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GEOMETRIC ANALYSIS OF A MIXED ELLIPTIC-PARABOLIC CONFORMALLY
INVARIANT BOUNDARY VALUE PROBLEM

JÜRGEN JOST, LEI LIU, AND MIAOMIAO ZHU

Abstract. In this paper, we show the existence of Dirac-harmonic maps from a compact spin Rie-
mann surface with smooth boundary to a general compact Riemannian manifold via a heat flow
method when a Dirichlet boundary condition is imposed on the map and a chiral boundary condition
on the spinor. Technically, we solve a new elliptic-parabolic system arising in geometric analysis
that is motivated by the nonlinear supersymmetric sigma model of quantum field theory. The cor-
responding action functional involves two fields, a map from a Riemann surface into a Riemannian
manifold and a spinor coupled to the map. The first field has to satisfy a second order elliptic sys-
tem, which we turn into a parabolic system so as to apply heat flow techniques. The spinor, however,
satisfies a first order Dirac type equation. We carry that equation as a nonlinear constraint along the
flow. In order to solve this system, we adapt the idea of Sacks-Uhlenbeck to raise the integrand of
the harmonic map action to a power α > 1; the solutions of the resulting Euler-Lagrange equations
are called α-Dirac harmonic maps. Because of the (unchanged) spinor action, the analysis is more
difficult than that of Sacks-Uhlenbeck. Nevertheless, we can carry out the limit α ↘ 1 to solve our
original problem.

Then we develop a general spectrum of methods (Pohozaev identity, three-circle method, blow-
up analysis, energy identities, energy decay estimates etc.) for the compactness problem of the
space of α-Dirac harmonic maps and for a further analysis of the limiting problem. We study the
refined blow-up behaviour and asymptotic analysis for a sequence of α-Dirac harmonic maps from
a compact Riemann surface with smooth boundary into a general compact Riemannian manifold
with uniformly bounded energy. We prove generalized energy identities for both the map part and
the spinor part. We also show that the map parts of the α-Dirac-harmonic necks converge to some
geodesics on the target manifold. Moreover, we give a length formula for the limiting geodesic
near a blow-up point. In particular, if the target manifold has a positive lower bound on the Ricci
curvature or has a finite fundamental group and the sequence of α-Dirac harmonic maps has bounded
Morse index, then the limit of the map part of the necks consists of geodesics of finite length which
ensures the energy identities hold. In technical terms, these results are achieved by establishing a
new decay estimate of the tangential energies of both the map part and the spinor part as well as a
new decay estimate for the energy of the spinor as α↘ 1.
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1. Introduction

Perhaps the most important core of geometric analysis consists of problems that are invariant
under a non-compact group of local symmetries. Such problems, in particular, do not satisfy a
Palais-Smale condition. Therefore, the standard methods of the calculus of variations and non-
linear PDEs usually don’t apply. The Palais-Smale condition for such problems, however, only
barely fails, and more precisely, we are typically looking at limit cases of this condition. And this
then requires a sophisticated asymptotic analysis that controls the formation of singularities and
characterizes or even classifies the possible singularities. While the techniques employed need
to carefully exploit the particular structure at hand, the techniques developed for one particular
problem sometimes generalize to others, because the fundamental phenomena involving loss of
compactness, blow-up of solutions, energy identities, are similar.

Such a precise asymptotic analysis is necessary to understand the space of solutions and to lay
the ground for developing a Morse type theory for such variational problems, for instance. In
this regard, after impressive advances over several decades in systematically investigating such
problems that are invariant under a non-compact group of symmetries, programs of developing a
Morse theory in such a setting are currently pursued for minimal hypersurfaces by Marques-Neves
e.g. [39, 40, 41, 42, 43], with Sharp’s recent analysis [57] being an important ingredient, and for
minimal surfaces via a viscosity method by Rivière and his collaborators e.g. [51, 52, 53, 54]. For
older results that developed a careful asymptotic analysis for a Morse type theory, see for instance
[62, 15, 44, 47, 28].

Such advanced theories cannot succeed by analytical tools alone. They require a very precise
and careful utilization of the geometric and algebraic structure of the particular setting. On the
other hand, however, the approach should not be too specialized but rather also bring out some
more general features, and in particular, develop methods of a more general scope. For this reason,
we have systematically turned to another area, quantum field theory, where variational problems
with noncompact symmetries naturally arise that have a rich and subtle geometric and algebraic
structure and that have lead to spectacular mathematical insights. As an example of such a problem,
motivated by the nonlinear supersymmetric sigma model [14], Dirac-harmonic maps are defined
as solutions of a system consisting of a harmonic map type equation coupled with a Dirac type
equation. They were introduced and first studied in [8, 9]. They combine and generalize harmonic
maps and harmonic spinors, both of which have been widely and extensively studied, but only
separately and not coupled as here.

The resulting variational problems therefore combines also essentially all the difficulties that one
has to face in geometric analysis when dealing with problems with a noncompact local symmetry
group. And since these difficulties are intertwined, they cannot be solved with the individual tools
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that have been developed for each of them in isolation, but we also need to extend the existing
methods substantially. In some sense, this is the culmination of the work of ourselves and many
colleagues over several years. Let us first informally describe the difficulties and point out our
strategies to overcome them. We consider the functional

L(φ, ψ) =
1
2

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ?T N

)
dM,(1.1)

where φ is a map from a Riemann surface M (with or without boundary) into a Riemannian man-
ifold N, and ψ is a spinor along that map. /D is a nonlinear Dirac operator that depends on φ, and
through φ also on the geometry of N. Therefore, the two fields φ and ψ are coupled. While the pre-
cise notation will be explained shortly, hopefully this already suffices to understand the essential
structure of the problem. So, here are the difficulties and how we address them:

(1) The functional is conformally invariant, and since the conformal group is noncompact, the
Palais-Smale condition is violated. To handle this, there exist of course well established
schemes. In particular, following Sacks-Uhlenbeck [55], we can modify (1.1) as

(1.2) Lα(φ, ψ) =
1
2

∫
M

{
(1 + |dφ|2)α + 〈ψ, /Dψ〉

}
dM,

for α > 1. This functional then satisfies Palais-Smale, and we can study the limit α↘ 1.
(2) However, neither (1.1) nor (1.2) is bounded from below, because of the spinor term which is

strongly indefinite, as the spectrum of the Dirac operator is neither bounded from below nor
from above. Therefore, classical variational methods (like direct minimization procedure or
minimax scheme) don’t apply to get the existence of critical points of (1.2), let alone (1.1).
This is one crucial difference to the harmonic map problem studied by Sacks-Uhlenbeck
[55] and many others, and therefore, we need to develop new tools.

(3) An alternative to variational methods are heat flow methods. But here the difficulty is
that while the Euler-Lagrange equation for φ is second order and can therefore be easily
parabolized, the equation for ψ is first order (it looks simple, /Dψ = 0, but this is nonlinear,
because the operator depends on φ, as already pointed out).

(4) Our solution consists in considering a compact domain surface with smooth boundary and
studying an elliptic-parabolic system under appropriate boundary conditions that carries
the nonlinear Dirac equation along as an elliptic side constraint for a harmonic type flow.
To control that elliptic constraint, sharp estimates for solutions of Dirac equations under
appropriate boundary conditions are needed. For the functional (1.1), the heat flow ap-
proach was carried out in [12, 26] and some partial existence results were obtained. In
this paper, we solve the general existence problem. Our new scheme is to first investigate
the heat flow for the functional (1.2) and get the existence of α-Dirac-harmonic maps for
α > 1 and close to 1, then we derive the existence of Dirac-harmonic maps by letting
α ↘ 1. Our scheme of converting the existence problem for a coupled system consisting
of a second- and a first-order elliptic part into an elliptic-parabolic system should also be
useful for other variational problems with a first-order side condition, like the conformality
relations for minimal surfaces.

(5) In order to then control the limit α ↘ 1, we need to carry out a blow-up analysis, be-
cause singularities may form and so-called bubbles may split off in the limit, see Section 5.
While for the original Sacks-Uhlenbeck scheme for harmonic maps, this procedure is well
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established, here we encounter new difficulties due to the limiting behavior of the spinor
part.

(6) Also, the bubbles that split off need not be connected to the remaining solution. In order
to show that in the limit, energy is only carried by that remaining solution and the bubbles,
we need to control the necks that connect the forming bubbles with the rest for α > 1,
but disappear in the limit α ↘ 1. In fact, the precise analysis reveals that they converge to
geodesic lines and a length formula for these limit curves can be derived. When such a geo-
desic is of finite length, it appears as the image of a cylinder of infinite length and therefore
carries no energy. To show this, we want to use techniques established for harmonic maps,
more precisely the three-circle method [59]. In our situation, we first need to derive a new
Pohozaev identity. Incidentally, the validity of a Pohozaev identity, rather than the stronger
condition of conformal invariance, is what is equivalent to the removability of singularities
in geometric variational problems [29], and therefore, our emphasis on such an identity fits
well into the general scheme.

(7) Nevertheless, we cannot directly use a technique like the three-circle method as in [50] (or
alternative methods developed for harmonic map type problems), because in that scheme,
we would have to deal with two additional terms that are not uniformly bounded in L2

(in fact they are not uniformly bounded in Lp for any 1 < p < 2). In technical terms,
to overcome this difficulty, we need to develop a new three-circle method for a class of
integro-differential systems and control the decay of the tangential energies of both the
map part and the spinor part on the neck domain as α ↘ 1. This is perhaps the main
technical achievement of the present paper. In fact, these decay estimates are new even for
α-harmonic maps, that is, in the absence of the spinor part. In our case, however, we also
need to obtain a new estimate for the energy decay of the spinor.

(8) Finally, we establish that under general and natural assumptions (lower Ricci bound on the
target or finite fundamental group on the target and bounded variational Morse index of
our subsequence of maps and spinors), the neck geodesics are indeed of finite length and
hence do not carry energy in the limit.

Since we are using a heat flow approach to get the critical points of the functional Lα in (1.2),
namely, α-Dirac-harmonic maps, in general, it is not clear whether the Morse index of the sequence
(φα, ψα) is bounded or not. Therefore, to understand the compactness of the spaces of critical points
as α approaches to 1, it is necessary for us to study the refined blow-up behaviour and asymptotic
analysis for a general sequence of α-Dirac-harmonic maps as described in Theorems 2.6 and 2.8,
which illustrate all possible blow-up phenomena that can occur.

On the other hand, we expect that a Floer type variational scheme should apply to derive the
existence of critical points of the functional Lα in (1.2) and we could then also expect a sequence of
α-Dirac-harmonic maps (φα, ψα) with bounded Morse index, at which point our results in Theorem
2.12 can be applied. Remarkably, in the definitions of Morse index for Dirac-harmonic maps and
α-Dirac-harmonic maps underlying Theorem 2.12, see Definition (2.10) and (2.11), it suffices to
consider variations of the map part to get powerful convergence results. Assuming that this index
is finite, as we do, is a very natural assumption. In contrast, if we define the Morse index by
considering variations of both the map and the spinor, then it is likely that the Morse index is
infinite, because the Dirac operator has infinitely many negative eigenvalues.
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The rest of this paper is organized as follows. In Section 2, we introduce our functional in precise
technical terms and state and explain our main results. In Section 3, we derive the Euler-Lagrange
equations for α-Dirac-harmonic maps and prove the key estimate (2.6). In Section 4, we establish
some properties of α-Dirac-harmonic map flow and obtain the global existence Theorem 2.1. In
Section 5, we study the blow-up behaviour for a sequence of α-Dirac-harmonic maps. Theorem
2.2, Theorem 2.4 and Theorem 2.5 are proved in this section. In Section 6, we shall then prove
some basic lemmas for α-Dirac-harmonic maps which will be used in this paper, such as the small
energy regularity, the energy gap theorem and a new Pohozaev type identity. Then we establish
the three-circle theorem for a system of integro-differential equations which can be applied to the
α-Dirac-harmonic map system. In Section 7, we prove Theorem 2.6 about generalized energy
identities. The limit behavior of α-Dirac-harmonic necks is studied in Section 8 and Theorem 2.8
is proved in this section. In Section 9, we derive the second variational formula for the functionals
Lα and L and then prove Theorem 2.12.

2. Summary and main results

Let M be a compact Riemann surface with smooth boundary ∂M, equipped with a Riemannian
metric g and with a fixed spin structure, ΣM be the spinor bundle over M and 〈·, ·〉ΣM be the natural
Hermitian inner product on ΣM. Choosing a local orthonormal basis eγ, γ = 1, 2 on M, the usual
Dirac operator is defined as /∂g := eγ · ∇eγ , where ∇ is the spin connection on ΣM and · is the
Clifford multiplication. This multiplication is skew-adjoint:

〈X · ψ, ϕ〉ΣM = −〈ψ, X · ϕ〉ΣM

for any X ∈ Γ(T M), ψ, ϕ ∈ Γ(ΣM).
Let φ be a smooth map from M to another compact Riemannian manifold (N, h) with dimension

n ≥ 2. Denote φ∗T N the pull-back bundle of T N by φ and then we get the twisted bundle ΣM ⊗
φ∗T N. There is a natural metric 〈·, ·〉ΣM⊗φ∗T N on ΣM ⊗ φ∗T N induced from the metrics on ΣM and
φ∗T N. Likewise, there is a natural connection ∇̃ on ΣM ⊗ φ∗T N induced from the connections on
ΣM and φ∗T N. Let ψ be a section of the bundle ΣM ⊗φ∗T N. In local coordinates, it can be written
as

ψ = ψi ⊗ ∂yi(φ),

where each ψi is a usual spinor on M and ∂yi is the nature local basis on N. Then ∇̃ becomes

∇̃ψ = ∇ψi ⊗ ∂yi(φ) + (Γi
jk∇φ

j)ψk ⊗ ∂yi(φ),(2.1)

where Γi
jk are the Christoffel symbols of the Levi-Civita connection of N. The Dirac operator along

the map φ is defined by
/Dψ := eγ · ∇̃eγψ.

We consider the following functional

L(φ, ψ) =
1
2

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ?T N

)
dM,

where dM = dvolg.
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The functional L(φ, ψ) is conformally invariant, see [9]. That is, for any conformal diffeomor-
phism f : M → M, setting

φ̃ = φ ◦ f and ψ̃ = λ−1/2ψ ◦ f ,

where the positive function λ > 0 is the conformal factor of the conformal map f , i.e. f ∗g = λ2g,
there holds L(φ̃, ψ̃) = L(φ, ψ). Critical points (φ, ψ) are called Dirac-harmonic maps from M to N.

The Euler-Lagrange equations of the functional L are(
∆gφ

i + Γi
jkg

αβφ j
αφ

k
β

) ∂

∂yi (φ(x)) = R(φ, ψ),(2.2)

/Dψ = 0,(2.3)

where ∆g := 1
√

g
∂
∂xβ (
√

ggβγ ∂
∂xγ ) is the Laplacian operator with respect to the Riemannian metric g,

R(φ, ψ) is defined by

R(φ, ψ) =
1
2

Rm
li j(φ(x))〈ψi,∇φl · ψ j〉

∂

∂ym (φ(x)).

Here Rm
li j is the Riemann curvature tensor of the target manifold (N, h).

By Nash’s embedding theorem, we embed N isometrically into some RK . Then, critical points
(φ, ψ) of the functional L satisfy the following extrinsic Euler-Lagrange equations

∆gφ = A(φ)(dφ, dφ) + Re(P(A(dφ(eγ), eγ · ψ);ψ)),(2.4)
/∂gψ = A(dφ(eγ), eγ · ψ),(2.5)

where /∂g is the usual Dirac operator on (M, g), A(·, ·) is the second fundamental form of N in RK ,
and

A(dφ(eγ), eγ · ψ) := (∇φi · ψ j) ⊗ A(∂yi , ∂y j),

Re(P(A(dφ(eγ), eγ · ψ);ψ)) := P(A(∂yl , ∂y j); ∂yi)Re(〈ψi, dφl · ψ j〉).

Here P(ξ; ·) denotes the shape operator, defined by 〈P(ξ; X),Y〉 = 〈A(X,Y), ξ〉 for X,Y ∈ Γ(T N),
and Re(z) denotes the real part of z ∈ C.

For p > 1, we denote

W1,p(M,N) :=
{
φ ∈ W1,p(M,RK) | φ(x) ∈ N, a.e. x ∈ M

}
,

W1,p(ΣM ⊗ φ∗T N) :=
{
ψ ∈ W1,p(ΣM ⊗ φ∗RK) | ψ(x) is along the map φ, a.e. x ∈ M

}
.

Here ψ ∈ Γ(ΣM ⊗ φ∗T N) is along the map φ and should be understood as a K-tuple of spinors
(ψ1, ..., ψK) satisfying

K∑
i=1

νiψ
i(x) = 0

for any normal vector ν = (ν1, ..., νK) ∈ RK at φ(x). For more details and background on Dirac-
harmonic maps, we refer to [8, 9, 66, 11, 58].

The blow-up theory for sequences of Dirac-harmonic maps, including the energy identity and
the no neck property, i.e., bubble tree convergence, was explored in [8, 65, 38]. For the existence
results of Dirac-harmonic maps, since the functional L(φ, ψ) does not have a lower bound due to
the fact that the second term in the functional L does not have a fixed sign, classical variational
methods developed for harmonic maps cannot be applied directly and hence the problem becomes
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very difficult. Up to now, there are only few results in this regard. See [10] for some attempt via
the maximum principle, where some partial existence results were obtained. See [5] for a regular-
ized heat flow approach for regularized Dirac-harmonic maps, which is different from ours to be
introduced in a moment. See [1, 13] for some existence results of uncoupled Dirac-harmonic maps
(here uncoupled means that the map part is harmonic) based on index theory and the Riemann-
Roch theorem. For explicit constructions of solutions, see the recent [2].

In order to study the general existence problem, a heat flow approach for Dirac-harmonic maps
from spin Riemannian manifolds with boundary was introduced in [12], and the short time exis-
tence of a solution was shown. (Recently, Wittmann [63] could show short time existence also in
the case of a closed domain under certain conditions on the initial data.) Furthermore, the existence
of a global weak solution to this flow in dimension two under some boundary-initial constraint was
obtained in [26]. By studying the limit behaviour as time approaches infinity, they proved the
existence results of Dirac-harmonic maps with Dirichlet-chiral boundary condition in a given ho-
motopy class under the boundary-initial constraint. A technical difficulty stems from the fact that
along the Dirac-harmonic map flow considered in [26], we only have that the energy of the map φ
is uniformly bounded, i.e.,

E(φ(·, t)) =

∫
M
|∇φ(·, t)|2dM ≤ C < +∞.

However, the Dirac type equation (2.5) for the spinor ψ does not control the energy of the spinor
field

E(ψ(·, t)) =

∫
M
|ψ(·, t)|4dM,

as time approaches the first singular time T1 > 0, even for the L1-norm. This is the main difficulty
and why we need to impose the additional boundary-initial constraint in [26] in order to obtain a
global weak solution to the Dirac-harmonic map flow and show some existence results by letting
time goes to infinity. The general question, however, is

Question I: Does there exist a Dirac-harmonic map from a compact Riemann surface with
boundary to a compact Riemannian manifold with general Dirichlet-chiral boundary data?

In this paper, we give an affirmative answer to this question. To achieve this, we shall utilize a
new parabolic-elliptic system.

In our new approach, one crucial observation is the following key estimate for the Dirac operator
/D along a given map (see Lemma 3.4):

Key estimate: Let φ ∈ W1,q(M,N) for some q > 2 and ψ ∈ W1,p(M,ΣM ⊗ φ∗T N) for some
1 < p < 2, then there holds

(2.6) ‖ψ‖W1,p(M) ≤ C(p,M,N, ‖∇φ‖Lq(M))(‖ /Dψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M)).

Here B is the chiral boundary operator for spinors along a map, see (2.13) for more details.

There are two key properties of the above estimate. The first one is that the positive constant
C = C(p,M,N, ‖∇φ‖Lq(M)) > 0 depends on the norm ‖∇φ‖Lq(M) with q > 2 of the map φ, which was
observed in [12]. The second one is that the two numbers q > 2 and 1 < p < 2 are independent of
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each other. This fact was not exploited in [12] while it will play an important role in this paper. In
fact, such kind of estimate holds true for more general Dirac type systems, see Lemma 3.3.

Since the key estimate for the Dirac operator /D along a map in (2.6) requires that the map φ lies
in W1,q(M,N) for some q > 2, inspired by this fact, we introduce the following functional

(2.7) Lα(φ, ψ) =
1
2

∫
M

{
(1 + |dφ|2)α + 〈ψ, /Dψ〉

}
dM,

where α > 1 is a constant. Critical points (φα, ψα) of Lα are called α-Dirac-harmonic maps from
M to N. When the spinor field is vanishing, the above functional reduces to Sacks-Uhlenbeck’s
approximation for harmonic maps in [55].

By a direct computation, critical points (φα, ψα) of the functional Lα satisfy the following Euler-
Lagrange equations (see Lemma 3.2)

∆gφ = −(α − 1)
∇g|∇gφ|

2∇gφ

1 + |∇gφ|2
+ A(dφ, dφ) +

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
α(1 + |∇gφ|2)α−1 ,(2.8)

/∂gψ = A(dφ(eγ), eγ · ψ).(2.9)

One crucial step in our scheme is to get the existence result of Dirac-harmonic maps through
studying the limit behaviour of a sequence of α-Dirac-harmonic maps as α↘ 1 1. If there exists a
sequence of α-Dirac-harmonic maps (φα, ψα) with

Eα(φα) :=
∫

M
(1 + |dφα|2)αdM ≤ Λ < ∞,

then the key estimate (2.6) implies the following uniform control of the spinors:

‖ψα‖W1,p(M) with 1 < p < 2, is uniformly bounded as α↘ 1.

Thus, we can do the blow-up analysis and we will show that the weak limit is just the desired
Dirac-harmonic map. This is better than for the Dirac-harmonic map flow [12, 26], and so, here
lies the advantage of considering α-Dirac-harmonic maps.

The remaining task is to show the existence of such an α-Dirac-harmonic map sequence. This is
in fact one key step in our new scheme. Since the second term of the functional Lα is not bounded
from below, the classical Ljusternik-Schnirelman theory may not be applied here to obtain critical
points. Therefore, we need to develop a new method to proceed with our scheme.

In the present work, we shall consider the following new parabolic-elliptic system:

∂tφ = ∆gφ + (α − 1)
∇g|∇gφ|

2∇gφ

1 + |∇gφ|2
− A(dφ, dφ) −

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
α(1 + |∇gφ|2)α−1 ,(2.10)

/∂gψ = A(dφ(eγ), eγ · ψ),(2.11)

1Here and in the sequel, for simplicity of notations, when talking about a sequence of (φα, ψα) for α↘ 1, we mean
the sequence of (φαk , ψαk ) for a given sequence of αk ↘ 1.
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with the following boundary-initial data:
φ(x, t) = ϕ(x), on ∂M × [0,T ];
φ(x, 0) = φ0(x), in M;
Bψ(x, t) = Bψ0(x), on ∂M × [0,T ];
φ0(x) = ϕ(x), on ∂M.

(2.12)

where B = B± is the chiral boundary operator defined as follows:

B± : L2(∂M,ΣM ⊗ φ∗T N|∂M)→ L2(∂M,ΣM ⊗ φ∗T N|∂M)

ψ 7→
1
2

(
Id ± −→n ·G

)
· ψ,(2.13)

where −→n is the outward unit normal vector field on ∂M, G = ie1 · e2 is the chiral operator defined
using a local orthonormal frame {eγ}2γ=1 on M and satisfying:

G2 = Id, G∗ = G, ∇G = 0, G · X = −X ·G,(2.14)

for any X ∈ Γ(T M). Recall that the chiral boundary operator for usual spinors ψ ∈ ΣM was first
introduced by Gibbons-Hawking-Horowitz-Perry [19] to study positive mass theorems for black
holes via Witten’s approach through the spinor equation. Here, we consider its extension to spinors
along a map, ψ ∈ ΣM ⊗ φ∗T N. In fact, one can also take B to be the MIT bag boundary operator
B±MIT as considered in [12]. See e.g. [22, 4] for more detailed discussions on these boundary
operators. For convenience, in the sequel, we shall only consider the case of chiral boundary
conditions and omit the discussion of other case of boundary conditions, as the arguments for them
are the same. We call (2.10)-(2.11) the α-Dirac-harmonic map flow.

Now, we state our first main result about the global existence of the α-Dirac-harmonic map flow
with a Dirichlet-chiral boundary condition.

Theorem 2.1. Let M be a compact spin Riemann surface with smooth boundary ∂M and let N ⊂
RK be a compact Riemannian manifold. Suppose

1 < α < 1 + min{ε1, ε2}

where ε1 and ε2 are the positive constants in Theorem 4.1 and Lemma 4.4 depending only on M, N.
Then for any φ0 ∈ C2+λ(M,N), ϕ ∈ C2+λ(∂M,N), ψ0 ∈ C1+λ(∂M,ΣM ⊗ ϕ∗T N) where 0 < λ < 1 is
a constant, there exists a unique global solution

φ ∈ C2+λ,1+ λ
2

loc (M × [0,∞),N)

and
ψ ∈ Cλ, λ2

loc (M × [0,∞),ΣM ⊗ φ∗T N) ∩ L∞([0,∞), ‖ψ(·, t)‖C1+λ(M))
to the problem (2.10)-(2.11) with boundary-initial data (2.12), satisfying

Eα(φ(t)) ≤ Eα(φ0) + 2
√

2 ‖Bψ0‖
2
L2(∂M)

and
‖ψ(·, t)‖W1,p(M) ≤ C(p,M,N, Eα(φ0) + 2

√
2 ‖Bψ0‖

2
L2(∂M)),

where 1 < p < 2.
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Moreover, there exist a time sequence ti → ∞ and an α-Dirac-harmonic map

(φα, ψα) ∈ C2+λ(M,N) ×C1+λ(M,ΣM ⊗ φ∗αT N)

with the boundary data
(φα,Bψα)|∂M = (ϕ,Bψ0),

such that (φ(·, ti), ψ(·, ti)) converges to (φα, ψα) in C2(M) ×C1(M).

We remark that the harmonic map flow from a closed Riemann surface has been solved in [60],
and from a compact Riemann surface with smooth boundary in [21, 6]. When the spinor field is
vanishing and the domain is a closed surface, our flow reduces to the one in [23].

By Theorem 2.1, for any α > 1 sufficiently close to 1, there exists an α-Dirac-harmonic
map (φα, ψα) ∈ C2+λ(M,N) × C1+λ(M,ΣM ⊗ φ∗αT N) with the Dirichlet-chiral boundary condition
(φα,Bψα)|∂M = (ϕ,Bψ0) and with the properties

(2.15) Eα(φα) ≤ Eα(φ0) + 2
√

2 ‖Bψ0‖
2
L2(∂M)

and

(2.16) ‖ψα‖W1,p(M) ≤ C(p,M,N, Eα(φ0) + 2
√

2 ‖Bψ0‖
2
L2(∂M)),

for any 1 < p < 2. With this in hand, we can prove the existence of Dirac-harmonic maps by using
the blow-up analysis.

Generally, we have the following existence and concentration compactness theorem of Dirac-
harmonic maps corresponding to the previous Question I.

Theorem 2.2. Let (φα, ψα) : M → N be a sequence of α-Dirac-harmonic maps with Dirichlet-
chiral boundary condition (φα,Bψα)|∂M = (ϕ,Bψ0) and with uniformly bounded energy

Eα(φα) + ‖ψα‖L4(M) ≤ Λ.

Denoting E(φα; Ω) :=
∫

Ω
|∇φα|

2dvolg, Ω ⊂ M and the energy concentration set

S :=
{
x ∈ M | lim inf

α→1
E(φα; BM

r (x)) ≥
ε0

2
f or all r > 0

}
,

where ε0 is the positive constant in Lemma 5.1 and Lemma 5.2, BM
r (x) is the geodesic ball in M

with center point x and radius r, then S is a finite set. Moreover, after selection of a subsequence
of (φα, ψα) (without changing notation), there exists a Dirac-harmonic map

(φ, ψ) ∈ C2+λ(M,N) ×C1+λ(M,ΣM ⊗ φ∗T N)

with Dirichlet-chiral boundary data (φ,Bψ)|∂M = (ϕ,Bψ0), such that

(φα, ψα)→ (φ, ψ) in C2
loc(M \ S) ×C1

loc(M \ S).

Remark 2.3. Since we can impose nontrivial boundary conditions for both the map and the spinor,
we shall obtain Dirac-harmonic maps with nontrivial map part and nontrivial spinor part.
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Moreover, we show that at each singular point x0, that is, when the energy of the map con-
centrates, after suitable rescaling, a bubble, namely, a nontrivial Dirac-harmonic sphere splits off.
Here, however, we cannot employ the usual bubbling argument [8] for a blow-up sequence of
Dirac-harmonic maps which are conformally invariant, since α-Dirac-harmonic maps are not con-
formally invariant. We need to develop a different type of rescaling argument by adding a new
rescaling factor λα−1

α , with λα > 0 being the blow-up radii, to the spinor part. Therefore, the
blow-up analysis for α-Dirac-harmonic maps is more difficult and complicated than the case of
Dirac-harmonic maps in [8, 65, 38]. To achieve this, we shall introduce the notation of λ-general
α-Dirac-harmonic maps and develop the appropriate analytical background, see Section 5.

Theorem 2.4. Under the same assumption as in Theorem 2.2, suppose x0 ∈ S is an energy con-
centration point, i.e.,

(2.17) lim inf
α→1

E(φα; BM
r (x0)) ≥

ε0

2
f or all r > 0.

Then,
(1) if x0 ∈ M \ ∂M, there exist a subsequence of (φα, ψα) (still denoted by (φα, ψα)) and se-

quences xα → x0, λα → 0 and a nontrivial Dirac-harmonic map (σ, ξ) : R2 → N, such
that as α→ 1,2(

φα(xα + λαx), λα−1
α

√
λαψα(xα + λαx)

)
→ (σ(x), ξ(x)) in C1

loc(R
2) ×C0

loc(R
2).

(σ, ξ) has finite energy and conformally extends to a smooth Dirac-harmonic sphere 3.

(2) if x0 ∈ ∂M, then dist(xα,∂M)
λα

→ ∞ and the same bubbling statement as in (1) holds.

So far, we have answered the Question I about the existence of Dirac-harmonic maps with
given Dirichlet-chiral boundary data. It is natural to ask whether the map component φ of the limit
Dirac-harmonic map stays in the same homotopy class as φ0.

Here we give a positive answer under some natural condition as in the harmonic map case. To
see this, recall that we can actually choose a sequence of α-Dirac-harmonic maps satisfying the
properties (2.15)-(2.16), for any fixed 1 < p < 2. Therefore we are in a better situation than the
case of p = 4

3 considered in Theorem 2.2. In fact, we can take some p such that 4
3 < p < 2, then

we can show that the bubbles in Theorem 2.4 are just nontrivial harmonic spheres, i.e., harmonic
maps from S 2 to N. Thus, we have the following stronger version of the existence result

Theorem 2.5. Let M be a compact spin Riemann surface with smooth boundary ∂M and let N ⊂
RK be a compact Riemannian manifold. For any φ0 ∈ C2+λ(M,N), ϕ ∈ C2+λ(∂M,N), ψ0 ∈

C1+λ(∂M,ΣM ⊗ ϕ∗T N) where φ0|∂M = ϕ and 0 < λ < 1 is a constant, if (N, h) dose not admit any
nontrivial harmonic sphere, then there exists a Dirac-harmonic map

(φ, ψ) ∈ C2+λ(M,N) ×C1+λ(M,ΣM ⊗ φ∗T N)

2Compared to the usual rescaling, i.e.
(
φα(xα + λαx),

√
λαψα(xα + λαx)

)
, for a blow-up sequence of Dirac-harmonic

maps given in [8], here the additional factor λα−1
α comes from the fact that α-Dirac-harmonic maps are not conformally

invariant, see Section 5.
3Here we have used the fact the unique spin structure on S2 \ {p} extends to the unique spin structure on S2 and so

does the associated spinor bundle.
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with Dirichlet-chiral boundary data (φ,Bψ)|∂M = (ϕ,Bψ0) such that the map component φ is in the
same homotopy class as φ0.

To understand the compactness of the spaces of α-Dirac-harmonic maps as α ↘ 1, we shall
carry out the most difficult step and study the finer blow-up behavior and asymptotic analysis for a
general sequence of α-Dirac-harmonic maps near the interior blow-up points. More precisely, we
shall investigate the following

Question II: Do some generalized energy identities hold for α-Dirac-harmonic maps? What
are the limit curves of the α-Dirac-harmonic necks? How to compute the lengths of these
limit neck curves?

In this paper, we will establish the generalized energy identities for α-Dirac-harmonic maps,
including both the map part and the spinor part. We will show that the limit of the necks are
geodesics on the target manifold and derive the length formula for these neck geodesics. Moreover,
we find some natural geometric and topological conditions on the target manifold which ensures
that energy identities hold true.

Since in general, multiple bubbles can split off at a blow-up point and the functional Lα is not
conformally invariant, to better understand the multiple bubbling behavior for α-Dirac-harmonic
maps, we shall consider the following more general α-energy functionals4

Lα,σα(φ, ψ) =
1
2

∫
D1(0)

{
(σα + |∇gαφ|

2)α + σ1−α
α 〈ψ, /Dψ〉

}
dvolgα , α > 1,

where gα = eϕα
(
(dx1)2 + (dx2)2

)
, ϕα ∈ C∞(D1), ϕα(0) = 0, ϕα converges smoothly to ϕ0 ∈ C∞(D1)

and σα > 0 is a constant.
Critical points of Lα,σα are called general α-Dirac-harmonic maps, and they satisfy the following

Euler-Lagrange equations

∆gαφ = −(α − 1)
∇gα |∇gαφ|

2∇gαφ

σα + |∇gαφ|
2 + A(dφ, dφ) +

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
α(σα + |∇gαφ|

2)α−1 ,(2.18)

/∂gαψ = A(dφ(eγ), eγ · ψ).(2.19)

4One can check that a rescaled α-Dirac-harmonic map, e.g.
(
φα(λαx), λα−1

α

√
λαψα(rαx)

)
is locally a critical point of

this functional, we refer to Section 5 for details. One can also see the beginning of Section 2 in [35] for the analogous
case of α-harmonic maps.



ELLIPTIC-PARABOLIC BOUNDARY VALUE PROBLEM 13

As (2.19) is conformally invariant, it is easy to see that the equations (2.18) and (2.19) are
equivalent to 5

(2.20) ∆φ + (α − 1)
∇|∇gαφ|

2∇φ

σα + |∇gαφ|
2 − A(φ)(dφ, dφ) −

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
α(σα + |∇gαφ|

2)α−1 = 0,

div
{
(σα + |∇gαφ|

2)α−1∇φ
}
− (σα + |∇gαφ|

2)α−1A(φ)(dφ, dφ)

−
1
α

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
= 0(2.21)

and
/∂ψ = A(dφ(eγ), eγ · ψ),(2.22)

where ∆ = ∂2

(∂x1)2 + ∂2

(∂x2)2 , ∇ and /∂ are operators corresponding to the standard Euclidean metric. {eγ}
is a local orthonormal basis with respect to the standard Euclidean metric which is different from
those in (2.18) and (2.19), for simplicity, we shall use the same notations. Although originally
we consider a sequence of general α-Dirac-harmonic maps defined on a domain surface with a
general Riemannian metric ((2.18) and (2.19)), however, as we will see later in this paper, the
analysis involved in our problem can be localized and reduced in such a way that it is sufficient for
us to work with solutions of the equivalent equations (2.20), (2.21) and (2.22) defined on a standard
Euclidean domain, where gα can be viewed as a smooth function on (D1(0), (dx1)2 + (dx2)2).

Before presenting our further results, we shall first give a general description of the blow-up
procedure and the bubbling phenomena for general α-Dirac-harmonic maps. We follow the general
scheme as in the case of α-harmonic maps [55, 35].

Denote

Eα,σα(φ) =

∫
M

(σα + |dφ|2)αdM, E(φ) =

∫
M
|dφ|2dM, E(ψ) =

∫
M
|ψ|4dM,

Eα(φ) =

∫
M

(1 + |dφ|2)αdM, E(φ, ψ) =

∫
M

(|dφ|2 + |ψ|4)dM.

Consider a sequence of general α-Dirac-harmonic maps {(φα, ψα)} : M → N with Dirichlet-
chiral boundary data (φα,Bψα)|M = (ϕ,Bψ0), with σα > 0 satisfying

0 < β0 ≤ lim inf
α↘1

σα−1
α ≤ 1

for some β0 > 0 and with uniformly bounded energy

Eα,σα(φα) + E(ψα) ≤ Λ.

From Theorem 2.2 and Theorem 2.4, we know that, by passing to a subsequence, (φα, ψα) con-
verges strongly to some limit Dirac-harmonic map (φ, ψ) : M → N with Dirichlet-chiral boundary

5More precisely, (φ ◦ Id, e
ϕα
2 ψ ◦ Id) satisfies (2.20)-(2.22), where Id : (D1(0), (dx1)2 + (dx2)2) → (D1(0), gα) is a

conformal map defined by Id(x) = x. For simplicity of notation, we identify (φ◦ Id, e
ϕα
2 ψ◦ Id) with (φ, ψ) in the sequel.

Although the energy
∫

M(1+ |dφ|2)αdM is not conformally invariant for α > 1, the limit limα↘1
∫

M

(
(1 + |dφ|2)α − 1

)
dM

is conformally invariant. Combining this with the fact that
∫

M |ψ|
4dM is conformally invariant, this identification is

indeed legitimate for the questions we are concerned with in this paper.
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data (φ,Bψ)|M = (ϕ,Bψ0) away from at most finitely many blow-up points S = {xi}
I
i=1 as α ↘ 1.

Moreover, we show that at each blow-up point, that is, when the energy of the map concentrates,
after suitable rescaling, a bubble, namely, a nontrivial Dirac-harmonic sphere splits off.

By the classical interior blow-up theory for α-harmonic maps [55, 35, 47], it is well known that
at most finitely many bubbles can occur at a given interior blow-up point and the necks connecting
the weak limit map and the bubbles or one bubble to the next all converge to geodesics, i.e.,
a bubble tree construction holds. Here, we shall show that this phenomenon also holds for a
sequence of general α-Dirac-harmonic maps which blows up at an interior point. See Section 7 for
the constructions of the first and the second bubble (if multiple bubbles occur at the blow-up point).
The remaining bubbles (if any) can be constructed by a standard induction argument similar to the
cases of harmonic map type problems considered in [35, 7]. For different schemes of constructing
a bubble tree for harmonic maps and α-harmonic maps, we refer to [48, 47].

More precisely, for a fixed blow-up point xi, 1 ≤ i ≤ I, we may assume there are ki bubbles
occurring at this point, i.e. there are a sequence of points {xi j

α }, j = 1, ..., ki, and a sequence of
positive numbers {λi j

α } with xi j
α → xi, λ

i j
α → 0 as α ↘ 1 and one of the following two alternatives

holds true: if 1 ≤ j1, j2 ≤ ki and j1 , j2,

(A1) for any fixed R > 0, BM
Rλi j1

α

(xi j1
α ) ∩ BM

Rλi j2
α

(xi j2
α ) = ∅, whenever α is sufficiently close to 1.

(A2) λ
i j1
α

λ
i j2
α

+
λ

i j2
α

λ
i j1
α

= ∞, as α↘ 1.

Moreover, the following two rescaled fields6

σi j
α := φα(xi j

α + λi j
α x), ξi j

α := (λi j
α )α−1

√
λ

i j
α ψα(xi j

α + λi j
α x)

converge in Ck
loc(R

2\{pi j
1 , ..., pi j

s j}) to a nontrivial Dirac-harmonic map (σi j, ξi j) defined on R2, which
can be conformally extended to a nontrivial Dirac-harmonic map from S2. See the beginning of
Section 7.

Now, we define two types of quantities:

(2.23) µi j = lim inf
α↘1

(λi j
α )2−2α, νi j = lim inf

α↘1
(λi j

α )−
√
α−1.

It is easy to see that νi j ∈ [1,∞]. Also, we can see that there exists a positive constant µmax ≥ 1
such that µi j ∈ [1, µmax]. In fact, for simplicity of notations, we may assume there is only one
blow-up point denoted by x ∈ M, and there are k1 bubbles occurring at this point, i.e., there are
a sequence of points {x j

α} and a sequence of positive numbers {λ j
α}, 1 ≤ j ≤ k1 satisfying (A1)

or (A2). Without loss of generality, we assume λ1
α is the smallest one, i.e. λ1

α

λ
j
α

≤ C < ∞ for all
j = 2, ..., k1, as α↘ 1. We just need to show that

µ1 = lim inf
α↘1

(λ1
α)2−2α ≤ µmax.

6Let us explain the transformation of the spinor. It can be seen as a linear transformation (i.e. λα−1
α ψα) composed

with a conformal transformation (i.e.
√
λαψα(xα +λαx)). Since α-Dirac-harmonic maps are not conformally invariant,

in order to get unified bubble equations, we need an additional factor λα−1
α in the scale.
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By applying the blow-up argument for general α-Dirac-harmonic maps (see Sec. 5 and Sec. 7),
we have:

(σ1
α, ξ

1
α) :=

(
φα(x1

α + λ1
αx), (λ1

α)α−1
√
λ1
αψα(x1

α + λ1
αx)

)
→ (σ1, ξ1) in Ck

loc(R
2),

where (σ1, ξ1) can be conformally extended to a nontrivial Dirac-harmonic sphere. Therefore, we
have

Λ ≥ lim
R→∞

lim
α↘1

∫
D
λ1
αR(x1

α)
|∇gαφα|

2αdvolgα = lim
R→∞

lim
α↘1

(λ1
α)2−2α

∫
DR(0)
|∇gασ

1
α|

2αdvolgα(x1
α+λ1

αx)

= lim
R→∞

µ1

∫
DR(0)
|∇σ1|2dx = µ1E(σ1).

By the energy gap property for Dirac-harmonic spheres (see Lemma 6.2), we have

(2.24) µ1 ≤
Λ

E(σ1)
≤

Λ

ε4
,

where ε4 = ε4(N) is the positive constant in Lemma 6.2.

Now, we are able to state the generalized energy identities for a sequence of α-Dirac-harmonic
maps that blows up at interior points.

Theorem 2.6. Under the assumptions of Theorem 2.2, if we assume S∩∂M = ∅, i.e. all the blow-up
points are the interior points, then there are finitely many bubbles: a finite set of Dirac-harmonic
spheres (σl

i, ξ
l
i) : S 2 → N, l = 1, ...li, where li ≥ 1, i = 1, ..., I, such that, the following generalized

energy identities hold:

lim
k→∞

Eαk(φαk) = E(φ) + |M| +
I∑

i=1

li∑
l=1

µ2
ilE(σl

i),

lim
k→∞

E(ψαk) = E(ψ) +

I∑
i=1

li∑
l=1

µ2
ilE(ξl

i),

where the quantities µil are defined as in (2.23).

Remark 2.7. Here in Theorem 2.6, we only consider the interior blow-up for a sequence of α-
Dirac-harmonic maps defined on a surface with boundary and it can be applied to a sequence of
α-Dirac-harmonic maps defined on a closed surface (if there is such a sequence). The boundary
blow-up case will be considered in a subsequent paper.

Furthermore, we shall show that the map parts of the α-Dirac-harmonic necks appearing during
the interior blow-up process converge to geodesics in the target manifold N and then derive the
length formula of these neck geodesics. More precisely, we have

Theorem 2.8. Under the same assumptions as in Theorem 2.6, let x1 ∈ S be an interior blow-up
point. For simplicity, assume that there is only one bubble in BM

r (x1) ⊂ M for some r > 0, for the
sequence {(φαk , ψαk)}, denoted by (σ1, ξ1), which is a Dirac-harmonic sphere. Let

(2.25) ν1 = lim inf
α↘1

(λ1
α)−

√
α−1.
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Then, by passing to subsequences, the map part of the Dirac-harmonic neck appearing during the
blow-up process converges to a geodesic in the target manifold N. Moreover, we have the following
alternatives:

(1) when ν1 = 1, the set φ(BM
r (x1)) ∪ σ1(S 2) is a connected set in the target N;

(2) when ν1 ∈ (1,∞), then the set φ(BM
r (x1)) and σ1(S 2) are connected by a geodesic of length

L =

√
E(σ1)
π

log ν1;

(3) when ν1 = ∞, the map part of the Dirac-harmonic neck contains at least an infinite length
curve which is a geodesic in N;

Remark 2.9. Although Theorem 2.8 is stated and proved for the case that only one single bubble
occurs at a given blow-up point, nevertheless, by following the arguments in Section 8, we can
extend these results to the case of multiple bubbles at the blow-up point. In fact, the formulation
for the multiple bubbles case is more complicated. For example, if we have three bubbles at a
blow-up point: (σ1, ξ1), (σ2, ξ2), (σ3, ξ3) with blow-up positions and radii (xα, λi

α), i = 1, 2, 3, i.e.(
φα(xα + λi

αx), (λi
α)α−1

√
λi
αψα(xα + λi

αx)
)
⇀ (σi, ξi)

weakly in W1,2
loc (R2) × L4

loc(R
2), satisfying λ1

α

λ2
α
→ 0, λ2

α

λ3
α
→ 0 and ν1, ν2, ν3 < ∞, then the base map

φ(BM
δ (xα)) and the bubble σ3(S 2) are connected by a geodesic of length

L =

√
E(σ1) + E(σ2) + E(σ3)

π
log ν3,

the two bubbles σ3(S 2) and σ2(S 2) are connected by a geodesic of length

L =

√
E(σ1) + E(σ2)

π
log

ν2

ν3 ,

the two bubbles σ2(S 2) and σ1(S 2) are connected by a geodesic of length

L =

√
E(σ1)
π

log
ν1

ν2 .

A crucial step in proving Theorem 2.8 is to establish a key lemma about the decay of the tan-
gential energies of both the map part and the spinor part on the neck domain as α ↘ 1. In the
absence of the spinor part, i.e., when φα are α-harmonic maps, this is achieved in [35] where the
authors used some idea in [16] to derive a differential inequality on the neck. For a different proof
of the length formula in the case that the neck is of finite length L, see [46, 47]. However, these
techniques require the structure of harmonic map type equations and hence cannot be applied to
our situation where there is a Dirac type equation coupled with an α-harmonic map type equation.

Recall that another powerful tool in deriving exponential decay on the long cylinders is the three-
circle method. For maps {φn} with L2-uniformly bounded tension fields τ(φn), or equivalently,
solutions to the harmonic map system up to some error terms τ(φn) that are L2-uniformly bounded,
the corresponding three-circle theorem was derived in [50], which used a special case of the three-
circle theorem due to [59] to show that the tangential energy of the sequence of solutions on
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the long cylinder decays exponentially. In fact, the condition that the error terms τ(φn) are L2-
uniformly bounded ensures the following decay estimate

‖ |x − xn| · τ(φn)‖L2(D2t(xn)\Dt(xn)) ≤ Ct,

which is crucial in [50] to get the exponential decay.
However, in view of the equation (2.18) for the map part φα in the general α-Dirac-harmonic

map system, the error term contains the following two terms: the second derivative term

(α − 1)
∇|∇gαφα|

2∇φα

σα + |∇gαφα|
2 ,(2.26)

and the curvature term

Re
(
P(A(dφα(eγ), eγ · ψα);ψα)

)
α(σα + |∇gφα|2)α−1 ,(2.27)

both of which are not uniformly bounded in L2 anymore (in fact, they are not bounded in Lp for
any 1 < p < 2) and hence the results in [50] can not be applied.

Therefore, we need to develop new methods. Instead, in this paper, to overcome the new diffi-
culties occurring, we shall first establish a type of three-circle theorem for the integro-differential
equations corresponding to α-Dirac-harmonic map type systems, see Theorem 6.7. Then, we shall
derive the decay of the tangential energies of both the map part and the spinor part on the neck
domain, see Lemma 8.2. To achieve this, we shall handle the two error terms separately. The treat-
ments are involved. For the second derivative term (2.26), although it is not uniformly bounded
in Lp for any p > 1 and the exponential decay will not hold 7, however, our new observation is
that one can still get some decay at the speed of α − 1. For the curvature term (2.27), we need to
decompose it into several forms which can be used in the three-circle theorem. We will see that
the proof is still subtle. In particular, our result applies to the case of α-harmonic maps, i.e. when
ψα ≡ 0 and hence leads to decay estimates for α-harmonic map type systems, which is still new
in the existing literature. Moreover, in the case of α-harmonic maps, by applying the results in
Lemma 8.2, we can show that the tangential energies decay at a speed of α − 1, which is a small
improvement of the speed of

√
α − 1 given by Proposition 4.2 in [35].

In the case of Dirac-harmonic maps [38, 27], the decay of the tangential energy of the spinor
is sufficient for the neck analysis, whereas here in the case of α-Dirac-harmonic maps, in order to
study the limit behaviour of the necks, we need to get the decay of some weighted energy of the
spinor as α ↘ 1. Moreover, in the case considered in this paper, we do not have the exponential
decay of the energy of the spinor as in the case of Dirac-harmonic maps [38, 27], since the map
part φα satisfies an α-harmonic map type system rather than the harmonic map type system.

7 One can see that it is controlled by (α − 1)|∇2φα| and by Lemma 5.1, we have

‖|x − xα|
2(1− 1

p )
|∇2φα|‖Lp(D2t(xα)\Dt(xα)) ≤ C‖∇φα‖L2(D4t(xα)\D t

2
(xα)).
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To overcome this new difficulty, we need some new observations. Instead, we shall prove that
the energy ‖ψα‖L4 of the spinor decays at a speed of (α − 1)

1
3 . More precisely, the following holds:

lim
α↘1

1

(α − 1)
4
3

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)
|ψα|

4dx = 0.(2.28)

See Lemma 8.4 and Lemma 8.5. Such a decay estimate plays a key role in the present paper, as it is
not only important in the proof of Theorem 2.8 (see Proposition 8.9), but also crucial in the proof of
Theorem 2.12 (see Lemma 9.5) which will be discussed later. In technical terms, the above decay
estimate (2.28) is achieved by applying a Hardy-type inequality to derive a differential inequality
on the neck to get the decay of some weighted energy of a spinor.

According to Theorem 2.6, it is easy to see that the energy identities hold if and only if the
following analytical condition:

µil = 1, i = 1, ..., I, l = 1, ..., li,

where the quantities µil are defined as in (2.23). Moreover, by definitions of the two types of
quantities µil and νil in (2.23), it is easy to check that if all neck geodesics are of finite length, then
the energy identities hold.

From the perspectives of differential geometry and topology, it is natural and interesting to find
some geometric or topological condition on the target manifold to ensure that the energy identities
hold. In particular, a natural question is whether one can exploit some geometric or topological
condition to ensure that the limit of the map parts of the α-Dirac-harmonic necks consists of some
geodesics of finite length so that the energy identities follow immediately. When the target is a
sphere, the energy identity and no neck property for a sequence of α-harmonic maps was proved
in [32].

In view of the research on minimal hypersurfaces (see [57] for the current state), it seems rea-
sonable to impose the assumptions that the Ricci curvature of the target has a positive lower bound
and that there is a suitable notion of a Morse index for α-Dirac-harmonic maps that is bounded
on the sequence. See also [34] for a similar assumption. Alternatively, one can require that the
target manifold has a finite fundamental group and the sequence has bounded Morse index, as in
the case of α-harmonic maps considered in [47]. For this goal, we need to define the Morse index
of α-Dirac-harmonic maps and Dirac-harmonic maps.

Let (φ, ψ) : M → N be an α-Dirac-harmonic map or a Dirac-harmonic map. Let φ∗(T N) be the
pull-back bundle over M and Γ(φ∗T N) denote the linear space of the smooth sections of φ∗T N.
V ∈ Γ(φ∗(T N)) can be used to vary (φ, ψ) by

(2.29) φτ(x) = expφ(x)(τV), ψτ(x) = ψi(x) ⊗
∂

∂yi (φτ(x)).

Definition 2.10. The Morse index of an α-Dirac-harmonic map (φ, ψ), denoted by Index (φ, ψ; Lα),
is defined as the maximal dimension of a linear subspace Ξ of Γ(φ∗T N) on which the second
variation of Lα with respect to the variations (2.29) is negative, i.e., for any V ∈ Ξ ⊂ Γ(φ∗T N),
there holds

δ2Lα(φ, ψ)(V,V) < 0,



ELLIPTIC-PARABOLIC BOUNDARY VALUE PROBLEM 19

where

δ2Lα(φ, ψ)(V,V) =
d2

dτ2

∣∣∣∣∣∣
τ=0

Lα(φτ, ψτ)

= 2α
∫

M
(1 + |∇gφ|

2)α−1
(
〈∇gV,∇gV〉 − R(V,∇gφ,∇gφ,V)

)
dM

+ 4α(α − 1)
∫

M
(1 + |∇gφ|

2)α−2〈∇gφ,∇gV〉2dM

+ 2
∫

M

〈
ψ j ⊗ ∇V

∂

∂y j , eβ · ∇̃eβ

(
ψi ⊗ ∇V

∂

∂yi

)
+ eβ · ψi ⊗ R(V, eβ)

∂

∂yi

〉
dM

+

∫
M

〈
ψ, eβ · ψi ⊗

(
R j

ikl;pV pVkdφl(eβ)
∂

∂y j + R(V, eβ)∇V
∂

∂yi + R(V,∇eβV)
∂

∂yi

)〉
dM

+ 2α
∫
∂M

〈
(1 + |∇gφ|

2)α−1 ∂φ

∂−→n
,∇VV

〉
−

∫
∂M

〈
−→n · ψ, ψi ⊗ ∇V∇V

∂

∂yi

〉
.

Definition 2.11. The Morse index of a Dirac-harmonic map (φ, ψ), denoted by Index (φ, ψ; L), is
defined as the maximal dimension of a linear subspace Ξ of Γ(φ∗T N) on which the second variation
of L with respect to the variations (2.29) is negative, i.e., for any V ∈ Ξ ⊂ Γ(φ∗T N), there holds

δ2L(φ, ψ)(V,V) < 0,

where

δ2L(φ, ψ)(V,V) =
d2

dτ2

∣∣∣∣∣∣
τ=0

L(φτ, ψτ)

= 2
∫

M

(
〈∇gV,∇gV〉 − R(V,∇gφ,∇gφ,V)

)
dM

+ 2
∫

M

〈
ψ j ⊗ ∇V

∂

∂y j , eβ · ∇̃eβ

(
ψi ⊗ ∇V

∂

∂yi

)
+ eβ · ψi ⊗ R(V, eβ)

∂

∂yi

〉
dM

+

∫
M

〈
ψ, eβ · ψi ⊗

(
R j

ikl;pV pVkdφl(eβ)
∂

∂y j + R(V, eβ)∇V
∂

∂yi + R(V,∇eβV)
∂

∂yi

)〉
dM

+ 2
∫
∂M

〈
∂φ

∂−→n
,∇VV

〉
−

∫
∂M

〈
−→n · ψ, ψi ⊗ ∇V∇V

∂

∂yi

〉
.

For the second variation formulas of the functionals Lα and L, see Section 9. With the help of
the notions of Morse index of α-Dirac-harmonic maps and Dirac-harmonic maps, by applying the
limiting asymptotic behavior of the necks in Theorem 2.8 and the new decay estimate (2.28) for
the spinor’s energy (see Lemma 8.4 and Lemma 8.5), we now state our last theorem:

Theorem 2.12. Under the assumption of Theorem 2.6, assume that the sequence (φα, ψα) has
bounded Morse index

Index (φα, ψα; Lα) ≤ Λindex,

where Λindex is an integer, then
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(1) the weak limit (φ, ψ) is a Dirac-harmonic map with given Dirichlet-chiral boundary data
(φ,Bψ)|∂M = (ϕ,Bψ0) and with finite Morse index

Index (φ, ψ; L) ≤ Λindex.

(2) all the bubbles we get are of finite Morse index, i.e. the Dirac-harmonic spheres (σl
i, ξ

l
i) :

S 2 → N, l = 1, ..., li, i = 1, ..., I, satisfy

Index (σl
i, ξ

l
i; L) ≤ Λindex.

(3) if the Ricci curvature of the target manifold (N, g) has a positive lower bound, i.e. there
exists a positive constant λ0 > 0 such that RicN ≥ λ0 > 0, then the limit of the necks consist
of geodesics of finite length. Moreover, the energy identities hold, i.e.

lim
k→∞

Eαk(φαk) = E(φ) + |M| +
I∑

i=1

li∑
l=1

E(σl
i),

lim
k→∞

E(ψαk) = E(ψ) +

I∑
i=1

li∑
l=1

E(ξl
i).

(4) if the target manifold N has a finite fundamental group, then the same conclusions as in
statement (3) hold.

Notations: ∆g, ∇g and /∂g are operators corresponding to the Riemannian metric g. ∆, ∇ and /∂ are
operators corresponding to the standard Euclidean metric. Throughout the paper, the uppercase
letter C denotes a positive constant which may vary from line to line.

3. Euler-Lagrange equations and key estimate for Dirac type equations

In this section, we shall derive the Euler-Lagrange equations for α-Dirac-harmonic maps and
then prove the key estimate (2.6) for Dirac type equations.

Lemma 3.1. The Euler-Lagrange equations for Lα are

τα =
1
α

R(φ, ψ)(3.1)

/Dψ = 0(3.2)

where τα = (τ1
α, ..., τ

n
α) and R(φ, ψ) are defined respectively by

(3.3) τi
α(φ) :=

1
√

g
∂

∂xβ

(
(1 + |dφ|2)α−1√ggβγ

∂φi

∂xγ

)
− (1 + |dφ|2)α−1gβγΓi

jk
∂φ j

∂xβ
∂φk

∂xγ

and

(3.4) R(φ, ψ)(x) :=
1
2
〈ψi,∇φl · ψ j〉Rm

li j(φ(x))
∂

∂ym (φ(x)).

Proof. Let ψt be a variation of ψ with dψt
dt

∣∣∣
t=0

= η and fix φ. By Proposition 2.1 in [9], we know

dLα(ψt)
dt

∣∣∣∣∣
t=0

=

∫
M
〈η, /Dψ〉dvolg.
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Then (3.2) follows immediately.
For the equation of φ, let φt be a variation of φ such that dφt

dt

∣∣∣
t=0

= ξ and ψi (i = 1, ..., n) in
ψ(x) = ψi(x) ⊗ ∂

∂yi (φ(x)) are independent of t. Also, by Proposition 2.1 in [9], we get

d
dt

∣∣∣∣∣
t=0

1
2

∫
M
〈ψt, /Dψt〉dvolg =

1
2

∫
M
〈ψi,∇φl · ψ jRmli jξ

m〉dvolg.

Finally, it is easy to check that
d
dt

∣∣∣∣∣
t=0

1
2

∫
M

(1 + |dφt|
2)αdvolg

= α

∫
M

{
−

1
√

g
∂

∂xβ

(
(1 + |dφ|2)α−1√ggβγ

∂φi

∂xγ

)
+ (1 + |dφ|2)α−1gβγΓi

jk
∂φ j

∂xβ
∂φk

∂xγ

}
himξ

mdvolg

:= α

∫
M
−τi

αhimξ
mdvolg.

Thus, we obtain
dLα(φt)

dt

∣∣∣∣∣
t=0

=

∫
M

{
−ατi

αhim +
1
2
〈ψi,∇φl · ψ j〉Rmli j

}
ξmdvolg,

which implies the equation (3.1). �

By Nash’s embedding theorem, we embed N isometrically into some RK , which is denoted by
f : N → RK . Set

φ′ = f ◦ φ and ψ′ = f∗ψ.
If we identify φ with φ′ and ψ with ψ′, we can get the following extrinsic form of the Euler-
Lagrange equations:

Lemma 3.2. Let (φ, ψ) : M → N be an α-Dirac-harmonic map. Then, (φ, ψ) satisfies

∆gφ = −(α − 1)
∇g|∇gφ|

2∇gφ

1 + |∇gφ|2
+ A(dφ, dφ) +

Re
(
P(A(dφ(eβ), eβ · ψ);ψ)

)
α(1 + |∇gφ|2)α−1 ,(3.5)

/∂gψ = A(dφ(eβ), eβ · ψ).(3.6)

Proof. Firstly, it is easy to see that τ′α(φ′) and τα(φ) satisfy

(3.7) τ′α(φ′) = (1 + |dφ|2)α−1A(dφ(eβ), dφ(eβ)) + d f (τα(φ)).

Secondly, by similar arguments as in [8, 9, 11], we know

/D′ψ′ = f∗( /Dψ) +A(dφ(eβ), eβ · ψ)

and
d f (τα(φ)) =

1
α

Re
(
P(A(dφ(eβ), eβ · ψ);ψ)

)
.

Then the conclusion of the lemma follows from the fact that /D′ = /∂g (here, /D′ is the Dirac
operator along the map φ′) and

τ′α(φ) =
1
√

g
∂

∂xβ

(
(1 + |dφ|2)α−1√ggβγ

∂φ

∂xγ

)
.
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�

In the end of this section, we shall prove the key estimate (2.6). The idea is to use a contradiction
argument, where a crucial ingredient is the uniqueness of the Dirac equation, i.e. /Dψ = 0, M,

Bψ = 0, ∂M

has only the trivial solution ψ ≡ 0 when φ ∈ W1,p(M,N) for some p > 2, see Theorem 1.2 and
Theorem 4.1 in [12].

Lemma 3.3. Let M be a compact spin Riemann surface with smooth boundary ∂M and ψ =

(ψ1, ..., ψK), ψA ∈ ΣM, A = 1, ...,K. Let Ω ∈ Γ(Λ1T ∗M ⊗ so(K)), i.e. ΩA
B = −ΩB

A and Ω ∈ L2p′(M),
dΩ ∈ Lp′(M) for some p′ > 1. Suppose ψ ∈ W1,p(M,RK) and η = (η1, ..., ηK) ∈ Lp(M,RK),
1 < p < 2 satisfy

/∂gψ
A + ΩA

B · ψ
B = ηA

then there exists a positive constant C = C(p,M,K, ‖Ω‖L2p′ (M) + ‖dΩ‖Lp′ (M)) > 0 such that

(3.8) ‖ψ‖W1,p(M) ≤ C(‖/∂gψ + Ω · ψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M)).

Our proof will follow the scheme of Remark 3.3, Theorem 3.11 and Remark 3.7 in [12]. The
main difference is that, on a two dimensional domain considered in Lemma 3.3, the two real
numbers p′ > 1 and 1 < p < 2 can be arbitrary and be independent of each other, while Theorem
3.11 in [12] requires that 1 < p < p′, which is too strong and hence can not be applied to our
blow-up analysis of a sequence of α-Dirac-harmonic map as α ↘ 1. This is a new and crucial
observation in the present paper.

Proof. First, by Theorem 3.3 in [12], we have

(3.9) ‖ψ‖W1,p(M) ≤ C(‖/∂gψ + Ω · ψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M) + ‖ψ‖Lp(M)),

where C = C(p,M,K,Ω) is a positive constant.
Next, we claim:

(3.10) ‖ψ‖W1,p(M) ≤ C(‖/∂gψ + Ω · ψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M)),

where C = C(p,M,K,Ω) is a positive constant.
In fact, if (3.10) does not hold, then there exists ψi ∈ W1,p(M,RK), such that

(3.11) ‖ψi‖W1,p(M) ≥ i (‖/∂gψi + Ω · ψi‖Lp(M) + ‖Bψi‖W1−1/p,p(∂M)).

Without loss of generality, we may assume ‖ψi‖Lp = 1. Then by (3.9) and (3.11), we have

(3.12) ‖/∂gψi + Ω · ψi‖Lp(M) + ‖Bψi‖W1−1/p,p(∂M) ≤
C
i

and

(3.13) ‖ψi‖W1,p(M) ≤ C.

Then there exists a subsequence of {ψi} (also denoted by {ψi}) with ψ ∈ W1,p(M,RK), such that,

ψi ⇀ ψ weakly in W1,p(M) and ψi → ψ strongly in Lp(M).
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Moreover, it is easy to see that ψ is a weak solution of

/∂gψ + Ω · ψ = 0

with boundary condition
Bψ = 0.

Since p′ > 1, by Theorem 4.1 in [12], there must hold ψ ≡ 0. However, the fact that ‖ψi‖Lp(M) = 1
tells us ‖ψ‖Lp(M) = 1. This is a contradiction and hence (3.10) holds.

For (3.8), we can also prove it by a contradiction argument. In fact, if it does not hold, then we
can find a sequence Ωi ∈ Γ(Λ1T ∗M ⊗ so(K)) and ψi ∈ W1,p(M,RK) , such that

(3.14) 1 = ‖ψi‖W1,p(M) ≥ i (‖/∂gψi + Ωi · ψi‖Lp(M) + ‖Bψi‖W1−1/p,p(∂M)),

and
‖Ωi‖L2p′ (M) + ‖dΩi‖Lp′ (M) ≤ C.

By the weak compactness and compact embedding, there exists a subsequence of (Ωi, ψi) (with-
out changing notation) and ψ ∈ W1,p(M,RK), Ω ∈ W1,p′(M) ∩ L2p′(M), such that

Ωi ⇀ Ω weakly in L2p′(M) and dΩi ⇀ dΩ weakly in Lp′(M)

and
ψi ⇀ ψ weakly in W1,p(M) and ψi → ψ strongly in Lp∗(M),

for any p∗ satisfying 1
p∗ >

1
p −

1
2 .

Then it is easy to see that ψ is a weak solution of /∂ψ+Ω ·ψ = 0 with boundary condition Bψ = 0
which implies ψ ≡ 0 by Theorem 4.1 in [12], since p′ > 1. Thus

lim
i→∞
‖ψi‖Lp∗ (M) = 0.

Therefore, we have

‖/∂gψi + Ω · ψi‖Lp(M) ≤ ‖/∂gψi + Ωi · ψi‖Lp(M) + ‖
(
Ω −Ωi

)
ψi‖Lp(M)

≤ ‖/∂gψi + Ωi · ψi‖Lp(M) + ‖Ω −Ωi‖L2p′ (M)‖ψi‖Lp∗ (M)

≤
1
i

+ C(N)‖|Ω| + |Ωi|‖L2p′ (M)‖ψi‖Lp∗ (M) → 0

as i→ ∞, where 1
p∗ = 1

p −
1

2p′ >
1
p −

1
2 .

But, (3.10) tells us

(3.15) 1 = ‖ψi‖W1,p(M) ≤ C(p,M,K,Ω)(‖/∂gψi + Ω · ψi‖Lp(M) + ‖Bψi‖W1−1/p,p(∂M))→ 0,

as i→ ∞, which is a contradiction. We proved this lemma. �

As a direct application of Lemma 3.3, we have

Lemma 3.4. Let M be a compact spin Riemann surface with boundary ∂M, N be a compact
Riemannian manifold. Let φ ∈ W1,2α(M,N) for some α > 1 and ψ ∈ W1,p(M,ΣM ⊗ φ∗T N),
1 < p < 2, then there exists a positive constant C = C(p,M,N, ‖∇φ‖L2α(M)), such that

(3.16) ‖ψ‖W1,p(M) ≤ C(‖ /Dψ‖Lp(M) + ‖Bψ‖W1−1/p,p(∂M)).
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Proof. Firstly, let us assume that there exists a global orthonormal basis of the normal bundle T⊥N
denoted by {νi}Ki=n+1 where νi = ((νi)1, ..., (νi)K). By Remark 2.1 in [12], we can rewrite the term
A(dφ(eγ), eγ · ψ) asA(dφ(eγ), eγ · ψ) = −Ω · ψ where

Ω =

K∑
i=n+1

[νi(φ), dνi(φ)] =

K∑
i=n+1

(
(νi)A(∇eγν

i)Beγ − (νi)B(∇eγν
i)Aeγ

)
,

thus

(3.17) /Dψ = /∂gψ −A(dφ(eγ), eγ · ψ) = /∂gψ + Ω(φ) · ψ.

The conclusion of the lemma follows immediately from Lemma 3.3 and the fact that dΩ =

[dν(φ), dν(φ)].
In general, the global orthonormal basis of the normal bundle T⊥N may not exist. In this case,

we can apply a method analogous to the case of harmonic map equation in [45]. Let

1 =

J∑
j=1

χ j

be a smooth partition of unity such that for every j = 1, ..., J, there exists a local orthonormal
basis of the normal bundle T⊥N|supp(χ j), denoted by

{̃
νi

j

}K

i=n+1
. Setting νi

j = ν̃i
jχ j and noting that

〈ψ, νi
j〉 = 0, one can easily find that (3.17) still hold for

Ω =

J∑
j=1

K∑
i=n+1

[νi
j(φ), dν̃i

j(φ)] =

J∑
j=1

K∑
i=n+1

(
(νi

j)
A(∇eγ ν̃

i
j)

Beγ − (νi
j)

B(∇eγ ν̃
i
j)

Aeγ
)
.

By Lemma 3.3 and the fact that dΩ =
∑J

j=1
∑K

i=n+1[dνi
j(φ), dν̃i

j(φ)], we finished the proof of this
lemma. �

4. Global existence of α-Dirac-harmonic map flow

In this section, we will prove the global existence result for the α-Dirac-harmonic map flow and
show that the limit at infinity time is an α-Dirac-harmonic map.

The equations (2.10)-(2.11) have the following equivalent intrinsic form

∂tφ =
1

(1 + |dφ|2)α−1

(
τα(φ) −

1
α

R(φ, ψ)
)
,

/Dψ = 0,

where we regard φ as a map into N and ψ as a section of ΣM ⊗ φ∗T N, τα(φ) is given in (3.1). This
leads us to consider another isometrical embedding. In fact, as in [21] (Page 108), we can embed
(N, h) isometrically into some RL with some non-flat metric denoted by hL, such that this isometric
embedding is totally geodesic and there exist a tubular neighborhood N of N and an isometric
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involution i : N → N which making precisely N being its fixed point set. Since N is a totally
geodesic submanifold, then τα(φ) = τR

L

α and it suffices to study the following system 8

∂tφ = ∆gφ + (α − 1)
∇g|∇gφ|

2∇gφ

1 + |∇gφ|2
+ Γ(φ)#∇φ#∇φ + R(φ)#∇φ#ψ#ψ,(4.1)

/Dψ = 0,(4.2)

where Γ is the Levi-Civita connection of (RL, hL), R is the curvature of (RL, hL) and

/Dψ = /∂gψ + Γ(φ)#∇φ#ψ.

Next, in order to emphasize the Dirac operator /D depends on the map φ, we sometimes use the
notation

/Dφ := /D.

Noting that
|∇φ|2 = (hL)i j(φ)∇φi∇φ j,

if we expand ∇|∇φ|2, there is an additional term like (hL)i j,k∇φ
i∇φ j∇φk. This term and Γ(φ)#∇φ#∇φ

will be put together into the term Γ(φ)#∇φ#∇φ#∇φ. Therefore, the equations can be rewritten as

∂tφ = ∆gφ + 2(α − 1)
∇2
βγφ

i∇βφ
i∇γφ

1 + |∇gφ|2
+ Γ(φ)#∇φ#∇φ#∇φ

+R(φ)#∇φ#ψ#ψ,(4.3)
/Dφψ = 0.(4.4)

Firstly, we have the following short-time existence result for the α-Dirac-harmonic map flow
with Dirichlet-chiral boundary condition. The argument here is not the same as in the case of
Dirac-harmonic map flow in [12]. For the case of α-harmonic map flow from a closed Riemann
surface, see the Appendix in [23].

Theorem 4.1. Let (M, g) be a compact spin Riemann surface with a smooth boundary ∂M and
(N, h) be another compact Riemannian manifold. Then there exists a positive constant ε1 depending
only on M,N, such that, for any 1 < α < 1 + ε1 and any

φ0 ∈ C2+λ(M,N), ϕ ∈ C2+λ(∂M,N), ψ0 ∈ C1+λ(∂M,ΣM ⊗ ϕ∗T N),

where 0 < λ < 1, the problem (2.10)-(2.11) and (2.12) admits a unique solution

φ ∈ C2+λ,1+λ/2(M × [0,T ],N),

and
ψ ∈ Cλ,λ/2(M × [0,T ],ΣM ⊗ φ∗T N), ψ ∈ L∞([0,T ]; C1+λ(M)),

for some time T > 0.

8Here and in the sequel, # denotes a multi-linear map with smooth coefficients.
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Proof. We shall adapt the classical methods developed for harmonic map flows [18, 21, 33].

Step 1: Short-time existence of (4.3)-(4.4).

For every T > 0, we define

U :=
{
u, du ∈ Cλ,λ/2(M × [0,T ])

∣∣∣ ‖u‖Cλ,λ/2(M×[0,T ]) + ‖du‖Cλ,λ/2(M×[0,T ]) ≤ 1, u|M×{0}∪∂M×[0,T ] = 0
}
.

Consider the following linear parabolic-elliptic system:

∂tφ = ∆gφ + 2(α − 1)
∇2
βγφ

i∇βui∇γu

1 + |∇gu|2
+ Γ(u)#∇u#∇u#∇u

+R(u)#∇u#ψ#ψ + ∆gφ0 + 2(α − 1)
∇2
βγφ

i
0∇βu

i∇γu

1 + |∇gu|2
,(4.5)

/Duψ = 0.(4.6)

Now, let us begin a routine iteration argument as in [33] to show the local existence. For every
u ∈ U, on one hand, by Theorem 4.6 in [12], there exists a unique solution v1 ∈ C1+λ(M,ΣM⊗u∗RL)
to the problem (4.6) with boundary condition Bψ = Bψ0, satisfying

‖v1‖C1+λ(M) ≤ C(λ,M,N, ‖u‖C1+λ(M))‖Bψ0‖C1+λ(∂M).

Moreover, for any 0 < t, s < T , it is easy to see that v1(·, t) − v1(·, s) satisfy the following equation

/∂g(v1(·, t) − v1(·, s)) = −Γ(u(t))#∇u(t)#(v1(·, t) − v1(·, s))
− Γ(u(t))#∇(u(t) − u(s))#v1(·, s)

−
(
Γ(u(t)) − Γ(u(s))

)
#∇u(s)#v1(·, s) in M,

i.e.

/Du(t)(v1(·, t) − v1(·, s)) = −Γ(u(t))#∇(u(t) − u(s))#v1(·, s)

−
(
Γ(u(t)) − Γ(u(s))

)
#∇u(s)#v1(·, s) in M,(4.7)

with boundary data
B(v1(·, t) − v1(·, s)) = 0 on ∂M.

By Theorem 1.2 in [12] and Sobolev embedding, for any δ ∈ (0, 1), we have

‖v1(·, t) − v1(·, s)‖Cδ(M)

≤ C(δ,M,N, ‖u‖C1(M))‖v1‖L∞(M)(‖u(·, t) − u(·, s)‖L∞(M) + ‖du(·, t) − du(·, s)‖L∞(M))

≤ C(δ,M,N, ‖u‖C1(M))‖Bψ0‖C1+λ(∂M)|t − s|
λ
2 .

Therefore,
‖v1‖Cλ, λ2 (M×[0,T ])

≤ C(λ,M,N, ‖u‖C1+λ(M))‖Bψ0‖C1+λ(∂M).

On the other hand, when α − 1 is sufficiently small, by the standard theory of linear parabolic
systems, for above (u, v1), there exists a unique solution u1 ∈ C2+λ,1+ λ

2 (M×[0,T ],RL) to the problem
(4.5) with the initial-boundary data φ|M×{0}∪∂M×[0,T ] = 0, such that

‖u1‖C2+λ,1+ λ2 (M×[0,T ])
≤ C(λ,M,N)(‖u1‖C0(M×[0,T ]) + ‖φ0‖C2+λ(M) + ‖Bψ0‖C1+λ(∂M) + 1).
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Noting that u1(·, 0) = 0, we have

‖u1‖C0(M×[0,T ]) ≤ C(µ,M,N)T (‖u1‖C0(M×[0,T ]) + ‖φ0‖C2+λ(M) + ‖Bψ0‖C1+λ(∂M) + 1).

Taking T > 0 small enough, we obtain

‖u1‖C0(M×[0,T ]) ≤ CT (‖φ0‖C2+λ(M) + ‖Bψ0‖C1+λ(∂M) + 1).

By the interpolation inequality for Hölder spaces (see Proposition 4.2 in [36]), we have

‖u1‖Cλ, λ2 (M×[0,T ])
+ ‖∇u1‖Cλ, λ2 (M×[0,T ])

≤ C‖u1‖
1−λ

2
C0(M×[0,T ])‖u1‖

1+λ
2

C2,1(M×[0,T ]).

Thus, if we choose T > 0 sufficiently small, then u1 ∈ U. This is the first step. Similarly, we can
get (u2, v2) by using the above argument and substituting u with u1 +φ0. After a standard induction
procedure, we will get a solution (uk+1, vk+1) of (4.5) and (4.6) with u = uk + φ0, satisfying

‖vk+1‖Cλ, λ2 (M×[0,T ])
≤ C(λ,M,N, ‖φ0‖C1+λ(M))‖Bψ0‖C1+λ(∂M)

and
‖uk+1‖C2+λ,1+ λ2 (M×[0,T ]) ≤ C(λ,M,N)(‖φ0‖C2+λ(M) + ‖Bψ0‖C1+λ(∂M) + 1).

By passing to a subsequence, we know that uk converges to some φ in C2,1(M × [0,T ]) and
vk converges to some ψ in C0(M × [0,T ]). Then is is easy to see that (φ + φ0, ψ) is a solution
of the system (4.3)-(4.4) with boundary-initial data (2.12). Since φ ∈ C2,1(M × [0,T ],RL) and
ψ ∈ C0(M × [0,T ],ΣM ⊗ (φ + φ0)∗TRL), by standard theory of Dirac-harmonic maps (see Lemma
3.6 in [26] or Lemma 4.4 below), we conclude that φ ∈ C2+λ,1+ λ

2 (M × [0,T ],RL) and ψ ∈ Cλ, λ2 (M ×
[0,T ],ΣM ⊗ (φ + φ0)∗TRL) ∩ L∞([0,T ]; C1+λ(M)).

Step 2: Uniqueness.

If there are two solutions (u1, v1) and (u2, v2) to equation (4.3)-(4.4) with boundary-initial data
(2.12), subtracting the equations of u1 and u2, then multiplying by u1 − u2 and integrating over M,
we have ∫

M
∂t(u1 − u2)(u1 − u2)

≤

∫
M

∆g(u1 − u2)(u1 − u2) + 2(α − 1)
∫

M

∇2
βγ(u

i
1 − ui

2)∇βui
1∇γu1

1 + |∇gu1|
2 (u1 − u2)

+ C
∫

M
|u1 − u2|

2 + C
∫

M
|∇u1 − ∇u2||u1 − u2| + C

∫
M
|v1 − v2||u1 − u2|.

Integrating by parts, we get
1
2

d
dt

∫
M
|u1 − u2|

2

≤

∫
M
−|∇u1 − ∇u2|

2 − 2(α − 1)
∫

M

∇β(ui
1 − ui

2)∇βui
1∇γu1

1 + |∇gu1|
2 ∇γ(u1 − u2)

+ C
∫

M
|u1 − u2|

2 + C
∫

M
|∇u1 − ∇u2||u1 − u2| + C

∫
M
|v1 − v2||u1 − u2|.
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By Young’s inequality and noting that the second term on the right hand side of the above
inequality is nonpositive, we obtain

d
dt

∫
M
|u1 − u2|

2 ≤ −
1
2

∫
M
|∇u1 − ∇u2|

2 + C
∫

M
|u1 − u2|

2

+ C
∫

M
|v1 − v2||u1 − u2|.(4.8)

Similarly to the derivation of (4.7), we know v1 − v2 satisfies the following equation

/Du1(v1 − v2) = −Γ(u1)#∇(u1 − u2)#v2

−
(
Γ(u1) − Γ(u2)

)
#∇u2#v2 in M,(4.9)

with the boundary data
B(v1 − v2) = 0 on ∂M.

By Theorem 1.2 in [12], we have

‖v1 − v2‖W1,2(M) ≤ C(‖u1 − u2‖L2(M) + ‖∇u1 − ∇u2‖L2(M)).(4.10)

Therefore, by (4.8) and Young’s inequality, we have

d
dt

∫
M
|u1 − u2|

2 ≤ C
∫

M
|u1 − u2|

2,(4.11)

which implies u1 ≡ u2 on M × [0,T ], if u1 = u2 for t = 0. Then v1 ≡ v2 follows immediately from
(4.10).

Step 3: φ(x, t) ∈ N for all (x, t) ∈ M × [0,T ].

Since i : N → N is an isometric involution and φ0 ∈ N, ϕ ∈ N, then (i ◦ φ, i∗ψ) is also a
solution to (4.3)-(4.4) with the same boundary-initial data (2.12). By the uniqueness, i ◦ φ = φ
which implies φ(x, t) ∈ N. We finished the proof of this theorem. �

Next, we shall control the α-energy of the map part, i.e. Eα(φ), along the α-Dirac-harmonic map
flow. Precisely, we have

Lemma 4.2. Suppose (φ, ψ) is a solution of (2.10)-(2.11) with the boundary-initial data (2.12),
then there holds

Eα(φ(t)) + 2α
∫

Mt
(1 + |∇gφ|

2)α−1|∂tφ|
2dMdt ≤ Eα(φ0) + 2

√
2 ‖Bψ0‖

2
L2(∂M).

Moreover, Eα(φ(t)) +
∫
∂M
〈
−→n · Bψ0, ψ(t)〉 is absolutely continuous on [0,T ] and non-increasing.

Proof. Firstly, it is easy to see that the equation (2.10) can be written as follows:

(1 + |∇gφ|
2)α−1∂tφ = div

(
(1 + |∇gφ|

2)α−1∇gφ
)
− (1 + |∇gφ|

2)α−1A(dφ, dφ)

−
1
α

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
.(4.12)
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Multiplying the above equation by α∂tφ and using the Lemma 3.1 in [26] that,∫
Mt

s

〈P(A(dφ(eγ), eγ · ψ);ψ),
∂φ

∂t
〉dMdt = −

1
2

∫ t

s

d
dt

∫
∂M
〈Bψ0,

−→n · ψ〉(t)dt,(4.13)

we have

α

∫
Mt

s

(1 + |∇gφ|
2)α−1|∂tφ|

2dMdt − α
∫

Mt
s

div
(
(1 + |∇gφ|

2)α−1∇gφ
)
∂tφdMdt

= −

∫
Mt

s

〈P(A(dφ(eγ), eγ · ψ);ψ), ∂tφ〉dMdt =
1
2

∫ t

s

d
dt

∫
∂M
〈Bψ0,

−→n · ψ〉dt,

for any 0 ≤ s ≤ t ≤ T . Integrating by parts, we get

1
2

∫ t

s

d
dt

∫
M

(1 + |∇gφ|
2)αdMdt + α

∫
Mt

s

(1 + |∇gφ|
2)α−1|∂tφ|

2dMdt

=
1
2

∫ t

s

d
dt

∫
∂M
〈Bψ0,

−→n · Ψ〉dt.(4.14)

So, we have

Eα(φ(t)) + 2α
∫

Mt
(1 + |∇gφ|

2)α−1|∂tφ|
2dMdt

≤ Eα(φ0) + |

∫
{0}×∂M

〈Bψ0,
−→n · ψ〉| + |

∫
{t}×∂M

〈Bψ0,
−→n · ψ〉|

≤ Eα(φ0) + 2
√

2 ‖Bψ0‖
2
L2(∂M),

where the last inequality follows from Proposition 2.5 in [26] that

‖ψ‖L2(∂M) =
√

2‖Bψ‖L2(∂M) =
√

2‖Bψ0‖L2(∂M),

since /Dψ ≡ 0. Also, we have∫ t

s

d
dt

(∫
M

(1 + |∇gφ|
2)αdM +

∫
∂M
〈
−→n · Bψ0,Ψ〉

)
dt

= −2α
∫

Mt
s

(1 + |∇gφ|
2)α−1|∂tφ|

2dMdt,(4.15)

and the claims follow. �

Consequently, using the key estimate for the Dirac operator along a map in Lemma 3.4, we are
able to control the spinor part along the α-Dirac-harmonic map flow. For the Dirac-harmonic map
flow studied in [12, 26], however, there is in general no such a nice property.

Lemma 4.3. Suppose (φ, ψ) is a solution of (2.10)-(2.11) with the boundary-initial data (2.12),
then for any 1 < p < 2, there holds

‖ψ(·, t)‖W1,p(M) ≤ C‖Bψ0‖C1(∂M), ∀ 0 ≤ t ≤ T,(4.16)

where C is a positive constant depending only on p, M, N, Eα(φ0) + 2
√

2 ‖Bψ0‖
2
L2(∂M).
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Proof. According to Lemma 4.2, for any 0 ≤ t ≤ T , we get

Eα(φ(·, t)) ≤ Eα(φ0) + 2
√

2‖Bψ0‖
2
L2(∂M).

Then by Lemma 3.4, we have

‖ψ(·, t)‖W1,p(M) ≤ C(p,M,N, ‖∇φ‖L2α(M))‖Bψ0‖C1(∂M)

≤ C(p,M,N, Eα(φ0) + 2
√

2‖Bψ0‖
2
L2(∂M))‖Bψ0‖C1(∂M), ∀ 0 ≤ t ≤ T.

�

Next, we derive a small energy regularity theory for the α-Dirac-harmonic map flow.

Lemma 4.4. Suppose that φ0 ∈ C2+λ(M,N), ϕ ∈ C2+λ(∂M,N) and ψ0 ∈ C1+λ(∂M,ΣM ⊗ ϕ∗T N),
where 0 < λ < 1 is a positive constant. Let (φ, ψ) be a solution of (2.10)-(2.11) in M × [0,T ] with
boundary-initial data (2.12). Given z0 = (x0, t0) ∈ M × (0,T ], denote

PM
R (z0) := BM

R (x0) × [t0 − R2, t0].

Then there exist three positive constants ε2 = ε2(M,N) > 0, ε3 = ε3(M,N, φ0, ϕ, ψ0) > 0 and
C = C(λ,R,M,N, Eα(φ0), ‖φ0‖C2+λ(M), ‖Bψ0‖C1+λ(∂M)) > 0 such that if

1 < α < 1 + ε2 and sup
[t0−4R2,t0]

E(φ(t); BM
2R(x0)) ≤ ε3,

then

(4.17)
√

R‖ψ‖L∞(PM
R (z0)) + R‖∇φ‖L∞(PM

R (z0)) ≤ C

and for any 0 < β < 1,

(4.18) sup
t0− R2

4 ≤t≤t0

‖ψ(t)‖C1+λ(BM
R/2(z0)) + ‖∇φ‖

Cβ,
β
2 (PM

R/2(z0))
≤ C(β),

Moreover, if
sup
x0∈M

sup
[t0−4R2,t0]

E(φ(t); BM
2R(x0)) ≤ ε3,

then

(4.19) ‖φ‖
C2+λ,1+ λ2 (M×[t0− R2

8 ,t0])
+ ‖ψ‖

Cλ, λ2 (M×[t0− R2
8 ,t0])

+ sup
t0− R2

8 ≤t≤t0

‖ψ‖C1+λ(M) ≤ C.

Proof. For simplicity of notation and a better expression of the idea of proof, without loss of
generality, we assume M ⊂ R2 is a bounded closed domain with the standard Euclidean metric.

Step 1: We derive (4.18) and (4.19) from (4.17).

Take a cut-off function η ∈ C∞0 (PM
R (z0)) such that 0 ≤ η ≤ 1, η|PM

3R/4(z0) ≡ 1, |∇ jη| ≤ C
R j , j = 1, 2

and |∂tη| ≤
C
R2 . Set U = ηφ, then

Ut − aβγ ∂2U
∂xβ∂xγ = f , in PM

R (z0);
U(x, t) = 0, on BM

R (z0) × {t = t0 − R2};
U(x, t) = ηϕ, on ∂M × (t0 − R2, t0),
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where f = f (∇φ, φ, ψ, ∂tη,∇
2η,∇η, η) and

aβγ = δβγ + 2(α − 1)
∇βφ∇γφ

1 + |∇φ|2
.

Under the assumption (4.17), we know f ∈ L∞. Noting that

∂t − aβγ
∂2

∂xβ∂xγ

is a parabolic operator when α − 1 is sufficiently small, by standard parabolic theory, for any
1 < p < ∞, we have

‖U‖W2,1
p (PM

R (z0)) ≤ C
(
‖ f ‖Lp(PM

R (z0)) + ‖ηϕ‖W2,1
p (∂PM

R (z0))
)
≤ C

(
1 + ‖φ0‖C2(M)

)
Then for any 0 < β = 1 − 4/p < 1, Sobolev embedding tells us,

‖∇φ‖Cβ,β/2(PM
3R/4(z0)) ≤ ‖∇U‖Cβ,β/2(PM

R (z0))

≤ C‖U‖W2,1
p (PM

R (z0)) ≤ C(β)
(
1 + ‖φ0‖C2(M)

)
.(4.20)

Choose a cut-off function χ ∈ C∞0 (BM
R (x0)) satisfying 0 ≤ χ ≤ 1, χ|BM

3R/4(x0) ≡ 1 and |∇ jχ| ≤ C
R j , j =

1, 2. Set V = χψ, then we have/∂V = h, in BM
R (x0);

BV(x) = χBψ0, on ∂BM
R (x0),

where
h = χ/∂ψ + ∇χ · ψ = χA(dφ(eγ), eγ · ψ) + ∇χ · ψ ∈ L∞,

since the assumption (4.17) holds. By the standard theory of the usual Dirac operator and Sobolev
embedding, we have

‖ψ‖C1−2/p(BM
3R/4(x0)) ≤ C‖V‖W1,p(BM

R (x0))

≤ C(‖h‖Lp(BM
R (x0)) + ‖BV‖W1−1/p,p(∂BM

R (x0)))

≤ C(1 + ‖Bψ0‖C1(∂M))(4.21)

for any 2 < p < ∞. Then (4.20) and (4.21) tell us /∂ψ ∈ Cλ(BM
3R/4(z0)). By the Schauder estimates

Theorem 4.6 in [12] and taking some suitable cut-off function as before, we have

(4.22) ‖ψ(t)‖C1+λ(BM
R/2(x0)) ≤ C

(
1 + ‖Bψ0‖C1+λ(∂M)

)(
1 + ‖φ0‖C2(M)

)
for any t0 −

R2

4 ≤ t ≤ t0. Then the inequality (4.18) follows from (4.20), (4.22) immediately.
For the estimate (4.19), we first rewrite the equation /∂ψ = A(dφ(eγ), eγ · ψ) as

/∂ψ + Ω · ψ = 0

where

Ω =

K∑
i=n+1

[νi(φ), dνi(φ)] =

K∑
i=n+1

(
(νi)A(∇eγν

i)Beγ − (νi)B(∇eγν
i)Aeγ

)
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and {νi}Ki=n+1 is an orthonormal basis of the normal bundle T⊥N and νi = ((νi)1, ..., (νi)K) (see
Remark 2.1 in [12]), then for any t0 −

R2

4 < t, s < t0, we have/∂(ψ(·, t) − ψ(·, s)) = −Ω(·, t)
(
ψ(·, t) − ψ(·, s)

)
+

(
Ω(·, s) −Ω(·, t)

)
ψ(·, s) in M;

B(ψ(·, t) − ψ(·, s)) = 0 on ∂M.

Since dΩ = [dν(φ), dν(φ)], with (4.20) and (4.22), according to Theorem 4.1 in [12], for any
0 < β < 1, by Sobolev embedding, we have

‖ψ(·, t) − ψ(·, s)‖Cβ(M) ≤ C
(
‖Ω(·, t) −Ω(·, s)‖L∞(M)

)
≤ C|s − t|β.

So, we get ‖ψ‖
Cβ,

β
2 (M×[t0− R2

4 ,t0])
≤ C and∂tφ − aβγ

∂2φ

∂xβ∂xγ ∈ Cβ,β/2(M × [t0 −
R2

4 , t0]) f or any 0 < β < 1;
φ|∂M = ϕ ∈ C2+λ(∂M).

Taking some suitable cut-off function and by standard Schauder estimates for second order para-
bolic equations, when α − 1 is sufficiently small, we have φ ∈ C2+λ,1+ λ

2 (M × [t0 −
R2

8 , t0]) and

‖φ‖
C2+λ,1+ λ2 (M×[t0− R2

8 ,t0])

≤ C
(
‖∂tφ − aβγ

∂2φ

∂xβ∂xγ
‖Cλ,λ/2(M×[t0− R2

4 ,t0]) + ‖φ‖C0(M×[t0− R2
4 ,t0]) + ‖ϕ‖C2+λ(∂M)

)
≤ C.

So we have proved (4.19).

Step 2: We prove (4.17).

We shall adapt the methods in [56, 61, 37]. Without loss of generality, we may assume R = 1
2 .

Take 0 ≤ ρ < 1 such that

(1 − ρ)2 sup
PM
ρ (z0)
|∇φ|2 = max

0≤σ≤1
{(1 − σ)2 sup

PM
σ (z0)
|∇φ|2}

and then choose z1 = (x1, t1) ∈ PM
ρ (z0) such that

|∇φ|2(z1) = sup
PM
ρ (z0)
|∇φ|2 := e.

We claim:
(1 − ρ)2e ≤ 4.

We proceed by contradiction. If (1 − ρ)2e > 4, we set

u(x, t) := φ(x1 + e−
1
2 x, t1 + e−1t) and v(x) := e−

1
4ψ(x1 + e−

1
2 x, t1 + e−1t).

Denoting Pr(0) = Dr(0) × [−r2, 0] ⊂ R2 × R and

S r := Pr(0) ∩ {(x, t)|(x1 + e−
1
2 x, t1 + e−1t) ∈ PM

1 (0)},
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then (u, v) satisfy

∂tu = ∆u + (α − 1)
∇|∇u|2∇u
e−1 + |∇u|2

− A(∇u,∇u) −
Re

(
P(A(du(eγ), eγ · v); v)

)
α(1 + e|∇u|2)α−1 ,(4.23)

/∂v = A(du(eγ), eγ · v)(4.24)

with the boundary data

(4.25) (u(x, t),Bv(x, t)) = (ϕ(x1 + e−
1
2 x), e−

1
4 Bψ0(x1 + e−

1
2 x)), i f x1 + e−

1
2 x ∈ ∂M.

Moreover,

sup
S 1

|∇u|2 = e−1 sup
PM

e−1/2 (z1)
|∇φ|2 ≤ e−1 sup

PM
ρ+e−1/2 (z0)

|∇φ|2 ≤ e−1 sup
PM

1+ρ
2

(z0)
|∇φ|2 ≤ 4

and
|∇u|2(0) = e−1|∇φ|2(z1) = 1.

Noting that v satisfies the equation /∂v = A(du(eγ), eγ · v) and the facts

|du| ≤ 2, sup
−1≤t≤0

‖v‖L4(D1) ≤ sup
t
‖ψ(·, t)‖L4(M) ≤ C,

where in the last step we have used Lemma 4.3 by taking p = 4
3 . By elliptic estimates of the usual

Dirac operator and Sobolev embedding, we have

sup
−1≤t≤0

‖v‖L∞(D3/4) ≤ C sup
−1≤t≤0

‖v‖W1,4(D3/4) ≤ C(1 + ‖Bψ0‖C1(∂M)).

Next, we want to show that there exists a constant C > 0 such that

(4.26) 1 ≤ C
∫

S 3/4

|∇u|2dxdt.

In fact, if such a constant C > 0 does not exist, then there exists a sequence {(ui, vi)} satisfying
(4.23)-(4.24) with the boundary data (4.25) and

(4.27) sup
S 3/4

(
|∇ui| + |vi|

)
≤ C,

(4.28) |∇ui|
2(0) = 1,

(4.29)
∫

S 3/4

|∇ui|
2dxdt ≤

1
i
.

Similarly to the argument in Step 1 (since (ui, vi) satisfy (4.23)-(4.24), (4.25) and (4.27)), we
obtain

‖∇ui‖Cβ,β/2(S 1/2) ≤ C(β)

for any 0 < β < 1.
Therefore, there exists a subsequence of {ui} (we still denote it by {ui}) and a function u ∈

Cδ, δ2 (S 1/2) such that
∇ui → ∇u in Cδ,δ/2(S 1/2)
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where 0 < δ < β. By (4.29), we know

(4.30)
∫

S 1/2

|∇u|2dxdt = 0

which implies ∇u ≡ 0 in S 1/2. But, (4.28) tells us |∇u|(0) = 1. This is a contradiction and then
(4.26) must be true. Thus, we have

1 ≤ C
∫

S 3/4

|∇u|2dxdt

≤ C sup
−1<t<0

∫
BM

e
1
2

(x1)
|∇φ|2(t1 + e−1t)dx

≤ C sup
−1<t<0

∫
BM

1 (z0)
|∇φ|2(t)dx ≤ Cε3.

Choosing ε3 > 0 sufficiently small leads to a contradiction, so we must have (1− ρ)2e ≤ 4 and then

(1 − 3/4)2 sup
PM

3/4(z0)
|∇φ|2 ≤ (1 − ρ)2e ≤ 4.

Since ψ satisfies the equation /∂ψ = A(dφ(eγ), eγ · ψ) and ‖dφ‖L∞(PM
3/4(z0)) ≤ 8, ‖ψ‖L4(M) ≤ C, by the

elliptic theory for the Dirac operator and Sobolev embedding again, we shall easily obtain

‖ψ‖L∞(PM
1/2(z0)) ≤ C.

Thus we get the inequality (4.17). This finishes the proof of the lemma. �

In the end of this section, we prove our first main result - Theorem 2.1.

Proof of Theorem 2.1. By the short-time existence result Theorem 4.1, there is a unique solution

φ ∈ C2+λ,1+ λ
2

loc (M × [0,T ),N)

and
ψ ∈ ∩0<S<T L∞([0, S ], ‖ψ(·, t)‖C1+λ(M)) ∩Cλ, λ2

loc (M × [0,T ),ΣM ⊗ φ∗T N)

to the problem (2.10)-(2.11) with boundary data (2.12) for some T > 0.
Next, we will show that the solution (φ, ψ) can be extended to the time T . In fact, by Lemma

4.2, we have ∫
M

(1 + |∇gφ|
2)α(·, t)dM ≤ Eα(φ0) + 2

√
2‖Bψ0‖

2
L2(∂M).

Then it is easy to see that, for any 0 < ε < ε3, there exists a positive constant r0, depending only on
ε, α, M, Eα(φ0) + 2

√
2‖Bψ0‖

2
L2(∂M), such that for all x ∈ M and 0 ≤ t < T , there holds∫

BM
r0 (x)
|∇gφ|

2(·, t)dM ≤ CEα(φ)1/αr1− 1
α

0 ≤ ε.

By Lemma 4.4, we can extend the solution (φ(·, t), ψ(·, t)) to the time T with (φ(·,T ), ψ(·,T )) ∈
C2+λ(M,N) ×C1+λ(M,ΣM ⊗ φ(·,T )∗T N). Then the short-time existence result implies T = ∞.
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For the limit behaviour as t → ∞, by Lemma 4.2, we get∫ ∞

0

∫
M
|∂tφ|

2dMdt ≤ C,

which implies that there exists a time sequence ti → ∞, such that∫
M
|∂tφ|

2(·, ti)dM → 0.

By Lemma 4.4, we have
‖φ(ti)‖C2+λ(M) + ‖ψ(ti)‖C1+λ(M) ≤ C.

Thus, there exists a subsequence of {ti} (still denoted by {ti}) and an α-Dirac-harmonic map (φα, ψα)
with boundary data

(φα,Bψα)|∂M = (ϕ,Bψ0),
such that (φ(·, ti), ψ(·, ti)) converges to (φα, ψα) in C2(M) × C1(M). Since (ϕ, ψ0) ∈ C2+λ(∂M,N) ×
C1+λ(∂M, ϕ∗T N), it is standard to obtain

(φα, ψα) ∈ C2+λ(M,N) ×C1+λ(M,ΣM ⊗ φ∗αT N)

from the Schauder theory for second order elliptic operators and Dirac operators. This completes
the proof of theorem. �

5. Blow-up analysis and existence of Dirac-harmonic maps

By the results in the previous section, it is easy to see that there exists a sequence of α-Dirac-
harmonic maps {(φα, ψα)} as α↘ 1 with Dirichlet-chiral boundary condition

(φα,Bψα)|∂M = (ϕ,Bψ0),

such that

(5.1) Eα(φα) ≤ Eα(φ0) + 2
√

2 ‖Bψ0‖
2
L2(∂M)

and

(5.2) ‖ψα‖W1,p(M) ≤ C(p,M,N, Eα(φ0) + 2
√

2 ‖Bψ0‖
2
L2(∂M)),

for any 1 < p < 2. In this section, we will study the limit behaviour of the sequence as α↘ 1 and
show that the limit is just the Dirac-harmonic map we want to find.

First of all, we consider the blow-up sequence under the following more general assumption that

Eα(φα) + ‖ψα‖L4(M) ≤ Λ < ∞.

Note that the functional Lα and the equations of α-Dirac-harmonic maps are not conformally
invariant in dimension two. Besides the concept of general α-Dirac-harmonic map, we need to
introduce the following definition

(u, v) : (D1(0), gα)→ N×(ΣM⊗u∗T N) is called a λ-general α-Dirac-harmonic map if it satisfies∆gαu = −(α − 1)∇gα |∇gαu|2∇gαu
σα+|∇gαu|2 + A(du, du) + λ

Re(P(A(du(eγ),eγ·v);v))
α(σα+|∇gαu|2)α−1 ,

/∂gαv = A(du(eγ), eγ · v),
(5.3)
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where gα = eϕα((dx1)2 + (dx2)2), ϕα ∈ C∞(D1(0)), ϕα(0) = 0 is the Riemannian metric, λ ∈ R and
σα > 0 are two constants. One can easily see that a λ-general α-Dirac-harmonic map is a general
α-Dirac-harmonic map if λ = 1 and an α-Dirac-harmonic map if λ = 1, σα = 1.

For example, on an isothermal coordinate system around a point p ∈ M, if the metric is given by

g = eϕ0(x)((dx1)2 + (dx2)2)

with ϕ0(p) = 0, setting

(̃uα(x), ṽα(x)) :=
(
φα(p + λαx),

√
λαψα(p + λαx)

)
for some small positive number λα > 0. By the conformal invariance of the spinor equation, it
is easy to check that (̃uα(x), ṽα(x)) is a σα−1

α -general α-Dirac-harmonic map which satisfies the
following system∆gα ũα = −(α − 1)∇gα |∇gα ũα |2∇gα ũα

σα+|∇gα ũα |2
+ A(dũα, dũα) +

Re(P(A(dũα(eγ),eγ ·̃vα);̃vα))
α(1+σ−1

α |∇gα ũα |2)α−1 ,

/∂gα ṽα = A(dũα(eγ), eγ · ṽα),
(5.4)

where gα = eϕ0(p+λαx)((dx1)2 + (dx2)2) and σα = λ2
α > 0.

Since α-Dirac-harmonic maps are not conformally invariant, in order to get unified bubbling
equations, we need to add another factor λα−1

α in the rescaling. Setting

(uα(x), vα(x)) :=
(̃
uα(x), λα−1

α ṽα(x)
)

=
(
φα(p + λαx), λα−1

α

√
λαψα(p + λαx)

)
and noting that the equation for the spinor part is also invariant by multiplying a constant to the
spinor, then one can verify that (uα(x), vα(x)) is a general α-Dirac-harmonic map, satisfying the
following system:∆gαuα = −(α − 1)∇gα |∇gαuα |2∇gαuα

σα+|∇gαuα |2
+ A(duα, duα) +

Re(P(A(duα(eγ),eγ·vα);vα))
α(σα+|∇gαuα |2)α−1 ,

/∂gαvα = A(duα(eγ), eγ · vα).
(5.5)

Since the spinor equation is conformally invariant, it is easy to check that the system (5.4) is
equivalent to∆uα = −(α − 1)∇|∇gαuα |2∇uα

σα+|∇gαuα |2
+ A(uα)(duα, duα) +

Re(P(A(duα(eγ),eγ·vα);vα))
α(1+σ−1

α |∇gαuα |2)α−1 = 0,
/∂vα = A(duα(eγ), eγ · vα),

(5.6)

and the system (5.5) is equivalent to∆uα = −(α − 1)∇|∇gαuα |2∇uα
σα+|∇gαuα |2

+ A(uα)(duα, duα) +
Re(P(A(duα(eγ),eγ·vα);vα))

α(σα+|∇gαuα |2)α−1 = 0,
/∂vα = A(duα(eγ), eγ · vα),

(5.7)

where ∆ = ∂2

(∂x1)2 + ∂2

(∂x2)2 , the derivative ∇ and the Dirac operator /∂ are taken with respect to the
standard Euclidean metric. The {eγ} in (5.6) and (5.7) is a local orthonormal basis with respect to
the standard Euclidean metric and hence it is different from the one in (5.4) and (5.5), however, for
simplicity, we shall use the same notation. More precisely, the above equivalences of the systems
mean that (uα◦ Id, e

ϕα
2 vα◦ Id) satisfies (5.6)-(5.7), where Id : (D1(0), (dx1)2 +(dx2)2)→ (D1(0), gα)

is a conformal map defined by Id(x) = x. In the sequel, for simplicity of notation, we shall identify
(uα ◦ Id, e

ϕα
2 vα ◦ Id) with (uα, vα) and use the appropriate forms of the systems.
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Let D1(0) ⊂ R2 be the unit ball centered at 0. Denote

D+
1 (0) :=

{
(x1, x2) ∈ D1(0)|x2 ≥ 0

}
, ∂0D+

1 (0) :=
{
(x1, x2) ∈ D1(0)|x2 = 0

}
.

Next, we show a small energy regularity lemma for general α-Dirac-harmonic maps and λ-
general α-Dirac-harmonic maps. For the interior case, we have

Lemma 5.1. Let (φα, ψα) : (D1(0), gα)→ N be a general α-Dirac-harmonic map with

0 < β0 ≤ lim inf
α↘1

σα−1
α ≤ 1

for some positive constant β0 > 0 or a ρα-general α-Dirac-harmonic map with ρα satisfying

sup
α↘1

|ρα|

σα−1
α

≤ Λ0

for some positive constant Λ0 > 0. For any 1 < p < ∞, there exist two positive constants ε0 > 0
and α0 > 1 depending only on g,N, such that if Eα(φα) + ‖ψα‖L4(D1(0)) ≤ Λ and

E(φα) ≤ ε0, 1 ≤ α ≤ α0,

where gα = eϕα((dx1)2 + (dx2)2) and ϕα(0) = 0, ϕα → ϕ0 in C∞(D1(0)) as α→ 1, then there hold

‖∇φα‖W1,p(D1/2(0)) ≤ C(p, g, β0,Λ0,Λ,N)‖∇φα‖L2(D1(0)),

‖ψα‖W1,p(D1/2(0)) ≤ C(p, g, β0,Λ0,Λ,N)‖ψα‖L4(D1(0)),

‖∇φα‖C1(D1/2(0)) ≤ C(g, β0,Λ0,Λ,N)‖∇φα‖L2(D1(0)),

‖ψα‖C0(D1/2(0)) ≤ C(g, β0,Λ0,Λ,N)‖ψα‖L4(D1(0)).

Near the boundary, we have

Lemma 5.2. Let (φα, ψα) : (D+
1 (0), gα)→ N be a general α-Dirac-harmonic map with

0 < β0 ≤ lim inf
α↘1

σα−1
α ≤ 1

for some positive constant β0 > 0 or a ρα-general α-Dirac-harmonic map with ρα satisfying

sup
α↘1

|ρα|

σα−1
α

≤ Λ0

for some positive constant Λ0 > 0, satisfying Dirichlet-chiral boundary condition

(φα,Bψα)|∂0D+
1 (0) = (ϕ,Bψ0).

For any 1 < p < ∞, there exist two positive constants ε0 > 0 and α0 > 1 depending only on g,N,
such that if Eα(φα) + ‖ψα‖L4(D1(0)) ≤ Λ and

E(φα) ≤ ε0, 1 ≤ α ≤ α0,

where gα = eϕα((dx1)2 + (dx2)2) and ϕα(0) = 0, ϕα → ϕ0 in C∞(D1(0)) as α→ 1, then there hold

‖∇φα‖C1+λ(D+
1/2(0)) + ‖∇φα‖W1,p(D+

1/2(0)) ≤ C(‖∇φα‖L2(D+) + ‖∇ϕ‖C1+λ(∂0D+)),

‖ψα‖C0(D+
1/2(0)) + ‖ψα‖W1,p(D+

1/2(0)) ≤ C(‖ψα‖L4(D+) + ‖Bψ0‖C1(∂0D+)),

where C is a positive constant depending on p, g, β0,Λ0, λ,Λ,N, ‖ϕ‖C2 , ‖Bψ0‖C1 .



38 JOST, LEI LIU, AND ZHU

Since the proof for the interior case is similar to, but simpler than that of the boundary case, we
only prove Lemma 5.2 here and omit the interior case.

Proof of Lemma 5.2. We prove the lemma for the case of ρα-general α-Dirac-harmonic map with
ρα satisfying

sup
α↘1

|ρα|

σα−1
α

≤ Λ0

for some positive constant Λ0 > 0, i.e. (φα, ψα) satisfies (5.3). For the general α-Dirac-harmonic
map case, i.e. (φα, ψα) satisfies (5.5) with 0 < β0 ≤ lim infα↘1 σ

α−1
α ≤ 1 for some positive constant

β0 > 0, the proof is almost the same.

Without loss of generality, we assume
∫
∂0D+

1
2

ϕ = 0.

Choose a cut-off function η ∈ C∞0 (D+) satisfying 0 ≤ η ≤ 1, η|D+
3/4
≡ 1, |∇η| + |∇2η| ≤ C. Noting

that ψα satisfies (5.6), by standard theory of first order elliptic equations, for any 1 < q < 2, we
have

‖ηψα‖W1,q(D+) ≤ C(‖/∂(ηψα)‖Lq(D+) + ‖Bψα‖W1−1/q,q(∂0D+))

≤ C(‖∇η · ψα + η/∂ψα‖Lq(D+) + ‖Bψα‖W1−1/q,q(∂0D+))

≤ C
(
‖ψα‖Lq(D+) + ‖|dφα||ηψα|‖Lq(D+) + ‖Bψ0‖W1−1/q,q(∂0D+)

)
≤ C‖dφα‖L2(D+)‖ηψα‖

L
2q

2−q (D+)
+ C(‖ψα‖Lq(D+) + ‖Bψ0‖W1−1/q,q(∂0D+))

≤ Cε0‖ηψα‖
L

2q
2−q (D+)

+ C(‖ψα‖Lq(D+) + ‖Bψ0‖W1−1/q,q(∂0D+)).

Taking ε0 > 0 sufficiently small, by Sobolev embedding, we get

‖ηψα‖
L

2q
2−q (D+)

≤ ‖ηψα‖W1,q(D+) ≤ C(‖ψα‖Lq(D+) + ‖Bψα‖W1−1/q,q(∂0D+)).(5.8)

In particular, taking q = 8
5 , we get

‖ηψα‖L8(D+) ≤ ‖ηψα‖W1, 85 (D+)
≤ C(‖ψα‖L4(D+) + ‖Bψα‖C3/8,8/5(∂0D+)).(5.9)

Noting that supα↘1
|ρα |

σα−1
α
≤ Λ0 and

∆φα = −(α − 1)
∇|∇gαφα|

2∇φα

σα + |∇gαφα|
2 + A(dφα, dφα) + ρα

Re
(
P(A(dφα(eγ), eγ · ψα);ψα)

)
α(σα + |∇gαφα|

2)α−1 ,

where ∆ = ( ∂
∂x1 )2 + ( ∂

∂x2 )2 is the Laplace operator of the standard Euclidean metric, computing
directly, we obtain

|∆(ηφα)| = |η∆φα + 2∇η∇φα + φα∆η|

≤ C
(
|φα| + |dφα| + (α − 1)|η∇2φα| + |dφα||ηdφα| + |ψα|2|ηdφα|

)
≤ C(|dφα||d(ηφα)| + (α − 1)|∇2(ηφα)|) + C

(
|φα| + |dφα| + |ψα|2|ηdφα|

)
.(5.10)
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By standard elliptic estimates and the Poincaré inequality, for any 1 < p < 2, we have

‖ηφα‖W2,p(D+) ≤ C(‖|dφα||d(ηφα)|‖Lp(D+) + (α − 1)‖∇2(ηφα)‖Lp(D+))

+ C(‖dφα‖Lp(D+) + ‖ϕ‖W2−1/p,p(∂0D+) + ‖|ψα|
2|ηdφα|‖Lp(D+))

≤ C‖d(ηφα)‖
L

2p
2−p (D+)

‖dφα‖L2(D+) + C(α − 1)‖∇2(ηψα)‖Lp(D+)

+ C(‖dφα‖Lp(D+) + ‖ |ψα|
2|ηdφα| ‖Lp(D+) + ‖ϕ‖W2,p(∂0D+))

≤ C(ε0 + α − 1)‖d(ηφα)‖W1,p(D+) + C(‖dφα‖Lp(D+)

+ ‖ |ψα|
2|ηdφα| ‖Lp(D+) + ‖∇ϕ‖W1,p(∂0D+)).

Choosing ε0 > 0 and α0 − 1 sufficiently small, we have

‖∇(ηφα)‖W1,p(D+) ≤ C(‖dφα‖Lp(D+) + ‖ |ψα|
2|ηdφα| ‖Lp(D+) + ‖∇ϕ‖C1(∂0D+)).(5.11)

In particular, we take p = 4
3 , then

‖∇φα‖L4(D+
5
8

) ≤ C‖∇φα‖W1, 43 (D+
5
8

)

≤ C(‖dφα‖L2(D+) + ‖ψα‖
2
L8(D+

3/4)‖dφα‖L2(D+) + ‖∇ϕ‖C1(∂0D+))

≤ C(‖dφα‖L2(D+) + ‖∇ϕ‖C1(∂0D+)),(5.12)

where the last inequality follows from (5.9).
Applying the W1,2-estimate for the usual Dirac operator, we have

‖ψα‖W1,2(D+
9
16

) ≤ C(‖/∂ψα‖L2(D+
5
8

) + ‖ψα‖L2(D+
5
8

) + ‖Bψα‖W1/2,2(∂0D+))

≤ C(‖dφα‖L4(D+
5
8

)‖ψα‖L4(D+
5
8

) + ‖ψα‖L2(D+
5
8

) + ‖Bψα‖W1/2,2(∂0D+))

≤ C(‖ψα‖L4(D+) + ‖Bψα‖C1(∂0D+)).

By (5.10), we get

|∆(ηφα)| ≤ C(α − 1)|∇2(ηφα)| + C
(
|φα| + |dφα| + |dφα|2 + |ψα|

2|dφα|
)
.(5.13)

Applying the W2,2-estimate for the Laplace operator and choosing α0 − 1 small enough, by (5.9)
and (5.12), we obtain

‖∇φα‖W1,2(D+
9

16
) ≤ C(‖dφα‖L2(D+) + ‖∇ϕ‖C1(D+)).(5.14)

By the Sobolev embedding theorem, we know ∇φα ∈ Lp(D+
9/16) and ψα ∈ Lp(D+

9/16) for any
1 < p < ∞. Noting that φα satisfies the following elliptic equation that

∆φα + (α − 1)
gκβα

∂φα
∂xκ

∂φα
∂xγ

σα + |∇gαφα|
2

∂2φα
∂xβ∂xγ

= A(φα)(dφα, dφα) + ρα
Re

(
P(A(dφα(eγ), eγ · ψα);ψα)

)
α(σα + |∇gφα|2)α−1

− (α − 1)
∂gκβα
∂xγ

∂φα
∂xκ

∂φα
∂xβ

∂φα
∂xγ

σα + |∇gφα|2

:= f (φα, ψα,∇φα),
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when α − 1 is sufficiently small, by W2,p-estimate for elliptic operator, we have

‖∇φα‖W1,p(D+
17
32

(0)) ≤ C(‖∇φα‖Lp(D+
9
16

(0)) + ‖ f ‖Lp(D+
9
16

(0)) + ‖∇ϕ‖C1(∂0D+))

≤ C(‖∇φα‖L2(D+) + ‖∇ϕ‖C1(D+)).

Applying the W1,p-estimate for the usual Dirac operator, we have

‖ψα‖W1,p(D+
17
32

(0)) ≤ C(‖ψα‖L4(D+) + ‖Bψα‖C1(∂0D+)).

By Sobolev embedding, for any 0 < δ < 1, there hold

‖∇φα‖Cδ(D+
17/32(0)) ≤ C(δ, g,Λ,N)(‖∇φα‖L2(D+) + ‖∇ϕ‖C1(D+)),

‖ψα‖Cδ(D+
17/32(0)) ≤ C(δ, g,Λ,N)(‖ψα‖L4(D+) + ‖Bψα‖C1(∂0D+)).

To estimate ‖∇φα‖C1 , using the standard schauder estimates of elliptic operator, we get

‖∇φα‖C1+λ(D+
1/2(0)) ≤ C(‖ f ‖Cλ(D+

17/32(0)) + ‖∇φα‖C0(D+
17/32(0)) + ‖∇ϕ‖C1+λ(D+))

≤ C(λ, g,Λ,N)(‖∇φα‖L2(D+) + ‖∇ϕ‖C1+λ(D+)).

�

Applying the above small energy regularity results, we can now show Theorem 2.2, Theorem
2.4 and Theorem 2.5.

Proof of Theorem 2.2: Without loss of generality, let {x1, ..., xI} ⊂ S be any subset with finite
points. Choosing r > 0 sufficiently small such that BM

r (xi) ∩ BM
r (x j) = ∅, i , j, then

Λ ≥ lim inf
α→1

E(φα; M) ≥
I∑

i=1

lim inf
α→1

E(φα; BM
r (xi)) ≥

ε0

2
I,

which implies I ≤ 2Λ
ε0

. Therefore, S is a set with at most finitely many points..
For any x0 ∈ M \ S, there exist r0 > 0 and a subsequence of α↘ 1, such that

E(φα; BM
r0

(x0)) <
ε0

2
.

If x0 ∈ M \ ∂M, without loss of generality, we may assume BM
r0

(x0) ∩ ∂M = ∅. By Lemma 5.1, we
have

r0‖∇φα‖L∞(BM
r0/2

(x0)) +
√

r0‖ψα‖L∞(BM
r0/2

(x0)) ≤ C(Λ,M,N).

If x0 ∈ ∂M, by Lemma 5.2, we have

r0‖∇φα‖L∞(BM
r0/2

(x0)) +
√

r0‖ψα‖L∞(BM
r0/2

(x0)) ≤ C(Λ,M,N, ‖ϕ‖C2 , ‖Bψ0‖C1).

By standard theory of Dirac operators and second order elliptic operators, we obtain

(5.15) ‖φα‖Ck(BM
r0/4

(x0)) + ‖ψα‖Ck(BM
r0/4

(x0)) ≤ C(k, r0,Λ,M,N)

for x0 ∈ M \ ∂M and

(5.16) ‖φα‖C2+λ(BM
r0/4

(x0)) + ‖ψα‖C1+λ(BM
r0/4

(x0)) ≤ C(r0, λ,Λ,M,N, ‖ϕ‖C2+λ , ‖Bψ0‖C1+λ)

for x0 ∈ ∂M.
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Suppose (φ, ψ) is the weak limit of (φα, ψα) in W1,2(M) × L4(M), then by (5.15) and (5.16), we
know there exists a subsequence of (φα, ψα) (not changing notation) such that

(φα, ψα)→ (φ, ψ) in C2
loc(M \ S) ×C1

loc(M \ S),

where
(φ,Bψ)|∂M = (ϕ,Bψ0).

By the removable singularity theorem of Dirac-harmonic maps (see Theorem 4.6 in [9] for the
interior singularity case and see Theorem 1.4 and Theorem 1.5 in [26] for the boundary singularity
case), we have (φ, ψ) ∈ C2(M) × C1(M). Then, (φ, ψ) ∈ C2+λ(M) × C1+λ(M) follows from the
standard Schauder theory. �

Proof of Theorem 2.4: Take r0 > 0 such that x0 ∈ S is the only energy concentration point in
BM

r0
(x0). By standard blow-up analysis argument for harmonic map type problems, we can assume

that, for the sequence α↘ 1, there exist sequences xα → x0 and λα → 0 such that

(5.17) E(φα; BM
λα

(xα)) = sup
x∈BM

r0
(x0),r≤λα

BM
r (x)⊂BM

r0
(x0)

E(φα; BM
r (x)) =

ε0

4
,

where ε0 > 0 is the constant in Lemma 5.1 and Lemma 5.2.

Step 1: Let x0 ∈ ∂M and we prove the statement (2) under the assumption that

(5.18) lim sup
α→1

dist(xα, ∂M)
λα

= ∞.

Without loss of generality, we may assume x0 = 0 ∈ D+
1 (0) ⊂ R2 is the only energy concentration

point in D+
1 (0) and

g(x) = eϕ0(x)((dx1)2 + (dx2)2),

where ϕ0(x) is a smooth function satisfying ϕ0(0) = 0.
Setting

(̃uα(x), ṽα(x)) =
(
φα(xα + λαx),

√
λαψα(xα + λαx)

)
,(5.19)

by (5.18) and (5.6), it is easy to see that, for any R > 0, (̃uα(x), ṽα(x)) lives in DR(0) ⊂ R2 for α
close to 1 and satisfies∆ũα = −(α − 1)∇|∇gα ũα |2∇ũα

λ2
α+|∇gα ũα |2

+ A(dũα, dũα) +
Re(P(A(dũα(eγ),eγ ·̃vα);̃vα))

α(1+λ−2
α |∇gα ũα |2)α−1 ,

/∂̃vα = A(dũα(eγ), eγ · ṽα),
(5.20)

where gα(x) = eϕ0(xα+λαx)((dx1)2 + (dx2)2) and we used the fact that the second equation, i.e. the
equation for the spinor part, is conformally invariant.

Since (̃uα(x), ṽα(x)) is a λ2(α−1)
α -general α-Dirac-harmonic map (with σα = λ2

α ), by (5.17) and
the small energy regularity Lemma 5.1 (noting that ρα = λ2(α−1)

α which implies that ρα
(σα)α−1 ≡ 1),
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we know there exists a subsequence of {α} (still denoted by the same symbols) and a limit (σ̃, ξ̃) ∈
W2,2

loc (R2) ×W1,2
loc (R2), such that E(σ̃; D1(0)) = ε0

4 and

(̃uα(x), ṽα(x))→ (σ̃, ξ̃) in C1
loc(R

2) ×C0
loc(R

2).(5.21)

Next, we make the following

Claim 1:

(5.22) 1 ≤ lim inf
α↘1

λ2(1−α)
α ≤ lim sup

α↘1
λ2(1−α)
α ≤ µmax < ∞.

To show this claim, we just need to prove that

lim sup
α↘1

λ2(1−α)
α < ∞.

In fact, if it does not hold, then there exists a subsequence α j → 1 such that

lim
j→∞

λ
2(1−α j)
α j := µ1 = ∞.

By (5.20) and (5.21), it is easy to see that σ̃ : R2 → N is a harmonic map such that ũα j → σ̃ in
C1

loc(R
2) as j→ ∞. Then we have

2Λ ≥ lim
R→∞

lim
j→∞

∫
Dλα j R(xα j )

|∇gα j
φα j |

2α jdvolgα j
= lim

R→∞
lim
j→∞

(λα j)
2−2α j

∫
DR(0)
|∇gα j

ũα j |
2α jdvolgα j (xα j +λα j x)

= lim
R→∞

µ1

∫
DR(0)
|∇σ̃|2dx = 2µ1E(σ̃).

which is a contradiction to the fact that E(σ̃) ≥ ε > 0 which follows from the well known energy
gap theorem for harmonic spheres, since σ̃ : R2 → N is a nontrivial harmonic map with finite
energy and hence it can be conformally extended to a harmonic sphere. Thus, Claim 1 holds true.

Now setting

(uα(x), vα(x)) :=
(̃
uα(x), λα−1

α ṽα(x)
)

=
(
φα(xα + λαx), λα−1

α

√
λαψα(xα + λαx)

)
,(5.23)

since the equation for the spinor part is also invariant by multiplying a constant to the spinor, it is
easy to see that (uα, vα) satisfies∆uα = −(α − 1)∇|∇gαuα |2∇uα

λ2
α+|∇gαuα |2

+ A(duα, duα) + λ2(1−α)
α

Re(P(A(duα(eγ),eγ·vα);vα))
α(1+λ−2

α |∇gαuα |2)α−1 ,

/∂vα = A(duα(eγ), eγ · vα).
(5.24)

It is easy to see that (uα, vα) is a general α-Dirac-harmonic map with σα = λ2
α > 0. By

(5.17),(5.22), (5.24), the small energy regularity result Lemma 5.1, we know there exists a sub-
sequence of {α} (still denoted by the same symbols) and a nontrivial Dirac-harmonic map (σ, ξ) :
R2 → N, such that

(uα(x), vα(x))→ (σ, ξ) in C1
loc(R

2) ×C0
loc(R

2).

Next, we will show that (σ, ξ) has finite energy, i.e.

‖∇σ‖L2(R2) + ‖ξ‖L4(R2) ≤ C < ∞.
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In fact, for any R > 0,

‖∇σ‖L2(DR(0)) + ‖ξ‖L4(DR(0)) = lim
α↘1

(‖∇uα‖L2(DR(0)) + ‖vα‖L4(DR(0)))

= lim
α↘1

(‖∇φα‖L2(DλαR(xα)) + λα−1
α ‖ψα‖L4(DλαR(xα)))

≤ lim
α↘1

(‖∇φα‖L2(DλαR(xα)) + ‖ψα‖L4(DλαR(xα))) ≤ C(Λ) < ∞.

Step 2: Let x0 ∈ ∂M , then

(5.25) lim sup
α→1

dist(xα, ∂M)
λα

= ∞.

If not, then there exists a converging subsequence of dist(xα,∂M)
λα

. Without loss of generality, we
may assume

lim
α→1

dist(xα, ∂M)
λα

= a

where a ≥ 0 is a constant.
Denoting

Bα :=
{
x ∈ R2| xα + λαx ∈ D+

1 (0)
}
,

then
Bα → R

2
a :=

{
(x1, x2)|x2 ≥ −a

}
.

Noting that (̃uα(x), ṽα(x)) (see (5.19)) lives in Bα and satisfies (5.20) with the boundary data(̃
uα(x), B̃vα(x)

)
=

(
ϕ(xα + λαx),

√
λαBψ0(xα + λαx)

)
, i f xα + λαx ∈ ∂0D+

1 (0),

by (5.17), Lemma 5.1 and Lemma 5.2, we have

(5.26) ‖̃uα‖W2,p(D4R(0)∩Bα(0)) + ‖̃vα‖W1,p(D4R(0)∩Bα(0)) ≤ C(p,R, g,Λ,N, ‖ϕ‖C2+λ , ‖Bψ0‖C1+λ)

for any DR(0) ⊂ R2 and p > 1, which implies

‖̃uα(x − (0,
dα
rα

))‖W2,2(D+
3R(0)) + ‖̃vα(x − (0,

dα
rα

))‖W1,2(D+
3R(0)) ≤ C

when 1
α−1 , R are large, where dα := dist(xα, ∂0D+).

Then there exist a subsequence of (̃uα, ṽα) (still denoted by (̃uα, ṽα)) and

(̃u, ṽ) ∈ W2,2
loc (R2+

a ) ×W1,2
loc (R2+

a )

with the boundary data (̃u, B̃v)|∂R2+
a

= (ϕ(x0), 0) where R2+
a :=

{
(x1, x2)|x2 > −a

}
, such that for any

R > 0,

lim
α→1
‖̃uα(x − (0,

dα
rα

)) − ũ(x)‖W1,2(D+
3R(0)) = 0, lim

α→1
‖̃vα(x − (0,

dα
rα

)) − ṽ(x)‖L4(D+
3R(0)) = 0.

We set σ̃(x) := ũ(x + (0, a)) and ξ̃(x) := ṽ(x + (0, a)) and then conclude that, for any R > 0,

lim
α→1
‖̃uα(x) − σ̃(x)‖W1,2(D2R(0)∩Bα∩R2

a) = 0, lim
α→1
‖̃vα(x) − ξ̃(x)‖L4(D2R(0)∩Bα∩R2

a) = 0.
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Combining this with (5.26) and noting that the measures of D2R(0)∩ Bα \R
2
a and D2R(0)∩R2

a \ Bα

go to zero, we have

lim
α→1
‖∇ũα(x)‖L2(DR(0)∩Bα) = ‖∇σ̃(x)‖L2(DR(0)∩R2

a), lim
α→1
‖̃vα(x)‖L4(DR(0)∩Bα) = ‖̃ξ(x)‖L4(DR(0)∩R2

a).(5.27)

By (5.17), we have E(σ̃; D1(0) ∩ R2
a) = ε0

4 .

Next, similarly to Claim 1 in Step 1, we make the following

Claim 2:

(5.28) 1 ≤ lim inf
α↘1

λ2(1−α)
α ≤ lim sup

α↘1
λ2(1−α)
α ≤ µmax < ∞.

In fact, if it is not true, then there exists a subsequence α j → 1 such that

lim
j→∞

λ
2(1−α j)
α j → ∞.

In view of the equation (5.6), it follows from the above fact that (̃uα j , ṽα j) ⇀ (σ̃, ξ̃) weakly in
W2,2

loc (R2+
a ) × W1,2

loc (R2+
a ) as j → ∞ and σ̃ : R2+

a → N is a harmonic map with boundary data
σ̃|∂R2+

a
= ϕ(x0). By a well known result of Lemaire [31], we have that σ̃ is a constant map, which

is a contradiction to the fact that E(σ̃; D1(0) ∩ R2
a) = ε0

4 . Thus, Claim 2 holds.
Then we know (uα, vα) (see (5.23)) is a general α-Dirac-harmonic map. By Lemma 5.2 and

above arguments, there exist a subsequence of {α} (still denoted by itself) and a Dirac-harmonic
map (σ, ξ) : R2+

a → N with the boundary data (σ,Bξ)|∂R2+
a

= (ϕ(x0), 0), such that

lim
α→1
‖∇uα(x)‖L2(DR(0)∩Bα) = ‖∇σ(x)‖L2(DR(0)∩R2

a), lim
α→1
‖vα(x)‖L4(DR(0)∩Bα) = ‖ξ(x)‖L4(DR(0)∩R2

a)

for any R > 0, which implies E(σ; D1(0)∩R2
a) = ε0

4 according to (5.17). However, by Theorem 1.4
in [26], we know σ is a constant map and ξ ≡ 0. This is a contradiction and hence the statement
(2) holds.

For the first statement (1), i.e., the case of x0 ∈ M \ ∂M, the argument is almost the same as in
Step 1, so we omit it. The proof of the theorem is finished. �

Proof of Theorem 2.5. By Theorem 2.1, we know there exists a sequence of α-Dirac-harmonic
maps (φα, ψα) ∈ C2+λ(M,N) ×C1+λ(M,ΣM ⊗ φ∗αT N) for α↘ 1 with the Dirichlet-chiral boundary
condition

(φα,Bψα)|∂M = (ϕ,Bψ0),
satisfying

(5.29) Eα(φα) ≤ Eα(φ0) + 2
√

2‖Bψ0‖
2
L2(∂M)

and

(5.30) ‖ψα‖W1,p(M) ≤ C(p,M,N, Eα(φ0) + 2
√

2‖Bψ0‖
2
L2(∂M)),

for any 1 < p < 2. All φα are in the homotopy class of φ0.
Now, we claim that if the target manifold N does not admit any harmonic sphere, then the energy

concentration set S defined in Theorem 2.2 is empty.
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In fact, if not, taking a point x0 ∈ S, then by Theorem 2.4, there exist sequences xα → x0, λα → 0
and a nontrivial Dirac-harmonic map (σ, ξ) : R2 → N, such that(

φα(xα + λαx), λα−1
α

√
λαψα(xα + λαx)

)
→ (σ, ξ) in C2

loc(R
2),

as α→ 1. Choose any 4 < q < ∞, taking p =
2q

2+q ∈ ( 4
3 , 2) in (5.30), then we have

(5.31) ‖ψα‖Lq(M) ≤ C(q,M,N, Eα(φ0) + 2
√

2‖Bψ0‖
2
L2(∂M)),

and for any R > 0,

‖ξ‖L4(DR(0)) = lim
α→1

λα−1
α ‖ψα‖L4(DRλα (xα)) ≤ lim

α→1
C‖ψα‖Lq(M)(Rλα)2( 1

4−
1
q ) = 0.

Thus, ξ ≡ 0 and the Dirac-harmonic map (σ, ξ) : R2 → N is just a nontrivial harmonic map
σ : R2 → N with finite energy, which can be extended to a nontrivial smooth harmonic sphere.
This is a contradiction and hence S must be empty.

By Theorem 2.2, we have

(φα, ψα)→ (φ, ψ) in C2(M) ×C1(M), as α→ 1,

where (φ, ψ) ∈ C2+λ(M,N) × C1+λ(M,ΣM ⊗ φ∗T N) is a Dirac-harmonic map with Dirichlet-chiral
boundary data

(φα,Bψα)|∂M = (ϕ,Bψ0).

Moreover, it is easy to see that (φ, ψ) is in the same homotopy class as φ0. We have finished the
proof. �

6. Pohozaev type identity and three-circle type method

In this section, we shall first prove several basic lemmas for general α-Dirac-harmonic maps, for
instance, the energy gap theorem and a new Pohozaev type identity. Secondly, we shall establish a
new three-circle type method for general α-Dirac-harmonic map system.

First of all, as an application of Lemma 5.1, we have

Lemma 6.1. Let D1(0) ⊂ R2 be the unit disk. Let gα = eϕα(x)((dx1)2 +(dx2)2) and g = eϕ0(x)((dx1)2 +

(dx2)2) be a family of metrics on D1(0), where ϕα ∈ C∞(D1), ϕα(0) = 0 and ϕα → ϕ0 in C∞(D1)
as α ↘ 1. Let (φα, ψα) ∈ C∞(D1(0),N) be a sequence of general α-Dirac-harmonic maps with
uniformly bounded energy Eα,σα(φα)+ E(ψα) ≤ Λ and with 0 < β0 ≤ limα↘1(σα)α−1 ≤ 1, then there
exists a positive number β1 > 0 independent of α, such that

β0 ≤ lim inf
α↘1

‖(σα + |∇gαφα|
2)α−1‖C0(D) ≤ lim sup

α↘1
‖(σα + |∇gαφα|

2)α−1‖C0(D) ≤ β1.

Proof. Without loss of generality, we assume 0 is the only energy concentration point for the
sequence {(φα, ψα)}. Then by the blow-up process described in Section 2, we can get at most
finitely many bubbles at this blow-up point, i.e. there exist a positive sequence λi

α → 0 and a
sequence of points xi

α → 0, i = 1, ..., I, as α↘ 1, which satisfy (A1) or (A2). Also, without loss of
generality, we assume λ1

α is the smallest one, i.e. lim supα↘1
λ1
α

λ
j
α

≤ C for j = 2, ..., I. By a standard
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blow-up argument (see Sec. 5), we know (φα(x0 + λ1
αx), (λ1

α)α−1
√
λ1
αψα(x0 + λ1

αx)) has no energy
concentration points for all points x0 ∈ D 1

2
. By Lemma 5.1, we have

|∇φα|(x) ≤ C, ∀ x ∈ D1(0) \ D 1
2
(0),

since 0 is the only energy concentration point and

|∇φα|(x) ≤
C

(λα)α−1λ1
α

≤
C
λ1
α

, ∀ x ∈ D 1
2
(0),

where we used the fact that 1 ≤ lim infα↘1(λα)1−α ≤ lim supα↘1(λα)1−α ≤

√
Λ
ε4

which follows from
(2.24). Thus, we obtain

‖(σα + |∇gαφα|
2)α−1‖C0(D) ≤ C(1 + (λ1

α)2−2α) ≤ C(1 + µmax).

Then the conclusion of the lemma follows immediately from (2.24). �

The following energy gap result is a small improvement of the one given in Theorem 3.1. in [8].

Lemma 6.2 (Energy gap). There exists an ε4 = ε4(N) > 0 such that, if (φ, ψ) : S 2 → N is a smooth
Dirac-harmonic map satisfying ∫

S 2
|dφ|2 < ε4.

Then both φ and ψ are trivial.

Proof. Step1. Claim: ‖ψ‖L4/3(S 2) ≤ C‖/∂ψ‖L4/3(S 2), where ψ is a spinor on S 2 and C > 0 is a universal
constant.

In fact, if not, then there exists a sequence of spinors {ψk} on S 2 such that

‖ψk‖L4/3(S 2) > k ‖/∂ψk‖L4/3(S 2).

Without loss of generality, we assume ‖ψk‖L4/3(S 2) = 1, then we have

(6.1) ‖/∂ψk‖L4/3(S 2) <
1
k
.

By standard elliptic estimates, we get

‖ψk‖W1,4/3(S 2) ≤ C.

Thus, there exists a subsequence of {ψk} (we still denote it by {ψk}) and η ∈ W1,4/3(S 2) satisfying

ψk → η weakly in W1,4/3(S 2) and strongly in L4/3(S 2).(6.2)

Combining this fact with ‖ψk‖L4/3(S 2) = 1 and the inequality (6.1), we get ‖η‖L4/3(S 2) = 1 and

(6.3) ‖/∂η‖L4/3(S 2) = 0.

It follows that η ≡ 0, since there is no nontrivial harmonic spinor on S 2. This is a contradiction.

Step2. By standard elliptic estimates, we have

‖ψ‖L4(S 2) ≤ C‖ψ‖W1,4/3(S 2)

≤ C(‖/∂ψ‖L4/3(S 2) + ‖ψ‖L4/3(S 2))

≤ C‖/∂ψ‖L4/3(S 2) ≤ C‖|dφ||ψ|‖L4/3(S 2) ≤ C‖dφ‖L2(S 2)‖ψ‖L4(S 2) ≤ C
√
ε4‖ψ‖L4(S 2).
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Taking ε4 > 0 sufficiently small, then we have ψ ≡ 0. Therefore,

‖dφ‖W1,4/3(S 2) ≤ C‖∆φ‖L4/3(S 2)

≤ C‖|dφ|2‖L4/3(S 2)

≤ C‖dφ‖L2(S 2)‖dφ‖L4(S 2) ≤ C‖dφ‖L2(S 2)‖dφ‖W1,4/3(S 2) ≤ C
√
ε4‖dφ‖W1,4/3(S 2).

Thus φ has to be a constant map. �

Now we establish a new Pohozaev type identity for α-Dirac-harmonic maps.

Lemma 6.3. Let (D, gα) be the unit disk in R2 equipped with a metric gα = eϕα
(
(dx1)2 + (dx2)2

)
,

where ϕα ∈ C∞(D). If (φα, ψα) is a critical point of Lα,σα(φ, ψ), then for any 0 < t < 1, the following
Pohozaev type identity holds

(1 −
1

2α
)
∫
∂Dt

(σα + |∇gαφα|
2)α−1|

∂φα
∂r
|2 −

1
2α

∫
∂Dt

(σα + |∇gαφα|
2)α−1|x|−2|

∂φα
∂θ
|2

= (1 −
1
α

)
1
t

∫
Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2dx

+
σα

2α

∫
∂Dt

(σα + |∇gαφα|
2)α−1eϕα +

1
2α

∫
∂Dt

〈ψα, r−2 ∂

∂θ
· ∇̃ ∂

∂θ
ψα〉

+ (1 −
1
α

)
1
2t

∫
Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2r
∂ϕα
∂r

dx

−
σα

αt

∫
Dt

(σα + |∇gαφα|
2)α−1(1 +

r
2
∂ϕα
∂r

)eϕαdx.(6.4)

Here, dx = dx1dx2.

Proof. Multiplying (2.21) by r ∂φα
∂r , we have

0 =

∫
Dt

div
{
(σα + |∇gαφα|

2)α−1∇φα
}

r
∂φα
∂r

dx −
∫

Dt

〈
1
α

Re
(
P(A(dφα(eγ), eγ · ψα);ψα)

)
, r
∂φα
∂r

〉
dx.

(6.5)

On one hand, integrating by parts, by using the fact that r ∂
∂r =

∑2
β=1 xβ ∂

∂xβ , we have∫
Dt

div
{
(σα + |∇gαφα|

2)α−1∇φα
}

r
∂φα
∂r

dx

=

∫
∂Dt

(σα + |∇gαφα|
2)α−1r|

∂φα
∂r
|2 −

∫
Dt

(σα + |∇gαφα|
2)α−1∇φα∇(xβ

∂φα
∂xβ

)dx

=

∫
∂Dt

(σα + |∇gαφα|
2)α−1r|

∂φα
∂r
|2 −

∫
Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2dx

−

∫
Dt

(σα + |∇gαφα|
2)α−1 1

2
r
∂

∂r
|∇φα|

2dx.(6.6)

Noting that
|∇φα|

2 = eϕα |∇gαφα|
2,
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we get

−

∫
Dt

(σα + |∇gαφα|
2)α−1 1

2
r
∂

∂r
|∇φα|

2dx

= −

∫
Dt

(σα + |∇gαφα|
2)α−1 1

2
r
∂

∂r
|∇gαφα|

2eϕαdx −
∫

Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2 1
2

r
∂ϕα
∂r

dx

= −
1

2α

∫
Dt

r
∂

∂r
(σα + |∇gαφα|

2)αeϕαdx −
∫

Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2 1
2

r
∂ϕα
∂r

dx.(6.7)

Integrating by parts yields that

−
1

2α

∫
Dt

r
∂

∂r
(σα + |∇gαφα|

2)αeϕαdx

= −
1

2α

∫
∂Dt

r(σα + |∇gαφα|
2)αeϕα +

1
2α

∫
Dt

(σα + |∇gαφα|
2)αdiv{xeϕα}dx

= −
1

2α

∫
∂Dt

r(σα + |∇gαφα|
2)α−1|∇φα|

2 −
σα

2α

∫
∂Dt

r(σα + |∇gαφα|
2)α−1eϕα

+
1
α

∫
Dt

(σα + |∇gαφα|
2)αeϕαdx +

1
2α

∫
Dt

(σα + |∇gαφα|
2)αr

∂ϕα
∂r

eϕαdx.(6.8)

By (6.6), (6.7) and (6.8), we obtain∫
∂Dt

(σα + |∇gαφα|
2)α−1r|

∂φα
∂r
|2 −

1
2α

∫
∂Dt

r(σα + |∇gαφα|
2)α−1|∇φα|

2

−

∫
Dt

div
{
(σα + |∇gαφα|

2)α−1∇φα
}

r
∂φα
∂r

dx

=
σα

2α

∫
∂Dt

r(σα + |∇gαφα|
2)α−1eϕα +

∫
Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2dx −
1
α

∫
Dt

(σα + |∇gαφα|
2)αeϕαdx

+

∫
Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2 1
2

r
∂ϕα
∂r

dx −
1

2α

∫
Dt

(σα + |∇gαφα|
2)αr

∂ϕα
∂r

eϕαdx

=
σα

2α

∫
∂Dt

r(σα + |∇gαφα|
2)α−1eϕα + (1 −

1
α

)
∫

Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2dx

−
σα

α

∫
Dt

(σα + |∇gαφα|
2)α−1eϕαdx +

∫
Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2 1
2

r
∂ϕα
∂r

dx

−
1

2α

∫
Dt

(σα + |∇gαφα|
2)αr

∂ϕα
∂r

eϕαdx

=
σα

2α

∫
∂Dt

r(σα + |∇gαφα|
2)α−1eϕα + (1 −

1
α

)
∫

Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2dx

−
σα

α

∫
Dt

(σα + |∇gαφα|
2)α−1(1 +

r
2
∂ϕα
∂r

)eϕαdx + (1 −
1
α

)
∫

Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2 1
2

r
∂ϕα
∂r

dx
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which implies∫
Dt

div
{
(σα + |∇gαφα|

2)α−1∇φα
}

r
∂φα
∂r

dx

=

∫
∂Dt

(σα + |∇gαφα|
2)α−1r|

∂φα
∂r
|2 −

1
2α

∫
∂Dt

r(σα + |∇gαφα|
2)α−1|∇φα|

2

−
σα

2α

∫
∂Dt

r(σα + |∇gαφα|
2)α−1eϕα − (1 −

1
α

)
∫

Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2dx

+
σα

α

∫
Dt

(σα + |∇gαφα|
2)α−1(1 +

r
2
∂ϕα
∂r

)eϕαdx − (1 −
1
α

)
∫

Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2 1
2

r
∂ϕα
∂r

dx.

(6.9)

On the other hand, according to Proposition 2.2 in [27] that

〈ψ, ∇̃X( /Dψ) − /D(∇̃Xψ)〉 = 2
〈
Re

(
P(A(dφ(eγ), eγ · ψ);ψ)

)
,∇Xφ

〉
whenever [X, eγ] = 0, γ = 1, 2, where [·, ·] is the Lie bracket and a well-known fact that∫

M
〈ψ, /Dω〉 =

∫
M
〈 /Dψ,ω〉 −

∫
∂M
〈
−→n · ψ,ω〉

where −→n is the outward unit normal vector field on ∂M, using the equation /Dψα = 0, we get

−

∫
Dt

〈
Re

(
P(A(dφα(eγ), eγ · ψα);ψα)

)
, r
∂φα
∂r

〉
dx

=
1
2

∫
Dt

〈xβψα, /D∇̃ ∂
∂β
ψα〉dx

=
1
2

∫
Dt

〈 /D(xβψα), ∇̃ ∂
∂β
ψα〉dx −

1
2

∫
∂Dt

〈
−→n · xβψα, ∇̃ ∂

∂β
ψα〉dx

= −
1
2

∫
Dt

〈ψα, /Dψα〉dx +
1
2

∫
Dt

〈 /Dψα, r∇̃ ∂
∂r
ψα〉dx +

1
2

∫
∂Dt

〈ψα, r
∂

∂r
· ∇̃ ∂

∂r
ψα〉

=
1
2

∫
∂Dt

〈ψα, r
∂

∂r
· ∇̃ ∂

∂r
ψα〉 = −

1
2

∫
∂Dt

〈ψα, r−1 ∂

∂θ
· ∇̃ ∂

∂θ
ψα〉,(6.10)

Then the conclusion of the lemma follows immediately from (6.9) and (6.10). �

As a direct corollary of Lemma 6.1 and Lemma 6.3, we have the following Pohozaev type
estimate for α-Dirac-harmonic maps.

Corollary 6.4. Let (D, gα) be the unit disk in R2 equipped with a metric gα = eϕα
(
(dx1)2 + (dx2)2

)
,

where ϕα(0) = 0 and ϕα → ϕ0 ∈ C∞(D) smoothly. If (φα, ψα) is a critical point of Lα,σα(φ, ψ),
where 0 < β0 < limα↘1 σ

α−1
α ≤ 1 and Eα,σα(φα) ≤ Λ, then for any 0 < t < 1, we have the following
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Pohozaev type estimate

(1 −
1

2α
)
∫
∂Dt

(σα + |∇gαφα|
2)α−1|

∂φα
∂r
|2 −

1
2α

∫
∂Dt

(σα + |∇gαφα|
2)α−1|x|−2|

∂φα
∂θ
|2

= (1 −
1
α

)
1
t

∫
Dt

(σα + |∇gαφα|
2)α−1|∇φα|

2dx

+
1

2α

∫
∂Dt

〈ψα, r−2 ∂

∂θ
· ∇̃ ∂

∂θ
ψα〉 + O(t) + O(α − 1).(6.11)

In the end of this section, we shall develop the three-circle type method for general α-Dirac-
harmonic type system. Let us first state the three-circle theorem for harmonic functions (see e.g.
[59, 50]).

Theorem 6.5. There exists a constant L > 0, such that if u is a nontrivial smooth harmonic function
defined in [(i − 1)L, (i + 2)L] × S 1 that satisfies∫

{iL}×S 1
udθ =

∫
{(i+1)L}×S 1

udθ = 0,

then

(6.12) ‖u‖2L2([iL,(i+1)L]×S 1) <
1
2

(
e−L‖u‖2L2([(i−1)L,iL]×S 1) + e−L‖u‖2L2([(i+1)L,(i+2)L]×S 1)

)
.

Next, we shall establish the three-circle type method for a class of integro-differential equations.
It is based on a series of lemmas. Such results can not be applied directly to general α-Dirac-
harmonic map type systems to derive the decay estimates, in fact, as we will see in Section 8, it
requires a lot of effort to do so.

We start with an L2 interior estimate for a class of integro-differential equations.

Lemma 6.6. Suppose u ∈ W2,2(D4 \ D1) and v ∈ W1,2(D4 \ D1) satisfy the following system of
integro-differential equations

∆u = A1u + A2∇u + A3v +
1

2π

∫ 2π

0
A4u + A5∇u + A6vdθ + f1,(6.13)

/∂v = B1u + B2∇u + B3v +
1

2π

∫ 2π

0
B4u + B5∇u + B6vdθ + f2,(6.14)

where
6∑

i=1

(‖Ai‖L∞(D4\D1) + ‖Bi‖L∞(D4\D1)) ≤ Λ and
2∑

i=1

‖ fi‖L2(D4\D1) ≤ Λ.(6.15)

Then there holds

‖u‖W2,2(D3\D2) + ‖v‖W1,2(D3\D2) ≤ C(Λ)

‖u‖L2(D4\D1) + ‖v‖L2(D4\D1) +

2∑
i=1

‖ fi‖L2(D4\D1)

 .(6.16)
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Proof. The proof is similar to Lemma 3.2 in [27]. Here we present a sketch of proof and refer the
details to [27].

Denote Bσ = D3+σ \ D2−σ, 0 < σ < 1. Let σ′ = σ+1
2 . Take a cut-off function η(x) = η(|x|) with

compact support in Bσ′ satisfying η(x) ≡ 1 in Bσ and |∇η| ≤ 4
(1−σ) and |∆η| ≤ 16

(1−σ)2 . Computing
directly, we get

∆(ηu) = η∆u + 2∇η∇u + ∆ηu

= (2∇η + ηA2)∇u + (∆η + ηA1)u + ηA3v + η f1 + η ·
1

2π

∫ 2π

0
A4u + A5∇u + A6vdθ.

By applying standard elliptic estimate and following the calculations as in Lemma 3.2 in [27], we
have

‖ηu‖W2,2(D4) ≤ C
(
‖∇u‖L2(Bσ′ )

1 − σ
+
‖u‖L2(Bσ′ ) + ‖v‖L2(Bσ′ )

(1 − σ)2 + ‖η f1‖L2(D4)

)
.(6.17)

We now introduce the seminorms as in [27] and define for j = 0, 1, 2

Ξ j = sup
0≤σ≤1

(1 − σ) j‖D ju‖L2(Bσ).

Multiplying (6.17) by (1 − σ)2 and noting that 1 − σ′ = 1−σ
2 , we have

(6.18) Ξ2 ≤ C
(
Ξ1 + Ξ0 + ‖v‖L2(D4\D1) + ‖ f1‖L2(D4\D1)

)
.

Since Ξ j satisfy an interpolation inequality

Ξ1 ≤ εΞ2 +
C
ε

Ξ0(6.19)

for any ε > 0, where C > 0 is a universal constant. Using (6.19) in (6.18), we get

Ξ2 ≤ C
(
‖u‖L2(D4\D1) + ‖v‖L2(D4\D1) + ‖ f1‖L2(D4\D1)

)
,

this is

‖D2u‖L2(Bσ) ≤
C

(1 − σ)2

(
‖u‖L2(D4\D1) + ‖v‖L2(D4\D1) + ‖ f1‖L2(D4\D1)

)
.

Taking σ = 1
2 , it follows

(6.20) ‖u‖W2,2(B1/2) ≤ C
(
‖u‖L2(D4\D1) + ‖v‖L2(D4\D1) + ‖ f1‖L2(D4\D1)

)
.

Similarly, we can compute

/∂(ηv) = ηB1u + ηB2∇u + (ηB3 + ∇η)v + η
1

2π

∫ 2π

0
B4u + B5∇u + B6vdθ + η f2.

By elliptic estimate for the Dirac operator and choosing a new cut-off function η suitably, we have

‖v‖W1,2(B 1
4

) ≤ C(‖∇u‖L2(B 1
2

) + ‖u‖L2(B 1
2

) + ‖v‖L2(B 1
2

) + ‖ f2‖L2(B 1
2

))

≤ C(‖u‖L2(D4\D1) + ‖v‖L2(D4\D1) +

2∑
i=1

‖ fi‖L2(D4\D1)).

Then it is easy to see that the conclusion of the lemma follows immediately. �
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Denote Pi := De(i+1)Lr2 \ DeiLr2 and

Fi(u, v) :=
∫

Pi

1
|x|2
|u|2dx +

∫
Pi

1
|x|
|v|2dx,

where L > 0 is the constant in Theorem 6.5.

Then, we have the following three-circle type theorem for the class of integro-differential equa-
tions considered in Lemma 6.6.

Theorem 6.7. Suppose u ∈ W2,2(Pi−1 ∪ Pi ∪ Pi+1), v ∈ W1,2(Pi−1 ∪ Pi ∪ Pi+1) satisfy equations
(6.13) and (6.14). Then there exists a positive constant δ0 > 0, such that if

max
i−1,i,i+1

(‖|x| f1‖
2
L2(P j)

+ ‖|x|
1
2 f2‖

2
L2(P j)

) ≤ δ0Fi(u, v),(6.21)

and

|x|2(|A1| + |A4|) + |x|
3
2 (|A3| + |A6| + |B1| + |B4|)

+ |x|(|A2| + |A5| + |B3| + |B6|) + |x|
1
2 (|B2| + |B5|) ≤ δ0,(6.22)

and

|

∫ 2π

0
u(eiLr2, θ)dθ|2 + |

∫ 2π

0
u(e(i+1)Lr2, θ)dθ|2

+ eiLr2|

∫ 2π

0
v(eiLr2, θ)dθ|2 + e(i+1)Lr2|

∫ 2π

0
v(e(i+1)Lr2, θ)dθ|2 ≤ δ0Fi(u, v),(6.23)

then, there hold
(a) Fi+1(u, v) ≤ e−LFi(u, v) implies Fi(u, v) ≤ e−LFi−1(u, v);

(b) Fi−1(u, v) ≤ e−LFi(u, v) implies Fi(u, v) ≤ e−LFi+1(u, v);

(c) either Fi(u, v) ≤ e−LFi−1(u, v) or Fi(u, v) ≤ e−LFi+1(u, v).

Proof. Note that the condition (6.22) is in fact stronger than (3.12) in [27], so the conclusions of
theorem follow immediately from Theorem 3.3 in [27]. �

As a direct application of Theorem 6.7, we can get the following decay lemma

Lemma 6.8. Let δ0 > 0 be the constant in Theorem 6.7. Let u ∈ W2,2(De(l+1)Lr2 \ Dr2) and v ∈
W1,2(De(l+1)Lr2 \ Dr2), for some integer l > 1, satisfy the system of integro-differential equations
(6.13) - (6.14) and assume that the followings hold

|x|2(|A1| + |A4|) + |x|
3
2 (|A3| + |A6| + |B1| + |B4|)

+ |x|(|A2| + |A5| + |B3| + |B6|) + |x|
1
2 (|B2| + |B5|) ≤ δ0,(6.24)

and ∫
∂Dr

u =

∫
∂Dr

v = 0.
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Then for any 1 ≤ i ≤ l, there holds

Fi(u, v) ≤ C max
j=1,...,l

(
‖|x| f1‖

2
L2(P j)

+ ‖|x|
1
2 f2‖

2
L2(P j)

)
+ C

(
F0(u, v) + Fl(u, v)

)(
e−(l−i)L + e−iL).(6.25)

Proof. Denote the set

I :=
{
1 ≤ i ≤ l − 1

∣∣∣ max
i−1,i,i+1

(‖|x| f1‖
2
L2(P j)

+ ‖|x|
1
2 f2‖

2
L2(P j)

) ≥ δ0Fi(u, v)
}
.(6.26)

If i ∈ I then it is easy to see that (6.25) holds. If i < I, by (c) of Theorem 6.7, we have

Fi(u, v) ≤ e−LFi−1(u, v) or Fi(u, v) ≤ e−LFi+1(u, v).

If Fi(u, v) ≤ e−LFi−1(u, v), we shall consider the following two cases:

Case 1-1: if there exists 1 ≤ i1 < i such that i1 ∈ I and for any i1 < j < i, there holds j < I, then by
(a) in Theorem 6.7, we will get

Fi(u, v) ≤ e−(i−i1)LFi1(u, v) ≤ C max
i1−1,i1,i1+1

(‖|x| f1‖
2
L2(P j)

+ ‖|x|
1
2 f2‖

2
L2(P j)

).

Case 1-2: if such constant i1 does not exist, i.e. j < I, j = 2, ..., i, then by (a) in Theorem 6.7, we
will get

Fi(u, v) ≤ e−iLF0(u, v).

Similarly, if Fi(u, v) ≤ e−LFi+1(u, v), then we consider the following two cases:

Case 2-1: if there exists i < i2 < l − 1 such that i2 ∈ I and for any i < j < i2, there holds j < I, then
by (b) in Theorem 6.7, we will get

Fi(u, v) ≤ e−(i2−i)LFi2(u, v) ≤ C max
i2−1,i2,i2+1

(‖|x| f1‖
2
L2(P j)

+ ‖|x|
1
2 f2‖

2
L2(P j)

).

Case 2-2: if such constant i2 does not exist, i.e. j < I, j = i, ..., l − 1, then by (b) in Theorem 6.7,
we will get

Fi(u, v) ≤ e−(l−i)LFl(u, v).
Thus, we obtain

Fi(u, v) ≤ C max
j=1,...,l

(‖|x| f1‖
2
L2(P j)

+ ‖|x|
1
2 f2‖

2
L2(P j)

) + Ce−iLF0(u, v)

or
Fi(u, v) ≤ C max

j=1,...,l
(‖|x| f1‖

2
L2(P j)

+ ‖|x|
1
2 f2‖

2
L2(P j)

) + Ce−(l−i)LFl(u, v).

Then the conclusion of the lemma follows immediately. �

Finally, we have

Corollary 6.9. Under the assumptions of Lemma 6.8, there holds

‖∇u‖L2(Pi) + ‖∇v‖
L

4
3 (Pi)

≤ C max
j=1,...,l

(‖|x| f1‖L2(P j) + ‖|x|
1
2 f2‖L2(P j)) + C

(
F1/2

0 (u, v) + F1/2
l (u, v)

)(
e−

1
2 (l−i)L + e−

1
2 iL).(6.27)
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Proof. By the interior estimate in lemma 6.6 and the standard scaling argument, we have

‖∇u‖L2(Pi) + ‖∇v‖
L

4
3 (Pi)

≤ C
(
F

1
2
i (u, v) + F

1
2
i−1(u, v) + F

1
2
i+1(u, v) + ‖|x| f1‖L2(Pi−1∪Pi∪Pi+1) + ‖|x|

1
2 f2‖L2(Pi−1∪Pi∪Pi+1)

)
≤ C max

j=1,...,l
(‖|x| f1‖L2(P j) + ‖|x|

1
2 f2‖L2(P j)) + C

(
F1/2

0 (u, v) + F1/2
l (u, v)

)(
e−

1
2 (l−i)L + e−

1
2 iL).

�

7. Generalized energy identities for α-Driac-harmonic maps

In this section, we shall prove Theorem 2.6.
For simplicity, we first consider the local model case of a single interior blow-up point for a

sequence of general α-Dirac harmonic maps.

Theorem 7.1. Let D = D1(0) ⊂ R2 be the unit disk. Assume that gα = eϕα(x)((dx1)2 + (dx2)2) and
g = eϕ0(x)((dx1)2 + (dx2)2) is a family of metrics on D1(0), where ϕα ∈ C∞(D1), ϕα(0) = 0 and
ϕα → ϕ0 in C∞(D1) as α ↘ 1. Let (φα, ψα) ∈ C∞(D1(0),N) be a sequence of general α-Dirac-
harmonic maps satisfying the followings:

(a) supα(Eα,σα(φα) + E(ψα)) ≤ Λ, and 0 < β0 ≤ limα↘1(σα)α−1 ≤ 1,

(b) (φα, ψα)→ (φ, ψ), strongly in C∞loc(D \ {0}) as α↘ 1.
Then there exist a subsequence of (φα, ψα) (still denoted by (φα, ψα)) and a nonnegative integer L1

such that, for any i = 1, ..., L1, there exist sequences of points xi
α and positive numbers λi

α, and a
nonconstant Dirac-harmonic sphere (σi, ξi) such that:

(1) xi
α → 0, λi

α → 0, as α↘ 1;

(2) limα↘1

(
λi
α

λ
j
α

+
λ

j
α

λi
α

+
|xi
α−x j

α |

λi
α+λ

j
α

)
= ∞, for any i , j;

(3) (σi, ξi) is the weak limit of
(
φα(xi

α + λi
αx), (λi

α)α−1
√
λi
αψα(xi

α + λi
αx)

)
in W1,2

loc (R2)× L4
loc(R

2).

(4) Generalized energy identities: we have

lim
δ→0

lim
α↘1

Eα,σα(φα,Dδ(0)) =

L1∑
i=1

µ2
i E(σi),(7.1)

lim
δ→0

lim
α↘1

E(ψα,Dδ(0)) =

L1∑
i=1

µ2
i E(ξi),(7.2)

where µi = limα↘1(λi
α)2−2α.

Proof of Theorem 7.1. By our assumptions, we know that 0 is the only blow-up point in D for the
sequence {(φα, ψα)}, i.e.

(7.3) lim inf
α↘1

E(φα; Dr) ≥
ε0

2
for all r > 0
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where ε0 > 0 is the constant in Lemma 5.1. By standard blow-up argument for harmonic map type
problems, we can assume that there exist sequences xα → 0 and λα → 0 such that

(7.4) E(φα; Dλα(xα)) = sup
x∈D,r≤λα
Dr(x)⊂D

E(φα; Dr(x)) =
ε0

4
.

Then, we shall construct the first bubble for the sequence of general α-Dirac-harmonic maps
(φα, ψα). The argument is similar to the proof of Theorem 2.4 for the critical points of Lα, since
the objects considered in this part are critical points of Lα,σα . For reader’s convenience, we recall
this process once again.

Setting

( ũα(x), ṽα(x)) :=
(
φα(xα + λαx),

√
λαψα(xα + λαx)

)
,(7.5)

by (2.20) , it is easy to see that, for any R > 0, (̃uα(x), ṽα(x)) lives in DR(0) ⊂ R2 for α close to 1
and satisfies ∆ũα = −(α − 1) ∇|∇gα ũα |2∇ũα

σαλ
2
α+|∇gα ũα |2

+ A(dũα, dũα) +
Re(P(A(dũα(eγ),eγ ·̃vα);̃vα))
α(σα+λ−2

α |∇gα ũα |2)α−1 ,

/∂̃vα = A(dũα(eγ), eγ · ṽα),
(7.6)

where gα(x) = eϕα(xα+λαx)((dx1)2 + (dx2)2) and we have used the fact that the second equation, i.e.
the equation for the spinor part, is conformally invariant.

It is easy to see that (̃uα(x), ṽα(x)) is a λ2(α−1)
α -general α-Dirac-harmonic map (by replacing σα in

the definition with σαλ
2
α). Noting that

λ2(α−1)
α

(σαλ2
α)α−1 =

1
σα−1
α

,

by (7.4), the fact 0 < β0 ≤ limα↘1(σα)α−1 ≤ 1 and Lemma 5.1, we know there exists a subsequence
of {α} (still denoted by the same symbols) and a limit (σ̃, ξ̃) ∈ W2,2

loc (R2) ×W1,2
loc (R2), such that

E(σ̃; D1(0)) =
ε0

4
and

(̃uα(x), ṽα(x)) ⇀ (σ̃, ξ̃), weakly in W2,2
loc (R2) ×W1,2

loc (R2),(7.7)

(̃uα(x), ṽα(x))→ (σ̃, ξ̃), in W1,2
loc (R2) × L4

loc(R
2).(7.8)

Next, we prove the following

Claim 1:
(7.9) 1 ≤ lim inf

α↘1
λ2(1−α)
α ≤ lim sup

α↘1
λ2(1−α)
α ≤ µmax < ∞.

To show this claim, we just need to prove that

lim sup
α↘1

λ2(1−α)
α < ∞.

In fact, if it does not hold, then there exists a subsequence α j → 1 such that

lim
j→∞

λ
2(1−α j)
α j := µ = ∞.
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By (7.6) and (7.7), it is easy to see that σ̃ : R2 → N is a harmonic map such that ũα j → σ̃ in
C1

loc(R
2) as j→ ∞. Then we have

Λ ≥ lim
R→∞

lim
j→∞

∫
Dλα j R(xα j )

|∇gα j
φα j |

2α jdvolgα j
= lim

R→∞
lim
j→∞

(λα j)
2−2α j

∫
DR(0)
|∇gα j

ũα j |
2α jdvolgα j (xα j +λα j x)

= lim
R→∞

µ

∫
DR(0)
|∇σ̃|2dx = µE(σ̃).

which is a contradiction to the fact that E(σ̃) ≥ ε > 0, which follows from the well known energy
gap theorem for harmonic spheres, since σ̃ : R2 → N is a nontrivial harmonic map with finite
energy and hence it can be conformally extended to a harmonic sphere. Thus, Claim 1, i.e. (7.9)
holds true.

Now setting
uα(x) := φα(xα + λαx), vα(x) := λα−1

α

√
λαψα(xα + λαx),

since the equation for the spinor part is also invariant by multiplying a constant to the spinor, it is
easy to see that (uα, vα) satisfies∆uα = −(α − 1) ∇|∇gαuα |2∇uα

σαλ
2
α+|∇gαuα |2

+ A(duα, duα) + λ2(1−α)
α

Re(P(A(duα(eγ),eγ·vα);vα))
α(σα+λ−2

α |∇gαuα |2)α−1 ,

/∂vα = A(duα(eγ), eγ · vα).
(7.10)

It is easy to see that (uα(x), vα(x)) is a general α-Dirac-harmonic map (by replacing σα with
σαλ

2
α) living in some region which exhausts R2 as α ↘ 1. Moreover, for any x ∈ R2, when α is

sufficiently close to 1, by (7.4), we have

(7.11) E(uα; D1(x)) ≤
ε0

4
.

From (7.9), we have
β0

µmax
≤ lim inf

α↘1
(σαλ

2
α)(α−1) ≤ lim sup

α↘1
(σαλ

2
α)(α−1) ≤ 1.

According to Lemma 5.1, there exist a subsequence of (uα, vα) (we still denote it by (uα, vα)) and a
finite energy Dirac-harmonic map (σ1, ξ1) ∈ W2,2(R2,N) ×W1,2(R2,N) such that

lim
α↘1

uα(x) = σ1(x) in W1,2
loc (R2) and lim

α↘1
vα(x) = ξ1(x) in L4

loc(R
2).

Besides, by (7.4), there holds E(σ1; D1(0)) = ε0
4 . By classical theory of Dirac-harmonic maps,

(σ1, ξ1) can be extended to a nontrivial finite energy Dirac-harmonic sphere, which is called the
first bubble.

Similarly to the blow-up theory of approximate harmonic maps with L2-uniformly bounded
tension fields [17], to prove our theorem, without loss of generality, it is sufficient to consider the
case where there is only one bubble occurring at the blow-up point. The case of multiple bubbles
occurring can be handled by a standard induction argument as in [17]. See [35] for a more detailed
discussion on such a induction argument for the case of α-harmonic maps.

Now, under the “one bubble” assumption, we first make the following:
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Claim 2: For any ε > 0, there exist δ > 0 and R > 0 such that

(7.12)
∫

D8t(xα)\Dt(xα)
|∇φα|

2dx +

∫
D8t(xα)\Dt(xα)

|ψα|
4dx ≤ ε4, for any t ∈ (

1
4
λαR, 2δ)

when α − 1 is small enough.
The proof of this claim is now standard and follows from a contradiction argument. In fact, if

(7.12) is not true, then we can find ε > 0, tα → 0, such that limα↘1
tα
λα

= ∞ and

(7.13) E(φα, ψα; D8tα(xα) \ Dtα(xα)) ≥ ε > 0.

Setting
u′α(x) := φα(xα + tαx), v′α(x) := tα−1

α

√
tαψα(xα + tαx),

then from the above arguments, we know that (u′α, v
′
α) is also a general α-Dirac-harmonic map.

Furthermore, it is easy to see that 0 is an energy concentration point for (u′α, v
′
α) and (σ1, ξ1) is also

a bubble for (u′α, v
′
α). To construct the second bubble, we have to consider the following two cases:

(a): (u′α, v
′
α) has no other energy concentration points except 0.

By Lemma 5.1, passing to a subsequence, we may assume that (u′α, v
′
α) converges to a Dirac-

harmonic map (σ2, ξ2) : R2 → N strongly in W1,2
loc (R2 \ {0}) × L4

loc(R
2 \ {0}) as α↘ 1. In particular,

we have

E(σ2, ξ2; D8(0) \ D1(0)) = lim
α↘1

E(φα; D8tα(xα) \ D8tα(xα)) + lim
α↘1

t4(α−1)
α E(ψα; D8tα(xα) \ D8tα(xα))

≥ lim
α↘1

(λαR)4(α−1)E(φα, ψα; D8tα(xα) \ D8tα(xα)) ≥
1
µ2

max

ε0

4
.

Here, the last inequality follows from (2.24) where µmax := Λ
ε4

.
By classical theory of Dirac-harmonic maps, we know that (σ2, ξ2) is a nontrivial finite energy

Dirac-harmonic sphere. This is the second bubble, which is a contradiction to the “one bubble”
assumption.

(b): (u′α, v
′
α) has another energy concentration point p , 0.

Without loss of generality, we may assume that p is the only blow-up point in Dr(p) for some
small r > 0. By standard blow-up argument for harmonic map type problems, there exist x′α → p
and λ′α → 0 such that

E(u′α; Dλ′α(x′α)) = sup
x∈Dr(p),s≤rn
Ds(x)⊂Dr(p)

E(u′α; Ds(x)) =
ε0

4
.(7.14)

From the process of constructing the first bubble, we know that there exists a nontrivial Dirac-
harmonic sphere (σ2, ξ2) such that

(u′α(x′α + λ′αx), (λ′α)α−1
√
λ′αv′α(x′α + λ′αx))→ (σ2, ξ2) in W1,2

loc (R2) × L4
loc(R

2)

as α↘ 1. This is(
φα(xα + tαx′α + tαλ′αx), (tαλ′α)α−1

√
tαλ′αψα(xα + tαx′α + tαλ′αx)

)
→ (σ2, ξ2) in W1,2

loc (R2) × L4
loc(R

2)
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as α ↘ 1. By (7.14), (σ2, ξ2) is nontrivial. Therefore, we get the second bubble, contradicting the
“one bubble” assumption.

So, we proved Claim 2 and (7.12) holds.

To proceed, we need to establish a series of auxiliary lemmas and we leave the rest of the proof
of Theorem 7.1 to the end of this section. �

Without loss of generality, we always assume δ = ekαLλαR where L > 0 is the constant in
Theorem 6.5 and kα is an integer which goes to infinity as α ↘ 1. For simplicity of notation, we
still denote Pi = De(i+1)LλαR(xα) \ DeiLλαR(xα).

Firstly, we show the generalized energy identity for the spinor part.

Lemma 7.2. Under the assumption of Theorem 7.1 and the one bubble assumption, if there is no
energy concentration for the sequence (φα, ψα) in the region Dδ(xα) \ DλR(xα), i.e. (7.12) holds 9,
then we have

lim
δ→0

lim
R→∞

lim
α↘1

(
‖ψα‖L4(Dδ(xα)\DλαR(xα)) + ‖∇ψα‖L

4
3 (Dδ(xα)\DλαR(xα))

)
= 0.

Proof. Firstly we use a finite decomposition argument that is similar to those in [64, 65] to decom-
pose the region Σ := Dδ(xα) \ DλαR(xα) into finite parts

Σ = ∪
sα
j=1Q j, Q j := ∪m j−1

i=m j−1
Pi, 0 = m0 < m1 <, ..., < msα = kα

such that sα ≤ S and

E(φα, ψα; Q j) ≤
1

C1(N)
, j = 1, ..., sα,(7.15)

where C1(N) > 0 is a constant depending only on N to be determined later and S is a uniform
integer for all α − 1 small enough.

From (7.12), for any ε << 1
2C1(N) , we have

E(φα, ψα; Pi) < C(L)ε <
1

2C1(N)
, i = 1, ..., kα

when α − 1 is small.
If

E(φα, ψα; Σ) ≤
1

C1(N)
,

let m1 = kα and then Q1 = Σ. Otherwise, we can choose an integer 1 ≤ m1 < kα such that
1

2C1(N)
< E(φα, ψα; Q1) ≤

1
C1(N)

and E(φα, ψα; Q1 ∪ Pm1) >
1

C1(N)
.

This is the first step of the division. Inductively, suppose that m j is chosen such that

E(φα, ψα; Q j) ≤
1

C1(N)
.

9We remark that the region Dδ(xα) \ DλR(xα) satisfying the property (7.12) is usually called the neck domain.
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If
E(φα, ψα;∪kα

i=m j
Pi) ≤

1
C1(N)

,

let m j+1 = kα, thus Q j+1 = ∪
kα−1
i=m j

Pi. If not, then similarly to the first step, we can find m j < m j+1 < kα
such that

1
2C1(N)

< E(φα, ψα; Q j+1) ≤
1

C1(N)
and E(φα, ψα; Q j+1 ∪ Pm j+1) >

1
C1(N)

.

Since E(φα, ψα) is uniformly bounded by Λ, we will finish our division after at most

S = [2C1(N)Λ] + 1

steps. This gives the finite decomposition.
Take a cut-off function η ∈ C∞0 (Dem jL

λαR(xα) \ De(m j−1−1)L
λαR(xα)) such that 0 ≤ η ≤ 1 and

η
∣∣∣∣D

e
(m j−1)L

λαR
(xα)\D

e
m j−1L

λαR
(xα) ≡ 1

and

|∇η| ≤
C

em jLλαR
on Dem jL

λαR(xα) \ De(m j−1)L
λαR(xα) and

|∇η| ≤
C

em j−1LλαR
on Dem j−1L

λαR(xα) \ De(m j−1−1)L
λαR(xα).

By standard elliptic estimates, we have

‖ηψα‖W1,4/3(D1) ≤ C‖η/∂ψα + ∇η · ψα‖L
4
3 (D1)

≤
1
4

C(N)‖|dφα||ηψα|‖L 4
3 (D1)

+ C‖|∇η||ψα|‖L 4
3 (D1)

≤
1
4

C(N)‖dφα‖L2(D
e
(m j+2)L

λαR
(xα)\D

e
m j−1L

λαR
(xα))‖ηψα‖L4(D1) + C‖∇ηψα‖L 4

3 (Pm j−1−1∪Pm j−1)

≤
1
4

C(N)
2

√
C1(N)

‖ηψα‖L4(D1) + C‖∇η‖L2(Pm j−1−1∪Pm j−1)‖ψα‖L4(Pm j−1−1∪Pm j−1),

where the last inequality is from (7.15) and (7.12). Then, taking C1(N) = C2(N) + 1, by (7.12) and
Sobolev embedding, for any ε > 0, we have

‖ψα‖L4(Q j) + ‖∇ψα‖L4/3(Q j) ≤ C‖ψα‖L4(Pm j−1−1∪Pm j−1) ≤ Cε,

when α − 1, δ, 1
R are small enough.

So,

‖ψα‖L4(Σ) + ‖∇ψα‖L4/3(Σ) ≤

sα∑
j=1

(‖ψα‖L4(Q j) + ‖∇ψα‖L4/3(Q j)) ≤ CS ε,

which implies the conclusion of the lemma immediately. �

As a corollary of Lemma 7.2, we get the following generalized energy identity for the spinor.

Corollary 7.3. Under the assumptions of Lemma 7.2, we have

lim
δ→0

lim
α↘1

E(ψα,Dδ(0)) = µ2E(ξ1).
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Proof. By Lemma 7.2, we have

lim
δ→0

lim
α↘1

E(ψα,Dδ(0))

= lim
δ→0

lim
α↘1

(
E(ψα,Dδ(0) \ D δ

2
(xα)) + E(ψα,D δ

2
(xα) \ DλαR(xα)) + E(ψα,DλαR(xα))

)
= lim

α↘1
E(ψα,DλαR(xα)) = lim

α↘1
λ4−4α
α

∫
DR(0)
|vα|4dx = µ2E(ξ1),

where µ := limα↘1(λα)2−2α. �

Next, we will show that there is no concentration for some kind of stronger weighted energy of
the spinor part on the neck domain. The proof is based on some Hardy-type inequality on R2.

Lemma 7.4. Under the assumption of Lemma 7.2, there holds

lim
δ→0

lim
R→∞

lim
α→1

∫
Dδ(xα)\DλαR(xα)

|ψα|
2

|x − xα|
dx = 0.(7.16)

Proof. Without loss of generality, we may assume xα = 0.
The key of the proof is the following Hardy-type inequality on R2: for any f ∈ C∞0 (R2 \ {0}),

there holds

(7.17) ‖
f
|x|
‖L1(R2) ≤ ‖∇ f ‖L1(R2)

where the constant 1 on the right hand side is the best possible constant (see [3] for a simple proof).
We choose a cut-off function η ∈ C∞0 (Dδ \ DλαR) such that 0 ≤ η ≤ 1 and η ≡ 1 on D 1

2 δ
\ D2λαR

and

|∇η| ≤
C
δ

on Dδ \ D 1
2 δ

and |∇η| ≤
C
λnR

on D2λαR \ DλαR.

Taking f = η|ψα|
2 in the inequality (7.17), we have

‖η
|ψα|

2

|x|
‖L1(R2) ≤ ‖∇(η|ψα|2)‖L1(R2)

≤ ‖2ηψα∇ψα‖L1(R2) + ‖∇η|ψα|
2‖L1(Dδ\DλαR)

≤ ‖ψα‖L4(Dδ\DλαR)‖∇ψα‖L
4
3 (Dδ\DλαR)

+ C
1
δ
‖|ψα|

2‖L1(Dδ\D 1
2 δ

) + C
1
λαR
‖|ψα|

2‖L1(D2λαR\DλαR)

≤ ‖ψα‖L4(Dδ\DλαR)‖∇ψα‖L
4
3 (Dδ\DλαR)

+ C‖ψα‖2L4(Dδ\D 1
2 δ

) + C‖ψα‖2L4(D2λαR\DλαR)

≤ Cε

where the last inequality is from (7.12) and Lemma 7.2. Thus,∫
D 1

2 δ
\D2λαR

|ψα|
2

|x|
dx ≤ Cε.

Combining this with (7.12) again, we get the conclusion of the lemma. �

As an application of Lemma 5.1, we have the following lemma.
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Lemma 7.5. Under the assumption of Lemma 7.2, for any λαR ≤ t1 ≤ t2 ≤ δ, there hold

(7.18) |x − xα||∇φα| + |x − xα|2|∇2φα| +
√
|x − xα||ψα| ≤ Cε, ∀ x ∈ Dt2(xα) \ Dt1(xα)

and ∫
Dt2 (xα)\Dt1 (xα)

|∇2φα||φα − φ
∗
α|dx ≤ C

∫
D4t2 (xα)\D 1

2 t1
(xα)
|∇φα|

2dx,(7.19)

where φ∗α(r) = 1
2π

∫ 2π

0
φα(r, θ)dθ and C > 0 is independent of α.

Proof. For any t1 ≤ t ≤ t2, it is easy to see that
(
φα(xα + tx), tα−1

√
tψα(xα + tx)

)
is a α-Dirac-

harmonic map which is defined on D2(0) \ D 1
4
(0). Under the assumption of Lemma 7.2, (7.12)

holds. Then by Lemma 5.1, we have

t‖∇φα(xα + tx)‖L∞(D1(0)\D 1
2

(0)) + t2‖∇2φα(xα + tx)‖L∞(D1(0)\D 1
2

(0)) ≤ C‖∇φα‖L2(D2t(xα)\D t
4

(xα)),

tα−1
√

t‖ψα(xα + tx)‖L∞(D1(0)\D 1
2

(0)) ≤ Ctα−1‖ψα‖L4(D2t(xα)\D t
4

(xα)).

Noting that
C
√
µmax

≤ (λαR)α−1 ≤ tα−1 ≤ 1

where µmax = Λ
ε1

(see (2.24)), we obtain

t‖∇φα(xα + tx)‖L∞(D1(0)\D 1
2

(0)) + t2‖∇2φα(xα + tx)‖L∞(D1(0)\D 1
2

(0)) +
√

t‖ψα(xα + tx)‖L∞(D1(0)\D 1
2

(0))

≤ C
(
‖∇φα‖L2(D2t(xα)\D t

4
(xα)) + ‖ψα‖L4(D2t(xα)\D t

4
(xα))

)
,

which implies (7.18).
For (7.19), denoting by Iα a positive integer such that

2Iα−1t1 ≤ t2 ≤ 2Iαt1,

then according to Lemma 5.1, we have∫
Dt2 (xα)\Dt1 (xα)

|∇2φα||φα − φ
∗
α|dx ≤

Iα∑
i=1

∫
D2it1

(xα)\D2i−1t1
(xα)
|∇2φα||φα − φ

∗
α|dx

≤ C
Iα∑

i=1

(2it1)2‖∇2φα‖L∞(D2it1
(xα)\D2i−1t1

(xα))2it1‖∇φα‖L∞(D2it1
(xα)\D2i−1t1

(xα))

≤ C
Iα∑

i=1

∫
D2i+1t1

(xα)\D2i−2t1
(xα)
|∇φα|

2dx ≤ C
∫

D4t2 (xα)\D t1
2

(xα)
|∇φα|

2dx.

�

To estimate the energy of the map part, we first prove that the tangential energy of the map part
on the neck domain is converging to zero.
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Lemma 7.6. Under the assumptions of Lemma 7.2, there holds:

lim
δ→0

lim
R→∞

lim
α↘1

∫
Dδ(xα)\DRλα (xα)

|x − xα|−2|
∂φα
∂θ
|2dx = 0.

Proof. Denote

φ∗α(r) =
1

2π

∫ 2π

0
φα(r, θ)dθ.

Then by Lemma 5.1, we have

‖φα − φ
∗
α‖L∞(Dδ(xα)\DRλα (xα)) = sup

λαR≤t≤δ
‖φα − φ

∗
α‖D2t(xα)\Dt(xα)

≤ sup
λαR≤t≤δ

‖φα‖Osc(D2t(xα)\Dt(xα))

≤ C sup
λαR≤t≤δ

‖∇φα‖L2(D4t(xα)\D 1
2 t(xα)) ≤ Cε,

where the last inequality follows from (7.12).
Using equation (2.20), we have∫

Dδ(xα)\DRλα (xα)
−∆φα(φα − φ∗α)dx =

∫
Dδ(xα)\DRλα (xα)

{
(α − 1)

∇|∇gαφα|
2∇φα

σα + |∇gαφα|
2 − A(φα)(dφα, dφα)

−
Re

(
P(A(dφα(eγ), eγ · ψα);ψα)

)
α(σα + |∇gφα|2)α−1

}
(φα − φ∗α)dx

On one hand, by integrating by parts, we get

le f t =

∫
Dδ(xα)\DRλα (xα)

−∆φα(φα − φ∗α)dx

=

∫
Dδ(xα)\DRλα (xα)

(|∇φα|2 −
∂φα
∂r

∂φ∗α
∂r

)dx −
∫
∂(Dδ(xα)\DRλα (xα))

∂φα
∂r

(φα − φ∗α)dx

≥

∫
Dδ(xα)\DRλα (xα)

(|∇φα|2 − |
∂φα
∂r
|2)dx −

∫
∂(Dδ(xα)\DRλα (xα))

∂φα
∂r

(φα − φ∗α).

On the other hand, by Lemma 6.1 and Lemma 7.5, there holds

right ≤ C
∫

Dδ(xα)\DRλα (xα)
(α − 1)|∇2φα||φα − φ

∗
α|dx + C

∫
Dδ(xα)\DRλα (xα)

|∇φα|
2|φα − φ

∗
α|dx

+ C
∫

Dδ(xα)\DRλα (xα)
|∇φα||ψα|

2|φα − φ
∗
α|dx

≤ C(α − 1)
∫

D2δ(xα)
|∇φα|

2dx + Cε
∫

Dδ(xα)\DRλα (xα)
(|∇φα|2 + |ψα|

4)dx ≤ C((α − 1) + ε).
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Combining these together, we conclude that∫
Dδ(xα)\DRλα (xα)

|x − xα|−2|
∂φα
∂θ
|2dx =

∫
Dδ(xα)\DRλα (xα)

(|∇φα|2 − |
∂φα
∂r
|2)dx

≤

∫
∂(Dδ(xα)\DRλα (xα))

∂φα
∂r

(φα − φ∗α) + C((α − 1) + ε).

As for the boundary term, by trace theory, we have∫
∂Dδ(xα)

∂φα
∂r

(φα − φ∗α) ≤ Cε
∫
∂Dδ(xα)

|
∂φα
∂r
|

≤ Cε (‖∇φα‖L2(Dδ(xα)\D 1
2 δ

(xα)) + δ‖∇2φα‖L2(Dδ(xα)\D 1
2 δ

(xα)))

≤ Cε ‖∇φα‖L2(D2δ(xα)\D 1
4 δ

(xα)) ≤ Cε,

where the third inequality follows from Lemma 5.1.
Similarly, there holds ∫

∂DλαR(xα)

∂φα
∂r

(φα − φ∗α) ≤ Cε.

Then the conclusion of the lemma follows immediately. �

Combining Lemma 7.6 with Lemma 6.1, we get

Lemma 7.7. Under the assumptions of Lemma 7.2, there holds

lim
δ→0

lim
R→∞

lim
α↘1

∫
Dδ(xα)\DRλα (xα)

(σα + |∇gαφα|
2)α−1|x − xα|−2|

∂φα
∂θ
|2dx = 0.

Denote

Fα(t) :=
∫

Dλt
α

(xα)
(σα + |∇gαφα|

2)α−1|∇φα|
2dx,

Fr,α(t) :=
∫

Dλt
α

(xα)\D
λ

t0
α

(xα)
(σα + |∇gαφα|

2)α−1|
∂φα
∂r
|2dx

and

Fθ,α(t) :=
∫

Dλt
α

(xα)\D
λ

t0
α

(xα)
(σα + |∇gαφα|

2)α−1|x − xα|−2|
∂φα
∂θ
|2dx, 0 < t ≤ t0 < 1.

By Corollary 6.4, for t ∈ [ε, t0], we have

(1 −
1

2α
)

d
dt

Fr,α(t) −
1

2α
d
dt

Fθ,α

=
α − 1
α

log λαFα(t) +
1

2α
λt
α log λα

∫
∂Dλt

α
(xα)
〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃ ∂

∂θ

ψα〉 + O(λt
α log λα).
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Then

(1 −
1

2α
)Fr,α(t) −

1
2α

Fθ,α =
1
2

∫ t

t0

{
−

1
α

log λ2(1−α)
α Fα(t) + O(λt

α log λα)
}

dt

+
1

2α

∫
Dλt

α
(xα)\D

λ
t0
α

(xα)
〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃ ∂

∂θ

ψα〉.(7.20)

It is easy to check that the function defined by the following integration

1
2

∫ t

t0

{
−

1
α

log λ2(1−α)
α Fα(t) + O(λt

α log λα)
}

dt

is compact in C0([ε, t0]). By Lemma 7.2,

1
2α

∫
Dλt

α
(xα)\D

λ
t0
α

(xα)
〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃ ∂

∂θ

ψα〉 → 0 in C0([ε, t0]).

Combining these with the fact that Fθ,α(t)→ 0, by Lemma 7.7, we know that the sequences{
(1 −

1
2α

)Fr,α(t) −
1

2α
Fθ,α

}
, {Fα(t)}, {Fr,α(t)} and {Fθ,α(t)}

are compact in the C0([ε, t0]) topology for any ε > 0. Thus, there exist two functions F and Fr,
belonging to C0([ε, t0]), such that

Fα → F and Fr,α → Fr, in C0([ε, t0])

as α↘ 1.

Lemma 7.8. The functionals F(t) and Fr(t) satisfy the following relation:

(7.21) Fr(t) = µt0−tF(t0) − F(t0), ∀ 0 < t ≤ t0 < 1.

Moreover, we have

(7.22) lim
t0→1−

F(t0) = µE(σ1(x)),

where µ := limα↘1(λα)2−2α.

Proof. With the help of Lemma 7.6 and equality (7.20), the proof of this lemma is similar to the
case of α-harmonic maps in Lemma 3.4 in [35]. Noting that

|∇̃∂θψα| ≤ C(|
∂ψα
∂θ
| + |

∂φα
∂θ
||ψα|),
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we have

∣∣∣∣∣∣ 1
2α

∫
Dδ(xα)\DλαR(xα)

〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃ ∂

∂θ
ψα〉dx

∣∣∣∣∣∣
≤ C

∫
Dδ(xα)\DλαR(xα)

(
|ψα||x − xα|−1|

∂ψα
∂θ
| + |ψα|

2|x − xα|−1|
∂φα
∂θ
|

)
dx

≤ C‖ψα‖L4(Dδ(xα)\DλαR(xα))‖ |x − xα|−1|
∂ψα
∂θ
| ‖

L
4
3 (Dδ(xα)\DλαR(xα))

+ C‖ψα‖2L4(Dδ(xα)\DλαR(xα))‖ |x − xα|−1|
∂φα
∂θ
| ‖L2(Dδ(xα)\DλαR(xα)) → 0(7.23)

as α↘ 1, R→ ∞, δ→ 0, where we used Lemma 7.2.
Letting α↘ 1 in (7.20) and using (7.23), we get

(7.24) Fr(t) = − log µ
∫ t

t0
F(s)ds, ∀0 < t < t0.

Since

Fα(t) = Fr,α(t) + Fθ,α(t) + Fα(t0),

letting α↘ 1, Lemma 7.7 yields

F(t) = Fr(t) + F(t0).

Then,

Fr(t) = − log µ
∫ t

t0
F(s)ds = − log µ

∫ t

t0
(Fr(s) + F(t0)) ds,

which implies that Fr(t) ∈ C1 and

d
dt

Fr(t) = − log µ(Fr(t) + F(t0)).

Thus,

Fr(t) = µt0−tF(t0) − F(t0).
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For (7.22), by Corollary 6.4, integrating the Pohozaev type estimate (6.11) from λαR to λt0
α , we

have

Fα(t0) −
∫

DλαR(xα)
(σα + |∇gαφα|

2)α−1|∇φα|
2dx

≤ C
∫

D
λ

t0
α (xα)

\DλαR(xα)
(σα + |∇gαφα|

2)α−1|x − xα|−2|
∂φα
∂θ
|2dx

+ C

∣∣∣∣∣∣∣∣
∫

D
λ

t0
α (xα)

\DλαR(xα)
〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃ ∂

∂θ
ψα〉dx

∣∣∣∣∣∣∣∣ + C
∫ λ

t0
α

λαR

α − 1
r

dr + C(λt0
α − λαR)

≤ C
∫

D
λ

t0
α (xα)

\DλαR(xα)
(σα + |∇gαφα|

2)α−1|x − xα|−2|
∂φα
∂θ
|2dx

+ C

∣∣∣∣∣∣∣∣
∫

D
λ

t0
α (xα)

\DλαR(xα)
〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃ ∂

∂θ
ψα〉dx

∣∣∣∣∣∣∣∣
+ C

(
(t0 − 1)(α − 1) log λα − (α − 1) log R

)
+ C(λt0

α − λαR).(7.25)

Combining this with Lemma 7.7 and (7.23), we get

lim
t0→1−

F(t0) = lim
R→∞

lim
α↘1

∫
DλαR(xα)

(σα + |∇gαφα|
2)α−1|∇φα|

2dx

= lim
R→∞

lim
α↘1

∫
DR(0)

(σαλ
2
α + |∇gα(xα+λαx)uα|2)α−1(λα)2−2α|∇uα|2dx

= µ lim
R→∞

∫
DR(0)
|∇σ1|2dx = µE(σ1(x)).

�

Lemma 7.9. Under the assumptions of Lemma 7.2, for any t ∈ (0, 1), there holds

lim
α↘1

∫
Dλt

α
(xα)

(σα + |∇gαφα|
2)α−1|∇φα|

2dx = µ2−tE(σ1).

Proof. By Lemma 7.7 and Lemma 7.8, we have

lim
α↘1

∫
Dλt

α
(xα)

(σα + |∇gαφα|
2)α−1|∇φα|

2dx = Fr(t) + F(t0) = µt0−tF(t0).

Then the conclusion of the lemma follows from letting t0 ↗ 1 and Lemma 7.8. �

In the end of this section, we complete the proof of Theorem 7.1.
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Proof of Theorem 7.1. By the Pohozaev type estimate in Corollary 6.4, we have∫
Dδ(xα)\Dλt

α
(xα)

(σα + |∇gαφα|
2)α−1|∇φα|

2dx

≤ C
∫

Dδ(xα)\Dλt
α

(xα)
(σα + |∇gαφα|

2)α−1|x − xα|−2|
∂φα
∂θ
|2dx

+ C

∣∣∣∣∣∣∣
∫

Dδ(xα)\Dλt
α

(xα)
〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃ ∂

∂θ
ψα〉dx

∣∣∣∣∣∣∣ + C
∫ δ

λt
α

α − 1
r

dr + C(δ − λt
α)

≤ C
∫

Dδ(xα)\Dλt
α

(xα)
(σα + |∇gαφα|

2)α−1|x − xα|−2|
∂φα
∂θ
|2dx

+ C

∣∣∣∣∣∣∣
∫

Dδ(xα)\Dλt
α

(xα)
〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃∂θψα〉dx

∣∣∣∣∣∣∣
+ C

(
(α − 1) log δ − t(α − 1) log λα

)
+ C(δ − λt

α).(7.26)

Combining (7.26) with (7.23), we have

lim
δ→0

lim
t→0

lim
α↘1

∫
Dδ(xα)\Dλt

α
(xα)

(σα + |∇gαφα|
2)α−1|∇φα|

2dx = 0.

By Lemma 7.9, we get

lim
δ→0

lim
α↘1

∫
Dδ(xα)

(σα + |∇gαφα|
2)α−1|∇φα|

2dx

= lim
δ→0

lim
t→0

lim
α↘1

∫
Dδ(xα)\Dλt

α
(xα)

(σα + |∇gαφα|
2)α−1|∇φα|

2dx +

∫
Dλt

α
(xα)

(σα + |∇gαφα|
2)α−1|∇φα|

2dx


= µ2E(σ1).

Combining the above equality with Corollary 7.3, we finished the proof of Theorem 7.1. �

Proof of Theorem 2.6. It is easy to see that Theorem 2.6 is a consequence of Theorem 7.1. �

8. Decay estimates and refined asymptotic neck analysis

In this section, we shall study the refined asymptotic behaviour of the α-Dirac-harmonic necks
and prove Theorem 2.8.

For simplicity, we first consider the local model case as in Theorem 7.1.

Theorem 8.1. Under the assumptions of Theorem 7.1, if we assume that there is only one bubble
(σ1, ξ1), which is a Dirac-harmonic sphere, let

ν = lim inf
α↘1

(λα)−
√
α−1.

Then we have the following alternatives:
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(1) when ν = 1, the set φ(D1(0)) ∪ σ1(S 2) is a connected set in the target N;

(2) when ν ∈ (1,∞), the set φ(D1(0)) and σ1(S 2) are connected by a geodesic γ in the target
N of length

L(γ) =

√
E(σ1)
π

log ν;

(3) when ν = ∞, the neck contains at least an infinite length geodesic curve in N.

There are two main crucial steps in proving Theorem 8.1. The first one is to apply the three-
circle method developed for the class of integro-differential equations considered in Section 6 to
the general α-Dirac-harmonic map system to get some decay of tangential neck energies of both
the map part and the spinor part. Here, we get a decay at the speed of α − 1 rather than the
exponential decay as in the (approximate) Dirac-harmonic map case [38, 27]. The key point is to
write the general α-Dirac-harmonic system into the special forms given in our three-circle result -
Theorem 6.7. The treatment of the two bad error terms mentioned in Section 2, namely, the second
derivative term (2.26) and the curvature term (2.27), is complicated and subtle, see Lemma 8.2.
The second step is to derive the decay of some weighted neck energy of the spinor part. The key
point here is to apply some Hardy-type inequality to derive a differential inequality on the neck
domain, see Lemma 8.4 and Lemma 8.5. This step is tricky.

Aa a first step towards Theorem 8.1, by applying the three-circle theorem in Section 6, we shall
establish the following decay estimate for the tangential energies on the neck domain of both the
map part and the spinor part.

Lemma 8.2. (Decay of tangential energies.) Under the assumption of Theorem 7.1 and the one
bubble assumption. If there is no energy concentration for the sequence (φα, ψα) in the region
Dδ(xα) \ DλαR(xα), i.e. (7.12) holds, then we have the following decay estimates(∫

Pi

|x − xα|−2|
∂φα
∂θ
|2dx

) 1
2

+

(∫
Pi

|x − xα|−
4
3 |
∂ψα
∂θ
|

4
3 dx

) 3
4

≤

(
(α − 1) + e−

iL
2 + e−

(kα−i)L
2

)
o(α, δ,R),

where Pi = De(i+1)LλαR(xα) \ DeiLλαR(xα), i = 1, ..., kα and limδ→0 limR→∞ limα↘1 o(α, δ,R) = 0.

Proof. Since (7.12) holds, by (7.18), we have

(8.1) |x − xα||∇φα| + |x − xα|2|∇2φα| +
√
|x − xα||ψα| ≤ Cε, ∀ x ∈ Dδ(xα) \ DλαR(xα).

Denote

φ∗α(r) =
1

2π

∫ 2π

0
φα(r, θ)dθ, ψ∗α(r) =

1
2π

∫ 2π

0
ψα(r, θ)dθ,

and

u = φα − φ
∗
α, v = ψα − ψ

∗
α.
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Next, we compute the equation for (φα − φ∗α, ψα − ψ
∗
α). By equation (2.20), we have

∆φ∗α =
1

2π

∫ 2π

0
∆φαdθ

=
1

2π

∫ 2π

0
−(α − 1)

∇|∇gαφα|
2∇φα

σα + |∇gαφα|
2 + A(φα)(dφα, dφα) +

Re
(
P(A(dφα(eγ), eγ · ψα);ψα)

)
α(σα + |∇gαφα|

2)α−1 dθ

= I + II + III.

Computing directly, we have

II =
1

2π

∫ 2π

0
A(φα)(dφα, dφα) − A(φ∗α)(dφα, dφα) + A(φ∗α)(dφα, dφα) − A(φ∗α)(dφ∗α, dφ

∗
α)

+A(φ∗α)(dφ∗α, dφ
∗
α)dθ

= A(φ∗α)(dφ∗α, dφ
∗
α) +

1
2π

∫ 2π

0
A4(φα − φ∗α) + A5∇(φα − φ∗α)dθ,

where Ai may change from line to line and it just stands for some expression satisfying

|A4| ≤ C(N)(|dφα|2 + |dφα||ψα|2), |A5| ≤ C(N)(|dφα| + |ψα|2).

Similarly,

III =
1

2π

∫ 2π

0

Re
(
P(φα)(A(dφα(eγ), eγ · ψα);ψα)

)
α(σα + |∇gαφα|

2)α−1 −
Re

(
P(φ∗α)(A(dφα(eγ), eγ · ψα);ψα)

)
α(σα + |∇gαφα|

2)α−1 dθ

+
1

2π

∫ 2π

0

Re
(
P(φ∗α)(A(dφα(eγ), eγ · ψα);ψα)

)
α(σα + |∇gαφα|

2)α−1 −
Re

(
P(φ∗α)(A(dφ∗α(eγ), eγ · ψα);ψα)

)
α(σα + |∇gαφα|

2)α−1 dθ

+
1

2π

∫ 2π

0

Re
(
P(φ∗α)(A(dφ∗α(eγ), eγ · ψα);ψα)

)
α(σα + |∇gαφα|

2)α−1 −
Re

(
P(φ∗α)(A(dφ∗α(eγ), eγ · ψ∗α);ψα)

)
α(σα + |∇gαφα|

2)α−1 dθ

+
1

2π

∫ 2π

0

Re
(
P(φ∗α)(A(dφ∗α(eγ), eγ · ψ∗α);ψα)

)
α(σα + |∇gαφα|

2)α−1 −
Re

(
P(φ∗α)(A(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

)
α(σα + |∇gαφα|

2)α−1 dθ

+
1

2π

∫ 2π

0
Re

(
P(φ∗α)(A(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

) ( 1
α(σα + |∇gαφα|

2)α−1 −
1

α(σα + |∇gαφ
∗
α|

2)α−1

)
dθ

+
1

2π

∫ 2π

0
Re

(
P(φ∗α)(A(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

) ( 1
α(σα + |∇gα(x)φ∗α|

2)α−1 −
1

α(σα + |∇gα(xα)φ∗α|
2)α−1

)
dθ

+
Re

(
P(φ∗)(A(φ∗)(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

)
α(σα + |∇gα(xα)φ∗α|

2)α−1

=
Re

(
P(φ∗)(A(φ∗)(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

)
α(σα + |∇gα(xα)φ∗α|

2)α−1 +
1

2π

∫ 2π

0
h1dθ

+
1

2π

∫ 2π

0
A4(φα − φ∗α) + A5∇(φα − φ∗α) +

1
2π

Re
∫ 2π

0
A6(ψα − ψ∗α)dθ,
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where

|A6| ≤ C(N)|dφα||ψα|,

h1 = Re
(
P(φ∗α)(A(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

) ( 1
α(σα + |∇gα(x)φ∗α|

2)α−1 −
1

α(σα + |∇gα(xα)φ∗α|
2)α−1

)
and we have used the estimate

Re
(
P(φ∗α)(A(φ∗α)(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

) ( 1
(σα + |∇gαφα|

2)α−1 −
1

(σα + |∇gαφ
∗
α|

2)α−1

)
= A5∇(φα − φ∗α).

(8.2)

To show (8.2), in fact, if |∇gαφα| = |∇gαφ
∗
α|, then the estimate holds immediately by taking A5 = 0.

If |∇gαφα| , |∇gαφ
∗
α|, without loss of generality, we assume |∇gαφ

∗
α| ≤ |∇gαφα|. Then

0 ≤
(

1
(σα + |∇gαφ

∗
α|

2)α−1 −
1

(σα + |∇gαφα|
2)α−1

)
=

1
(σα + |∇gαφα|

2)α

(
[(1 +

|∇gαφα|
2 − |∇gαφ

∗
α|

2

σα + |∇gαφ
∗
α|

2 )α − 1](σα + |∇gαφ
∗
α|

2) + |∇gαφ
∗
α|

2 − |∇gαφα|
2
)

≤
|∇gαφα|

2 − |∇gαφ
∗
α|

2

(σα + |∇gαφα|
2)α

,(8.3)

where in the last estimate we have used the inequality

(1 + x)α − 1 ≤ 2x, ∀x ∈ [0, bα]

when α − 1 is small enough, where bα satisfies

lim sup
α↘1

(1 + bα)α−1 ≤ C < ∞.

Taking

bα =
|∇gαφα|

2 − |∇gαφ
∗
α|

2

σα + |∇gαφ
∗
α|

2

and noting that, by Lemma 6.1, there holds

lim sup
α↘1

(1 +
|∇gαφα|

2 − |∇gαφ
∗
α|

2

σα + |∇gαφ
∗
α|

2 )α−1 ≤ lim sup
α↘1

(1 +
|∇gαφα|

2

σα

)α−1

= lim sup
α↘1

σ1−α
α (σα + |∇gαφα|

2)α−1 ≤ C < ∞,

it is easy to see that (8.3) follows immediately.
According to (8.3), we can write that(

1
(σα + |∇gαφ

∗
α|

2)α−1 −
1

(σα + |∇gαφα|
2)α−1

)
= Ã5 |∇gαφα|

2 − |∇gαφ
∗
α|

2

(σα + |∇gαφα|
2)α
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where 0 < Ã5 ≤ 1 and then

Re
(
P(φ∗α)(A(φ∗α)(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

) ( 1
(σα + |∇gαφ

∗
α|

2)α−1 −
1

(σα + |∇gαφα|
2)α−1

)
= Re

(
P(φ∗α)(A(φ∗α)(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

)
Ã5 |∇gαφα|

2 − |∇gαφ
∗
α|

2

(σα + |∇gαφα|
2)α

= Re
(
P(φ∗α)(A(φ∗α)(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

)
Ã5 〈∇gαφα,∇gα(φα − φ

∗
α)〉 + 〈∇gαφ

∗
α,∇gα(φα − φ

∗
α)〉

(σα + |∇gαφα|
2)α

= A5∇(φα − φ∗α),

which implies that (8.2) holds.
Therefore, we get

∆φ∗α = A(φ∗α)(dφ∗α, dφ
∗
α) +

Re
(
P(φ∗)(A(φ∗)(dφ∗α(eγ), eγ · ψ∗α);ψ∗α)

)
α(σα + |∇gα(xα)φ∗α|

2)α−1 −
1

2π

∫ 2π

0
(α − 1)

∇|∇gαφα|
2∇φα

σα + |∇gαφα|
2 dθ

+
1

2π

∫ 2π

0
h1dθ +

1
2π

∫ 2π

0
A4(φα − φ∗α) + A5∇(φα − φ∗α) +

1
2π

Re
∫ 2π

0
A6(ψα − ψ∗α)dθ.

Using the same method, we get

∆(φα − φ∗α) = A1(φα − φ∗α) + A2∇(φα − φ∗α) + Re(A3(ψα − ψ∗α))

+
1

2π

∫ 2π

0
A4(φα − φ∗α) + A5∇(φα − φ∗α) + Re(A6(ψα − ψ∗α))dθ

+h1 −
1

2π

∫ 2π

0
h1dθ − (α − 1)

∇|∇gαφα|
2∇φα

σα + |∇gαφα|
2 +

1
2π

∫ 2π

0
(α − 1)

∇|∇gαφα|
2∇φα

σα + |∇gαφα|
2 dθ,(8.4)

and

/∂(ψα − ψ∗α) = B1(φα − φ∗α) + B2∇(φα − φ∗α) + B3(ψα − ψ∗α)

+
1

2π

∫ 2π

0
B4(φα − φ∗α) + B5∇(φα − φ∗α) + B6(ψα − ψ∗α)dθ,(8.5)

where Ai, Bi, i = 1, ..., 6 satisfy

|A1| + |A4| ≤ C(N)(|dφα|2 + |dφα||ψα|2), |A3| + |A6| + |B1| + |B4| ≤ C(N)|dφα||ψα|

|A2| + |A5| + |B3| + |B|6 ≤ C(N)(|dφα| + |ψα|2), |B2| + |B5| ≤ C(N)|ψα|.

By Lemma 6.1, similarly to the derivation of (8.3), we have

|h1| ≤ C|∇φ∗α||ψ
∗
α|

2

∣∣∣∣∣∣ |∇gα(x)φ
∗
α|

2 − |∇gα(xα)φ
∗
α|

2

(σα + |∇φ∗α|
2)α

∣∣∣∣∣∣
= C|∇φ∗α||ψ

∗
α|

2

∣∣∣∣∣∣∣∣
(
gβγα (x) − gβγα (xα)

)
∂φ∗α
∂xβ

∂φ∗α
∂xγ

(σα + |∇φ∗α|
2)α

∣∣∣∣∣∣∣∣
≤ C|∇φ∗α||ψ

∗
α|

2

∣∣∣∣∣∣ |x − xα||∇φ∗α|
2

(σα + |∇φ∗α|
2)α

∣∣∣∣∣∣ ≤ C|x − xα||∇φ∗α||ψ
∗
α|

2,
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which implies

‖ |x − xα|h1 ‖L2(Pi) ≤ ‖ |x − xα|2|∇φ∗α||ψ
∗
α|

2 ‖L2(Pi)

≤ eiLλαR o(α, δ,R) = e−(kα−i)Lδ o(α, δ,R) = e−(kα−i)Lo(α, δ,R),(8.6)

where we used the fact that

|x − xα||∇φ∗α| +
√
|x − xα||ψ∗α| ≤

1
2π

∫ 2π

0

(
|x − xα||∇φα| +

√
|x − xα||ψα|

)
dθ = o(α, δ,R),

which follows from (8.1).
Note that

|x|2(|A1| + |A4|) + |x|
3
2 (|A3| + |A6| + |B1| + |B4|)

+ |x|(|A2| + |A5| + |B3| + |B6|) + |x|
1
2 (|B2| + |B5|) ≤ Cε.(8.7)

Substituting u = φα − φ
∗
α, v = ψα − ψ

∗
α, f2 = 0 and

f1 = h1 −
1

2π

∫ 2π

0
h1dθ − (α − 1)

∇|∇gαφα|
2∇φα

σα + |∇gαφα|
2 +

1
2π

∫ 2π

0
2(α − 1)

∇|∇gαφα|
2∇φα

σα + |∇gαφα|
2 dθ

in Corollary 6.9 and noting that

‖|x − xα| f1‖L2(Pi) ≤ C(α − 1)‖|x − xα||∇2φα|‖L2(Pi) + C‖|x − xα||h1|‖L2(Pi)

≤ C(α − 1)‖∇φα‖L2(Pi−1∪Pi∪Pi+1) + C‖|x − xα||h1|‖L2(Pi)

≤
(
(α − 1) + e−(kα−i)L

)
o(α, δ,R), i = 1, ..., kα,

where we used (8.6) and Lemma 5.1, we obtain the energy decay in the θ-direction,

‖r−1∂φα
∂θ
‖L2(Pi) + ‖r−1∂ψα

∂θ
‖

L
4
3 (Pi)

≤ ‖∇u‖L2(Pi) + ‖∇v‖
L

4
3 (Pi)

≤ C
(
(α − 1) + e−(kα−i)L

)
o(α, δ,R) + C

(
F1/2

0 (u, v) + F1/2
kα

(u, v)
)(

e−
1
2 (kα−i)L + e−

1
2 iL)

≤ C
(
(α − 1) + e−

1
2 (kα−i)L + e−

1
2 iL

)
o(α, δ,R),(8.8)

where we used the fact that

F1/2
0 (u, v) + F1/2

kα
(u, v) = o(α, δ,R),

which follows from the Poincaré inequality and (7.12). We finished the proof of this lemma. �

As a direct corollary of Lemma 8.2, we have

Corollary 8.3. Under the assumption of Lemma 8.2, assume ν > 1, then for tα ∈ [t1, t2] where
0 < t1 ≤ t2 < 1, we have

lim
α↘1

1
α − 1

∥∥∥∥∥|x − xα|−1|
∂φα
∂θ
|

∥∥∥∥∥
L2(DKλtα

α
(xα)\D 1

K λ
tα
α

(xα))
+

∥∥∥∥∥|x − xα|−1|
∂ψα
∂θ
|

∥∥∥∥∥
L

4
3 (DKλtα

α
(xα)\D 1

K λ
tα
α

(xα))

 = 0,

where K > 1 is any fixed positive constant.
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Proof. Let i1, i2 ∈ [0, kα] be two integers such that

ei1LλαR ≤
1
K
λtα
α < e(i1+1)LλαR and ei2LλαR ≤ Kλtα

α < e(i2+1)LλαR.

Then we have

e−i1L ≤ KReLλ1−tα
α , e−(kα−i2)L ≤

K
δ
λtα
α , i2 − i1 ≤

2 log K
L

.

By Lemma 8.2, we have

1
α − 1

∥∥∥∥∥|x − xα|−1|
∂φα
∂θ
|

∥∥∥∥∥
L2(DKλtα

α
(xα)\D 1

K λ
tα
α

(xα))
+

∥∥∥∥∥|x − xα|−1|
∂ψα
∂θ
|

∥∥∥∥∥
L

4
3 (DKλtα

α
(xα)\D 1

K λ
tα
α

(xα))


≤

1
α − 1

i2∑
i=i1

(∥∥∥∥∥|x − xα|−1|
∂φα
∂θ
|

∥∥∥∥∥
L2(Pi)

+

∥∥∥∥∥|x − xα|−1|
∂ψα
∂θ
|

∥∥∥∥∥
L

4
3 (Pi)

)
≤

1
α − 1

(
(α − 1)(i2 − i1) + e−

i1L
2 + e−

(kα−i2)L
2

)
o(α, δ,R)

≤
1

α − 1

(α − 1)
2 log K

L
+
√

KReLλ
1−tα

2
α +

√
K
δ
λ

tα
2
α

 o(α, δ,R).

Since ν > 1, then λα ≤ e−
C√
α−1 and the conclusion of the corollary follows immediately from the

above inequality. �

Next, by applying the Hardy type inequality (7.17) and Lemma 8.2, we shall derive the following
new decay estimate of the weighted energy of spinor part on the neck region, which is crucial in
the proofs of two main results - Theorem 2.8 (e.g. Proposition 8.9) and Theorem 2.12 (e.g. Lemma
9.5).

Lemma 8.4. (Decay of spinor.) Under the assumption of Lemma 8.2, assume ν > 1, then for
tα ∈ [t1, t2] where 0 < t1 ≤ t2 < 1, we have

(8.9) lim
α↘1

1
α − 1

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)

|ψα|
2

|x − xα|
dx = 0,

which implies

(8.10) lim
α↘1

1
α − 1

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)
|ψα|

4dx = 0,

where K > 1 is any fixed positive constant.

Proof. We divide the proof into two steps.

Step 1 We prove

(8.11) lim
α↘1

1
√
α − 1

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)

|ψα|
2

|x − xα|
dx = 0.



74 JOST, LEI LIU, AND ZHU

For simplicity of notation, we also assume xα = 0. Define

f (t) :=
∫

Detλtα
α
\De−tλtα

α

|ψα|
2

|x|
dx, t ∈ [0, 8 log

1
α − 1

].

Since ν > 1, then λα ≤ e−
C√
α−1 and it is easy to see that

et ≤ (
1

α − 1
)8 ≤ λ−εα ,

where ε < min{t1, 1 − t2}.
For any ρ > 0, taking the cut-off function η ∈ C∞0 (Detλtα

α +ρ \ De−tλtα
α −ρ

) such that 0 ≤ η ≤ 1 and
η ≡ 1 on Detλtα

α
\ De−tλtα

α
and |∇η| ≤ 2

ρ
. Taking f = η|ψα|

2 in the Hardy inequality (7.17), we get

∥∥∥∥∥∥η |ψα|2|x|
∥∥∥∥∥∥

L1(R2)

≤ ‖∇(η|ψα|2)‖L1(R2)

≤ ‖2ηψα∇ψα‖L1(R2) + ‖∇η|ψα|
2‖L1(R2)

≤

∥∥∥∥∥2ηψα
1
|x|
∂ψα
∂θ

∥∥∥∥∥
L1(R2)

+

∥∥∥∥∥2ηψα
∂ψα
∂r

∥∥∥∥∥
L1(R2)

+
∥∥∥∇η|ψα|2∥∥∥L1(R2)

.

On one hand, we know

(8.12)
∂ψα
∂r

=
∂

∂r
·

1
|x|

∂

∂θ
·

1
|x|
∂ψα
∂θ

+
∂

∂r
· A(dφα(eγ), eγ · ψα)

from equation (2.19). So, we have

|2ηψα
∂ψα
∂r
| ≤ |2ηψα

1
|x|
∂ψα
∂θ
| + C|η||dφα||ψα|2.

On the other hand, by inequality (7.18), we have

(8.13) |x||dφα| +
√
|x||ψα| ≤ Cε on Dδ \ DλαR.

Combining these, we get∥∥∥∥∥∥η |ψα|2|x|
∥∥∥∥∥∥

L1(R2)

≤ 4
∥∥∥∥∥ηψα 1

|x|
∂ψα
∂θ

∥∥∥∥∥
L1(R2)

+ C
∥∥∥η|dφα||ψα|2∥∥∥L1(R2)

+
∥∥∥∇η|ψα|2∥∥∥L1(R2)

≤ 4
∥∥∥∥∥ηψα 1

|x|
∂ψα
∂θ

∥∥∥∥∥
L1(R2)

+ Cε

∥∥∥∥∥∥η |ψα|2|x|
∥∥∥∥∥∥

L1(R2)

+
∥∥∥∇η|ψα|2∥∥∥L1(R2)

.
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Taking ε > 0 sufficiently small such that Cε ≤ 1
2 , we have

∥∥∥∥∥∥η |ψα|2|x|
∥∥∥∥∥∥

L1(R2)

≤ 8
∥∥∥∥∥ψα 1
|x|
∂ψα
∂θ

∥∥∥∥∥
L1(Detλtα

α +ρ
\De−tλtα

α −ρ
)
+ 2

∥∥∥∇η|ψα|2∥∥∥L1(Detλtα
α +ρ
\De−tλtα

α −ρ
)

≤ 8‖ψα‖L4(Detλtα
α +ρ
\De−tλtα

α −ρ
)

∥∥∥∥∥|x|−1∂ψα
∂θ

∥∥∥∥∥
L

4
3 (Detλtα

α +ρ
\De−tλtα

α −ρ
)

+
4
ρ

∥∥∥|ψα|2∥∥∥L1(Detλtα
α +ρ
\Detλtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(De−tλtα
α
\De−tλtα

α −σ
)

≤ C
∥∥∥∥∥|x|−1∂ψα

∂θ

∥∥∥∥∥
L

4
3 (Det+1λtα

α
\De−(t+1)λtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(Detλtα
α +ρ
\Detλtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(De−tλtα
α
\De−tλtα

α −ρ
)
.(8.14)

where ρ > 0 is small enough such that Detλtα
α +ρ \ De−tλtα

α −ρ
⊂ Det+1λtα

α
\ De−(t+1)λtα

α
.

Let i1, i2 ∈ [0, kα] be two integers such that

ei1LλαR ≤ e−(t+1)λtα
α < e(i1+1)LλαR and ei2LλαR ≤ e(t+1)λtα

α < e(i2+1)LλαR.

Then we have

e−i1L ≤ Re(t+1+L)λ1−tα
α ≤ CR(α − 1)−8λ1−tα

α , e−(kα−i2)L ≤
et+1

δ
λtα
α ≤ C

(α − 1)−8

δ
λtα
α ,

and

i2 − i1 ≤
2(1 + t)

L
+ 1 ≤ C log

1
α − 1

.

Combining this with (8.14) and Lemma 8.2, we get

∥∥∥∥∥∥η |ψα|2|x|
∥∥∥∥∥∥

L1(R2)

≤

i2∑
i=i1

(
(α − 1) + e−

iL
2 + e−

(kα−i)L
2

)
o(α, δ,R) +

4
ρ

∥∥∥|ψα|2∥∥∥L1(Detλtα
α +ρ
\Detλtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(De−tλtα
α
\De−tλtα

α −ρ
)

≤

(
(α − 1)(i2 − i1) + e−

i1L
2 + e−

(kα−i2)L
2

)
o(α, δ,R) +

4
ρ

∥∥∥|ψα|2∥∥∥L1(Detλtα
α +ρ
\Detλtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(De−tλtα
α
\De−tλtα

α −ρ
)

≤

(
(α − 1) log

1
α − 1

+
√

R(α − 1)−4λ
1−tα

2
α +

(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R)

+
4
ρ

∥∥∥|ψα|2∥∥∥L1(Detλtα
α +ρ
\Detλtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(De−tλtα
α
\De−tλtα

α −ρ
)
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Letting ρ→ 0, we get

f (t) =

∫
Detλtα

α
\De−tλtα

α

|ψα|
2

|x|
dx

≤

(
(α − 1) log

1
α − 1

+
√

R(α − 1)−4λ
1−tα

2
α +

(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R) + 4etλtα

α

∫
∂Detλtα

α

|ψα|
2

|x|

+ 4e−tλtα
α

∫
∂De−tλtα

α

|ψα|
2

|x|

≤

(
(α − 1) log

1
α − 1

+
√

R(α − 1)−4λ
1−tα

2
α +

(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R) + 4 f ′(t).

This is

(e−
1
4 t f (t))′ ≥ −e−

1
4 t

(
(α − 1) log

1
α − 1

+
√

R(α − 1)−4λ
1−tα

2
α +

(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R).(8.15)

Integrating the above ODE from K to 8 log 1
α−1 , we get

f (K) ≤ C(α − 1)2 f (8 log
1

α − 1
) +

(
(α − 1) log

1
α − 1

+
√

R(α − 1)−4λ
1−tα

2
α +

(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R)

≤

(
(α − 1)2 + (α − 1) log

1
α − 1

+
√

R(α − 1)−4λ
1−tα

2
α +

(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R).

where the last inequality follows from Lemma 7.4 since

f (8 log
1

α − 1
) ≤

∫
Dδ\DλαR

|ψα|
2

|x|
.

Then (8.11) follows immediately, which implies

(8.16) lim
α↘1

1
√
α − 1

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)
|ψα|

4dx = 0.

Step 2 We prove the conclusions of the lemma.



ELLIPTIC-PARABOLIC BOUNDARY VALUE PROBLEM 77

Using the decay estimate (8.16), i.e. ‖ψα‖L4(Pi) = o
(
(α − 1)

1
8

)
in (8.14) and repeat the above

process again, we have∥∥∥∥∥∥η |ψα|2|x|
∥∥∥∥∥∥

L1(R2)

≤ 8‖ψα‖L4(Det+1λtα
α
\De−(t+1)λtα

α −ρ
)

∥∥∥∥∥|x|−1∂ψα
∂θ

∥∥∥∥∥
L

4
3 (Det+1λtα

α
\De−(t+1)λtα

α −ρ
)

+
4
ρ

∥∥∥|ψα|2∥∥∥L1(Detλtα
α +ρ
\Detλtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(De−tλtα
α
\De−tλtα

α −ρ
)

≤

i2∑
i=i1

8‖ψα‖L4(Pi)

i2∑
i=i1

∥∥∥∥∥|x|−1∂ψα
∂θ

∥∥∥∥∥
L

4
3 (Pi)

+
4
ρ

∥∥∥|ψα|2∥∥∥L1(Detλtα
α +ρ
\Detλtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(De−tλtα
α
\De−tλtα

α −ρ
)

≤ (α − 1)
1
8 (i2 − i1)

(
(α − 1)(i2 − i1) + e−

i1L
2 + e−

(kα−i2)L
2

)
o(α, δ,R)

+
4
ρ

∥∥∥|ψα|2∥∥∥L1(Detλtα
α +ρ
\Detλtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(De−tλtα
α
\De−tλtα

α −ρ
)

≤

(
(α − 1)1+ 1

8 (log
1

α − 1
)2 +

√
R(α − 1)−4λ

1−tα
2

α +
(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R)

+
4
ρ

∥∥∥|ψα|2∥∥∥L1(Detλtα
α +ρ
\Detλtα

α
)
+

4
ρ

∥∥∥|ψα|2∥∥∥L1(De−tλtα
α
\De−tλtα

α −ρ
)
.

Letting ρ→ 0 and similar to deriving (8.15), we have

(e−
1
4 t f (t))′ ≥ −e−

1
4 t

(
(α − 1)1+ 1

8 (log
1

α − 1
)2 +

√
R(α − 1)−4λ

1−tα
2

α +
(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R).(8.17)

Integrating the above ODE from K to 8 log 1
α−1 , we get

f (K) ≤ C(α − 1)2 f (8 log
1

α − 1
) +

(
(α − 1)1+ 1

8 (log
1

α − 1
)2 +

√
R(α − 1)−4λ

1−tα
2

α +
(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R),

which implies

(8.18) lim
α↘1

1

(α − 1)1+ 1
16

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)

|ψα|
2

|x − xα|
dx = 0.

Thus we proved (8.9). The inequality (8.10) is a consequence of (8.9) and (7.18). �

From the proof of Lemma 8.4, we can actually get a better decay estimate.

Lemma 8.5. (Improved decay of spinor.) Under the assumption of Lemma 8.4, we have

lim
α↘1

1

(α − 1)
4
3

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)

|ψα|
2

|x − xα|
dx = 0,

lim
α↘1

1

(α − 1)
4
3

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)
|ψα|

4dx = 0.
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Proof. Applying the new decay estimate (8.18) and repeating the process of Step 2 in the proof of
Lemma 8.4 again and again, we will get the best decay estimate, i.e. there exists a best constant10

β > 1 such that

(8.19) lim
α↘1

1
(α − 1)β

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)

|ψα|
2

|x − xα|
dx = 0,

and for any β′ > β, the estimate (8.19) not holds.
We make the following

Claim: β = 4
3 .

In fact, if not, then β < 4
3 and there exists a small constant ε′ > 0 such that β < 4

3 (1 − ε′). Using
the new decay estimate (8.19) and repeating the process of Step 2 in the proof of Lemma 8.4 again,
we have

f (K) ≤ C(α − 1)2 f (8 log
1

α − 1
) +

(
(α − 1)1+

β
4 (log

1
α − 1

)2 +
√

R(α − 1)−4λ
1−tα

2
α +

(α − 1)−4

√
δ

λ
tα
2
α

)
o(α, δ,R),

which implies

(8.20) lim
α↘1

1

(α − 1)1+
β
4−ε

′

∫
DKλtα

α
(xα)\D 1

K λ
tα
α

(xα)

|ψα|
2

|x − xα|
dx = 0.

Since β < 4
3 (1 − ε′), it is easy to see that 1 +

β

4 − ε
′ > β. This is a contradiction, since β is the best

constant. Thus the Claim holds and the lemma is proved. �

It is interesting to ask whether the constant 4
3 in the decay estimate in Lemma 8.5 is the best

constant to characterise the decay of the spinor or not.

As a corollary of Lemma 8.4 and Lemma 5.1, we get

Corollary 8.6. Assume ν > 1. Let 0 < t1 ≤ t2 < 1, by passing to a subsequence, there holds

lim
α↘1

1

(α − 1)
1
4

∥∥∥∥√
|x − xα| |ψα|

∥∥∥∥
C0(D

λ
t1
α

(xα)\D
λ

t2
α

(xα))
= 0.

Proof. For any t ∈ [λt2
α , λ

t1
α ], by Lemma 5.1 (or see the proof of Lemma 7.5), we have∥∥∥∥√
|x − xα| |ψα|

∥∥∥∥
C0(D2t(xα)\Dt(xα))

≤ C‖ψα‖L4(D4t(xα)\D 1
2 t(xα)).

Then the conclusion of the corollary follows immediately from Lemma 8.4. �

By Lemma 8.2 (or Corollary 8.3), we have

Lemma 8.7. Under the assumption of Lemma 8.2, suppose that ν > 1 and tα is a positive number
such that 0 < t1 ≤ tα ≤ t2 < 1, then we have:

10Here, the best constant is in the sense that the best decay estimate can be derived by using our approach.
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(1)
1

√
α − 1

(
φα(xα + λtα

α x) − φα(xα + (λtα
α , 0))

)
→
−→a log |x|

strongly in C j
loc(R

2 \ {0},RK) for any integer j, where −→a ∈ TyN is a vector in RK with

|
−→a | = µ1−limα↘1 tα

√
E(σ1)
π

.

(2) ∥∥∥∥∥∥ 1
√
α − 1

(
φα −

1
2π

∫ 2π

0
φαdθ

)∥∥∥∥∥∥
C0(D

λ
t1
α

(xα)\D
λ

t2
α

(xα))

+

∥∥∥∥∥∥ |x − xα|
√
α − 1

∇

(
φα −

1
2π

∫ 2π

0
φαdθ

)∥∥∥∥∥∥
C0(D

λ
t1
α

(xα)\D
λ

t2
α

(xα))

→ 0.

Proof. Set

uα(x) := φα(xα + λtα
α x), wα(x) := (λtα

α )α−1
√
λtα
α ψα(xα + λtα

α x)

and

vα(x) :=
1

√
α − 1

{
φα(xα + λtα

α x) − φα(xα + (λtα
α , 0))

}
.

By (7.26), (7.23), Lemma 6.1 and Lemma 8.2, we have∫
D2kλtα

α
(xα)\D2−kλtα

α
(xα)
|∇φα|

2dx

≤ C
∫

D2kλtα
α

(xα)\D2−kλtα
α

(xα)
(σα + |∇gαφα|

2)α−1|∇φα|
2dx

≤ C
∫

D2kλtα
α

(xα)\D2−kλtα
α

(xα)
(σα + |∇gαφα|

2)α−1|x − xα|−2|
∂φα
∂θ
|2dx

+ C

∣∣∣∣∣∣∣
∫

D2kλtα
α

(xα)\D2−kλtα
α

(xα)
〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃∂θψα〉dx

∣∣∣∣∣∣∣ + C
∫ 2kλtα

α

2−kλtα
α

α − 1
r

dr + C(k)λtα
α

≤ C
∥∥∥∥∥|x − xα|−1∂φα

∂θ

∥∥∥∥∥2

L2(D2kλtα
α

(xα)\D2−kλtα
α

(xα))
+ ‖ψα‖L4(D2kλtα

α
(xα)\D2−kλtα

α
(xα))

∥∥∥∥∥|x − xα|−1∂ψα
∂θ

∥∥∥∥∥
L

4
3 (D2kλtα

α
(xα)\D2−kλtα

α
(xα))

+ C‖ψα‖2L4(D2kλtα
α

(xα)\D2−kλtα
α

(xα))

∥∥∥∥∥|x − xα|−1∂φα
∂θ

∥∥∥∥∥
L2(D2kλtα

α
(xα)\D2−kλtα

α
(xα))

+ C(k)
(
α − 1 + λtα

α

)
≤ C(k)(α − 1),

(8.21)

where we used the fact that
λα = o((α − 1)m)

for any m > 0, since ν > 1.
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By Lemma 5.1, we have

(8.22) ‖∇uα‖C0(D2k (0)\D2−k (0)) + ‖∇2uα‖C0(D2k (0)\D2−k (0)) ≤ C(k)
√
α − 1.

Then,
‖∇vα‖C0(D2k (0)\D2−k (0)) + ‖∇2vα‖L∞(D2k (0)\D2−k (0)) ≤ C(k).

Noting that vα(1, 0) = 0, thus
‖vα‖C2(D2k (0)\D2−k (0)) ≤ C(k).

Since vα satisfies the following equation

∆vα +
√
α − 1O(|∇vα|2) + (α − 1)O(|∇2vα|) + O(|wα|

2)O(|∇vα|) = 0

and by (7.18), there holds
lim
α↘1
‖wα‖C0(D2k (0)\D2−k (0)) = 0,

then there exists a subsequence of vα (without changing the notation) such that

vα → v0 in C1
loc(R

2 \ {0})

where v0 satisfies v0(1, 0) = 0 and
∆v0 = 0.

Moreover, Corollary 8.3 tells us that v0(x) = v0(|x|). Set

v0 = −→a log r = (a1, ..., aK) log r.

By Corollary 6.4 and Corollary 8.3, we have
1

α − 1

∫
D2λtα

α
(xα)\D

λ
tα
α

(xα)
(σα + |∇gαφα|

2)α−1|∇φα|
2dx

=
2

2α − 1

∫ 2λtα
α

λtα
α

1
t

Fα(logλα t)dt +
1

(2α − 1)(α − 1)

∫
D2λtα

α
(xα)\D

λ
tα
α

(xα)
〈ψα, |x − xα|−2 ∂

∂θ
· ∇̃ ∂

∂θ
ψα〉 + o(1)

=
2

2α − 1
log 2Fα(tα) + o(1)→ 2 log 2F(lim

α↘1
tα),

where we used the fact that
λtα
α = o((α − 1)m)

for any m > 0, since ν > 1.
On the other hand, there also holds

1
α − 1

∫
D2λtα

α
(xα)\D

λ
tα
α

(xα)
(σα + |∇gαφα|

2)α−1|∇φα|
2dx =

∫
D2(0)\D1(0)

(
σα + |∇gαvα|

2α − 1

λ2tα
α

)α−1

|∇vα|2dx

→ 2π log 2|−→a |2µlimα↘1 tα .

Therefore,

|
−→a |2 =

1
π
µ− limα↘1 tαF(lim

α↘1
tα) =

E(σ1)
π

µ2−2 limα↘1 tα ,

where the last equality follows from Lemma 7.9 and we proved the statement (1).
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For statement (2), if it was false, then there would exist tα ∈ [t1, t2] and θα ∈ [0, 2π] such that
1

√
α − 1

(
λtα
α |∇φα(λtα

α , θα) − ∇φ∗α(λtα
α )| + |φα(λtα

α , θα) − φ∗α(λtα
α )|

)
→ b , 0,(8.23)

where

φ∗α :=
1

2π

∫ 2π

0
φαdθ.

Let limα↘1 θα = θ0, then it is obvious that

|∇v0(1, θ0) − ∇v∗0(1)| + |v0(1, θ0) − v∗0(1)| = 0,

where v∗0 is the average of v0, defined in a similar way as φ∗α.
However, by (8.23) and the fact that vα → v0 in C1

loc(R
2 \ {0}), we have

b = lim
α↘1

1
√
α − 1

(
λtα
α |∇φα(λtα

α , θα) − ∇φ∗α(λtα
α )| + |φα(λtα

α , θα) − φ∗α(λtα
α )|

)
= lim

α↘1
|∇vα(1, θα) − ∇v∗α(1)| + lim

α↘1
|vα(1, θα) − v∗α(1)|

= |∇v0(1, θ0) − ∇v∗0(1)| + |v0(1, θ0) − v∗0(1)| = 0,

which is a contradiction. So, the statement (2) holds and we finished the proof of the lemma. �

Corollary 8.8. Under the assumption of Lemma 8.7, we have:∫ 2λt
α

λt
α

1
√
α − 1

|
∂φα
∂r
|dr → log 2µ1−t

√
E(σ1)
π

in C0([t1, t2])

and

1
√
α − 1

(r|
∂φα
∂r
|)(λt

α, θ)→ µ1−t

√
E(σ1)
π

in C0([t1, t2]),

1
√
α − 1

(r−1|
∂φα
∂θ
|)(λt

α, θ)→ 0 in C0([t1, t2]).

Proof. We shall only prove the second conclusion, since the other two conclusions can be proved
in a similar way.

In fact, if it was false, then there would exist tα ∈ [t1, t2] and θα ∈ [0, 2π] such that

(8.24)

∣∣∣∣∣∣∣ 1
√
α − 1

(r|
∂φα
∂r
|)(λtα

α , θα) − µ1−tα

√
E(σ1)
π

∣∣∣∣∣∣∣ ≥ b > 0.

However, by Lemma 8.7, we have

λtα
α

√
α − 1

∂φα
∂r

(λtα
α , θα)→ −→a ,

where |−→a | = µ1−limα↘1 tα
√

E(σ1)
π

. This yields the following

1
√
α − 1

(r|
∂φα
∂r
|)(λtα

α , θα)→ µ1−limα↘1 tα

√
E(σ1)
π

,

which contradicts to (8.24). We finished the proof of this corollary. �
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For 0 < t1 < t2 < 1, we define the following curve:

ωα(r) :=
1

2π

∫ 2π

0
φα(r, θ)dθ : [λt2

α , λ
t1
α ]→ RK ,

which is denoted by γα, where (r, θ) is the polar coordinate around the point xα.
Denote

ω̈α := (
d
dr

)2ωα, ω̇α :=
d
dr
ωα.

By a direct computation, we have

ω̈α =
1

2π

∫ 2π

0

∂2

∂r2φα(r, θ)dθ

=
1

2π

∫ 2π

0
∆φα(r, θ)dθ −

1
2π

∫ 2π

0

1
r
∂

∂r
φα(r, θ)dθ

=
1

2π

∫ 2π

0
A(φα)(dφα, dφα)dθ −

1
2π

∫ 2π

0
O(|∇φα||ψα|2)dθ +

α − 1
2π

∫ 2π

0
O(|∇2φα|)dθ −

1
r
ω̇α.

(8.25)

Proposition 8.9. After passing to a subsequence, the sequence of the curves {γα} in RN , which is
defined by ωα, and parameterized by its arc length, converges to a curve ω ⊂ N as α ↘ 1, where
ω is a geodesic on N, i.e. it satisfies

d2ω

ds2 + A(ω)(
dω
ds
,

dω
ds

) = 0.

Proof. Denote the induced second fundamental form of γα in RK by Aγα . Set

Gα := −ω̈α −
ω̇α

r
.

By Lemma 5.1, it is easy to see that γα converges to some curve on N, denoted by γ.
Next, we will show that γ is just a geodesic on N.
Let s be the arc length parameter of γα, i.e.

s(r) =

∫ r

λtα
α

|ω̇α(τ)|dτ,

where tα ∈ [t1, t2].
By Lemma 8.7 and Corollary 8.8, for any t1 ∈ (0, 1), we have∫ λ

t1
α

λtα
α

|ω̇α|dr ≤
∫ λ

t1
α

λtα
α

√
α − 1
r

µ

√
E(σ1)
π

dr

= (t1 − tα)
√
α − 1 log λαµ

√
E(σ1)
π
→ (lim

α↘1
tα − t1) log νµ

√
E(σ1)
π

as α↘ 1. So, if ν = ∞, then for any s ∈ (0,∞),

ωα|[0,s] ⊂ ωα|[λt2
α ,λ

t1
α ].
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If ν ∈ (1,∞), then µ = 1 and noting that∫ λ
t1
α

λtα
α

|ω̇α|dr ≥
∫ λ

t1
α

λtα
α

√
α − 1
r

√
E(σ1)
π

dr

= (t1 − tα)
√
α − 1 log λα

√
E(σ1)
π
→ (lim

α↘1
tα − t1) log ν

√
E(σ1)
π

as α↘ 1, there exists t′1 ∈ (0, t1) such that

ωα|[0,s] ⊂ ωα|
[λt2
α ,λ

t′1
α ]

whenever s ∈
(
0, (limα↘1 tα − t1) log ν

√
E(σ1)
π

)
.

Computing directly, we obtain

d2ωα

ds2 = Aγα(ωα(s))(
dωα

ds
,

dωα

ds
) =

1
|ω̇α|

2 Aγα(ωα(t))(
dωα

dt
,

dωα

dt
)

=
1
|ω̇α|

2 (ω̈α −
〈ω̈α, ω̇α〉

|ω̇α|
2 ω̇α) =

1
|ω̇α|

2 (−Gα +
〈Gα, ω̇α〉

|ω̇α|
2 ω̇α)

=
1
|ω̇α|

2

1
2π

∫ 2π

0
A(φα)(∇φα,∇φα)dθ +

1
|ω̇α|

2

1
2π

(∫ 2π

0
O(|∇φα||ψα|2) + (α − 1)O(|∇2φα|)dθ

)
−

ω̇α

|ω̇α|
4

1
2π

∫ 2π

0
〈A(φα)(∇φα,∇φα), ω̇α〉dθ

−
ω̇α

|ω̇α|
4

1
2π

∫ 2π

0
〈O(|∇φα||ψα|2) + (α − 1)O(|∇2φα|), ω̇α〉dθ := I + II + III + IV.(8.26)

On one hand, by Lemma 8.7 and using the fact that

〈A(φα)(∇φα,∇φα),
∂φα
∂r
〉 = 0,

we have

III =
ω̇α

|ω̇α|
4

1
2π

∫ 2π

0
〈A(φα)(∇φα,∇φα), ω̇α −

∂φα
∂r
〉dθ

≤

∥∥∥∥∥∥ |x − xα|
√
α − 1

∇(φα − φ∗α)

∥∥∥∥∥∥
C0(D

λ
t1
α

(xα)\D
λ

tα
α

(xα))

→ 0(8.27)

as α↘ 1, where we used the fact derived from Lemma 8.7 and Corollary 8.8 that

|ω̇α| ≥ C

√
α − 1
|x − xα|

and |∇φα| ≤ C

√
α − 1
|x − xα|

.

On the other hand, by (8.22) and Corollary 8.6, Corollary 8.8, we have

II + IV ≤ C
(
|x − xα||∇φα|
√
α − 1

|x − xα||ψα|2
√
α − 1

+
√
α − 1

|x − xα|2|∇2φα|
√
α − 1

)
→ 0(8.28)

as α↘ 1.
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Therefore, it is easy to see that

|
d2ωα

ds2 | ≤ C(N).

Thus, φα(s) will converge locally to a smooth vector valued function from [0, s] into RK , denoted
by ω(s), in the sense of C1, i.e. γα|[λt2

α ,λ
t1
α ] converges locally to the curve γ.

Now, we will show that γ is a geodesic.
By Lemma 8.7 and Corollary 8.8, we obtain

I =
1
|ω̇α|

2

1
2π

∫ 2π

0
A(φα)(∇φα,∇φα)dθ

=
1
|ω̇α|

2

1
2π

(∫ 2π

0
(A(φα) − A(ωα))(∇φα,∇φα) + A(ωα)(∇(φα − ωα),∇φα)dθ

)
+

1
|ω̇α|

2

1
2π

∫ 2π

0
A(ωα)(∇ωα,∇(φα − ωα))dθ +

1
|ω̇α|

2

1
2π

∫ 2π

0
A(ωα)(∇ωα,∇ωα)dθ

=
1
|ω̇α|

2 A(ωα)(∇ωα,∇ωα) + O
(
|x − xα||∇(φα − ωα)|

√
α − 1

)
+ O(|φα − ωα|).(8.29)

Combining (8.27), (8.28), (8.29) with Lemma 8.7, letting α↘ 1, we have
dω
ds

(s) −
dω
ds

(0) =

∫ s

0
A(ω)(

dω
ds
,

dω
ds

)

which implies
d2ω

ds2 = A(ω)(
dω
ds
,

dω
ds

).

We finished the proof of this proposition. �

Now we can prove our main result in this section.

Proof of Theorem 8.1. By Proposition 8.9, we just need to compute the length of the geodesic.
Without loss of generality, we assume λt1

α = 2mαλt2
α for some integer

mα =
t1 − t2

log 2
log λα,

which tends to infinity as α ↘ 1. Then it is sufficient to consider the three cases listed in the
statement of the theorem.

Case (3): ν = ∞.

By Corollary 8.8, there holds

L(γα|D
2k+1λ

t2
α

(xα)\D
2kλ

t2
α

(xα)) ≥
√
α − 1


√

E(σ1)
π

log 2 + o(1)

 .
Then

L(γα) ≥ Cmα

√
α − 1 ≥ −C

√
α − 1 log λα → ∞.

Case (2): ν ∈ (1,∞).
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First, we prove the following equalities

(8.30) lim
δ→0

lim
t→0

lim
α↘1

OscDδ(xα)\Dλt
α

(xα)φα = 0

and

(8.31) lim
R→∞

lim
t→1

lim
α↘1

OscDλt
α

(xα)\DλαR(xα)φα = 0.

In fact, by Lemma 8.2, there holds(∫
Pi

|x − xα|−2|
∂φα
∂θ
|2dx

) 1
2

+

(∫
Pi

|x − xα|−
4
3 |
∂ψα
∂θ
|

4
3 dx

) 3
4

≤

(
(α − 1) + e−

iL
2 + e−

(kα−i)L
2

)
o(α, δ,R).

where Pi = De(i+1)LλαR \ DeiLλαR, 0 ≤ i ≤ kα := [ δ
λαR ] − 1.

By (8.21), we obtain∫
Pi

|∇φα|
2dx ≤ C

∥∥∥∥∥|x − xα|−1∂φα
∂θ

∥∥∥∥∥2

L2(Pi)
+ ‖ψα‖L4(Pi)

∥∥∥∥∥|x − xα|−1∂ψα
∂θ

∥∥∥∥∥
L

4
3 (Pi)

+ C‖ψα‖2L4(Pi)

∥∥∥∥∥|x − xα|−1∂φα
∂θ

∥∥∥∥∥
L2(Pi)

+ C(α − 1 + λtα
α )

≤ (e−
iL
2 + e−

(kα−i)L
2 )o(α, δ,R) + C(α − 1 + eiLλαR).(8.32)

According to Lemma 5.1, we get

OscPiφα ≤ (e−
iL
4 + e−

(kα−i)L
4 )o(α, δ,R) + C(

√
α − 1 + e

iL
2
√
λαR).(8.33)

Let it ∈ [1, kα] be the positive integer such that

eitLλαR ≤ λt
α < e(it+1)LλαR.

Then kα − it ≤ C log δ
λt
α

and

OscDδ(xα)\Dλt
α

(xα)φα ≤

kα∑
i=it

OscPiφα ≤ o(α, δ,R) + C(
√
α − 1 log

δ

λt
α

+
√
δ)

and (8.30) follows immediately. The proof of (8.31) is similar.
Secondly, since ν ∈ (1,∞) implies µ = 1, by Corollary 8.8, there holds

L(γα|D
2k+1λ

t2
α

(xα)\D
2kλ

t2
α

(xα)) =
√
α − 1


√

E(σ1)
π

log 2 + o(1)

 .
Then

L(γ) = lim
α↘1

√
α − 1mα


√

E(σ1)
π

log 2 + o(1)

 = (t2 − t1)

√
E(σ1)
π

log ν.

Case (1): ν = 1.
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By (8.33), we have

OscDδ(xα)\DλαR(xα)φα ≤

kα∑
i=1

OscPiφα ≤ o(α, δ,R) + C(
√
α − 1 log

δ

λαR
+
√
δ)

which implies that

lim
δ→0

lim
R→∞

lim
α↘1

OscDδ(xα)\DλαR(xα)φα = 0.

We finished the proof of Theorem 8.1. �

Proof of Theorem 2.8. It is easy to see that Theorem 2.8 is a consequence of Theorem 8.1. �

9. Compactness with boundedMorse index

In this section, we shall first calculate the second variation formulas for the functionals Lα and
L and define the notion of the Morse index of α-Dirac-harmonic maps and Dirac-harmonic maps.
Then, we shall prove Theorem 2.12.

Let (φ, ψ) : M → N be an α-Dirac-harmonic map or a Dirac-harmonic map. Let φ∗T N be the
pull-back bundle over M. Let V be a section of φ∗T N. We vary (φ, ψ) via

(9.1) φτ(x) = expφ(x)(τV), ψτ(x) = ψi(x) ⊗
∂

∂yi (φτ(x)).

The second variation formula for the energy of the map is standard (see e.g. [55]),

δ2Eα(φ)(V,V)

= 2α
∫

M
(1 + |∇gφ|

2)α−1
(
〈∇gV,∇gV〉 − R(V,∇gφ,∇gφ,V) − 〈divg{(1 + |∇gφ|

2)α−1∇gφ},∇VV〉
)

dM

+4α(α − 1)
∫

M
(1 + |∇gφ|

2)α−2〈∇gφ,∇gV〉2dM + 2α
∫
∂M
〈(1 + |∇gφ|

2)α−1 ∂φ

∂−→n
,∇VV〉,

where −→n is the unit outside normal vector field of ∂M.
Next, we compute

d2

dτ2 |τ=0

∫
M
〈ψτ, /Dψτ〉dM = 2

∫
M
〈

d
dτ
|τ=0ψτ,

d
dτ
|τ=0 /Dψτ〉dM +

∫
M
〈ψτ,

d2

dτ2 |τ=0 /Dψτ〉dM.

Choosing a local orthonormal basis {eβ} on M such that [eβ, ∂
∂τ

] = 0, ∇eγeβ = 0 at a considered
point, we have

d
dτ

/Dψτ =
d
dτ

(
eβ · ∇̃eβ(ψ

i ⊗
∂

∂yi (φτ))
)

=
d
dτ

(
eβ · ∇eβψ

i ⊗
∂

∂yi (φτ) + eβ · ψi ⊗ ∇eβ
∂

∂yi (φτ)
)

= eβ · ∇eβψ
i ⊗ ∇ ∂

∂τ

∂

∂yi (φτ) + eβ · ψi ⊗ ∇ ∂
∂τ
∇eβ

∂

∂yi (φτ)

= eβ · ∇̃eβ

(
ψi ⊗ ∇ ∂

∂τ

∂

∂yi (φτ)
)

+ eβ · ψi ⊗ R(
∂

∂τ
, eβ)

∂

∂yi (φτ)
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and

d2

dτ2 |τ=0 /Dψτ = eβ · ∇eβψ
i ⊗ ∇ ∂

∂τ
∇ ∂

∂τ

∂

∂yi (φτ) + eβ · ψi ⊗ ∇ ∂
∂τ
∇eβ∇ ∂

∂τ

∂

∂yi (φτ)

+ eβ · ψi ⊗ ∇ ∂
∂τ

(
R(

∂

∂τ
, eβ)

∂

∂yi (φτ)
)

= eβ · ∇eβψ
i ⊗ ∇ ∂

∂τ
∇ ∂

∂τ

∂

∂yi (φτ) + eβ · ψi ⊗ ∇eβ∇ ∂
∂τ
∇ ∂

∂τ

∂

∂yi (φτ)

+ eβ · ψi ⊗ R(
∂

∂τ
, eβ)∇ ∂

∂τ

∂

∂yi (φτ)

+ eβ · ψi ⊗ ∇ ∂
∂τ

(
R(

∂

∂τ
, eβ)

∂

∂yi (φτ)
)

= eβ · ∇̃eβ

(
ψi ⊗ ∇ ∂

∂τ
∇ ∂

∂τ

∂

∂yi (φτ)
)

+ eβ · ψi ⊗ R(
∂

∂τ
, eβ)∇ ∂

∂τ

∂

∂yi (φτ)

+ eβ · ψi ⊗ ∇ ∂
∂τ

(
R(

∂

∂τ
, eβ)

∂

∂yi (φτ)
)
.

Noting that

R(
∂

∂τ
, eβ)

∂

∂yi (φτ) = R j
iklV

kdφl(eβ)
∂

∂y j ,

we have

∇ ∂
∂τ

(
R(

∂

∂τ
, eβ)

∂

∂yi (φτ)
)

= R j
ikl;pV pVkdφl(eβ)

∂

∂y j + R(∇ ∂
∂τ

∂

∂τ
, eβ)

∂

∂yi (φτ) + R(
∂

∂τ
,∇ ∂

∂τ
eβ)

∂

∂yi (φτ).

Combining these with the fact that

(9.2)
∫

M
〈ψ, /Dω〉 =

∫
M
〈 /Dψ,ω〉 −

∫
∂M
〈
−→n · ψ,ω〉,
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where ψ,ω ∈ C1(M,ΣM ⊗ φ?T N), using the equation /Dψ=0, we get

d2

dτ2 |τ=0

∫
M
〈ψτ, /Dψτ〉dM

= 2
∫

M

〈
ψ j ⊗ ∇ ∂

∂τ

∂

∂y j (φτ), eβ · ∇̃eβ

(
ψi ⊗ ∇ ∂

∂τ

∂

∂yi (φτ)
)

+ eβ · ψi ⊗ R(
∂

∂τ
, eβ)

∂

∂yi (φτ)
〉

dM

+

∫
M

〈
ψ, eβ · ∇̃eβ

(
ψi ⊗ ∇ ∂

∂τ
∇ ∂

∂τ

∂

∂yi (φτ)
)

+ eβ · ψi ⊗ R(
∂

∂τ
, eβ)∇ ∂

∂τ

∂

∂yi (φτ)

+ eβ · ψi ⊗

(
R j

ikl;pV pVkdφl(eβ)
∂

∂y j + R(∇ ∂
∂τ

∂

∂τ
, eβ)

∂

∂yi (φτ) + R(
∂

∂τ
,∇ ∂

∂τ
eβ)

∂

∂yi (φτ)
) 〉

dM

= 2
∫

M

〈
ψ j ⊗ ∇ ∂

∂τ

∂

∂y j (φτ), eβ · ∇̃eβ

(
ψi ⊗ ∇ ∂

∂τ

∂

∂yi (φτ)
)

+ eβ · ψi ⊗ R(
∂

∂τ
, eβ)

∂

∂yi (φτ)
〉

dM

−

∫
∂M
〈
−→n · ψ, ψi ⊗ ∇ ∂

∂τ
∇ ∂

∂τ

∂

∂yi (φτ)〉 +
∫

M

〈
ψ, eβ · ψi ⊗ R(∇ ∂

∂τ

∂

∂τ
, eβ)

∂

∂yi (φτ)

+ eβ · ψi ⊗

(
R j

ikl;pV pVkdφl(eβ)
∂

∂y j + R(
∂

∂τ
, eβ)∇ ∂

∂τ

∂

∂yi (φτ) + R(
∂

∂τ
,∇ ∂

∂τ
eβ)

∂

∂yi (φτ)
) 〉

dM.

By the fact that

〈ψ, eβ · ψi ⊗ R(∇ ∂
∂τ

∂

∂τ
, eβ)

∂

∂yi (φτ)〉 = 2〈R(φ, ψ),∇VV〉

= 2〈Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
,∇VV〉

= 2α
〈
divg

{
(1 + |∇gφ|

2)α−1∇gφ
}
,∇VV

〉
,

where the last equality follows from the following equivalent equation of (2.8) that

divg

{
(1 + |∇gφ|

2)α−1∇gφ
}
− (1 + |∇gφ|

2)α−1A(φ)(∇gφ,∇gφ)

−
1
α

Re
(
P(A(dφ(eγ), eγ · ψ);ψ)

)
= 0,

we obtain the following

Proposition 9.1. Let (φ, ψ) : M → N be a α-Dirac-harmonic map and V be a smooth section of
φ∗T N. Then the second variational formula of the functional Lα(φ, ψ) with respect to the variations
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(9.1) is

δ2Lα(φ, ψ)(V,V) =
d2

dτ2 |τ=0Lα(φτ, ψτ)

= 2α
∫

M
(1 + |∇gφ|

2)α−1
(
〈∇gV,∇gV〉 − R(V,∇gφ,∇gφ,V)

)
dM

+ 4α(α − 1)
∫

M
(1 + |∇gφ|

2)α−2〈∇gφ,∇gV〉2dM

+ 2
∫

M

〈
ψ j ⊗ ∇V

∂

∂y j , eβ · ∇̃eβ

(
ψi ⊗ ∇V

∂

∂yi

)
+ eβ · ψi ⊗ R(V, eβ)

∂

∂yi

〉
dM

+

∫
M

〈
ψ, eβ · ψi ⊗

(
R j

ikl;pV pVkdφl(eβ)
∂

∂y j + R(V, eβ)∇V
∂

∂yi + R(V,∇eβV)
∂

∂yi

)〉
dM

+ 2α
∫
∂M
〈(1 + |∇gφ|

2)α−1 ∂φ

∂−→n
,∇VV〉 −

∫
∂M
〈
−→n · ψ, ψi ⊗ ∇V∇V

∂

∂yi 〉.

By a similar computation, we have

Proposition 9.2. Let (φ, ψ) : M → N be a Dirac-harmonic map and V be a smooth section of
φ∗T N. Then the second variational formula of the functional L(φ, ψ) with respect to the variations
(9.1) is

δ2L(φ, ψ)(V,V) =
d2

dτ2 |τ=0L(φτ, ψτ)

= 2
∫

M

(
〈∇gV,∇gV〉 − R(V,∇gφ,∇gφ,V)

)
dM

+ 2
∫

M

〈
ψ j ⊗ ∇V

∂

∂y j , eβ · ∇̃eβ

(
ψi ⊗ ∇V

∂

∂yi

)
+ eβ · ψi ⊗ R(V, eβ)

∂

∂yi

〉
dM

+

∫
M

〈
ψ, eβ · ψi ⊗

(
R j

ikl;pV pVkdφl(eβ)
∂

∂y j + R(V, eβ)∇V
∂

∂yi + R(V,∇eβV)
∂

∂yi

)〉
dM

+ 2
∫
∂M
〈
∂φ

∂−→n
,∇VV〉 −

∫
∂M
〈
−→n · ψ, ψi ⊗ ∇V∇V

∂

∂yi 〉.

Before giving the proof of our last Theorem 2.12, we first prove the following theorem.

Theorem 9.3. Let N be a compact Riemannian manifold with RicN ≥ λ0 > 0. Let (φα, ψα) :
(D1(0), g)→ (N, h) be a sequence of α-Dirac-harmonic maps with uniformly bounded energy

Eα(φα) + E(ψα) ≤ Λ.

Suppose there is only one energy concentration point 0 in D1(0) for the sequence (φα, ψα) and
there is only one bubble occurring at this point, if ν = ∞, then the Morse index of (φα, ψα) tends to
infinity.

Since RicN ≥ λ0 > 0, by Myers’ theorem, we know that, if

b ≥
π√

λ0(n − 1)−1
+ 2ε,



90 JOST, LEI LIU, AND ZHU

then there exists a tangent vector field V0(s) on N, which is smooth on γ, and is vanishing on γ|[0,ε]
and γ|[b−ε,b], such that the second variation of the length of γ satisfies

(9.3) Iγ(V0,V0) =

∫ b

0
(〈∇γ̇V0,∇γ̇V0〉 − R(V0, γ̇, γ̇,V0))ds < −δ < 0.

Let s = s(r) be the arc-length parametrization of the curve

ωα(r) =
1

2π

∫ 2π

0
φα(r, θ)dθ,

with s(λt0
α ) = 0. Set s(λtbα

α ) = b, where 0 < tb
α < t0 < 1. By Proposition 8.9, ωα(s) converges to γ in

C1([0, b]).

Lemma 9.4. Suppose the limiting neck of {(φα, ψα)} is a geodesic of infinite length, then, for any
given b > 0 and fixed θ, φα(se

√
−1θ) converges to the geodesic γ in C1([0, b]). Moreover, we have

(9.4)

∥∥∥∥∥∥∥ r(s)
√
α − 1

∣∣∣∣∣∂s
∂r

∣∣∣∣∣ − µ1−t0

√
E(σ1)
π

∥∥∥∥∥∥∥
C0([0,b])

→ 0.

Proof. Since

s(λtbα
α ) = b,

by Lemma 8.7 and Corollary 8.8, we have

(9.5) a =

∫ λ
tbα
α

λ
t0
α

∣∣∣∣∣dφ∗α(r)
dr

∣∣∣∣∣ dr ≥ C
∫ λ

tbα
α

λ
t0
α

√
α − 1
r

dr = C(tb
α − t0)

√
α − 1 log λα.

On the other hand, Theorem 2.8 (or Theorem 8.1) tells us
√
α − 1 log λα → −∞,

since the limiting neck (geodesic) is of infinite length. Hence, from above facts, we have

(9.6) tb
α − t0 → 0 as α↘ 1.

We assume that φα(se
√
−1θ) does not converge to γ in C1[0, b]. Then there exists sα ∈ [0, b], such

that

sup
θ

∣∣∣∣∣∂φα∂s
(sαe

√
−1θ) −

dφ∗α
ds

(sα)
∣∣∣∣∣ > ε > 0.

Let sα = s(λtα
α ). Obviously, tα ∈ [tb

α, t0]. Thus tα → t0. By Lemma 8.7, after passing to a
subsequence, we have

lim
α↘1

λtα
α

√
α − 1

∣∣∣∣∣∂φα∂r
(λtα

α e
√
−1θ) −

dφ∗α
dr

(λtα
α )

∣∣∣∣∣→ 0.

Therefore, noting ∣∣∣∣∣∣∣∂φα(sαe
√
−1θ)

∂s
−

dφ∗α(sα)
ds

∣∣∣∣∣∣∣ =

∣∣∣∣∣dr
ds

∣∣∣∣∣ · ∣∣∣∣∣∂φα∂r
−

dφ∗α(r)
dr

∣∣∣∣∣
r=λtα

α
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and ∣∣∣∣∣dr
ds

∣∣∣∣∣
r=λtα

α

≤
Cλtα

α
√
α − 1

,

we have ∣∣∣∣∣∣∣∂φα(sαe
√
−1θ)

∂s
−

dφ∗α(sα)
ds

∣∣∣∣∣∣∣ ≤ Cλtα
α

√
α − 1

∣∣∣∣∣∂φα∂r
−

dφ∗α(r)
dr

∣∣∣∣∣
r=λtα

α

→ 0.

Thus, we get a contradiction and it follows

‖
∂φα
∂s

(se
√
−1θ) −

dφ∗α
ds

(s)‖C0([0,b]) → 0.

Combining this with Lemma 8.7, we obtain that for any fixed θ,

‖φα(se
√
−1θ) − φ∗α(s)‖C1([0,b]) → 0.

By the same way, we can prove (9.4). �

Lemma 9.5. Under the assumption of Theorem 9.3, if the limiting neck of {(φα, ψα)} is an unstable
geodesic which is parameterized on [0, b] by arc length, then, for α − 1 sufficiently small, there
exists a section Vα of φ∗α(T N), which is supported in D

λ
tbα
α

(xα) \ Dλ
t0
α

(xα), such that

δ2Lα(φα, ψα)(Vα,Vα) < 0.

Proof. Since the limiting neck of {(φα, ψα)}, denoted by γ : [0, b] → N, is not a stable geodesic,
there exists a vector field V0 on γ with V0|γ(0) = 0 and V0|γ(b) = 0 such that

Iγ(V0,V0) < 0.

Let P be the projection from TRK to T N. We define

Vα

(
r(s)e

√
−1θ + xα

)
= Pφα

(
se
√
−1θ

)(V0(s)),

where s is the arc-length parametrization of ωα(r) with s(λt0
α ) = 0. Then, Vα is a smooth section of

φ∗α(T N) which is supported in D
λ

tbα
α

(xα) \ Dλ
t0
α

(xα). By Lemma 9.4, for any fixed θ, Vα(φα(se
√
−1θ))
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converges to V0(γ(s)) in C1[0, b]. Then11

δ2Lα(φα, ψα)(Vα,Vα)

= 2α
∫

D
λ

tbα
α

(xα)\D
λ

t0
α

(xα)
(1 + |∇gφα|

2)(α−1) (〈∇Vα,∇Vα〉 − R(Vα,∇φα,∇φα,Vα)) dx

+4α(α − 1)
∫

D
λ

tbα
α

(xα)\D
λ

tα
α

(x0)
(1 + |∇gφα|

2)α−2〈∇gφα,∇gVα〉
2dvolg

+2
∫

D
λ

tbα
α

(xα)\D
λ

t0
α

(xα)

〈
ψ j
α ⊗ ∇Vα

∂

∂y j , eβ · ∇̃eβ

(
ψi
α ⊗ ∇Vα

∂

∂yi

)
+ eβ · ψi

α ⊗ R(Vα, eβ)
∂

∂yi

〉
dvolg

+

∫
D
λ

tbα
α

(xα)\D
λ

t0
α

(xα)

〈
ψα, eβ · ψi

α ⊗

(
R j

ikl;pV p
αVk

αdφl
α(eβ)

∂

∂y j + R(Vα, eβ)∇Vα
∂

∂yi + R(Vα,∇eβVα)
∂

∂yi

)〉
dvolg

= I + II + III + IV.

Next, we will show that

(9.7) lim
α↘1

1
√
α − 1

δ2Lα(Vα,Vα) = 4πµ

√
E(σ1)
π

Iγ(V0,V0).

First, we calculate I:

I
√
α − 1

=
2α
√
α − 1

∫
D
λ

tbα
α

\D
λ

tα
α

(xα)
(1 + |∇gφα|

2)(α−1) (〈∇Vα,∇Vα〉 − R(Vα,∇φα,∇φα,Vα)) dx

= 2α
∫ 2π

0

∫ b

0
(1 + |∇gφα|

2)(α−1)
(
〈∇ ∂φα

∂s
Vα,∇ ∂φα

∂s
Vα〉 − R(Vα,

∂φα
∂s

,
∂φα
∂s

,Vα)
) ∣∣∣∂s

∂r

∣∣∣
√
α − 1

rdsdθ

+
2α
√
α − 1

∫ 2π

0

∫ b

0
(1 + |∇gφα|

2)(α−1)
(
〈∇r−1 ∂φα

∂θ
Vα,∇r−1 ∂φα

∂θ
Vα〉 − R(Vα, r−1∂φα

∂θ
, r−1∂φα

∂θ
,Vα)

)
rdrdθ

:= I1 + I2.

We claim that

(9.8)

∣∣∣∣∣∣ λt(s)
α

√
α − 1

∇gφα

∣∣∣∣∣∣
2
α − 1

λ2t(s)
α

(α−1)

−→ µt0 .

In fact, by Corollary 8.8, we have

lim
α↘1

∣∣∣∣∣∣ λt(s)
α

√
α − 1

∇φα

∣∣∣∣∣∣
2
α − 1

λ2t(s)
α

(α−1)

= lim
α↘1

(
1

λ2t(s)
α

)(α−1)

.

11Noting that we do not have the boundary term in this case.
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Since ν = ∞, by Corollary 8.8, we have

b =

∫ λ
tbα
α

λ
t0
α

|φ∗α|dr ≥ C
∫ λ

tbα
α

λ
t0
α

√
α − 1
r

dr = −C(t0 − tb
α)
√
α − 1 log λα.(9.9)

Thus, we obtain that

tb
α → to.

This implies that (9.8) holds.
It follows from the fact that µ ≥ 1 and (9.8) that

(1 + |∇gφα|
2)(α−1) =

1 +

∣∣∣∣∣∣ λt(s)
α

√
α − 1

∇gφα

∣∣∣∣∣∣
2
α − 1

λ2t(s)
α

(α−1)

−→ µt0 .

Hence, we infer from the above and Lemma 9.4

lim
α↘1

I1
√
α − 1

= 4πµ

√
E(v)
π

Iγ(V0,V0).

For the term I2, by definition, we have

∇ ∂φα
∂θ

Vα = Pφα(se
√
−1θ)

(
∂Vα

∂θ

)
= Pφα(se

√
−1θ)

(
∂

∂θ
(Pφα(se

√
−1θ))(V0)

)
,

where ∂Vα
∂θ

is the derivative in RK . This leads to

|∇ ∂φα
∂θ

Vα| ≤ C(a)
∣∣∣∣∣∂φα∂θ

∣∣∣∣∣ .
Hence, we have

I2 = 2α
∫ 2π

0

∫ λ
tbα
α

λ
t0
α

(1 + |∇gφα|
2)(α−1)

√
α − 1

(
〈∇r−1 ∂φα

∂θ
Vα,∇r−1 ∂φα

∂θ
Vα〉 − R(Vα, r−1∂φα

∂θ
, r−1∂φα

∂θ
,Vα)

)
rdrdθ

≤
C

√
α − 1

∫ 2π

0

∫ λ
tbα
α

λ
t0
α

|r−1∂φα
∂θ
|2rdrdθ.

For a given K > 1, set

mα =

 log λtbα−t0
α

log K

 + 1.

It is easy to see that

D
λ

tbα
α

\ Dλ
t0
α
⊂ ∪

mα

i=1(DKiλ
t0
α
\ DKi−1λ

t0
α

).

By (9.9), there holds
√
α − 1 mα ≤ C(K).
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Then according to Corollary 8.3, we obtain

I2 ≤
C

√
α − 1

∫ 2π

0

∫ λ
tbα
α

λ
t0
α

|r−1∂φα
∂θ
|2rdrdθ

≤
C
√
α − 1mα

α − 1
1

mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |r−1∂φα
∂θ
|2dx

≤
C(K)
α − 1

1
mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |r−1∂φα
∂θ
|2dx→ 0.(9.10)

Now, we turn to the term II. It is easy to check that

|〈∇gφα,∇gVα〉| ≤ C|∇gφα|
2.

So, there exists a constant C such that

(1 + |∇gφα|
2)α−2〈∇gφα,∇gVα〉

2 ≤ C(1 + |∇gφα|
2)α.

This leads to
II

√
α − 1

≤ C
√
α − 1

∫
D
λ

t0
α

(1 + |∇gφα|
2)αdvolg → 0.

Finally, we estimate the terms III and IV. In fact, by Young’s inequality, we have

III + IV
√
α − 1

≤
C(N, ‖V0‖C1)
√
α − 1

∫
D
λ

t0
α

(xα)\D
λ

tbα
α

(xα)

(
|ψα|

2 + |ψα||∇ψα| + |ψα|
2|∇φα|

)
dvolg

≤ C(N, ‖V0‖C1)
λt0
α

√
α − 1


∫

D
λ

t0
α

(xα)\D
λ

tbα
α

(xα)
|ψα|

4dvolg


1
2

+ C(N, ‖V0‖C1)
1

√
α − 1


∫

D
λ

t0
α

(xα)\D
λ

tbα
α

(xα)
|∇ψα|

4
3 dvolg


3
4

∫

D
λ

t0
α

(xα)\D
λ

tbα
α

(xα)
|ψα|

4dvolg


1
4

+ C(N, ‖V0‖C1)
1

√
α − 1


∫

D
λ

t0
α

(xα)\D
λ

tbα
α

(xα)
|∇φα|

2dvolg


1
2

∫

D
λ

t0
α

(xα)\D
λ

tbα
α

(xα)
|ψα|

4dvolg


1
2

.

On one hand, similarly to deriving (9.10), by (8.21) and Lemma 8.4, we have

1
√
α − 1

∫
D
λ

t0
α
\D

λ
tbα
α

|∇φα|
2dx ≤

√
α − 1mα

α − 1
1

mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |∇φα|2dx

≤
C(K)
α − 1

1
mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |∇φα|2dx ≤ C(K)
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and

1
√
α − 1

∫
D
λ

t0
α
\D

λ
tbα
α

|ψα|
4dx ≤

√
α − 1mα

α − 1
1

mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |ψα|4dx

≤
C(K)
α − 1

1
mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |ψα|4dx→ 0.

On the other hand, by (8.21), (8.12), Corollary 8.3 and Lemma 8.4, for any fixed k > 1, we have

‖
∂ψα
∂r
‖

L
4
3 (D2kλtα

α
(xα)\D2−kλtα

α
(xα))

≤ C‖|x − xα|
∂ψα
∂θ
‖

L
4
3 (D2kλtα

α
(xα)\D2−kλtα

α
(xα))

+ C‖∇φα‖L2(D2kλtα
α

(xα)\D2−kλtα
α

(xα))‖ψα‖L4(D2kλtα
α

(xα)\D2−kλtα
α

(xα))

= o((α − 1)
3
4 ),

which implies

(9.11) lim
α↘1

1
α − 1

∫
D2kλtα

α
(xα)\D2−kλtα

α
(xα)
|∇ψα|

4
3 dx = 0.

Then, by (9.11) and Lemma 8.4, we get

1
√
α − 1

∫
D
λ

t0
α
\D

λ
tbα
α

|ψα|
4dx ≤

√
α − 1mα

α − 1
1

mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |ψα|4dx

≤
C(K)
α − 1

1
mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |ψα|4dx→ 0.

and

1
√
α − 1

∫
D
λ

t0
α
\D

λ
tbα
α

|∇ψα|
4
3 dx ≤

√
α − 1mα

α − 1
1

mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |∇ψα| 43 dx

≤
C(K)
α − 1

1
mα

∫
∪

mα
i=1

(
D

Kiλ
t0
α
\D

Ki−1λ
t0
α

) |∇ψα| 43 dx→ 0.

Combining these with the fact that

λα = o((α − 1)m), since ν > 1,

we get
III + IV
√
α − 1

→ 0.

Thus, we finished the proof. �

Proof of Theorem 9.3. Since ν = ∞, Theorem 8.1 tells us that the limiting neck of {(φα, ψα)} is a
geodesic of infinite length. Therefore, for any given t1, by Corollary 8.8, we know that there exists
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a suitable positive constant ε1 > 0 such that, as α − 1 is small enough, the arc length b of ωα(s) on
Dλ

t1−ε
α

(xα) \ Dλ
t1
α

(xα) satisfies

b > lN =
π√

λ(n − 1)−1
.

According to Lemma 9.5, there exists a section V1
α of φ∗α(T N), which is 0 outside the region

Dλ
t1−ε
α

(xα) \ Dλ
t1
α

(xα), satisfying
δ2Lα(φα, ψα)(V1

α,V
1
α) < 0.

By the same method, for t2 = t1 − 2ε1, we can also pick ε2 > 0 and construct a section V2
α, which is

0 outside Dλ
t2−ε2
α

(xα) \ Dλ
t2
α

(xα), such that

δ2Lα(φα, ψα)(V2
α,V

2
α) < 0.

Since the limiting neck is a geodesic of infinite length, then, when α− 1 is sufficiently small, there
exists a series of sections {V3

α,V
4
α, · · · ,V

k
α} satisfying that for any 1 ≤ i ≤ k there holds

δ2Lα(φα, ψα)(V i
α,V

i
α) < 0.

Obviously, V1
α, V2

α, · · · , Vk
α are linearly independent. This means that

Index (φα, ψα; Lα) ≥ k.

Therefore, we get
Index (φα, ψα; Lα)→ +∞, as α↘ 1.

Thus, we complete the proof of the theorem. �

From the proof of Theorem 9.3, we obtain the following theorem

Theorem 9.6. Let N be a compact Riemannian manifold with finite fundamental group. Let
(φα, ψα) : (D1(0), g) → (N, h) be a sequence of α-Dirac-harmonic maps with uniformly bounded
energy

Eα(φα) + E(ψα) ≤ Λ.

Suppose there is only one energy concentration point 0 in D1(0) for the sequence of (φα, ψα) and
there is only one bubble occurring at this point, if ν = ∞, then the Morse index of (φα, ψα) tends to
infinity.

Proof. We prove this theorem by a contradiction. If it is false, then there exists an uniform integer
m such that

Index (φα, ψα; Lα) ≤ m < ∞.

Let s = s(r) be the arc-length parameter as before with s(λt0
α ) = 0, s(λtbα

α ) = b and s(λsb
α
α ) = −b

where 0 < tb
α < t0 < sb

α < 1. By Proposition 8.9, ωα(s) converges to γ in C1([−b, b]).
Next, we will show that the Morse index of γ on any subintervals [−b, b] is uniformly bounded.
In fact, let V1(s), ...,Vm(s) be the m linearly independent tangent vector fields on N, which are

smooth on γ, and are vanishing on γ|[−b,−b+ε] and γ|[b−ε,b] for any big b > 0 and small ε > 0, such
that for any q ∈ {1, ...,m}, the second variation of the length of γ satisfies

(9.12) Iγ(Vq,Vq) =

∫ b

−b

(
〈∇γ̇Vq,∇γ̇Vq〉 − R(Vq, γ̇, γ̇,Vq)

)
ds < −δ < 0.
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Let P be the projection from TRK to T N. We define

Vq
α

(
r(s)e

√
−1θ + xα

)
= Pφα(se

√
−1θ)(Vq(s)).

Similarly to the proof of Lemma 9.5, we have

δ2Lα(φα, ψα)(Vq
α,V

q
α) < 0,

when α − 1 is small enough.
Thus,

m ≤ Index (φα, ψα; Lα) ≤ m < ∞,

which implies that the Morse index of geodesic γ is uniformly bounded by m, since b is arbitrary.
Since the target manifold N has a finite fundamental group, by Gromov’s estimate (see Corollary

3.3.5 in [47]), the length of the geodesic is controlled by the bound of the Morse index, i.e.

length(γ) ≤ C(Index(γ) + 1) ≤ C(m + 1) < ∞,

which is a contradiction to ν = ∞. Thus, we finished the proof of this theorem. �

It is well known that one can remove finitely many points from a non-trivial harmonic map
f : (M, g) → (N, h) without affecting its Morse index (see Sect. 4 in [44] and Prop. 1.9 in [20]).
Now, we will extend this property to the case of Dirac-harmonic maps.

Lemma 9.7. Let m be the Morse index of a non-trivial Dirac-harmonic map (φ, ψ) : M → N.
Given any finite collections of interior points {z1, ..., zl} ⊂ M \ ∂M, there are a linear subspace Ξ

of Γ(φ∗T N) of dimension m and m linearly independent sections V1, ...,Vm of Ξ, such that
(1) the second variation of L on Ξ with respect to the variations (9.1) is negative, i.e. for any

V ∈ Ξ, there holds
δ2L(φ, ψ)(V,V) < 0;

(2) V1, ...,Vm vanish in neighborhoods of {z1, ..., zl}.

Proof. By assumptions of the lemma, there is a linear subspace Ξ0 = span{V0
1 , ...,V

0
m} of Γ(φ∗T N)

of dimension m such that the second variation δ2L(φ, ψ) is negative on Ξ0.
Denote BM

r0
(zi) the geodesic disk of radius r at center point zi on M. Choose

r0 < min
{

min
i=1,...,l

dist(zi, ∂M), 1
}

small enough such that BM
r0

(zi) ∩ BM
r0

(z j) = ∅ if i , j and the radial distance functions ri : BM
r0

(zi) \
{zi} → R is smooth. For each τ ∈ (0, r0), define the Lipschitz cut-off function as follows:

ητ(p) =


0, i f 0 ≤ ri(p) < τ2 for some i,
2 log τ−log ri(p)

log τ , i f τ2 ≤ ri(p) < τ for some i,
1, otherwise.

It is easy to see that there is a constant C > 0, independent of τ, such that∫
M
|∇gητ|

2dM ≤
C
| log τ|

.
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By mollifying, in fact, for any τ > 0, we can construct smooth cut-off function ητ (still use this
notation for simplicity) which is zero near the points z1, ..., zl, such that ητ ∈ [0, 1 + τ] and∫

M
|∇gητ|

2dM ≤
C
| log τ|

,

where C > 0 is independent of τ.
By Young’s inequality, we have that for any ε > 0, there holds∫

M
|∇g(ητV0

q )|2dM −
∫

M
η2
τ|∇gV0

q |
2dM ≤

∫
M
|∇gητV0

q |
2dM + 2

∫
M
|ητ∇gV0

q ||∇gητV0
q |dM

≤ ‖V0
q‖

2
C1(M)

(∫
M
|∇gητV0

q |
2dM +

∫
M
|∇gητ||∇gφ|dM

)
≤

C√
| log τ|

‖V0
q‖

2
C1(M)(1 + ‖∇gφ‖L2(M))

and∣∣∣∣∣∣2
∫

M

〈
ψ j ⊗ ∇ητV0

q

∂

∂y j , eβ · ∇eβητ(ψ
i ⊗ ∇V0

q

∂

∂yi )
〉∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫

M

〈
ψ, eβ · ψi ⊗ R(ητV0

q ,∇eβητV
0
q )
∂

∂yi

〉
dM

∣∣∣∣∣∣
≤ C‖∇ητ‖L2(M)‖ψ‖

2
L4(M)‖V

0
q‖

2
C1(M) ≤

C√
| log τ|

‖ψ‖2L4(M)‖V
0
q‖

2
C1(M).

Combining these with the fact that ητ|∂M ≡ 1, we have

δ2L(φ, ψ)(ητV0
q , ητV

0
q )

≤ 2
∫

M
η2
τ

(
〈∇gV0

q ,∇gV0
q 〉 − R(V0

q ,∇gφ,∇gφ,V0
q )

)
dM

+ 2
∫

M
η2
τ

〈
ψ j ⊗ ∇V0

q

∂

∂y j , eβ · ∇̃eβ

(
ψi ⊗ ∇V0

q

∂

∂yi

)
+ eβ · ψi ⊗ R(V0

q , eβ)
∂

∂yi

〉
dM

+

∫
M
η2
τ

〈
ψ, eβ · ψi ⊗

(
R j

ikl;p(V0
q )p(V0

q )kdφl(eβ)
∂

∂y j + R(V0
q , eβ)∇V0

q

∂

∂yi + R(V0
q ,∇eβV

0
q )
∂

∂yi

)〉
dM

+ 2
∫
∂M
η2
τ〈
∂φ

∂−→n
,∇V0

q
V0

q 〉 −

∫
∂M
η2
τ〈
−→n · ψ, ψi ⊗ ∇V0

q
∇V0

q

∂

∂yi 〉

+
C√
| log τ|

‖V0
q‖

2
C1(M)(1 + ‖∇gφ‖L2(M) + ‖ψ‖2L4(M))

→ δ2L(φ, ψ)(V0
q ,V

0
q ) < 0,

as τ→ 0.
Therefore, when τ is small enough, we take Vi = ητV0

q , q = 1, ...,m and Ξ = span{V1, ...,Vm}

which satisfy (1) and (2). We finished the proof of this lemma. �

With the help of Theorem 9.3 and Theorem 9.6, we now give the proof of Theorem 2.12.

Proof of Theorem 2.12. For the conclusion (1), we prove it by contradiction. In fact, if it false, by
Lemma 7.5, there exist a linear subspace Ξ of Γ(φ∗T N) of dimension m ≥ Λindex + 1 and m linearly
independent sections V1, ...,Vm of Ξ, such that
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(1) the second variation of L on Ξ with respect to the variations (9.1) is negative, i.e. for any
V ∈ Ξ, there holds

δ2L(φ, ψ)(V,V) < 0;

(2) V1, ...,Vm vanish in neighborhoods of S = {p1, ..., pI}.
Let P be the projection from TRK to T N. We define

Vq
α(x) = Pφα(x)Vq(x), q = 1, ...,m.

Since V1, ...,Vm vanish in neighborhoods of S = {p1, ..., pI} and φα → φ strongly in C2
loc(M \ S), it

is easy to see that Vq
α → Vq in C1(M) as α↘ 1.

By Proposition 9.1, we have

δ2Lα(φα, ψα)(Vq
α,V

q
α)

= 2α
∫

M
(1 + |∇gφα|

2)α−1
(
〈∇gVq

α,∇gVq
α〉 − R(Vq

α,∇gφα,∇gφα,Vq
α)

)
dM

+ 4α(α − 1)
∫

M
(1 + |∇gφα|

2)α−2〈∇gφα,∇gVq
α〉

2dM

+ 2
∫

M

〈
ψ j
α ⊗ ∇Vq

α

∂

∂y j , eβ · ∇̃eβ

(
ψi
α ⊗ ∇Vq

α

∂

∂yi

)
+ eβ · ψi

α ⊗ R(Vq
α, eβ)

∂

∂yi

〉
dM

+

∫
M

〈
ψα, eβ · ψi

α ⊗

(
R j

ikl;p(Vq
α)p(Vq

α)kdφl
α(eβ)

∂

∂y j + R(Vq
α, eβ)∇Vq

α

∂

∂yi + R(Vq
α,∇eβV

q
α)
∂

∂yi

)〉
dM

+ 2α
∫
∂M
〈(1 + |∇gφα|

2)α−1∂φα

∂−→n
,∇Vq

α
Vq
α〉 −

∫
∂M
〈
−→n · ψα, ψi

α ⊗ ∇Vq
α
∇Vq

α

∂

∂yi 〉.

First, we can easily see that

4α(α − 1)
∫

M
(1 + |∇gφα|

2)α−2〈∇gφα,∇gVq
α〉

2dM ≤ C(α − 1)‖Vq
α‖C1(M)

∫
M

(1 + |∇gφα|
2)αdM → 0,

as α↘ 1.
Combining this with the facts that V1

α, ...,V
m
α vanish in neighborhoods of S = {p1, ..., pI}, (φα, ψα)→

(φ, ψ) strongly in C2
loc(M \ S) ×C1

loc(M \ S) and V i
α → Vi in C1(M) as α↘ 1, we get

lim
α↘1

δ2Lα(φα, ψα)(Vq
α,V

q
α) = δ2L(φ, ψ)(Vq,Vq) < 0, q = 1, ...,m.

Thus, when α is sufficiently close to 1, (φα, ψα) must have Morse index at least m ≥ Λindex + 1
which is a contradiction to the assumption.

For the conclusion (2), if it is false, then there exists a bubble, i.e. a nontrivial Dirac-harmonic
sphere (σl

i, ξ
l
i) : S 2(or R2)→ N, 1 ≤ l ≤ li, 1 ≤ i ≤ I, such that

Index (σl
i, ξ

l
i; L) = m ≥ Λindex + 1.

By classical blow-up theory (see Page 8), we know that there exist a sequence of points xil
α and a

sequence of positive numbers λil
α, such that xil

α → xi, λil
α → 0 and the two rescaled fields

σil
α = φα(xil

α + λil
αx), ξil

α = (λil
α)α−1

√
λil
αψα(xil

α + λil
αx)
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converge in Ck
loc(R

2 \ S̃) to (σl
i, ξ

l
i), where S̃ is a finite set. By Lemma 7.5, there exist a linear sub-

space Ξ of Γ((σl
i)
∗T N) of dimension m ≥ Λindex + 1 and m linearly independent sections V1, ...,Vm

of Ξ, such that
(1) the second variation of L on Ξ with respect to the variations (9.1) is negative, i.e. for any

V ∈ Ξ, there holds
δ2L(σl

i, ξ
l
i)(V,V) < 0;

(2) V1, ...,Vm vanish in neighborhoods of S̃ ∪ {∞}.
Here, Vq vanishes in a neighborhood of point {∞} means that there exists a big constant R0 > 0
such that Vq(x) ≡ 0 when |x| ≥ R0

2 .
Choosing R > R0 big enough such that S̃ ⊂ D R

2
(0), for q = 1, ...,m, define

Vq
α(x) :=

Pφα(x)Vq( x−xil
α

λil
α

), x ∈ BM
λil
αR

(xil
α),

0, otherwise,

where P is the projection from TRK to T N. Since V1, ...,Vm vanish in neighborhoods of S̃ ∪ {∞}
and φα(xil

α +λil
αx)→ σl

i strongly in C2
loc(R

2 \S), it is easy to see that Ṽq
α(x) := Vq

α(xil
α +λil

αx)→ Vq(x)
in C1(R2) as α↘ 1.

Noting that Vq
α vanishes near the boundary ∂M, by Proposition 9.1, we have

δ2Lα(φα, ψα)(Vq
α,V

q
α)

= 2α
∫

DM
λil
αR

(xil
α)

(1 + |∇gφα|
2)α−1

(
〈∇gVq

α,∇gVq
α〉 − R(Vq

α,∇gφα,∇gφα,Vq
α)

)
dM

+ 4α(α − 1)
∫

DM
λil
αR

(xil
α)

(1 + |∇gφα|
2)α−2〈∇gφα,∇gVq

α〉
2dM

+ 2
∫

DM
λil
αR

(xil
α)

〈
ψ j
α ⊗ ∇Vq

α

∂

∂y j , eβ · ∇̃eβ

(
ψi
α ⊗ ∇Vq

α

∂

∂yi

)
+ eβ · ψi

α ⊗ R(Vq
α, eβ)

∂

∂yi

〉
dM

+

∫
DM
λil
αR

(xil
α)

〈
ψα, eβ · ψi

α ⊗

(
R j

ikl;p(Vq
α)p(Vq

α)kdφl
α(eβ)

∂

∂y j + R(Vq
α, eβ)∇Vq

α

∂

∂yi + R(Vq
α,∇eβV

q
α)
∂

∂yi

)〉
dM

= 2α(λil
α)2(1−α)

∫
DR(0)

(
(λil

α)2 + |∇g(xil
α+λil

αx)σ
il
α|

2
)α−1 (

〈∇Ṽq
α,∇Ṽq

α〉 − R(Ṽq
α,∇σ

il
α,∇σ

il
α, Ṽ

q
α)

)
dx

+ 4α(α − 1)
∫

DM
λil
αR

(xil
α)

(1 + |∇gφα|
2)α−2〈∇gφα,∇gVq

α〉
2dM

+ 2(λil
α)2(1−α)

∫
DR(0)

〈
(ξil
α) j ⊗ ∇Ṽq

α

∂

∂y j , eβ · ∇̃eβ

(
(ξil
α)k ⊗ ∇Ṽq

α

∂

∂yk

)
+ eβ · (ξil

α)k ⊗ R(Ṽq
α, eβ)

∂

∂yk

〉
dx

+ (λil
α)2(1−α)

∫
DR(0)〈

(ξil
α), eβ · (ξil

α)m ⊗

(
R j

mkn;p(Ṽq
α)p(Ṽq

α)kd(σil
α)n(eβ)

∂

∂y j + R(Ṽq
α, eβ)∇Ṽq

α

∂

∂ym + R(Ṽq
α,∇eβṼ

q
α)

∂

∂ym

)〉
dx.
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Noting the facts that Ṽ1
α, ..., Ṽ

m
α vanish in neighborhoods of S̃, (σil

α, ξ
il
α) → (σil, ξil) strongly in

Ck
loc(R

2 \ S̃), Ṽq
α → Vq in C1(R2) as α↘ 1 and

4α(α − 1)
∫

DM
λil
αR

(xil
α)

(1 + |∇gφα|
2)α−2〈∇gφα,∇gVq

α〉
2dM → 0,

as α↘ 1, we get

lim
α↘1

δ2Lα(φα, ψα)(Vq
α,V

q
α) = µilδ

2L(σl
i, ξ

l
i)(Vq,Vq) < 0, q = 1, ...,m.

Thus, when α is sufficiently close to 1, (φα, ψα) must have Morse index at least m ≥ Λindex + 1
which is a contradiction to the assumption.

For the conclusions (3) and (4), it is easy to see that they are two consequences of Theorem 9.3
and Theorem 9.6. We finished the proof. �
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