

]
⊗
[
0
1

]
∈

2⊗
j=1

R2. (4.15a)

Furthermore, the shifted vector has the tensor representation

S

αγ

αδ + βγ
βδ
0

 =

0
αγ

αδ + βγ
βδ

 ∼ [0
αγ

]
⊗
[
1
0

]
+
[
αδ+βγ
βδ

]
⊗
[
0
1

]
∈

2⊗
j=1

R2. (4.15b)

The basic identity is given in the next lemma.

Lemma 4.12 For given v,w ∈
⊗δ−1

j=1 R2 let the convolution result be

v ?w ∼ a = a′ ⊗
[
1
0

]
+ a′′ ⊗

[
0
1

]
∈
⊗δ

j=1
R2. (4.16a)

Then, convolution of the tensors v ⊗ x and w ⊗ y with x =
[
α
β

]
, y =

[
γ
δ

]
∈ R2 yields

(v ⊗ x) ? (w ⊗ y) ∼ u = u′ ⊗
[
1
0

]
+ u′′ ⊗

[
0
1

]
∈
⊗δ+1

j=1
R2

with u′ = a′ ⊗
[

αγ
αδ+βγ

]
+ a′′ ⊗

[
0
αγ

]
∈
⊗δ

j=1
R2 (4.16b)

and u′′ = a′ ⊗
[
βδ
0

]
+ a′′ ⊗

[
αδ+βγ
βδ

]
∈
⊗δ

j=1
R2.

14

Proof. Lemma 4.10 implies that

(v ⊗ x) ? (w ⊗ y) ∼ (v ?w)⊗ z with z := x ? y ∈ R3 ⊂ `0.

Assumption (4.16a) yields

(v ?w)⊗ z ∼
(
a′ + S2δ−1

a′′
)
⊗ z.

Lemma 4.9 shows that
S2δ−1

a′′ ⊗ z = S2δ−1

(a′′ ⊗ z) ∼ a′′ ⊗ (Sz).

Using (4.15a,b), we obtain

a′ ⊗ z ∼ a′ ⊗
[

αγ
αδ+βγ

]
⊗
[
1
0

]
+ a′ ⊗

[
βδ
0

]
⊗
[
0
1

]
,

(S2δ−1

a′′)⊗ z ∼ a′′ ⊗ (Sz) ∼ a′′ ⊗
[

0
αγ

]
⊗
[
1
0

]
+ a′′ ⊗

[
αδ+βγ
βδ

]
⊗
[
0
1

]
.

Summation of both identities yields the assertion of the lemma.

If the vectors x, y in Lemma 4.12 belong to
{[

1
0

]
,
[
0
1

]}
, the vectors

[
αγ

αδ+βγ

]
,
[

0
αγ

]
,
[
βδ
0

]
,
[
αδ+βγ
βδ

]
from

(4.16b) belong to
{[

0
0

]
,
[
1
0

]
,
[
0
1

]}
.

Lemma 4.11 proves assumption (4.16a) for δ = 2, while Lemma 4.12 shows that v⊗ x and w⊗ y satisfy
the requirement (4.16a) (for δ + 1 instead of δ).

4.7 Convolution of Tensors in Hierarchical Format

We recall that the subspaces Uδ ⊂ ⊗δR2 satisfy (4.5): Uδ+1 ⊂ Uδ ⊗ R2. The essential observation is that
also the results of the convolution yield subspaces with this property.

Note that there are three different tensors v, w, u := v ?w involving representations with three different

subspace families U′δ, U′′δ , Uδ (1 ≤ δ ≤ L). The bases spanning these subspaces consist of the vectors b
′(δ)
i ,

b
′′(δ)
i , b

(δ)
i . The dimensions of the subspaces are r′δ, r

′′
δ , rδ.

Any tensor a ∈ ⊗δR2 (δ ≥ 1) can be written as a = a′ ⊗
[
1
0

]
+ a′′ ⊗

[
0
1

]
. Define the linear maps φ′δ,

φ′′δ : ⊗δR2 → ⊗δ−1R2 by φ′δ(a) = a′, φ′′δ (a) = a′′.

Theorem 4.13 Let the tensors v,w ∈
⊗L

j=1 R2 be represented by (possibly different) hierarchical formats
using the respective subspaces U′δ and U′′δ , 1 ≤ δ ≤ L, satisfying

U′1 = R2, U′δ ⊂ U′δ−1 ⊗ R2, v ∈ U′L ,

U′′1 = R2, U′′δ ⊂ U′′δ−1 ⊗ R2, w ∈ U′′L.
(4.17a)

The subspaces

Uδ := span{φ′δ+1(x ? y), φ′′δ+1(x ? y) : x ∈ U′δ, y ∈ U′′δ} (1 ≤ δ ≤ L) (4.17b)

satisfy
U1 = R2, Uδ ⊂ Uδ−1 ⊗ R2, v ?w ∈ UL+1. (4.17c)

The dimension of Uδ can be bounded by

dim(Uδ) ≤ min
{

2 dim(U′δ) dim(U′′δ), 2δ, 2L+1−δ} . (4.17d)

Proof. (i) U1 = R2 can be concluded from Lemma 4.11.

(ii) Write x,y ∈ U′δ ⊂ U′δ−1⊗R2 as x = x′⊗
[
1
0

]
+x′′⊗

[
0
1

]
and y = y′⊗

[
1
0

]
+y′′⊗

[
0
1

]
with x′,x′′,y′,y′′ ∈

U′δ−1. Expansion of the sums yields x ? y =
(
x′ ⊗

[
1
0

])
?
(
y′ ⊗

[
1
0

])
+ . . . For each term z of this expansion,

Lemma 4.12 (with v,w renamed x′,x′′) states that φ′δ+1 (z) = u′ and φ′′δ+1(z) = u′′ belong to Uδ−1⊗R2 (cf.
(4.16b)). Hence, φ′δ+1(x ? y), φ′′δ+1(x ? y) ∈ Uδ−1 ⊗ R2 holds, and the definition of Uδ implies the inclusion
Uδ ⊂ Uδ−1 ⊗ R2.

(iii) v ∈ U′L and w ∈ U′′L together with the definition of UL lead to v ?w ∈ UL.

15

(iv) The first bound of dim(Uδ) follows directly from (4.17b). The bound min{2δ, 2L+1−δ} holds for any
rank(M (1,...,δ)(v)) of v ∈ ⊗L+1R2.

The bound 2 dim(U′δ) dim(U′′δ) corresponds to the product mentioned in Remark 3.2.

For δ = 1, . . . , L, the numerical scheme has

1. to introduce an orthonormal basis {b(δ)
1 , . . . ,b

(δ)
rδ } of Uδ, where rδ := dim(Uδ) (cf. §3.5),

2. to represent the convolution b
′(δ)
i ? b

′′(δ)
j by

b
′(δ)
i ? b

′′(δ)
j =

rδ∑
k=1

2∑
m=1

β
(δ)
ij,km b

(δ)
k ⊗ bm. (4.18)

As soon as the β-coefficients from (4.18) are known, general products x ? y of x ∈ U′δ and y ∈ U′′δ can
be evaluated easily as shown in the next remark.

Remark 4.14 Let x =
∑r′δ
i=1 ξib

′(δ)
i ∈ U′δ and y =

∑r′′δ
j=1 ηjb

′′(δ)
j ∈ U′′δ . Then convolution yields

x ? y = z = z′ ⊗
[
1
0

]
+ z′′ ⊗

[
0
1

]
with z′ =

rδ∑
k=1

ζ ′kb
(δ)
k , z′′ =

rδ∑
k=1

ζ ′′kb
(δ)
k ,

where ζ ′k =

r′δ∑
i=1

r′′δ∑
j=1

ξiηjβ
(δ)
ij,k1 and ζ ′′k =

r′δ∑
i=1

r′′δ∑
j=1

ξiηjβ
(δ)
ij,k2

with β
(δ)
ij,km from (4.18). The computation of ζ ′k, ζ ′′k (1 ≤ k ≤ rδ) requires 4rδr

′
δ (r′′δ + 1) operations.

The total cost is described in [9, page 482]. It is the sum of

8r′′δ r
′
δ−1rδ−1

(
r′′δ−1 + r′δ

)
+ 8 (r′δr

′′
δ)

2
rδ−1 +

4

3
(r′δr

′′
δ)

3
+ 2rδ−1r

2
δ for 2 ≤ δ ≤ L. (4.19)

A rough estimate by r′δ, r
′′
δ ≤ r and rδ ≤ 2r2 yields the asymptotic bound 100

3 (L − 1)r6. The higher order
terms are caused by the orthonormalisation.

5 Toeplitz Matrices

5.1 Notation

A matrix (aij) is called a Toeplitz matrix if aij only depends of i− j. A multiplication by a Toeplitz matrix
and a convolution are almost equivalent (cf. Kazeev et al. [14]).

If we fix the vector x in x?y, this expression defines a linear map y 7→ x?y which may be expressed by a
matrix T = Tx, i.e., Ty := x ? y. In the case of x, y ∈ Rn and x ? y ∈ R2n−1, T is the (rectangular) Toeplitz
matrix of size (2n− 1)× n with Ti0 = xi (0 ≤ i ≤ n− 1), Tn−1+i,0 = T0i = 0 (1 ≤ i ≤ n− 1).

A general n× n Toeplitz matrix is uniquely determined by the coefficient vector a = [a0,, . . . , a2n−2]:

T (a) :=

an−1 an−2 · · · a0

an
. . .

. . .
...

...
. . .

. . . an−2
a2n−2 · · · an an−1

 , i.e., T (a)i,j = an−1+i−j
for 0 ≤ i, j ≤ n− 1.

(5.1)

The product z := a ? y belongs to R3n−1. The part ẑ with ẑi := zn−1+i (0 ≤ i ≤ n − 1) coincides with
T (a) y ∈ Rn.

16

5.2 Tensorisation for Matrices

The matrix space Rn×n for n = 2L is isomorphic to
⊗L

j=1 R2×2. As in (4.3) the isomorphism M ∈⊗L
j=1 R2×2 7→ M ∈ Rn×n is defined by M [i, j] = M[(i1, j1) , . . . , (iL, jL)] where i =

∑L
`=1 i`2

`−1, j =∑L
`=1 j`2

`−1, i`, j` ∈ {0, 1} (cf. [17]). In particular, a block matrix

[
M11 M12

M21 M22

]
corresponds to the

tensor product M11 ⊗
[
1
0
0
0

]
+M12 ⊗

[
0
0
1
0

]
+M21 ⊗

[
0
1
0
0

]
+M22 ⊗

[
0
0
0
1

]
.

In the case of a Toeplitz matrix, all submatrices are again Toeplitz. In the previous example, M11 = M22

follows. Therefore a suitable subspace U of R2×2 is spanned by b1 :=
[
0
0
1
0

]
, b2 :=

[
1
0
0
1

]
, b2 :=

[
0
1
0
0

]
. For the

hierarchical representation we use the linear tree of Figure 4.1 with R2 replaced by U.

The TT-rank rµ = dim(Uµ) is described next. Let T = T (a) ∈ Rn×n be a Toeplitz matrix defined by the
coefficient vector a ∈ R2n−1 (cf. (5.1)). Consider a regular block structure of T with blocks of size 2µ × 2µ.
Denote these blocks by Tαβ = (Tij)α2µ≤i≤(α+1)2µ−1, β2µ≤j≤(β+1)2µ−1 for 0 ≤ α, β ≤ 2L−µ − 1. Then the

matricisation yields Uµ = span{Tαβ : 0 ≤ α, β ≤ 2L−µ − 1} and rµ = dim(Uµ).

A simpler description follows from the fact that

Tαβ = T (
[
an+(α−β−1)2µ , · · · , an−2+(α−β+1)2µ

]
) = T (a(α−β)),

where a(γ) =
[
an+(γ−1)2µ , · · · , an−2+(γ+1)2µ

]
∈ R2µ+1−1 is a part of the vector a defining T = T (a). Since

the linear map a 7→ T (a) is an isomorphism, we obtain the TT-ranks

rµ = dim(Uµ) = dim span{a(γ) : 1− 2L−µ ≤ γ ≤ 2L−µ − 1}

= rank

a0 a2µ . . . a22L−2·2µ
a1 a2µ+1 . . . a22L−2·2µ+1
...

...
. . .

...
a2·2µ−2 a3·2µ−2 . . . a22L−2

 . (5.2)

The latter matrix looks similar to the matricisation M (µ) in (4.4). It can be used for the following bound
(cf. [14]).

Lemma 5.1 The TT-rank rµ of T = T (a) is bounded by 2rµ(a), where rµ(a) is the TT-rank of the tensor-
isation of the vector a ∈ R2n (here a2n−1 can be defined arbitrarily).

Proof. Split the matrix in (5.2) into the upper part

 a0 . . . a2n−2·2µ
...

. . .
...

a2µ−1 . . . a2n−2µ−1

 and the lower part

 a2µ . . . a2n−2µ
...

. . .
...

a2·2µ−1 . . . a2n−1

, where the last column is added. The rank (5.2) is bounded by the sum of the

ranks of the latter two matrices. These, however, are submatrices of the matricisation M (µ) belonging to
the vector a. This proves the assertion.

5.3 Matrix-Vector Multiplication

For the evaluation of the product Ty we assume that the Toeplitz matrix T is expressed by the tensorised
analogue T ∈

⊗L
j=1 R2×2. Here it is important that for the tensorised quantities T =

⊗L
j=1 T

(j) and

y =
⊗L

j=1 y
(j) the directionwise product z :=

⊗L
j=1

(
T (j)y(j)

)
is the tensorisation of z = Ty.

The hierarchical representation of T uses the bases Tb
(µ)
` (1 ≤ ` ≤ rµ) of Uµ, while the leaves j are

associated with the subspaces Uj = U spanned by the fixed basis bU1 :=
[
0
0
1
0

]
, bU2 :=

[
1
0
0
1

]
, bU3 :=

[
0
1
0
0

]
. The

coefficient matrices are TC
(µ,`) = (T c

(µ,`)
ij), i.e., Tb

(µ)
` =

∑rµ
i=1

∑3
j=1 T c

(µ,`)
ij Tb

(µ−1)
i ⊗ bUj .

17

Let y ∈ Rn have the tensorised analogue y ∈
⊗L

j=1 R2 represented via (4.6) with data yc
(µ+1,`)
ij and

yb
(µ)
i . At the leaves the basis vectors b1 :=

[
1
0

]
, b2 :=

[
0
1

]
are fixed.

Then the product z := Ty ∈ R2 has the tensorised analogue z ∈
⊗L

j=1 R2 with data zc
(µ+1,`)
(`,m),j and zb

(µ)
(`,m)

which are obtained as follows. The recursion

zb
(µ)
(`,m) := Tb

(µ)
` yb

(µ)
m =

∑
i,j

T c
(µ,`)
ij Tb

(µ−1)
i ⊗ bUj

∑
i′,j′

yc
(µ,m)
i′j′ yb

(µ−1)
i′ ⊗ bj′

=

∑
i,j,i′,j′

T c
(µ,`)
ij yc

(µ,m)
i′j′

(
Tb

(µ−1)
i yb

(µ−1)
i′

)
⊗
(
bUj bj′

)
=
∑
i,i′

∑
(j,j′)∈{(1,2),(2,1)}

T c
(µ,`)
ij yc

(µ,m)
i′j′

(
Tb

(µ−1)
i yb

(µ−1)
i′

)
⊗ b1

+
∑
i,i′

∑
(j,j′)∈{(2,2),(3,1)}

T c
(µ,`)
ij yc

(µ,m)
i′j′

(
Tb

(µ−1)
i yb

(µ−1)
i′

)
⊗ b2

corresponds to (3.11). Here we use that at the leaves the products bUi bj (i = 1, 2, 3; j = 1, 2) are either b1 or

b2 or zero. At the root we obtain the result z = Ty = T c
(L)
1 yc

(L)
1 zb

(µ)
(1,1) .

The required number of operations is 8
∑L
µ=1 rµ(T)rµ(y)rµ−1(T)rµ−1(y). Using Lemma 5.1 for T = T (a)

and the bound r := maxµ{rµ(y), rµ(a)}, we obtain the work bound 32
∑L
µ=1 rµ(T)rµ(y)rµ−1(T)rµ−1(y) .

32r4. Similar to (4.19) the main cost is required by the orthonormalisation.

6 Additional Remarks

As mentioned above, the convolution can be computed via Fourier forward and backward transforms. As
explained in [10, §14.4] the Fourier transform v 7→ v̂ can be realised by using the TT format of the tensorisa-
tion of v. The algorithm in §4.4 yields the exact convolution. The exact Fourier transform of the tensorised
v may produce intermediate results with increasing rank. Therefore a statement as in (4.17d) cannot be
obtained. Nevertheless, practical examples with intermediate truncation seem to give satisfactory results
(cf. Dolgov et al. [3]).

References

[1] Braess, D., Hackbusch, W.: On the efficient computation of high-dimensional integrals and the approx-
imation by exponential sums. In: R.A. DeVore, A. Kunoth (eds.) Multiscale, Nonlinear and Adaptive
Approximation, pp. 39–74. Springer, Berlin (2009)

[2] De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl. 21, 1253–1278 (2000)

[3] Dolgov, S., Khoromskij, B., Savostyanov, D.V.: Superfast Fourier transform using QTT approximation.
J. Fourier Anal. Appl. 18, 915–953 (2012)

[4] Espig, M., Hackbusch, W.: A regularized Newton method for the efficient approximation of tensors
represented in the canonical tensor format. Numer. Math. 122, 489–525 (2012)

[5] Flad, H.J., Flad Harutyunyan, G.: Singular analysis of RPA diagrams in coupled cluster theory (2017).
Manuscript

[6] Grasedyck, L.: Polynomial approximation in hierarchical Tucker format by vector-tensorization. DFG-
SPP 1324 Preprint 43, Philipps-Universität Marburg (2010)

[7] Hackbusch, W.: Fast and exact projected convolution for non-equidistant grids. Computing 80, 137–168
(2007)

18

[8] Hackbusch, W.: Convolution of hp-functions on locally refined grids. IMA J. Numer. Anal. 29, 960–985
(2009)

[9] Hackbusch, W.: Tensorisation of vectors and their efficient convolution. Numer. Math. 119, 465–488
(2011)

[10] Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, SSCM, vol. 42. Springer, Berlin (2012)

[11] Hackbusch, W.: Hierarchical Matrices – Algorithms and Analysis, SSCM, vol. 49. Springer, Berlin
(2015)

[12] H̊astad, J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990)

[13] Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics
and Physics 6, 164–189 (1927)

[14] Kazeev, V.A., Khoromskij, B.N., Tyrtyshnikov, E.E.: Multilevel Toeplitz matrices generated by tensor-
structured vectors and convolution with logarithmic complexity. SIAM J. Sci. Comput. 35, A1511–
A1536 (2013)

[15] Khoromskij, B.: O(d logN)-quantics approximation of N − d tensors in high-dimensional numerical
modeling. Constr. Approx. 34, 257–280 (2011)

[16] Khoromskij, B.N., Veit, A.: Efficient computation of highly oscillatory integrals by using QTT tensor
approximation. Comput. Methods Appl. Math. 16, 145–159 (2016)

[17] Oseledets, I.V.: Approximation of 2d × 2d matrices using tensor decomposition. SIAM J. Matrix Anal.
Appl. 31, 2130–2145 (2010)

[18] Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many
dimensions. SIAM J. Sci. Comput. 31, 3744–3759 (2009)

19

