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K3 POLYTOPES AND THEIR QUARTIC SURFACES

GABRIELE BALLETTI, MARTA PANIZZUT, AND BERND STURMFELS

Abstract. K3 polytopes appear in complements of tropical quartic surfaces. They are dual

to regular unimodular central triangulations of reflexive polytopes in the fourth dilation of the
standard tetrahedron. Exploring these combinatorial objects, we classify K3 polytopes with up

to 30 vertices. Their number is 36 297 333. We study the singular loci of quartic surfaces that

tropicalize to K3 polytopes. These surfaces are stable in the sense of Geometric Invariant Theory.

1. Introduction

Tropical hypersurfaces are defined by tropical polynomials. They support pure rational weighted
polyhedral complexes. The regions in the complement of a tropical hypersurface are convex
polyhedra. These are interesting for a range of problems in geometric combinatorics. If the tropical
polynomial is a product of linear forms, so the hypersurface is a hyperplane arrangement, then
the bounded regions are polytropes [11]. These are the basic building blocks in tropical convexity
[6], and they arise in contexts ranging from affine buildings [13] and Coxeter arrangements [18] to
combinatorial optimization [12]. The combinatorial types of polytropes were classified by Tran [24].

The point of departure for this article is Exercise 13 in [19, Section 1.9]. It asks to show that
the unique bounded region in the complement of a smooth cubic curve in the tropical plane is an
m-gon, where m ∈ {3, 4, 5, 6, 7, 8, 9}, and each of these seven possibilities occurs. The boundary of
this convex m-gon carries the group structure of the tropical elliptic curve, and its lattice length is
the tropical j-invariant. These results are due to Vigeland [25] and Katz-Markwig-Markwig [15].

Elliptic curves are Calabi-Yau varieties. In higher dimensions, these varieties occupy a prominent
place at the crossroads of algebraic geometry and theoretical physics. Following Batyrev [3], reflexive
polytopes capture the combinatorial essence of mirror symmetry for Calabi-Yau hypersurfaces.

The title of this paper refers to the bounded region of a smooth tropical quartic surface. We
call such a region a K3 polytope. The name is motivated by the fact that a smooth quartic surface
in P3 is a K3 surface, that is, a non-singular surface with trivial canonical bundle and trivial first
cohomology group. In short, our topic is the above Exercise 13, but now in one higher dimension.

The study of smooth tropical quartic surfaces and K3 polytopes is dual to the study of regular
unimodular triangulations of a Newton polytope with one interior lattice point and contained in the
scaled tetrahedron 4∆3. A naive approach to our problem is to compute the secondary fan of 4∆3

and then to filter out the unimodular triangulations. However, this is not feasible with the current
state of software and algorithms. The established tools are gfan [10] and TOPCOM [22]. They use
different algorithms to pass through cones of the secondary fan: gfan computes a new weight by
traversing a facet, while TOPCOM exploits bistellar flips. Jordan, Joswig and Kastner [4] introduced
a new algorithm, called down-flip reverse search, for parallel enumeration of regular triangulations.
Their implementation mptopcom generated results that are out of reach for gfan and TOPCOM.
We refer to the summary in [4, Table 3]. They also report that the number of regular triangulations
of 4∆3 appears to be “out of reach for the current implementations, including mptopcom”.

Our first main result is a practical algorithm for classifying K3 polytopes. We use this to establish

Theorem 1. The following result concerns tropical quartic surfaces that have a bounded region:

(a) There are 356 461 Newton polytopes, up to symmetry, arising from tropical quartic surfaces.
(b) Among these Newton polytopes, precisely 15 139 arise from smooth tropical quartic surfaces.
(c) The f-vectors of K3 polytopes are the triples

(
v, 32v,

1
2v + 2

)
where v ∈ {4, 6, . . . , 50}∪{54, 56, 64}.

(d) There are 36 297 333 K3 polytopes with v ≤ 30 vertices. They are dual to the regular unimodular
central triangulations of the Newton polytopes in (b) that have normalized volume at most 30.
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Our most relevant objects will be defined in Section 2. Our computational proof of Theorem 1,
presented in Section 3, proceeds as follows. First of all, we list all lattice subpolytopes of 4∆3 that
have an interior lattice point (Proposition 6). These are the Newton polytopes of tropical quartic
surfaces that have a bounded region. If the quartic is also smooth, then that Newton polytope is
a reflexive polytope (Proposition 7). The census of these polytopes is given in Corollary 8. By
looking at the triangulations of these reflexive polytopes, we generate K3 polytopes. Specifically, the
combinatorics of a K3 polytope is uniquely determined by the central part of a regular unimodular
triangulation of 4∆3. We implemented a script to list such triangulations in polymake and TOPCOM.
Table 1 summarizes the classification results we obtained. Full details and the source code for our
computations are available at https://github.com/gabrieleballetti/k3_polytopes.

The bounded region of a tropical plane cubic identifies the j-invariant and hence represents the
curve in its tropical moduli space. Our ultimate hope for K3 polytopes is that these can play a
similar role for tropical moduli of quartic surfaces. Our second result is a first step towards that
goal. We study quartic surfaces whose Newton polytope is one of the reflexive polytopes on our list.

The classical path towards moduli spaces is Geometric Invariant Theory [21]. In this setting one
asks, for a given surface, whether it is stable, semistable or unstable. We prove that all our quartic
surfaces are stable, provided their coefficients are generic relative to the reflexive Newton polytope.

Theorem 2. Let f ∈ C[x, y, z, w] be a homogeneous quartic whose Newton polytope arises from a
smooth tropical surface, as in Theorem 1 (b). Then the quartic surface V (f) in P3 is stable.

The proof rests on Shah’s characterization [23] of stable quartic surfaces in terms of their
singularities. Our analysis of the singularities exploits results of Arnol′d [1] and Mumford [20]. The
latter allows us to check the stability only on reflexive polytopes that are minimal up to inclusion.

Acknowledgements. We are very grateful to Michael Joswig for several inspiring discussions. We
also thank Matteo Gallet, Lars Kastner and Benjamin Schröter for help with this project. GB was
partially supported by the Vetenskapsr̊adet grant NT:2014-3991. MP and BS acknowledge support
by the Einstein Foundation Berlin, which also funded a visit of GB to TU Berlin.

2. An Invitation to K3 polytopes

We begin with some basics from tropical geometry [19]. In the tropical semiring
(
R∪{∞},⊕,�

)
,

arithmetic is defined by a⊕ b = min{a, b} and a� b = a+ b. Consider a tropical polynomial

f(x1, . . . , xn) =
⊕

v=(v1,...,vn)∈Zn

cv � x�v11 � · · · � x�vnn =
⊕
v∈Zn

cvx
v.

The tropical hypersurface T (f) is defined as the set of points in Rn at which the minimum among
the quantities cv + v · x is attained at least twice. The Newton polytope of f is the lattice polytope

Newt(f) = conv
{
v : cv 6=∞

}
.

Let A = Newt(f) ∩ Zn be its set of lattice points. The coefficients of f induce a regular subdivision
T of A by taking the convex hull in Rn+1 of the points (v, cv) and projecting the lower faces to
Newt(f). The coefficient vectors inducing the same subdivision T form a relatively open polyhedral
cone in R|A|, called the secondary cone. The tropical hypersurface T (f) is dual to the subdivision T ,
and they determine each other [19, Proposition 3.1.6]. We say that T (f) is smooth if the subdivision
is a unimodular triangulation, i.e., all simplices have normalized volume one.

The closures in Rn of the connected components in the complement of a tropical hypersurface
are called the regions of T (f). These regions are convex polyhedra, either bounded or unbounded.

Consider the (n+ 1)-st dilation of the standard n-dimensional simplex,

(n+ 1)∆n = conv
{

(0, 0, . . . , 0), (n+1, 0, . . . , 0), (0, n+1, . . . , 0), (0, 0, . . . , n+1)
}
.

It has a unique interior lattice point p = (1, 1, . . . , 1). Let T (f) be a smooth tropical hypersurface
in Rn of degree n+ 1. The Newton polytope Newt(f) is contained in (n+ 1)∆n. If the interior of
Newt(f) contains the point p, then the hypersurface T (f) has a bounded region in its complement.

The case n = 2 corresponds to cubic curves [15, 25]. We are here interested in the case n = 3:

f(x, y, z) =
⊕

i+j+k≤4

cijk � x�i � y�j � z�k.

https://github.com/gabrieleballetti/k3_polytopes
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Suppose that the tropical quartic surface T (f) is smooth. The Newton polytope Newt(f) is a
lattice polytope inside 4∆3. We assume that it has p in its interior, so there is a bounded region.

Definition 3. A 3-dimensional polytope P is a K3 polytope if it is the closure of the unique
bounded region in the complement of a smooth tropical quartic surface in R3.

Every K3 polytope has a rational normal fan. This fan is simplicial because T (f) is smooth.
Hence a K3 polytope is always simple, i.e. each of its vertices is contained in exactly three edges.

Example 4. The following tropical polynomial defines a smooth tropical quartic surface:

f(x, y, z) = 5(x4 ⊕ y4 ⊕ z4)⊕ 3(x3y ⊕ x3z ⊕ xy3 ⊕ y3z ⊕ xz3 ⊕ yz3)⊕ 2(x2y2 ⊕ x2z2 ⊕ y2z2)
⊕ 0(x2yz ⊕ xy2z ⊕ xyz2)⊕ 3(x3 ⊕ y3 ⊕ z3)⊕ 0(x2y ⊕ x2z ⊕ xy2 ⊕ y2z ⊕ xz2 ⊕ yz2)

⊕ 2(x2 ⊕ y2 ⊕ z2) ⊕ 0(xy ⊕ xz ⊕ yz) ⊕ 3(x⊕ y ⊕ z)⊕ (−9xyz)⊕ 5.

Note that Newt(f) = 4∆3 has p in its interior. The surface T (f) is shown on the right in Figure 1,
and its K3 polytope is shown on the left in Figure 1. It is simple and has the f-vector (64, 96, 34).

Figure 1. The K3 polytope (left) arising from a tropical quartic surface (right).

3. The hunt for K3 polytopes

We are interested in classifying K3 polytopes. They are dual to regular unimodular triangulations
of their Newton polytope. We first focus on the latter objects. For basic definitions on triangulations
we refer to [5]. By a triangulation of a lattice polytope P we mean a triangulation of the point
configuration given by the lattice points in P . Unimodular triangulations are particular fine
triangulations, i.e. they do not admit any proper refinement. Borrowing some vocabulary from toric
geometers, we say that a lattice polytope is canonical if it has just one lattice point in its relative
interior. This corresponds to a toric Fano variety with at worst canonical singularities. Note that
we do not assume that the interior point is the origin of the lattice, as it is usually assumed in the
literature. If P is a canonical polytope with interior lattice point p and T is a triangulation of P ,
then the central part of T consists of the simplices of T whose union with p is a simplex in T . This
is also known as the star of p in T . If T coincides with its central part, then we call T central.

Any triangulation T of P induces a triangulation {S ∩ ∂P : S ∈ T } of the boundary ∂P of P .
Conversely, any triangulation τ of ∂P induces a central triangulation {S ∪ {p} : S ∈ τ} of P . Thus,

(1) {T : T is a central triangulation of P} ←→ {τ : τ is a triangulation of ∂P}
is a bijection. The K3 polytope of f is determined by the central part of a regular unimodular
triangulation of Newt(f). We thus ignore all triangulations that are not central. Indeed, the central
part of such a triangulation will arise as a central triangulation of a smaller Newton polytope.

In the following subsections we construct and classify K3 polytopes as follows:
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3.1 using polymake [7] we list all lattice polytopes P ⊆ 4∆3 with p ∈ int(P ) as above;
3.2 we extract a sublist of those polytopes that admit a unimodular central triangulation;
3.3 using TOPCOM [22] we explore the regular unimodular central triangulations of the polytopes

in the sublist above; each such triangulation determines one K3 polytope;
3.4 the possible f-vectors of a K3 polytopes are described.

3.1. Newton polytopes of tropical quartic surfaces. One can find the set S of all canonical
Newton polytopes of quartic surfaces by starting from 4∆3 and progressively removing a vertex.

Algorithm 5.
INPUT: The polytope 4∆3.
OUTPUT: The set S of all 3-dimensional canonical subpolytopes of 4∆3.

1. Set S := {4∆3}.
2. For P ∈ S and each vertex v of P , let Pv := conv(P ∩ Z3\{v}). If p ∈ int(Pv), add Pv to S.
3. If at least one polytope has been added to S in the last step then repeat step 2.

Our implementation of Algorithm 5 in polymake leads to the following result.

Proposition 6. Up to symmetry there are 356 461 canonical Newton polytopes of quartic surfaces.

This proves Theorem 1 (a). Kasprzyk [14] classified all 3-dimensional canonical polytopes, so one
could have attempted to deduce Proposition 6 from his list. Kasprzyk’s classification is up to affine
unimodular equivalence, while for us it is preferable to work modulo the symmetric group S4. For
this reason it is easier to generate all canonical subpolytopes of 4∆3 from scratch, via Algorithm 5.

3.2. Reflexive Newton polytopes. We next incorporate the requirement that the tropical quartic
surface is smooth. Let P ⊂ Rd be a d-dimensional lattice polytope with k facets. We can write

P = {x ∈ Rd : Ax ≥ c},
where A is k × d-matrix whose rows are primitive vectors in Zd and c ∈ Zk. Suppose that P has
one interior lattice point p. We say that P is reflexive if Ap− c = 1, where 1 is the all-one vector
(1, . . . , 1)t. Reflexive polytopes are those canonical polytopes where p is in an adjacent lattice
hyperplane to any facet. They were introduced by Batyrev [3] within mirror symmetry and by
Hibi [9] within combinatorics. The polar of a reflexive polytope is again a lattice polytope, and it
corresponds to a Gorenstein toric Fano variety. If P is reflexive, then the bijection (1) restricts to a
bijection on unimodular triangulations. Every fine triangulation of ∂P is unimodular, since this
holds for lattice polygons. By putting these facts together, we obtain the following characterization.

Proposition 7. A 3-dimensional canonical lattice polytope P is reflexive if and only if every central
fine triangulation of P is unimodular.

5 10 15 20 25 30 35

4

9

14

number of lattice points

n
u
m
b
er

o
f
fa
ce
ts

1

300

595

Table 1. Reflexive 3-polytopes in 4∆3 by number of facets and lattice points.

We use Proposition 6 to extract the list of 3-dimensional reflexive subpolytopes of 4∆3. Note that
reflexive polytopes up to dimension 4 are fully classified in [16, 17], but, as in the previous subsection,
we work only up to S4-symmetry, and it is easier to obtain complete lists from Proposition 6.
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Corollary 8. Up to S4-symmetry there are 15 139 reflexive 3-polytopes which are contained in 4∆3.

The distribution of our reflexive 3-polytopes by their number of lattice points and their number
of facets is shown in a heat map in Table 1. This computation proves Theorem 1 (b).

3.3. Regular triangulations. We now apply TOPCOM [22] to the list of polytopes in Corollary 8.
Let P be one of them. We first compute all unimodular central triangulations of P , and then we
filter out the non-regular ones using TOPCOM. One can find all unimodular central triangulations
of P simply by iterating over all unimodular triangulations of each facet of P . The union of such
triangulations is a unimodular triangulation of ∂P which induces a unimodular central triangulation
of P . For each such triangulation of P , we then check for regularity with polymake.

The number of regular triangulations appears to grow exponentially with the number of lattice
points (see Table 2), making this classification infeasible. We computed all regular unimodular
central triangulations for more than 96% of the total number of reflexive polytopes of Corollary 8.
We stopped after this, as a complete classification is out of reach. In total we calculated 36 297 333
different regular unimodular central triangulations, each of them corresponding to a K3 polytope.

5 10 15 20 25 30 35

4

9

14

number of lattice points

n
u
m
b
er

of
fa
ce
ts

1

103

106

Table 2. The average number of regular unimodular central triangulations of
the reflexive polytopes represented by each of the points of Table 1.

Table 2 indicates the number of regular unimodular central triangulations of our reflexive polytopes
with up to 18 lattice points. This constraint is equivalent to having normalized volume at most 30.
From this we obtain part (d) of Theorem 1, here restated as follows:

Corollary 9. The reflexive polytopes of volume ≤ 30 in Corollary 8 admit a total of 36 297 333
regular unimodular central triangulations. Every K3 polytope with ≤ 30 vertices arises from one of
these. In the table below, these K3 polytopes are counted according to their numbers of vertices:

# vertices # triangulations # vertices # triangulations
4 9 18 106 049
6 117 20 266 206
8 561 22 634 228
10 2 065 24 1 582 156
12 6 261 26 3 564 613
14 16 523 28 9 341 111
16 42 780 30 20 734 654

We also examined the different combinatorial types of K3 polytopes with up to 18 vertices:

Corollary 10. The K3 polytopes with most 18 vertices have 764 distinct vertex-facet incidence
graphs. Their number, for each of the possible numbers of vertices, is listed in the table below:

# vertices # incidence garphs # vertices # incidence graphs
4 1 12 14
6 1 14 44
8 2 16 158
10 5 18 539
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3.4. f-vectors of K3 polytopes. The f-vector of a 3-dimensional polytope is the triple f =
(f0, f1, f2) where f0, f1 and f2 are the numbers of its vertices, edges and facets. Euler’s relation
states that f0 − f1 + f2 = 2. If the polytope is simple then 3f0 = 2f1. This holds for K3 polytopes.

The f-vector of a K3 polytope depends only on the polytope P inside 4∆3 from which it originates.
Namely, fi counts the (3− i)-dimensional interior simplices in a unimodular triangulation of P .

Lemma 11. Consider the K3 polytope dual to a regular unimodular central triangulation of a
relexive polyope P in 4∆3. The entries of the f-vector of this K3 polytope are

f0 = Vol(P ), f1 =
3

2
Vol(P ), f2 =

1

2
Vol(P ) + 2.

In particular, every K3 polytope has an even number of vertices.

Theorem 1 (c) now follows from Lemma 11 together with the census in Corollary 8. Table 3
comprises all the possible f-vectors that a K3 polytope can have. Each f-vector appears together
with the number #P of relexive polytopes it arises from. These numbers add up to 15 139.

f-vector # P f-vector # P f-vector # P
(4, 6, 4) 9 (22, 33, 13) 1248 (40, 60, 22) 27
(6, 9, 5) 102 (24, 36, 14) 922 (42, 63, 23) 18
(8, 12, 6) 412 (26, 39, 15) 628 (44, 66, 24) 7
(10, 15, 7) 959 (28, 42, 16) 465 (46, 69, 25) 9
(12, 18, 8) 1642 (30, 45, 17) 295 (48, 72, 26) 2
(14, 21, 9) 2083 (32, 48, 18) 203 (50, 75, 27) 2
(16, 24, 10) 2194 (34, 51, 19) 128 (54, 81, 29) 1
(18, 27, 11) 1997 (36, 54, 20) 85 (56, 84, 30) 1
(20, 30, 12) 1646 (38, 57, 21) 53 (64, 96, 34) 1

Table 3. Admissible f-vectors of K3 polytopes.

4. Singularities of quartic surfaces

We now leave the tropical setting, and we consider (the moduli space of) quartic surfaces in
complex projective space. We shall examine our reflexive polytopes through the lens of Geometric
Invariant Theory [21]. We study general quartic surfaces with a fixed reflexive Newton polytope.

Consider the space HS4,3 = C[x, y, z, w]4 of all quartic polynomials with complex coefficients,

f(x, y, z, w) =
∑

i+j+k≤4

cijkx
iyjzkw4−i−j−k.

The variety V (f) defined by such a polynomial is a quartic surface in P3. We write HS4,3 for the
34-dimensional projective space P(HS4,3) of all quartic surfaces. The special linear group SL(4) acts
on HS4,3, and on the associated polynomial ring C[HS4,3], generated by 35 unknowns C = (cijk).

Definition 12. Let F (C) be a polynomial in the C-algebra C[HS4,3]. Then F (C) is called invariant

if g.F (C) = F (C) for all g ∈ SL(4). We denote by C[HS4,3]SL(4) the subalgebra of invariants.

The moduli space of quartic surfaces in P3 is the projective variety determined by this invariant
ring, namely Proj

(
C[HS4,3]SL(4)

)
. Following Mumford [20, 21], we give the following definitions.

Definition 13. Let f be an element of HS4,3. We say that

• f is stable if the orbit O(f)SL(4) is closed and the stabilizer stab(f) is finite;
• f is semistable if the closure of the orbit O(f)SL(4) does not contain the point 0;
• f is unstable if the closure of the orbit O(f)SL(4) contains the point 0.

We use the notation HSs4,3 and HSss4,3 to denote the set of stable and semistable points respectively.
The GIT quotient of the action of SL(4) is defined on the semistable locus HSss4,3, as follows:

ϕ : HSss4,3 → HS4,3//SL(4) := Proj
(
C[HS4,3]SL(4)

)
.

The image ϕ(HSs4,3) of the stable locus is the moduli space of stable quartic surfaces in P3.
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Determining stable and semistable points is therefore a key step in the construction of moduli
spaces via Geometric Invariant Theory. This task is deeply connected with the study of singularities.
For example, it is known that all nonsingular hypersurfaces in Pn of degree d ≥ 2 (respectively
d ≥ 3) are semistable (stable). This follows from the fact that the discriminant is invariant under
the action of SL(n+ 1). Another classical result states that a plane cubic (d = 3, n = 2) is unstable
if the curve has a triple point, a cusp or two components tangent to a point. If it has an ordinary
double point then it is semistable but not stable. The right diagram in Figure 2 indicates this.

In [23], Shah describes whether a quartic surface is stable, semistable or unstable by looking at
the type of singularities it has. As it is summarized in [20], a quartic surface is stable if and only if

• its singular locus contains at most rational double points, and ordinary double curves
possibly with pinch points, but not double lines;
• in the case when the singular locus is reducible, there is no plane as component, and there

are no multiple components.

The Hilbert-Mumford Criterion [21, Theorem 2.1] states that, after a linear change of coordinates,
the stability of a surface f in HS4,3 can be checked by looking at its Newton polytope Newt(f).
Following [20, §1.14], we must look at the planes that pass through the point p = (1, 1, 1, 1).

Theorem 14 (Mumford [20]). A point f in HS4,3 is stable if and only if, for every choice of
coordinates, and for all planes H through p, each open halfspace of H contains a monomial of f .

In other words, f is stable if, for every choice of coordinates and all planes H, the Newton
polytope Newt(f) does not entirely lie in one of the two closed halfspaces defined by H. This
situation is depicted for plane cubics in Figure 2. As a consequence we have the following corollary.

Figure 2. The Newton polytopes of a stable and of a semistable cubic plane curve.

Corollary 15. Let f, g ∈ HS4,3 such that Newt(f) ⊆ Newt(g). If f is stable and g has general
coefficients then g is stable.

This allows us to restrict our interest to polytopes that satisfy the following minimality condition.
A reflexive lattice polytope P contained in 4∆3 is called minimal if it does not properly contain any
reflexive polytopes. We note that this notion cannot be extended naturally to canonical polytopes,
as there are reflexive polytopes which are minimal, but properly contain canonical polytopes. In
this sense, the above definition differs from the notion of minimality used by Kasprzyk in [14].

5. Minimal polytopes

In this section we classify minimal polytopes and we examine their combinatorial properties. The
stability of their quartic surfaces will be established in the next section. From the list of reflexive
polytopes in Corollary 8, we can extract all those that are minimal up to inclusion.

Proposition 16. Up to the S4-action, there are precisely 115 minimal reflexive polytopes in 4∆3.
Among these, 29 admit two regular unimodular central triangulations, and 86 admit just one.

We next describe the combinatorics of all K3 polytopes that arise from the triangulations in
Proposition 16. Each minimal polytope contributes one or two K3 polytopes to the following census.
We obtain six combinatorial types of K3 polytopes, each displayed by a vertex-facet incidence list.
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• K3 polytopes from minimal polytopes with 5 lattice points: Each of the four tetrahedra in
the triangulation shares a facet with the others. The K3 polytope is a tetrahedron:

{0 1 2} {1 2 3} {0 1 3} {0 2 3}.

• K3 polytopes from minimal polytopes with 6 lattice points: The minimal polytope is a
bipyramid. The K3 polytope is a triangular prism. It has the f-vector (6, 9, 5):

{2 3 4 5} {0 1 4 5} {0 1 2 3} {1 3 5} {0 2 4}

• K3 polytopes from minimal polytopes with 7 lattice points: The minimal polytope is an
octahedron. The K3 polytope has the f-vector (8, 12, 6). Combinatorially, it is a cube:

{4 5 6 7} {2 3 6 7} {1 3 5 7} {0 2 4 6} {0 1 4 5} {0 1 2 3}

• K3 polytopes from minimal polytopes with 8 lattice points: These K3 polytopes are pentagonal
prisms, so they have the f-vector (10, 15, 7):

{0 1 2 3 4} {0 4 5 9} {3 4 8 9} {2 3 7 8} {5 6 7 8 9} {0 1 5 6} {1 2 6 7}

• K3 polytopes from minimal polytopes with 9 lattice points: These have f-vector (12, 18, 8),
and they come in two combinatorial types. The first is a hexagonal prism:

{1 2 4 7 8 10} {0 1 6 7} {0 1 2 3} {4 5 10 11} {0 3 5 6 9 11} {8 9 10 11} {2 3 4 5} {6 7 8 9}.

The second (lower right in Figure 3) has two triangles and two heptagons among its facets:

{4 5 6 7 8 9 11} {2 3 4 8} {0 1 3 4} {8 9 10 11} {1 2 3 5 7 8 11} {2 10 11} {0 1 5} {6 7 8 9}.

Figure 3. K3 polytopes obtained from triangulations of minimal polytopes.

6. Stability of quartic surfaces

In this section we prove Theorem 2. By Corollary 15, it suffices to consider quartics f such
that P = Newt(f) is one of the 115 minimal polytopes in Proposition 16. We write f as a
homogeneous polynomial in four variables x, y, z, w. The monomials in f correspond to the points in
P ∩ Z4 = {m1,m2, . . . ,mr}. One of these is p = (1, 1, 1, 1). The r monomials span a linear system
inside HS4,3 = H0

(
P3,OP3(4)

)
, and we assume that f is a general element of this linear system.

By Bertini’s Theorem, the surface V (f) is smooth outside the base locus V (m1,m2, . . . ,mr) in P3.
We begin with the following remark. Suppose u is a point of the base locus which is singular of

multiplicity at least s+ 1 in all divisors V (mi), and u has multiplicity exactly s+ 1 for at least one
divisor. Then u is a singular point of multiplicity exactly s+ 1 for the general element of the linear
system. More precisely, let u ∈ P3 such that u ∈ V (mi) for every i ∈ {1, 2, . . . , r} and such that

∂|α|mi

∂αx
(u) = 0 for every multindex α such that |α| ≤ s, and every i ∈ {1, 2, . . . , r},
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∂|α|mj

∂αx
(u) 6= 0 for at least one multindex α with |α| = s+ 1, and j ∈ {1, 2, . . . , r}.

The set of all (λ1, λ2, . . . , λr) ∈ Cr such that the point u is singular of multiplicity s + 1 in the
surface f = λ1m1 + · · ·+ λrmr is a Zariski open dense subset of Cr.

In what follows we establish the stability of quartics whose Newton polytope is minimal. For
achieving this we will not use Theorem 14, for which a condition on the Newton polytope needs
to be checked for an arbitrary change of coordinates. Instead, we implement a computer-assisted
verification capable of dealing with polynomials with general coefficients. Specifically, we first
compute the singular points of the base locus defined by the monomials m1, . . . ,mr of each minimal
polytope. This does not depend on the choice of coefficients, which are only assumed to be nonzero.
Then we move the coordinates to those of an affine neighborhood chosen such that the singular point
is the origin. There, we perform changes of coordinates of the polynomials to reduce the singularity
to a normal form and compare it with the ones characterized by Arnol′d in [1]. These changes of
coordinates are at worst polynomial, and finite in number. We keep track of what happens to the
coefficient of each monomial during this procedure to make sure that no cancellation takes place.
The finiteness of this process preserves the genericity assumption on the polynomial. We use this to
deduce the stability of generic polynomials arising from minimal polytopes, and, consequently, from
all the 15 139 reflexive polytopes of Corollary 8. This is done working with polynomials having
general coefficients, so the stability is checked in a dense open subset of the space of coefficients.

Our implementation is done in Python. It takes care of performing all the calculations and manip-
ulating polynomials having one of the 115 minimal polytopes as Newton polytope. Our source code
is available on GitHub at https://github.com/gabrieleballetti/singularities.

In order to work with general coefficients, the coefficients of the monomials are defined to be the
variables of a new polynomial ring. For a fixed minimal polytope P , let f = λ1m1 + · · ·+ λrmr

be the general polynomial with P ∩ Z4 = {m1, . . . ,mr}. Our script regards f as an element of
Q[λ1, . . . , λr][x, y, z, w]. Using Q as a base field is sufficient as all manipulations we perform involve
rational numbers. The coefficient vectors can be thought throughout as general elements in (C∗)r.
For some manipulations, we might require that the coefficients of some monomials do not vanish.
These will be expressions in Q[λ1, . . . , λr], so our results are valid over a Zariski dense subset in Cr.

For each minimal polytope P , we compute the singular points of the base locus V (m1, . . . ,mr).
We find that each singular point is a coordinate point. Using the initial remark above, we conclude
that this is also the singular locus of the surface V (f) where f = λ1m1 + · · ·+ λrmr is generic.

Proposition 17. Given a minimal polytope P , the general surface with Newton polytope P has
isolated singularities. All singular points are coordinate points and they have multiplicity two.

In order to conclude the stability of the surfaces, this information is not enough. We need to
understand whether they are rational double points or not, according to Shah’s classification [23].

In what follows we shall use the classification of hypersurface singularities due to Arnol′d [1, 2].
We also refer to the monograph by Greuel et al. [8]. For our quartic surfaces, the singular points are

(2) [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], or [0, 0, 0, 1] in P3.

When analyzing a singular point u, we always work in an affine neighborhood, where u is the origin.
We do this by dehomogenizing f with respect to x, y, z or w. After relabeling the variables, we
regard our polynomials as elements in the ring R = C{x, y, z} of convergent power series. This ring
is local, with maximal ideal m = 〈x, y, z〉. If f ∈ mr, then f has a zero of order r at the origin.

Definition 18. Let f, g ∈ R. We define the k-jet Jk f as the image of f in R/mk. We say that f
is right equivalent to g, denoted f ∼ g, if there exists an automorphism ϕ of R such that ϕ(f) = g.
We say that f is right k-determined if f ∼ h for each h ∈ R with Jk f = Jk h.

The following classical result gives a sufficient condition for a singularity to be k-determined.
For a reference see [8, Theorem 2.23] or [1, Lemma 3.1–3.2].

Theorem 19 (Arnol′d’s Finite Determinacy Theorem). Let f ∈ m. Then f is right k-determined if

mk+1 ⊆ m2 ·
〈∂f
∂x
,
∂f

∂y
,
∂f

∂z

〉
.

Arnol′d [1] classifies the normal forms of a function in the neighborhood of a simple critical point:

https://github.com/gabrieleballetti/singularities
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Theorem 20 (Arnol′d). Each rational double point is right equivalent to one of the following
normal forms: (These are indexed by root systems, and we refer to them in Table 4.)

Ak: x2 + y2 + zk+1,
Dk: x2 + y2z + zk−1,
E6: x2 + y3 + z4,
E7: x2 + y3 + yz3,
E8: x2 + y3 + z5.

The normal forms Ak, Dk, E6, E7 and E8 are respectively k + 1, k − 1, 4, 4 and 5-determined.

We prove Theorem 2 by checking that each quartic f with general coefficients λ1, . . . , λr as
above, with Newton polytope from Proposition 16, is right equivalent to one the forms listed above.

We next recall the splitting lemma, also known as generalized Morse lemma; see [1, Lemma 4.1]
and [8, Theorem 2.47]. We quickly sketch the proof given in [8], as the method will be essential in
our algorithm for determining stability.

Theorem 21 (Arnol′d’s Splitting Lemma). Let f ∈ m2 ⊂ C{x1, x2, . . . , xn}. If the Hessian matrix
H(f)(0) at the point 0 has rank k, then

f ∼ x21 + x22 + · · ·+ x2k + g(xk+1, . . . , xn),

with g ∈ m3, uniquely determined up to right equivalence.

Proof. By Jacobi’s Theorem, we can assume that the 2-jet of f is J2 f = x21 + x22 + · · ·+ x2k. Hence

f = x21 + x22 + · · ·+ x2k + f≥3(xk+1, . . . , xn) +

k∑
i=1

xi gi(x1, x2, . . . , xn),

with f≥3 ∈ m3 and gi ∈ m2. We apply the following change of coordinates:

xi 7→ xi − 1
2gi(x1, x2, . . . , xn) for 1 ≤ i ≤ k,

xi 7→ xi for i > k.

We get

f = x21 + x22 + · · ·+ x2k + f≥3(xk+1, . . . , xn) + f≥4(xk+1, . . . , xn) +

k∑
i=1

xi hi(x1, x2, . . . , xn),

with f≥4 ∈ m4 and hi ∈ m3. The statement follows by recursively repeating the same argument. �

In order to classify the singularities of our surfaces, we begin by looking at the 2-jets of the
polynomials that define them. In particular we look at the rank of their Hessian. We always begin
by applying a linear transformation which transforms the 2-jet in the form described by Jacobi’s
Theorem. We split the rest of the discussion in three parts, one for each possible value of the rank.

6.1. Rank 3. After the transformation in the Splitting Lemma, the 2-jet of f has the form

J2f = x2 + y2 + z2.

Since the normal form A1 is 2-determined, we conclude that this singularity is of type A1.

6.2. Rank 2. Similarly, if the rank is 2, we transform the 2-jet to the form

J2 f = x2 + y2.

If the part of degree 3 contains the monomial z3, by the (k+ 1)-determinacy of Ak, we can conclude
that the singularity is of type A2. Instead, if f contains the monomials z4, xz2 or yz2, then, when
applying the transformation (6), we obtain the monomial z4. Here we deduce that the singularity
is of type A3. Finally, if f contains xz3 or yz3, then we obtain z6 and the singularity is of type A5.



K3 POLYTOPES AND THEIR QUARTIC SURFACES 11

type tot. type tot. type tot.
A1 22 D4 14 E6 22
A2 32 D5 26 E7 9
A3 127 D6 12
A5 58 D7 10

Table 4. List of singularities of quartic surfaces arising from the 115 minimal
polytopes in Proposition 16. For each type, we list the total number of occurrences.

6.3. Rank 1. We transform the 2-jet to the rank one quadric J2 f = x2. Then we apply the
transformation (6) in the proof of the Splitting Lemma. The result is

f = x2 + f3(y, z) + f4(y, z) + f5(y, z) + xg(x, y, z).

Here, each term in g has degree at least 3 and fi is a polynomial of degree i that depends only
on the variables y and z. Iterating again the steps in the proof of the Splitting Lemma will not
change the fi. In fact, it will only produce monomials in the variables y and z of higher degree. Let
f ′ = f3(y, z) + f4(y, z) + f5(y, z). From [8, Proposition 2.50], we know that there exists a linear
automorphism that transforms the polynomial f3 into one of the following three:

(i) yz(y + z),
(ii) y2z,
(iii) y3.

The first two cases give singularities of type Dk. Case (iii) gives singularities of type E6, E7 or E8.

case (i) Thanks to [8, Theorem 2.51] we can conclude that the singularity is of type D4.
case (ii) We want to argue as in the proof of [8, Theorem 2.51], using the fact that Dk is (k − 1)-

determined. We write the 4-jet of f ′ as follows, with α, β ∈ C and h ∈ m2:

J4 f
′ = y2z + f4(y, z) = x2 + y2z + αz4 + βyz3 + y2 · h(y, z),

If α 6= 0 then we argue as in the proof of [8, Theorem 2.51] and conclude that the type is
D5. If α = 0, by running through our list of polynomials, we find that they all contain
either yz3 or yz4. In the first situation, after applying the Tschirnhaus transformation
described in the proof of the aforementioned theorem, we get a singularity of type D6:

J5 f
′ = y2z + α′z5.

In the second situation, if yz4 occurs, again after applying a Tschirnhaus transformation,

J6 f
′ = y2z + α′z6.

From this form of the 6-jet we can conclude that the singularity is of type D7.
case (iii) We will use [8, Theorem 2.53]. In this case, the 4-jet of f ′ equals

J4 f
′ = y3 + f4(y, z).

Examining our list of polynomials, we find that f always contains the monomials y2z, yz2

or yz3, so condition (b) of [8, Theorem 2.53] is satisfied. Therefore we can conclude that
the singularity is of type E6, E7 or E8. In order to determine the type we write f as

f ′ = y3 + αz4 + βyz3 + y2 · h(y, z),

with h ∈ m2. By arguing as in the proof of the mentioned theorem, we can conclude that if
α 6= 0, then the singularity is E6, while if α = 0, the singularity is E7.

Proof of Theorem 2. We apply the analysis described above to each of the 115 minimal polytopes in
Proposition 16, and then to each coordinate point (2) that is singular in the base locus V (m1, . . . ,mr).
Each singularity turns out to be a rational double point. Our algorithm determines the singularity
type according to Arnol′d’s classification in Theorem 20. The results are summarized in Table 4.

We next apply Shah’s characterization of stable quartic surfaces [20, 23], as presented in Section 4.
Since all singularities are rational double points, we conclude that all our 115 quartic surfaces are
stable in the sense of Geometric Invariant Theory. Theorem 2 now follows from Corollary 15. �
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[21] D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und

ihrer Grenzgebiete (2), vol. 34, Springer-Verlag, Berlin, 1994.

[22] J. Rambau, TOPCOM: Triangulations of point configurations and oriented matroids, Mathematical Software—
ICMS 2002 (Arjeh M. Cohen, Xiao-Shan Gao, and Nobuki Takayama, eds.), World Scientific, 2002, pp. 330–340.

[23] J. Shah, Degenerations of K3 surfaces of degree 4, Trans. Amer. Math. Soc. 263 (1981) 271–308.

[24] N. M. Tran, Enumerating polytropes, J. Combin. Theory Ser. A 151 (2017) 1–22.
[25] M. Vigeland, The group law on a tropical elliptic curve, Math. Scand. 104 (2009) 188–204.

(G. Balletti) Stockholm University, Sweden

E-mail address: balletti@math.su.se

(M. Panizzut) TU Berlin, Germany

E-mail address: panizzut@math.tu-berlin.de

(B. Sturmfels) MPI Leipzig, Germany and UC Berkeley, USA

E-mail address: bernd@mis.mpg.de

http://arxiv.org/abs/1709.04746
http://home.imf.au.dk/jensen/software/gfan/gfan.html
http://home.imf.au.dk/jensen/software/gfan/gfan.html

	1. Introduction
	Acknowledgements

	2. An Invitation to K3 polytopes
	3. The hunt for K3 polytopes
	3.1. Newton polytopes of tropical quartic surfaces
	3.2. Reflexive Newton polytopes
	3.3. Regular triangulations
	3.4. f-vectors of K3 polytopes

	4. Singularities of quartic surfaces
	5. Minimal polytopes
	6. Stability of quartic surfaces
	6.1. Rank 3
	6.2. Rank 2
	6.3. Rank 1

	References

