
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Towards a Canonical Divergence within

Information Geometry

by

Domenico Felice and Nihat Ay

Preprint no.: 43 2018





Towards a Canonical Divergence within Information Geometry

Domenico Felice1, ∗ and Nihat Ay2, †

1Max Planck Institute for Mathematics in the Sciences

Inselstrasse 22–04103 Leipzig, Germany

2 Max Planck Institute for Mathematics in the Sciences

Inselstrasse 22–04103 Leipzig, Germany

Santa Fe Institute, Santa Fe, NM 87501, USA

In Riemannian Geometry geodesics are integral curves of the gradient of Riemannian

distance. We extend this classical result to the framework of Information Geometry. In

particular, we prove that the rays of level-sets defined by a pseudo-distance are generated by

the sum of two tangent vectors. By relying on these vectors, we propose a novel definition of

divergence and its dual function. We prove that the new divergence defines a dual structure

(g,∇,∇∗) of a statistical manifold M. Additionally, we show that this divergence reduces to

the canonical divergence proposed by Ay and Amari in the case of: (a) self-duality, (b) dual

flatness, (c) statistical geometric analogue of the concept of symmetric spaces in Riemannian

Geometry. The case (c) leads to a further comparison of the novel divergence with the one

introduced by Henmi and Kobayashi.

PACS numbers: Classical differential geometry (02.40.Hw), Riemannian geometries (02.40.Ky),

Inverse problems (02.30.Zz).

I. INTRODUCTION

The Inverse Problem within Information Geometry [4] concerns the search for a divergence

function D which generates a given statistical structure (M, g,∇,∇∗). A significant attempt to

solve this problem has been put forth in [5]. Here, the authors defined a divergence function

relying on the inverse exponential map.

A statistical manifold is a C∞ manifold M endowed with a dual structure (g,∇,∇∗) such that

X g (Y,Z) = g (Y,∇∗XZ) + g (∇XY,Z) , ∀ X,Y, Z ∈ T (M), (1)

where T (M) denotes the space of vector fields on M, namely C∞ sections X : M→ TM, Xp ∈ TpM.

The dual connections∇ and∇∗ are both torsion free. The notion of statistical manifold, introduced
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by Lauritzen [15], is usually referred to the triple (M, g, T ), where T (X,Y, Z) = g (∇∗XY −∇XY,Z)

is a 3-symmetric tensor. However, when ∇ and ∇∗ are both torsion free connections, then the

structures (M, g,∇,∇∗) and (M, g, T ) are equivalent [6].

A distance-like function D : M×M→ R satisfies the following conditions

D(p, q) ≥ 0 ∀p, q ∈ M and D(p, q) = 0 iff p = q. (2)

The function D is called a divergence or contrast function on M [4] if the matrix

gij(p) = − ∂i∂′jD(ξp, ξq)
∣∣
p=q

= ∂′i∂
′
jD(ξp, ξq)

∣∣
p=q

(3)

is strictly positive definite everywhere on M. Here,

∂i =
∂

∂ξip
and ∂′i =

∂

∂ξiq

and {ξp := (ξ1
p , . . . , ξ

n
p )} and {ξq := (ξ1

q , . . . , ξ
n
q )} are local coordinate systems of p and q, respec-

tively. Moreover, {∂p = (∂1, . . . , ∂n)} and {∂ ′q = (∂′1, . . . , ∂
′
n)} are the correspondent local frames

on TpM and TqM, respectively.

Conversely, given a dual structure (g,∇,∇∗) on M, the distance-like function (2) is compatible

with (g,∇,∇∗) if g is obtained by (3) and furthermore the following holds [3]:

Γijk(p) = − ∂i∂j∂′kD(ξp, ξq)
∣∣
p=q

, Γ∗ijk(p) = − ∂′i∂′j∂kD(ξp, ξq)
∣∣
p=q

, (4)

where Γijk = g (∇∂i∂j , ∂k), Γ∗ijk = g
(
∇∗∂i∂j , ∂k

)
are the symbols of the dual connections ∇ and ∇∗,

respectively. In this article, we address our investigation to the latter issue, namely we will try to

figure out a canonical divergence that recovers the dual structure of a given statistical manifold

S = (M, g,∇,∇∗).

Matumoto [19] showed that a divergence exists for any such statistical manifold. However, it

is not unique and there are infinitely many divergences that give the same dual structure. When

a manifold is dually flat, a canonical divergence was introduced by Amari and Nagaoka [4], which

is a Bregman divergence. Extensions of the canonical divergence within conformal geometry have

been analysed by Kurose [14] and Matsuzoe [18]. The canonical divergence has relevant properties

concerning the generalized Pythagorean theorem and the geodesic projection theorem [1]. For

this reason the issue of finding a general canonical divergence for a given statistical manifold

S = (M, g,∇,∇∗) is of uppermost importance. In [5] the definition of a canonical divergence for

a general S is given by using the geodesic integration of the inverse exponential map. This one is

interpreted as a difference vector that translates q to p for all q, p suitably close in M.
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To be more precise, the inverse exponential map provides a generalization to M of the notion

of difference vector of the linear vector space. In detail, let p, q ∈ Rn, the difference between p and

q is given by the vector p − q pointing to p (see side (A) of Fig. I). Then, the difference between

p and q in M is supplied by the exponential map of the connection ∇ [Appendix A]. In particular,

assuming that p ∈ Uq and Uq ⊂ M is a ∇-geodesic neighborhood of q, the difference vector from q

to p is defined as (see (B) of Fig. I)

Xq(p) := X(q, p) := exp−1
q (p) = γ̇q,p(0) , (5)

where γq,p is the ∇-geodesic from q to p laying in Uq. Clearly, by fixing p ∈ M and letting q vary

in M, we obtain a vector field X(·, p) whenever a ∇-geodesic from q to p exists. From here on, we

equally use both the notations, X(q, p) and Xq(p), for representing the difference vector from q to

p.

FIG. 1: On the left, (A) illustrates the difference vector p − q in the linear vector space Rn; whereas, in

(B) we can see the difference vector X(q, p) = γ̇q,p(0) in M as the inverse of the exponential map at q (This

Figure comes from [5]).

Therefore, the divergence proposed by Ay and Amari in [5] is defined as the path integral

Dγ(p, q) :=

∫ 1

0
〈Xt(p), γ̇(t)〉γ(t) dt , (6)

where γ is the ∇-geodesic from q to p and 〈·, ·〉γ(t) denotes the inner product with respect to g

evaluated at γ(t). In Eq. (6), Xt(p) is the vector field along γ(t) given by Eq. (5) as follows,

Xt(p) = X(γ(t), p) = exp−1
γ(t)(p) . (7)

After elementary computation Eq. (6) reduces to [5],

Dγ(p, q) =

∫ 1

0
t‖γ̇p,q(t)‖2 dt , (8)

where γp,q(t) is the ∇-geodesic from p to q. If we consider definition (6) for general path γ then

Dγ(p, q) will be depending on γ. On the contrary, if the vector field Xt(p) is integrable, then

Dγ(p, q) =: D(p, q) turns out to be independent of the path from q to p.
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The dual divergence of Dγ has been defined in terms of the inverse exponential map with respect

to the ∇∗-connection. It turned out to be closely related to the divergence of the article [11]. Here

the authors applied the Hook’s law to a “∇∗ spring” and defined the divergence as the physical

work that is necessary to move a unit mass from q to p along the ∇-geodesic γ connecting them

against the force field described by the inverse exponential map of ∇∗.

q

p
σ∗

σ

Hp(κ)

X

X∗

Π + Π∗

FIG. 2: Π is the parallel transport with respect to ∇ of X(≡ σ̇(0)) along σ∗, while Π∗ is the parallel transport

with respect to ∇∗ of X∗(≡ σ̇∗(0)) along σ. The sum Π + Π∗ is orthogonal to the level-hypersurface Hp(κ)

of constant pseudo-squared-norm rp(q).

In this manuscript we propose a novel definition of divergence by combining both, the approach

carried out in [5] and the one in [11]. We significantly investigate the intrinsic structure of the

dual geometry of a statistical manifold S = (M, g,∇,∇∗). Slightly moving from the definition (5)

of the difference vector X(q, p), we define a vector at q in the following way. Consider the unique

∇-geodesic σ from p to q and

Xp(q) := exp−1
p (q) = σ̇(0) ∈ TpM .

We then parallel translate [Appendix A] it with respect to the ∇-connection along the ∇∗-geodesic

σ∗ from p to q (see Fig. I), and obtain

Πq(p) :=Pσ∗Xp(q) ∈ TqM . (9)

(Note that Πq(p) corresponds to minus a difference vector). At this point, fixed p ∈ M and let q

be varied in M, we can have a vector field Πq(p) ∈ T (M) whenever ∇ and ∇∗ geodesics from p to

q exist. Analogously, we define the dual vector of Πq(p) as the parallel transport with respect to

∇∗ of σ̇∗(0),

Π∗q(p) := P∗σX∗p(q), (10)

where

X∗p(q) :=
∗

exp
−1

p (q) = σ̇∗(0) . (11)
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A relevant result of this article shows that the sum Πq + Π∗q generates the rays of level-

hypersurface defined in terms of the pseudo-squared-norm

rp(q) := 〈exp−1
p (q),

∗
exp
−1

p (q)〉p . (12)

In particular, we have the following result

Theorem I.1. Given a statistical manifold S = (M, g,∇,∇∗) and p ∈ M, let us assume that there

exists a neighborhood Up ⊂ M of p such that all q ∈ Up can be connected with p by ∇ and ∇∗

geodesics. Then we have

gradqrp = Πq(p) + Π∗q(p), (13)

where rp(q) is defined by Eq. (12) .

The proof of Theorem I.1 is deferred to Section II within several steps.

Clearly, the function r : M ×M → R defined by (p, q) 7→ rp(q) is symmetric in its arguments,

namely rp(q) = rq(p). This suggests that rp(q) is not a good candidate to move it forward as the

general canonical divergence. To support this claim, the well-known canonical divergence D[p : q]

described in [4] in the case of dually flat manifold is non-symmetric in p and q. In this case, a sort

of symmetry is recovered in terms of the dual divergence D∗[p : q] as follows,

D[q : p] = D∗[p : q] . (14)

Hence, the sum of these divergences D[p : q] + D∗[p : q] turns out to be symmetric in its

arguments. For this reason, we propose to define a novel divergence by relying on Πq and its dual

function by relying on Π∗q in the way that their sum gives the pseudo-squared-norm rp. Before

doing this, we introduce two functions (Phi-functions in this article) and prove that they generate

the dual geometry of S. The relevance of these Phi-functions is due to the fact that is provides the

local decomposition of Πq and Π∗q in terms of gradient vectors. Moreover, we are able to decompose

the pseuo-squared-norm rp(q) in terms of Phi-function and divergence function. Afterwards, we

prove that the novel canonical divergence is closely connected with the Phi-function. This result

allows us to establish a symmetry property related to the (14), however in a more general context

where just the torsion free-ness of connections ∇ and ∇∗ is required.

Further investigation is devoted to the connection between the novel divergence and the diver-

gence proposed by Ay and Amari in [5]. We show that our divergence corresponds to the one of

Ay and Amari in self-dual manifolds, in dually flat manifolds and in statistical manifolds analogue
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to the symmetric spaces in Riemannian Geometry. By this correspondence, the novel divergence

inherits all the nice properties owned by the divergence of Ay and Amari. In particular, in the case

of dually flat manifolds it is the same as the canonical divergence defined in terms of the Bregman

divergence [4] of M.

Finally, we carry out the comparison between our approach and the one presented in [11] and

prove a close connection between our divergence and the one introduced by Henmi and Kobayashi.

The layout of this article is as follows. In Section II we develop our approach by extending

the celebrated Lemma of Gauss to the more general context of Infomration Geometry. Then we

prove Theorem I.1. In Section III we define the novel divergence function and prove its consistency

with respect to the dual structure. Section IV is devoted to the comparison between the novel

divergence and the divergence of Ay and Amari. In addition, we discuss the approach presented

in [11]. In Section V we draw some conclusions by outlining the results obtained in this work and

discussing possible extensions. Useful tools of statistical differential geometry appear in [Appendix

A].

II. GRADIENT VECTOR FIELDS IN STATISTICAL MANIFOLDS

Given a statistical manifold S = (M, g,∇,∇∗) we can recover the Levi-Civita connection by

averaging the dual connections ∇ and ∇∗ [1],

∇LC =
1

2
(∇+∇∗) . (15)

In Riemannian Geometry [16], the celebrated Gauss Lemma tells us that the vector field which

defines a geodesic line is the gradient of the function

dp(q) =
1

2
〈exp−1

p (q), exp−1
p (q)〉p, (16)

for every p, q ∈ M suitably close each other. Here exp−1
p (q) denotes the inverse of the exponential

map with respect to the Levi-Civita connection ∇LC. To be more precise, consider Bε(p) ⊂ M

a geodesic ball centred at p, where ε is a positive number which gives the diffeomorphism of

expp : Bε(p) → expp (Bε(p)) over its image. Then, for every q ∈ Bε(p) \ {p} the gradient of the

function dp(q) is given by [21]

gradq dp = ˙̄σ(1), (17)

where σ̄ is the ∇LC-geodesic from p to q. This means that

gradq dp = Pσ̄Xp(q),
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where Xp(q) = exp−1
p (q) and P denotes the parallel transport with respect to the Levi-Civita

connection ∇LC. From a geometrical point of view, the geodesic rays from p are all orthogonal to

the geodesic sphere

Sκ = {q ∈ M : 〈exp−1
p (q), exp−1

p (q)〉p = κ},

for κ ≤ ε. The proof of this classical result in Riemannian Geometry relies on the function

t 7→ 〈 d

dt
expp (tXp) ,

d

dt
expp (tXp)〉expp(tXp), (18)

which is constant with respect to t for all Xp ∈ Bε(p). As a consequence, every vector field

Xq ∈ Bε(p) can be decomposed in the following way,

Xq = λ(q)gradqdp +Wq, (19)

where λ(q) is a coefficient depending on q and Wq is tangent to the hypersurface Sκ.

Remark II.1. In [2] the authors proposed the function

D[p : q] := 〈exp−1
p (q), exp−1

p (q)〉p (20)

as the Standard Divergence of the statistical manifold S = (M, g,∇,∇∗). Here, expp denotes the

exponential map with respect to the ∇-connection. In contrast to the Levi-Civita connection, the

function of Eq. (18) now computed by the exponential map of ∇ is not constant with respect to t.

However, this definition turned out to be unsatisfactory because it is unable, at least in general, to

recover the dual structure of S.

Given a statistical manifold S = (M, g,∇,∇∗), in the rest of this article we use the following

working hypothesis

(I) ∀ p ∈ M ∃ Up ⊂ M such that ∀q ∈ Up ∃ ! ∇− geodesic and ∇∗ − geodesic connecting p and q .

(21)

In order to prove Theorem I.1 we introduce a pseudo-energy functional as follows. Given p ∈ M

and q ∈ Up, let us consider γ(t) : [0, 1]→ M an arbitrary path connecting them. Let us define the

functional over the set of paths connecting p and q as,

L(γ) :=

∫ 1

0
〈γ̇(t),PtX(p, q)〉γ(t) dt, (22)

where 〈·, ·〉γ(t) denotes the inner product with respect to g evaluated at γ(t) and Pt is the parallel

transport along γ with respect to the ∇-connection. When γ is a ∇∗-geodesic we have that L

assumes a very useful form.
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Proposition II.1. Let σ∗ : I→ M be a ∇∗-geodesic connecting p and q. Then

L(σ∗) = 〈X∗(p, q),X(p, q)〉p, (23)

where X∗(p, q) =
∗

expp
−1

(q) and
∗

expp is the exponential map of ∇∗ connection at p.

Proof. Consider the map

t 7→ 〈σ̇∗(t),PtX(p, q)〉σ∗(t),

where Pt denotes the parallel transport along σ∗(t). Then, by taking the derivative with respect

to t it trivially follows from relation (1) that

d

dt
〈σ̇∗(t),PtX(p, q)〉σ∗(t) = 〈∇tPtX(p, q), σ̇∗(t)〉σ∗(t) + 〈∇∗t σ̇∗(t),PtX(p, q)〉σ∗(t) ,

where ∇t and ∇∗t are covariant derivatives [Appendix A] with respect to ∇ and ∇∗ connections,

respectively. By recalling that PtX(p, q) is the parallel transport with respect to the ∇-connection

along σ∗ we trivially have that ∇tPtX(p, q) ≡ 0. Analogously, we have that ∇∗t σ̇∗(t) ≡ 0 because

σ̇∗ is parallel along σ∗ with respect to the ∇∗-connection. Therefore, we obtain that

d

dt
〈σ̇∗(t),PtX(p, q)〉σ∗(t) = 0,

and finally, we arrive at

〈σ̇∗(t),PtX(p, q)〉σ∗(t) = 〈σ̇∗(0),X(p, q)〉p .

Hence, we can conclude by noticing that σ̇∗(0) =
∗

exp
−1

p (q) = X∗(p, q). �

Remark II.2. The functional L can be also computed over a ∇-geodesic σ from p to q. In this

case, it assumes the following expression

L(σ) =

∫ 1

0
‖σ̇(t)‖2σ(t) dt, (24)

where the integrand is now not constant with respect to t.

Before proving Theorem I.1, we now investigate the intrinsic geometry of geodesics due to the

duality (1) of the affine connections ∇ and ∇∗. To this aim, let us consider the hypersurface

Hp(κ) ⊂ M defined as follows

Hp(κ) := {q ∈ M | 〈Xp(q),X
∗
p(q)〉p = κ} , (25)
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where

Xp(q) = exp−1
p (q), X∗p(q) =

∗
exp
−1

p (q) .

From assumption (I) of Eq. (21) it immediately follows that, if Hp(κ) ⊂ Up then Hp(κ) is really an

hypersurface within M. We will soon prove that the combination of vectors Πq(p) and Π∗q(p) defines

the rays of the hypersurface Hp(κ). In particular, we will show that Πq(p) + Π∗q(p) is orthogonal

to Hp(κ) at each q ∈ Hp(κ).

Owing to the duality structure of the statistical manifold S = (M, g,∇,∇∗), we can introduce

in TpM two notions of geodesic pseudo-spheres.

Definition II.1. Let p ∈ M and Up ⊂ M be a neighborhood of p as in (21). Consider the set Ep of

all tangent vectors Xp for which there exist ∇ and ∇∗ geodesics σ and σ∗, respectively, such that

σ(0) = p, σ̇(0) = Xp and σ∗(0) = p, σ̇∗(0) = Xp .

Then we define

Sp(κ) :=
{
Xp ∈ TpM | 〈exp−1

p (
∗

expp (Xp)), Xp〉p = κ
}

(26)

and

S∗p(κ) :=

{
Xp ∈ TpM | 〈

∗
exp
−1

p

(
expp(Xp)

)
, Xp〉p = κ

}
. (27)

Remark II.3. Both the sets, Sp(κ) and S∗p(κ) are hypersurfaces of TpM because of the assumption

(21). In addition, we can trivially see that the image of Sp(κ) through the exponential map of

∇∗-connection is given by

∗
expp (Sp(κ)) = Hp(κ),

and the action of the exponential map of ∇-connection on S∗p(κ) gives

expp
(
S∗p(κ)

)
= Hp(κ),

where Hp(κ) is defined in (25).

Spheres of Def. II.1 are not the same but almost the same object. Indeed, consider the map

Ip : Sp(κ)→ S∗p(κ)

Ip(x) := exp−1
p

( ∗
expp (x)

)
, ∀ x := Xp ∈ Sp(κ) . (28)

Then we have,
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Proposition II.2. The map Ip : Sp(κ) → S∗p(κ) defined by Eq. (28) is an isomorphism of vector

spaces. In addition, the following diagram

Sp(κ) Hp(κ)

S∗p(κ)

∗
expp

Ip expp

is commutative.

Proof. Consider x ∈ Sp(κ). Firstly, we have that Ip(x) ∈ S∗p(κ). Indeed,

〈 ∗exp
−1

p

(
expp(Ip(x))

)
, Ip(x)〉p = 〈x, exp−1

p

( ∗
expp (x)

)
〉p

= κ .

Consider now the map Ĩp : S∗p(κ)→ Sp(κ) defined by

Ĩp(x) =
∗

exp
−1

p

(
expp(x)

)
.

Then, we can trivially see that

Ip ◦ Ĩp(x) = x , ∀x ∈ Sp(κ)

Ĩp ◦ Ip(x) = x , ∀x ∈ S∗p(κ) .

Therefore, we can conclude that Ĩp = I−1
p . In order to prove that the diagram is commutative,

let us consider q =
∗

expp (x) by some x ∈ Sp(κ). From Remark II.3 we know that q ∈ Hp(κ). In

addition, by the definition (28) we also have that q = expp(Ip(x)) �

We now proceed to prove the First Variational Formula of the functional L. In order to pursue

this goal, let us firstly introduce the notion of path variation. Given an arbitrary path γ : [0, 1]→ M

from p to q, we call Σ : (−ε, ε)× [0, 1]→ M a variation of γ if s 7→ Σ(t)(s) and t 7→ Σs(t) are smooth

curves, Σs(0) = p for all s ∈ (−ε, ε) and Σ(0, t) ≡ γ(t). In addition, Σ is a ∇-geodesic variation if

Σ(t)(s) and Σs(t) are ∇-geodesic. A vector field along Σ is a smooth map Ξ : (−ε, ε) × I → TM

such that Ξ(s, t) ∈ T(s,t)M for each (s, t). Two very special vector fields are defined as follows

∂tΣ(s, t) :=
d

dt
Σs(t) = Σ̇s(t) , ∂sΣ(s, t) :=

d

ds
Σ(t)(s) = Σ̇(t)(s) . (29)

Finally, V (t) = ∂sΣ
∗(0, t) ∈ T (γ) is called the variation vector field of Σ.
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Given a variation Σ(s, t) of an arbitrary path γ(t) from p to q we can consider for every s ∈

(−ε, ε) the vector,

Xp(s) ≡ X(p,Σs(1)) := exp−1
p (Σs(1)) , (30)

which is the velocity vector at p of the ∇-geodesic connecting p and Σs(1). Therefore, the First

Variational Formula of L is proved by the following Proposition.

Proposition II.3. Let γ : [0, 1] → M be a smooth curve and Σ∗ : (−ε, ε) × [0, 1] → M be a

variation of γ. Let V ∈ T (γ) be the variation vector field of Σ∗. Finally, let us define the functional

L(s) := L(Σ∗s). Then we have

dL

ds
(0) = 〈V (t),PtXp(q)〉γ(t)

∣∣1
0

+

∫ 1

0
〈γ̇(t),∇sPtXp(q)〉γ(t)dt, (31)

where Pt denotes the parallel transport with respect to ∇ along the curve γ(t).

Proof. Let us first see the definition of L evaluated at Σ∗s:

L(s) ≡ L(Σ∗s) =

∫ 1

0
〈dΣ∗s

dt
(t),Ps,tXp(s)〉Σ∗s(t) dt , (32)

where Ps,t is the parallel transport along the curve t 7→ Σ∗s(t) with respect to the ∇-connection.

Therefore, by taking the derivative and exploiting relation (1) we obtain

dL

ds
(s) =

∫ 1

0

(
〈∇∗s

dΣ∗s
dt

(t),Ps,tXp(s)〉Σ∗s(t) + 〈dΣ∗s
dt

(t),∇sPs,tXp(s)〉Σ∗s(t)

)
dt, (33)

where ∇s = ∇Σ̇∗(t)(s) and ∇∗s = ∇∗
Σ̇∗(t)(s)

are the covariant derivatives along Σ∗(t)(s) with respect

to ∇ and ∇∗, respectively. Since the connection ∇∗ is torsion-free we have that ∇∗s (∂tΣ
∗(s, t)) =

∇∗t (∂sΣ
∗(s, t)). Therefore, by means of the following computations

dL

ds
(s) =

∫ 1

0

(
〈∇∗t∂sΣ∗(s, t),Ps,tXp(s)〉Σ∗s(t) + 〈∂tΣ∗(s, t),∇sPs,tXp(s)〉Σ∗s(t)

)
dt

=

∫ 1

0

(
d

dt
〈∂sΣ∗(s, t),Ps,tXp(s)〉Σ∗s(t) − 〈∂sΣ∗(s, t),∇tPs,tXp(s))〉Σ∗s(t)

)
dt

+

∫ 1

0

(
〈∂tΣ∗(s, t),∇sPs,tXp(s)〉Σ∗s(t)

)
dt

=

∫ 1

0

(
d

dt
〈∂sΣ∗(s, t),Ps,tXp(s)〉Σ∗s(t) + 〈∂tΣ∗(s, t),∇sPs,tXp(s)〉Σ∗s(t)

)
dt ,

where we used ∇tPs,tXp(s) = 0 and definitions (29), we arrive at

dL

ds
(s) = 〈∂sΣ∗(s, t),Ps,tXp(s)〉Σ∗s(t)

∣∣1
0

+

∫ 1

0
〈Σ̇∗s(t),∇sPs,tXp(s)〉Σ∗s(t) dt . (34)



12

Finally, recalling that Σ∗(0, t) ≡ γ(t) and ∂sΣ
∗(0, t) = V (t) we obtain that

dL

ds
(0) = 〈V (t),PtXp(0)〉γ(t)

∣∣1
0

+

∫ 1

0
〈γ̇(t),∇sPtXp(0)〉γ(t)dt. (35)

In the end, we get the statement (31) by noticing from (30) that

Xp(s)|s=0 = exp−1
p (Σ(0, 1)) = exp−1

p (γ(1)) = Xp(q) �

Remark II.4. The expression ∇sPs,tXp(s) in Eq. (34) can be actually written as Ps,t∇sXp(s). To

prove it, let us choose a frame {ei(s, t)} that is parallel translating along Σ∗(s, t). Then, we have

that

Ps,tXp(s) = pi(s, t)ei(s, t)

where pi(s, t) is the principal part of Ps,tXp(s) [23] and the summation over i is intended. Then,

Ps,t∇sXp(s) = (∂sp
i)(s, t)ei(s, t)

since {ei(s, t)} is parallel along Σ∗(s, t). Finally, from

∇sPs,tXp(s) = (∂sp
i)(s, t)ei(s, t)

we arrive at

∇sPs,tXp(s) = Ps,t∇sXp(s) = Ps,t∂sXp(s) .

We are now in position to prove the following relevant Theorem.

Theorem II.1. Let S = (M, g,∇,∇∗) be a statistical manifold. Consider p ∈ M and Up ⊂ M under

the assumption (21). Then, for all q ∈ Hp(κ), the sum Πq(p) + Π∗q(p) of the parallel transports

of the vectors Xp(q) and X∗p(q) along ∇∗ and ∇ geodesics, respectively, starting from p are all

orthogonal to Hp(κ) at q.

Proof. Let us consider a curve within the pseudo-sphere Sp(κ), namely τ : (−ε, ε) → Sp(κ), such

that τ(0) = X∗p(q) =
∗

exp
−1

p (q). The map Σ∗(s, t) :=
∗

expp (t τ(s)) is a ∇∗-geodesic variation of

the ∇∗-geodesic σ∗(t) :=
∗

expp (t τ(0)). At the same time, by means of the map Ip defined by

Eq. (28), we may also consider a ∇-geodesic variation Σ(s, t) = expp(t Ip(τ(s))) of the ∇-geodesic

σ(t) = expp(t Ip(τ(0))). Indeed, by definition, we have that Ip(τ(0)) = Xp(q). In addition we also

have that

Σ∗(s, 1) = Σ(s, 1) ∀s ∈ (−ε, ε) . (36)
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Let us now evaluate the functional L at Σ∗s(t). From Eq. (22) we have that

L(s) =

∫ 1

0
〈Σ̇∗s(t),Ps,tXp(s)〉Σ∗s(t) dt ,

where again Ps,t is the parallel transport along the curve t 7→ Σ∗s(t) and Xp(s) is given by Eq. (30).

Since Σ∗s(t) is ∇∗-geodesic then Σ̇∗s(t) is parallel with respect to ∇∗. For this reason and from Eq.

(1) we immediately get,

L(s) = 〈Σ̇∗s(0),Xp(s)〉p .

Now, we observe that Σ̇∗s(0) = τ(s). Moreover, by Eq. (30) we have that Xp(s) = expp(Σ
∗
s(1)).

Since now Σ∗s(t) is ∇∗-geodesic we have that Σ∗s(1) =
∗

expp (τ(s)). Hence, we have that X(s) =

exp−1
p

( ∗
expp (τ(s)

)
. From this, we obtain the following result on L,

L(s) = 〈Σ̇∗s(0),Xp(s)〉p

= 〈τ(s), exp−1
p

( ∗
expp (τ(s))

)
〉p = κ , (37)

where the last equality follows by the assumption that τ(s) ∈ Sp(κ). Finally, we trivially get

d

ds
L(s)

∣∣∣∣
s=0

= 0 . (38)

Consider now the First Variational Formula (34) of L(s), that for the sake of readability we

rewrite above,

dL

ds
(s) = 〈∂sΣ∗(s, t),Ps,tXp(s)〉Σ∗s(t)

∣∣1
0

+

∫ 1

0
〈Σ̇∗s(t),∇sPs,tXp(s)〉Σ∗s(t) dt .

Let us now investigate the second term of the right hand side of (34). First of all, let us rely on a

local frame of TpM that we parallel transport with respect to ∇ along both the families of curves,

Σ(s, t) and Σ∗(s, t). From Remark II.4 we know that∇sPs,tXp(s) = Ps,t∇sXp(s). Then, since Σ∗s(t)

is ∇∗-geodesic we also know that Σ̇∗s(t) is the parallel transport with respect to the ∇∗-connection

of the velocity of Σ∗s(t) at t = 0. For these reasons we have that the integrand function can be

written as 〈Σ̇∗s(0), ∂sXp(s)〉p. We now evaluate this inner product along the ∇-geodesic Σs(t). So,

we have

〈Σ̇∗s(0), ∂sXp(s)〉p = 〈P∗s,tΣ̇∗s(0),Ps,t∂sXp(s)〉Σs(t)

= 〈P∗s,tΣ̇∗s(0),∇sPs,tXp(s)〉Σs(t),

where we used the invariance of the inner product under P∗s,t and Ps,t and again the Remark II.4.
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We may now observe that Σs(t) is a ∇-geodesic and Xp(s) = Σ̇s(0). Then Ps,tXp(s) is nothing

but Σ̇s(t). Now, by means of the torsion-freeness of ∇ we have that ∇s∂tΣ(s, t) = ∇t∂sΣ(s, t).

So, according to Eq. (1) we arrive at

〈P∗s,tΣ̇∗s(0),∇sΣ̇s(t)〉Σs(t) = 〈P∗s,tΣ̇∗s(0),∇t∂sΣ(s, t)〉Σs(t)

=
d

dt
〈P∗s,tΣ̇∗s(0), ∂sΣ(s, t)〉Σs(t) − 〈∇∗tP∗s,tΣ̇∗s(0), ∂sΣ(s, t)〉Σs(t) . (39)

Let now observe that Σ̇∗s(0) is the velocity vector at p of the ∇∗-geodesic connecting p and

Σ∗s(1) = Σs(1). Then, in accordance to Eq. (30) we use the following notation,

Σ̇∗s(0) = X∗p(s) ≡ X∗(p,Σs(1)) :=
∗

exp
−1

p (Σs(1)) . (40)

Going back to Eq. (34), we substitute (39) into the integral and, since ∇∗tP∗s,tΣ̇∗s(0) ≡ 0, we

obtain

dL

ds
(s) = 〈∂sΣ∗(s, t),Ps,tXp(s)〉Σ∗s(t)

∣∣1
0

+ 〈∂sΣ(s, t),P∗s,tX
∗
p(s)〉Σs(t)

∣∣1
0
.

By evaluating this expression at s = 0, we get

dL

ds
(0) = 〈∂sΣ∗(0, 1),Πq(p)〉q + 〈∂sΣ(0, 1),Π∗q(p)〉q . (41)

Indeed, firstly we have

Xq(s)|s=0 = exp−1
p (q) = Xp(q), X∗q(s)

∣∣
s=0

=
∗

exp
−1

p (q) = X∗p(q) .

In addition, Σ∗(0, t) = σ∗(t), Σ(0, t) = σ(t) and then

Πq(p) = Pσ∗Xp(q), Π∗q(p) = P∗σX∗p(q) .

Finally, since Σ∗(0)(s) = p = Σ(0)(s) for every s ∈ (−ε, ε) we also have that

∂sΣ
∗(0, 0) = Op = ∂sΣ(0, 0) ,

where Op is the null element of TpM.

In order to conclude the proof of the Theorem, let us observe that

∂sΣ(0, 1) =
(
d expp

)
Ip(X∗p(q))

[
∂sIp(τ(s))|s=0

]
=
(
d expp

)
Ip(X∗p(q))

[
(dIp)X∗p(q) (τ ′(0))

]
=
(
d expp

)
Ip(X∗p(q))

[(
d expp

)−1

Ip(X∗p(q))

(
d

∗
expp

)
X∗p(q)

(τ ′(0))

]
=
(
d expp

)
Ip(X∗p(q))

[(
d expp

)−1

Ip(X∗p(q))
(∂sΣ

∗(0, 1))
]

= ∂sΣ
∗(0, 1) .
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In the end, from Eq. (38) and Eq. (41) we obtain

0 = 〈∂sΣ∗(0, 1),Πq(p) + Π∗q(p)〉q (42)

for an arbitrary tangent vector ∂sΣ
∗(0, 1) of

∗
expp (Sp(κ)) = Hp(κ) �

Proof of the Theorem I.1. Consider p ∈ M and Up ⊂ M under the assumption (21). The

psuedo-squared-norm rp(q) is defined for all q ∈ Up by

rp(q) = 〈exp−1
p (q),

∗
exp
−1

p (q)〉p .

In order to prove that

gradqrp = Πq(p) + Π∗q(p),

let us step back into the proof of Theorem II.1. A variation of the end point q can be given in

terms of the ∇∗-geodesic variation Σ∗(s, t) =
∗

expp (t τ(s)) of the ∇∗-geodesic σ∗(t) =
∗

expp (t τ(0))

as well as in terms of the ∇-geodesic variation Σ(s, t) = expp(t Ip(τ(s))) of the ∇-geodesic σ(t) =

expp(t Ip(τ(0))). Again, Ip : Ep → Ep is the map defined by

Ip(x) = exp−1
p

( ∗
expp (x)

)
, ∀ x := Xp ∈ Ep,

where Ep is the set of tangent vectors at p to M given in the Def. (II.1). The curve τ(s) is now

just a curve within Ep. A variation of the end point q is then given by Σ∗(s, 1) =
∗

expp (τ(s)) for

s ∈ (−ε, ε).

In addition, we know from Eq. (23) that the pseudo-squared-norm rp(q) is achieved by the

computation of L over the ∇∗-geodesic σ∗. In this way, we have that the differential (drp)q at q of

rp(q) can be evaluated as the derivative with respect to s at s = 0 of the functional L,

dL

ds
(s)

∣∣∣∣
s=0

≡ (drp)q , (43)

where L(s) = L(Σ∗s). On the other hand, the differential of rp is uniquely expressed in terms of the

gradient as follows,

(drp)q(w) = 〈gradqrp, w〉q, ∀ w := Wp ∈ TpM .

Hence, we obtain

〈gradqrp, ∂sΣ
∗(0, 1)〉q =

dL

ds
(s)

∣∣∣∣
s=0

= 〈Πq(p) + Π∗q(p), ∂sΣ
∗(0, 1)〉q,
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which gives us that gradqrp = Πq(p) + Π∗q(p) because of the arbitrariness of ∂sΣ
∗(0, 1). �

Owing to the dual structure of a statistical manifold S = (M, g,∇,∇∗), we can prove Theorem

II.1 by interchanging the role of ∇ and ∇∗, as well. In this case we need to consider a function L∗

different from the one L of Eq. (22). The new one is defined over the set of path connecting p and

q in terms of the parallel transport with respect to ∇∗-connection, and it reads as follows,

L∗(γ) :=

∫ 1

0
〈γ̇(t),P∗tX

∗
p(q)〉γ(t) dt, (44)

where P∗t is the parallel transport along γ(t) with respect to the ∇∗-connection and X∗p(q) =
∗

exp
−1

p

(q). In this case the pseudo-squared-norm is achieved by computing L∗ over the ∇-geodesic σ(t)

connecting p and q.

Proposition II.4. Let σ : I→ M be a ∇-geodesic connecting p and q. Then

L∗(σ) = 〈exp−1
p (q),

∗
exp
−1

p (q)〉q . (45)

Proof. The proof relies on the Eq. (1) as well as in the case of Prop. II.1.

By evaluating L∗ over the ∇∗-geodesic σ∗ we obtain

L∗(σ∗) =

∫ 1

0
‖σ̇∗(t)‖2σ∗(t)dt

where ‖σ̇∗(t)‖σ∗(t) is not constant with respect to t as well as in the case of L computed over the

∇-geodesic σ(t).

Also for L∗ we can rely on a First Variational Formula. It is stated in the following Proposition

and the proof is avoided as it can be easily given by going back through the proof of Prop. II.3.

Proposition II.5. Let γ : [0, 1]→ M be a smooth curve and Σ : (−ε, ε)× [0, 1]→ M be a variation

of γ. Let V ∈ T (γ) be the variation vector field of Σ. Finally, define the functional L∗(s) := L∗(Σs).

Then we have

dL∗

ds
(0) = 〈V (t),P∗tX

∗
p(q)〉γ(t)

∣∣1
0

+

∫ 1

0
〈γ̇(t),∇∗sP∗tX∗p(q)〉γ(t)dt, (46)

where P∗t denotes the parallel transport with respect to ∇∗ along the curve γ(t).

Finally, Theorem (II.1) can be proved by resorting to Eq. (46) and following the same methods

carried out on ∇-connection and functional L.
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In the rest of this section we consider a self-dual manifold in order to prove that Theorem I.1

is consistent with the Riemannian case. A statistical manifold S = (M, g,∇,∇∗) is called self-dual

when ∇ = ∇∗. Therefore, from Eq. (15) we recover the Riemannian structure of M. In addition,

we have that the ∇ and ∇∗ geodesics coincide and then we obtain

Πq(p) = Pσ∗ σ̇(0) = σ̇(1) = P∗σσ̇
∗(0) = Π∗q(p) .

By applying Theorem I.1 to the case of self-duality we then get

gradqrp = Πq(p) + Π∗q(p) = 2σ̇(1),

where σ is now the ∇LC-geodesic from p to q. We observe that, in this particular case, the

pseudo-squared-norm becomes

rp(q) = 〈exp−1
p (q), exp−1

p (q)〉q = 2dp(q)

where dp(q) is given by Eq. (16). Finally we can get

σ̇(1) = gradqdp =
1

2
gradqrp = σ̇(1) .

Hence, for a self-dual manifold the result of Theorem I.1 is in accordance with the one of the

Riemannian case obtained through the celebrated Gauss Lemma.

III. GENERAL CANONICAL DIVERGENCE

Theorem I.1 identifies the appropriate vector fields for defining the differential of the pseudo-

squared-norm rp(q) given by Eq. (12). Thanks to the metric structure of the statistical manifold

S = (M, g,∇,∇∗), we can express the differential (drp)q in terms of the gradient gradqrp,

(drp)q(Xq) = 〈gradqrp, Xq〉q, ∀ Xq ∈ TqM . (47)

Let γ : [0, 1]→ M be a path from p to q, we assume that γ(t) lies in a neighborhood Up of p as

in (21), for all t ∈ [0, 1]. Then consider ∇ and ∇∗ geodesics σt and σ∗t , respectively, connecting p

and γ(t). Letting t vary in [0, 1] we obtain two vector fields along γ,

Πt(p) = Pσ∗t Xp(t), Xp(t) = exp−1
p (γ(t)) (48)

Π∗t (p) = P∗σtX
∗
p(t), X∗p(t) =

∗
exp
−1

p (γ(t)) . (49)
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From Theorem I.1 we can recover the pseudo-squared-norm rp(q) by composing the inner prod-

uct of the curve velocity γ̇(t) with the vector field Πt(p) + Π∗t (p),∫ 1

0
〈Πt(p) + Π∗t (p), γ̇(t)〉γ(t) dt =

∫ 1

0
〈gradγ(t) rp, γ̇(t)〉γ(t) dt

=

∫ 1

0
dγ(t) rp (γ̇(t)) dt

=

∫ 1

0

d rp ◦ γ
dt

(t) dt

= rp(γ(1))− rp(γ(0))

= rp(q), (50)

where, obviously, we have rp(p) ≡ 0. Therefore, from computation (50) we obtain that the sum∫ 1

0
〈Πt(p), γ̇(t)〉γ(t) dt+

∫ 1

0
〈Π∗t (p), γ̇(t)〉γ(t) dt = rp(q) (51)

is independent of the particular path from p to q.

We now introduce two functions by integrating the two vector fields Πt and Π∗t along∇∗-geodesic

and∇-geodesic, respectively. Soon after, we show that these functions are potential function for the

geometry (1) according to relations (3) and (4). In addition, they play a key role for decomposing

Πt and Π∗t in terms of gradient vector fields.

Definition III.1. Let S = (M, g,∇,∇∗) be a statistical manifold. Consider p ∈ M and Up as in

(21). For every q ∈ Up we define the function ϕ : M→ R by the path integration of the vector field

Πt(p) along the ∇∗-geodesic σ∗(t) from p to q,

ϕ(p, q) := ϕp(q) :=

∫ 1

0
〈Πt(p), σ̇

∗(t)〉σ∗(t) dt . (52)

Analogously, we define the dual of ϕp by the path integration of the vector field Π∗t (p) along the

∇-geodesic σ(t) from p to q,

ϕ∗(p, q) := ϕ∗p(q) :=

∫ 1

0
〈Π∗t (p), σ̇(t)〉σ(t) dt . (53)

We refer to ϕ and ϕ∗ as Phi-functions.

A. Consistency Theorem

In order to show that ϕ(p, q) allows to recover the dual geometry of S, we have to prove its

consistency with the dual structure (g,∇,∇∗) of M. This means that in a neighborhood of the

diagonal set of M × M we need to verify that relations (3) and (4) are satisfied. We start by

formulating a nice and useful representation of ϕ(p, q).
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Lemma III.1. The Phi-function ϕ of Definition III.1 is given by

ϕ(p, q) =

∫ 1

0
〈Ip(tX∗p(q)),X∗p(q)〉p dt, (54)

where Ip(tX
∗
p(q)) = exp−1

p

( ∗
expp (tX∗p(q))

)
.

Proof. Consider the ∇∗-geodesic σ∗t (s) that connects p to σ∗(t), namely σ∗t (0) = p and σ∗t (1) =

σ∗(t). Then, σ∗t (s) = σ∗(st). Therefore, a classical result in Riemannian geometry tells us that

[16],

σ̇∗t (1) = t σ̇∗(t) .

By substituting this expression into Eq. (52) we immediately obtain that

ϕ(p, q) =

∫ 1

0

1

t
〈Πt(p), σ̇

∗
t (1)〉σ∗(t) dt . (55)

Let us now recall that

Πt(p) = Pσ∗t Xp(σ
∗(t)), σ̇∗t (1) = P∗σ∗t σ̇

∗
t (0) .

Then, because of the invariance of the inner product under the combined action of P and P∗ we

get

ϕ(p, q) =

∫ 1

0

1

t
〈Xp(t), σ̇

∗
t (0)〉p dt .

Finally, we may observe that

Xp(t) = exp−1
p (σ∗(t)) = exp−1

p

( ∗
expp (t X∗p(q))

)
, σ̇∗t (0) = t X∗p(q)

because σ∗ is a ∇∗-geodesic and σ∗t is a re-parametrization of σ∗. Hence, we obtain

ϕ(p, q) =

∫ 1

0

1

t
〈exp−1

p

( ∗
expp (t X∗p(q))

)
, t X∗p(q)〉p dt

=

∫ 1

0
〈Ip(t X∗p(t)),X

∗
p(q)〉p dt,

by recalling definition (28) of the map Ip. �

Let us now assume that p and q are close to each other, that is

zi = ξiq − ξip (56)

is small. Here {ξp} and {ξq} are local coordinates at p and q, respectively. Then, Taylor expansion

of ϕ(p, q) up to O
(
‖z‖3

)
leads to the following result.
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Proposition III.1. Consider ‖z‖ = ‖ξq−ξp‖ small enough. Then, the function ϕ(p, q) is expanded

up to O
(
‖z‖3

)
as follows

ϕ(p, q) =
1

2
gij(p) z

izj +
1

6
Λijk(p) z

izjzk +O
(
‖z‖3

)
, (57)

where

Λijk(p) = 2Γ∗ijk(p) + Γijk(p) . (58)

Proof. Let us consider the representation (54) of the function ϕ(p, q). Then, recall that Ip(t X∗p(t))

is nothing but the velocity vector at p of the ∇-geodesic σt from p to σ∗(t). On the other hand,

X∗p(q) is the velocity vector at p of the ∇∗-geodesic σ∗ from p to q. Therefore, we need to Taylor

expand up to O
(
‖z‖4

)
with respect to the local coordinate {ξ} the following expression∫ 1

0
gij(p) σ̇t(0)i σ̇∗(0)j dt . (59)

The local coordinates ξ(t) of the ∇-geodesic σ∗(t) in Taylor series are given by

ξj(t) = ξjp + tzj +
t

2
(1− t)Γ∗jµν(p)zµzν +O

(
‖z‖3

)
, (60)

where the summation over µ and ν is intended. Then we obtain,

d

dt
σ∗(0)j = zj +

1

2
Γ∗jµν(p)zµzν +O

(
‖z‖3

)
. (61)

In addition we have that

d

dt
σt(0)i = σ∗(t)i − ξip +

1

2
Γiµν(p)(σ∗(t)µ − ξµp )(σ∗(t)ν − ξνp ) +O

(
‖σ∗(t)− ξp‖3

)
.

Now, as

σ∗(t)j − ξjp = tzj +
t

2
Γ∗jµν(p)zµzν − t2

2
Γ∗jµν(p)zµzν +O

(
‖z‖3

)
we arrive at

d

dt
σt(0)i = tzi +

t

2
Γ∗iµνz

µzν +
t2

2
(Γiµν(p)− Γ∗iµν(p))zµzν +O

(
‖z‖3

)
. (62)

At this point, we can substitute Eqs. (61), (62) into Eq. (59)∫ 1

0
gij(p) σ̇t(0)i σ̇∗(0)j dt =

∫ 1

0
gij(p)

[
tzi +

t

2
Γ∗iµν(p)zµzν +

t2

2
(Γiµν(p)− Γ∗iµν(p))zµzν

]
×
[
zj +

1

2
Γ∗jµν(p)zµzν

]
dt

=
1

2
gij(p)z

izj +
1

2
gij(p)Γ

∗i
µν(p)zµzνzj

+
1

6
gij(p)z

i
(

Γjµν(p)− Γ∗jµν(p)
)
zµzν .
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Finally, by symmetrizing the indices because of the multiplication zizjzk, we obtain

ϕ(p, q) =
1

2
gij(p)z

izj +
1

6
Λijk(p)z

izjzk,

where Λijk(p) = 2Γ∗ijk(p) + Γijk(p) is obtained by recalling that gilΓ
l
jk = Γijk. �

Theorem III.1. Consider a statistical manifold S = (M, g,∇,∇∗). Let ϕ : M×M→ R be a two

point function defined by Eq. (52). Then we have

∂′j∂
′
iϕ(p, q)

∣∣
p=q

= gij(p) (63)

∂k∂
′
j∂
′
iϕ(p, q)

∣∣
p=q

= −
∗
Γijk (p), (64)

where ∂i =
∂

∂ξip
, ∂′i =

∂

∂ξiq
and {ξp}, {ξq} are local coordinates at p and q, respectively.

Proof. Consider the Taylor series (57) of ϕ(p, q). By differentiating it with respect to ξq we obtain,

∂′iϕ(p, q) =gij(p)z
j +

1

2
Λijk(p)z

jzk (65)

∂′j∂
′
iϕ(p, q) =gij(p) + Λijk(p)z

k . (66)

By evaluating ∂′j∂
′
iϕ(p, q) at ξq = ξp, i.e. z = 0, we obtain

∂j∂iϕ(p, q)|p=q = gij(p) .

In addition, we differentiate Eq. (66) with respect to ξp and evaluate it at z = 0. This computation

leads to

∂k∂
′
j∂
′
iϕ(p, q)

∣∣
p=q

=∂kgij(p)− Λijk(p) + ∂kΛijkz
k
∣∣∣
z=0

=∂kgij(p)− Λijk(p)

=Γijk+
∗
Γijk −2

∗
Γijk −Γijk = −

∗
Γijk, (67)

where we used Eq. (58) and the relation ∂kgij = Γijk + Γ∗ijk. �

Remark III.1. Consider the dual Phi-function ϕ∗(p, q). By interchanging the role of ∇ connection

with ∇∗ connection, we obtain from Prop. III.1 the following Taylor expansion for ϕ∗ up to

O(‖z‖3),

ϕ∗(p, q) =
1

2
gij(p) z

izj +
1

6
Λ∗ijk(p) z

izjzk +O
(
‖z‖3

)
, (68)

where

Λ∗ijk(p) = 2Γijk(p)+
∗
Γijk (p) . (69)

Then, by repeating the same argument as in the proof of Theorem III.1 we get

gij(p) = ∂′i∂
′
jϕ
∗(ξp, ξq)

∣∣
p=q

, Γijk(p) = − ∂′i∂′j∂kϕ∗(ξp, ξq)
∣∣
p=q

. (70)
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B. Local Decomposition of Π and Π∗

In this section we describe the local decomposition of vector fields Πq(p) and Π∗q(p) in terms of

gradient vector fields. To this aim, let us consider the representation (54) of ϕ(p, q) ≡ ϕp(q). Then

we have that,

ϕp(q) ≡
(
ϕp◦

∗
expp

)
(X∗p(q)) =

∫ 1

0

1

t
〈exp−1

p

( ∗
expp (tX∗p(q))

)
, tX∗p(q)〉p dt , (71)

where we have written q =
∗

expp (X∗p(q)).

Very recently, normal coordinates for manifolds with an affine geometry of general form are con-

structed [12] under the assumption that all geometric objects are real analytic. A very remarkable

feature of a normal coordinate system in a neighborhood of any p ∈ M is that

gij = δji , Γijk ≡ 0,

where δji denotes the delta-Dirac function. Given a dual structure (g,∇,∇∗), we can indifferently

choose to rely on normal coordinates with respect to ∇ or ∇∗ since for our purpose we need just

having that gij = δji .

Theorem III.2. Given a statistical manifold S = (M, g,∇,∇∗), let us consider p ∈ M and Up ⊂ M

as in the assumption (21). Then

Πq(p) = gradqϕp + Vq, Vq ∈ TqM and 〈Vq, σ̇∗(1)〉q = 0 . (72)

In addition, decomposition (72) is unique in Up.

Proof. Let us consider a system of normal coordinate {ξi} in Up. Then, the local expression of

the Riemannian gradient of the divergence function with respect to {ξi} is given by

gradqϕp =
∂ϕp
∂ξi

∂i,

where ∂i =
∂

∂ξi
as usual and the summation over i is intended. By identifying TX∗p(q) (TpM) to

TpM in the canonical way, we can write X∗p(q) = ξi∂i . Hence, by setting

Ξ(t X∗p(q)) = 〈exp−1
p

( ∗
expp (t X∗p(q))

)
, t X∗p(q)〉p
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we have that

〈X∗p(q), gradX∗p(q)

(
ϕp◦

∗
expp

)
〉p = ξi

∂

ξi

∫ 1

0

1

t
Ξ(t X∗p(q)) dt

= ξi
∫ 1

0

∂

∂ξi
Ξ(t X∗p(q)) dt

=

∫ 1

0

d

dt
Ξ(t X∗p(q)) dt

= Ξ(X∗p(q))− Ξ(0) = Ξ(X∗p(q)),

because Ξ(0) = 〈expp(p), 0〉p = 0. Collecting the last results, we have obtained that

gradX∗p(q)

(
ϕp◦

∗
expp

)
= Xp(q) + Vp,

where 〈Vp,X∗p(q)〉p = 0 and we used the equivalence

Ξ(X∗p(q)) ≡ 〈Xp(q),X
∗
p(q)〉p .

At this point, we can observe that (dϕp)q = (dϕp)q ◦ (d
∗

expp)X∗p(q). Then, we can perform the

following computation,

〈Πq(p), σ̇
∗(1)〉q = 〈Xp(q),X

∗
p(q)〉p = 〈gradX∗p(q)

(
ϕp◦

∗
expp

)
,X∗p(q)〉p = d(ϕp◦

∗
expp)X∗p(q)(X

∗
p(q))

= (dϕp)q

(
(d

∗
expp)X∗p(q)(X

∗
p(q))

)
= 〈gradqϕp, σ̇

∗(1)〉q ,

where we employed the well-known equivalence (d
∗

expp)X∗p(q)(X
∗
p(q)) = σ̇∗(1) and σ∗ is the ∇∗-

geodesic from p to q. From the last chain of equalities, we immediately obtain that

Πq(p) = gradqϕp + Vq

being Vq ∈ TqM uniquely defined by Πq(p)− gradqϕp and 〈Vq, σ̇∗(1)〉q = 0.

In order to prove that decomposition (72) is unique, suppose that there exists another de-

composition of Πq(p) satisfying conditions of Theorem III.2, i.e. Πq(p) = gradqϕ̃p(q) + Ṽq with

〈Ṽq, σ̇∗(1)〉q = 0. In addition, let us assume that ϕ̃p(p) = 0. We have then,

0 = gradq (ϕp − ϕ̃p) + Vq − Ṽq and 〈σ̇∗(1), Vq − Ṽq〉q = 0.

It is evident that

〈σ̇∗(1), gradq (ϕp − ϕ̃p)〉q = 0 . (73)

By relying again on normal coordinates with respect to ∇, we have that Eq. (73) is a homo-

geneous first-order differential equation. Then, we can conclude that gradqϕ = gradqϕ̃, because of

the assumption ϕ̃p(p) = 0 and Vq = Ṽq. �
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Remark III.2. Methods in the proof of Theorem III.2 are inspired by [22], where the author

presented a decomposition for vector fields on a Riemannian manifold of non-positive curvature

with application to non-linear mechanics and irreversible thermodynamics.

Remark III.3. Likewise the vector Πq(p), we can decompose also the vector Π∗q(p) in terms of

a gradient vector. This can be trivially carried out by relying on the dual Phi-function ϕ∗p and

repeating same methods of the proof of Theorem III.2. Then, we obtain

Π∗q(p) = gradqϕ
∗
p + V ∗q , V ∗q ∈ TqM and 〈V ∗q , σ̇(1)〉q = 0 . (74)

C. Canonical Divergence

Theorem I.1 suggests the way to single out the appropriate vector field for defining the novel

divergence and its dual function. In addition, Theorem III.2 strengthens this choice and we are

driven to the following definition.

Definition III.2. Let us consider the statistical manifold S = (M, g,∇,∇∗) and p ∈ M. Assume

also that there exists Up ⊂ M as in (21). Then, for every q ∈ Up we define the function D : M→ R

by the path integral of Πt(p) along the ∇-geodesic σ(t) from p to q,

D(p, q) := Dp(q) :=

∫ 1

0
〈Πt(p), σ̇(t)〉σ(t) dt . (75)

The dual function D∗(p, q) of D(p, q) is instead defined by the path integral of Π∗t (p) along the

∇∗-geodesic σ∗(t) from p to q,

D∗(p, q) := D∗p(q) :=

∫ 1

0
〈Π∗t (p), σ̇∗(t)〉σ∗(t) dt . (76)

We refer to D(p, q) as the canonical divergence on M from p to q. Analogously, we refer to

D∗(p, q) as the dual canonical divergence on M from p to q.

We have defined our canonical divergence Dp(q) based on the metric g and the affine connection

∇. In addition, we supplied the ∇∗-connection by the definition of Πt(p). It is then natural to

require that this divergence is consistent in the sense that Eq. (3) and Eq. (4) are satisfied. Before

addressing this issue, we can observe that from Theorem I.1 and Definitions III.1, III.2 we may

obtain the following relations among the pseudo-squared-norm rp(q), the Phi-functions ϕp(q) and

ϕ∗p(q), and the canonical divergences Dp(q) and D∗p(q),

rp(q) = Dp(q) + ϕ∗p(q), rp(q) = D∗p(q) + ϕp(q) . (77)
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FIG. 3: On the left side of the figure we can see the ∇-geodesic σ connecting p and q and the vector field

Πt(p) at σ(t). This is obtained by parallel translating with respect to ∇ the vector Xp(t) = expp(σ(t))

along the ∇∗-geodesic σ∗
t . On the right side of the figure we can see the ∇∗-geodesic connecting p and q

and the vector field Π∗
t (p) at σ∗(t). This is obtained by parallel translating with respect to ∇∗ the vector

X∗
p(t) =

∗
exp

−1

p (σ∗(t)) along the ∇-geodesic σt.

In fact, since the pseudo-squared-norm rp(q) is independent of the particular path from p to q,

from Eq. (51) we can compute rp(q) whether along the ∇-geodesic σ(t) or along the ∇∗-geodesic

σ∗(t). Then, by recalling Definitions III.1, III.2 we get relations (77). In addition, by means of

decomposition (72) we also have that

Dp(q) =

∫ 1

0
〈Πt(p), σ̇(t)〉σ(t) dt

=

∫ 1

0
〈gradtϕp, σ̇(t)〉σ(t) dt+

∫ 1

0
〈Vt(p), σ̇(t)〉σ(t) dt

=ϕp(q) +

∫ 1

0
〈Vt(p), σ̇(t)〉σ(t) dt , (78)

where Vt = Πt − gradtϕp and we assumed that ϕp(p) = 0. Moreover, from decomposition (74) we

get

D∗p(q) = ϕ∗p(q) +

∫ 1

0
〈V ∗t (p), σ̇∗(t)〉σ∗(t) dt , (79)

where V ∗t = Π∗t − gradtϕ
∗
p and we assumed that ϕ∗p(p) = 0. By combining (77) and (78), (79) we

trivially obtain that ∫ 1

0
〈Vt(p), σ̇(t)〉σ(t) dt =

∫ 1

0
〈V ∗t (p), σ̇∗(t)〉σ∗(t) dt . (80)

Let us now step back to the issue of D-consistency with the geometry of the statistical manifold

S = (M, g,∇,∇∗). Since the geometry is determined by the derivatives of D(ξp, ξq) at p = q, we
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consider the case where p and q are close to each other, that is zi = ξiq − ξip is small for all i. We

then evaluate the canonical divergence by Taylor expansion up to O
(
‖z‖3

)
.

Proposition III.2. When ‖z‖ = ‖ξq − ξp‖ is small, the canonical divergence D is expanded as

D(p, q) =
1

2
gij(p)z

izj +
1

6
Λijk(p)z

izjzk +O(‖z‖3) , (81)

where Λijk(p) = 2
∗
Γijjk +Γijk.

Proof. By looking at Eq. (75) we need to Taylor expand with respect to the local coordinate {ξ}

the following factors

gij(σ(t)),
d

dt
σi(t), Pjσ∗t

(Xp(t)) ,

where Xp(t) =
d

dt
σt(0) and Pjσ∗t

is the jth component of the parallel transport with respect to

∇-connection. Here, σt(s) is the ∇-geodesic from p to σ(t). The Taylor expansion of the metric

tensor is given by

gij(σ(t)) = gij(p) + t∂kgij(p)z
k +O(‖z‖2), (82)

where ∂k =
∂

∂ξkp
. Consider now the local coordinates ξ(t) of the geodesic σ(t). By Taylor expanding

it, we obtain

ξi(t) = ξip + tzi +
t

2
(1− t)Γiµν(p)zµzν +O

(
‖z‖3

)
, (83)

where the summation over µ and ν is intended. Then we obtain,

d

dt
σi(t) = zi +

1

2
(1− 2t)Γiµν(p)zµzν +O

(
‖z‖3

)
. (84)

Consider now the ∇-geodesic σt(s). From Eq. (84) we obtain the following expression for Xj
p(t),

Xj
p(t) =

d

dt
σt(0) = ξj(t)− ξjp +

1

2
Γjµν(σ(t))(ξµ(t)− ξµp )(ξν(t)− ξνp ).

In addition, we have that

ξj(t)− ξjp = tzj +
t

2
(1− t)Γjµν(p)zµzν .

Then, we arrive at

Xj
p(t) = tzj +

t

2
Γjµν(p)zµzν . (85)
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In the end, recalling that ∇∗-geodesic σ∗t connects p and σ(t), we use the following Taylor expansion

of the parallel transport with respect to ∇ along σ∗t [7],

Pjσ∗t
(Xp(t)) = Xj

p(t)− Γjµν(p)(Xµ
p (t))(σν(t)− ξνp )

and from Eq. (85) we obtain

Pjσ∗t
(Xp(t)) = tzj +

t

2
(1− 2t)Γjµν(p)zµzν +O

(
‖z‖3

)
. (86)

We are now ready to provide the Taylor series of the path integral Eq. (75). By collecting Eqs.

(82), (84) and (86) we obtain the following expression for D(p, q),

D(p, q) =

∫ 1

0
dt
[
gij(p) + t∂kgij(p)z

k +O(‖z‖2)
]

(87)

×
[
zi +

1

2
(1− 2t)Γiµν(p)zµzν +O

(
‖z‖3

)]
×
[
tzj +

t

2
(1− 2t)Γjµν(p)zµzν +O

(
‖z‖3

)]
dt.

Finally, by computing this integral up to O
(
‖z‖4

)
and recalling the relation Γijk = gliΓ

l
jk we arrive

at

D(p, q) =
1

2
gij(p)z

izj +
1

3
∂kgij(p)z

izjzk − 1

6
Γijk(p)z

izjzk

=
1

2
gij(p)z

izj +
1

6

(
2∂kgij(p)z

izjzk − Γijk(p)z
izjzk

)
.

Now, from the relation ∂kgij = Γijk + Γ∗ijk, we obtain

D(p, q) =
1

2
gij(q)z

izj +
1

6

(
2Γ∗ijk + Γijk

)
. (88)

Eq. (88) can be reduced to Eq. (81) by using Eq. (58). �

Remark III.4. By comparing Prop. III.2 with Prop. III.1 we can see that the Phi-function ϕp and

the canonical divergence Dp coincide in a neighborhood of p up to O(‖z‖3). This immediately leads

the canonical divergence D(p, q) to satisfying the consistency with the geometry of S = (M, g,∇,∇∗)

by means of Theorem III.1. The same argument can be used for D∗(p, q). By interchanging the

role of ∇ and ∇∗ in (81) and by Remark III.1, it can be trivially proved that D∗(p, q) generates the

dual structure of M in the same way as stated by Eq. (70).

Eguchi introduced in [9] the concept of the contrast function in order to construct statistical

structures on a given manifold M. A contrast function ρ(p, q) is defined everywhere on M×M. For

a function ρ(p, q) to be a contrast function, it is required that

ρ(p, q) ≥ 0, ρ(p, q) = 0 ⇐⇒ p = q ,
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and

∂i∂j ρ(p, q)|q=p = −∂i∂′j ρ(p, q)
∣∣
q=p

= gij(p)

is strictly positive definite on M. If ρ(p, q) is a contrast function,

Γρijk(p) := −∂i∂j∂′kρ(p, q)
∣∣
q=p

, Γρ
∗

ijk(p) := −∂′i∂′j∂kρ(p, q)
∣∣
q=p

define torsion free affine dual connections with respect to the Riemannian metric g. Now, the

purpose of the present article is to recover a given dual structure (g,∇,∇∗) on a manifold M by

means of the divergence function since our investigation has been addressed from the very beginning

to the inverse problem. In order to pursue this aim, it is enough to consider a contrast function to

be defined in a neighborhood of the diagonal set of M×M. Then we have the following result.

Theorem III.3. Consider a statistical manifold S = (M, g,∇,∇∗). Then the canonical divergence

D(p, q) and the Phi-function ϕ(p, q) are both non-negative in a neighborhood of the diagonal set ∆

of M×M and vanish only on ∆. Furthermore, they both induce the dual structure (g,∇,∇∗) of M.

Proof. By means of Eq. (81) we obtain that, if p and q are sufficiently close to each other, then

D(p, q) ≥ 0, D(p, q) = 0 ⇐⇒ p = q .

By Remark III.4 we also know that D(p, q) generates the dual structure of M. These properties

ensure that the canonical divergence D(p, q) is a contrast function on M.

Analogously, by Pro. III.1 and, in particularly, from Eq. (57) we have that

ϕ(p, q) ≥ 0, ϕ(p, q) = 0 ⇐⇒ p = q ,

when p and q are sufficiently close each to other, as well. Furthermore, by Theorem III.1 also ϕ

induces the dual structure (g,∇,∇∗). Then, ϕ(p, q) is a contrast function on M, too. �

Although Theorem III.3 holds when p and q are sufficiently close to each other, a contrast

function can be defined everywhere on M × M by means of an appropriate positive function.

However, we will prove that our canonical divergenceD(p, q) turns out to be positive under sufficient

conditions whenever p and q can be connected by unique ∇-geodesic and unique ∇∗-geodesic (see

Pro. IV.1).

From Theorem III.3 we know that both the functions, the canonical divergence D and the Phi-

function ϕ, generate the same dual structure on M. This leads to a very close link between them.

In order to prove this connection, we need the following
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Lemma III.2. Let M̃ ⊂ M be a smooth submanifold of M of codimension ≥ 1. Let p ∈ M\M̃.

Then the function

ϕp : M̃→ R+, q 7→ ϕp(q)

takes its (local) minimum whenever q ∈ Up, where Up is as in Eq. (21).

Proof. The proof trivially follows by the decomposition of Πq(p) given by Theorem III.2 and by

the definition (52) of ϕp(q). �

Proposition III.3. Consider the canonical divergence D(p, q) and the Phi-function ϕ(p, q) of a

given statistical manifold S = (M, g,∇,∇∗). Then, there exists a function f : [0,K]→ R+ (K > 0)

with f(0) = 0 and f ′(0) > 0, such that

Dp(q) = f (ϕp(q)) . (89)

Proof. By means of definition (9), we can consider the functional

Ω(γ) :=

∫ 1

0
〈Πt(p), γ̇(t)〉γ(t) dt, (90)

where γ is an arbitrary path from p to q. By Lemma III.2 it takes a local minimum when γ ≡ σ∗,

where σ∗ is the ∇∗-geodesic from p to q. Consider now the level hypersuface of D given by

HD = {q ∈ M | Dp(q) = κ}. For a point q ∈ HD we define

Lq :=

{
p ∈ M | Dp(q) = min

q′∈HD
Dp(q′)

}
.

According to the theory of minimum contrast geometry by Eguchi [9], we know that {Lq}q∈HD is

(locally) a foliation of M with 1-dimensional leaves such that

(i) each leaf Lq is orthogonal to HD at q,

(ii) the second fundamental form with respect to ∇ of Lq is zero at q.

From Theorem III.3 we have that D(p, q) ≥ 0 for p and q suitably close to each other. Therefore,

by the uniqueness of the decomposition (72) it is clear that level hypersurfaces of D and ϕ coincide

as families and in particular they have identical gradient flows. This implies that there exists a

monotonic function f with f(0) = 0 such that Dp(q) = f (ϕp(q)). �
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Proposition III.4. For a given statistical manifold S = (M, g,∇,∇∗), let us consider the Phi-

functions ϕq(p) and ϕ∗p(q). Both are contrast functions for M. In addition, there exists a function

h : [0,K]→ R+ (K > 0) with h(0) = 0 and h′(0) > 0, such that

ϕq(p) = h
(
ϕ∗p(q)

)
. (91)

Proof. The Phi-function ϕ(q, p) = ϕq(p) is obtained from (52) by interchanging the role of p and

q. Therefore, from Eq. (57) we obtain that the Taylor expansion of ϕq(p) reads as follows,

ϕq(p) =
1

2
gij(q)ζ

iζj +
1

6
Λijk(q)ζ

iζjζk +O
(
‖ζ‖3

)
, Λijk(q) = 2Γ∗ijk(q) + Γijk(q), ζ = ξp− ξq .

By repeating the argument in the proof of Theorem III.1, we obtain that

∂i∂j∂
′
kϕq(p)

∣∣
p=q

= −Γ∗ijk(p) ,

where ∂i =
∂

∂ξip
and ∂′i =

∂

∂ξiq
. Now, by comparing this result with the Remark III.1 we conclude

that ϕq(p) generates the dual structure of M in the same way of the dual Phi-function ϕ∗p(q).

Given the level hypersurface Hϕ = {q ∈ M | ϕq(p) = κ} we can define for a point q ∈ Hϕ

L∗q :=

{
p ∈ M | ϕq(p) = min

q′∈Hϕ

ϕq′(p)

}
.

Again, we know that {L∗q}q∈Hϕ is (locally) a foliation of M with 1-dimensional leaves such that

(i) each leaf L∗q is orthogonal to Hϕ at q,

(ii) the second fundamental form with respect to ∇∗ of L∗q is zero at q.

Therefore, the local minimum of ϕq is obtained by integrating Π∗t along a ∇-geodesic. This implies

that level hypersurfaces of ϕ∗p and ϕq coincide as families and in particular they have identical

gradient flows. For this reason, there exists a monotonic function h with h(0) = 0 such that

ϕq(p) = h
(
ϕ∗p(q)

)
. �

In general, the canonical divergence D(p, q) is not symmetric, i.e. D(p, q) 6= D(q, p). However,

Proposition III.3 and Proposition III.4 suggest the following symmetry property.

Theorem III.4. Given S = (M, g,∇,∇∗) a statistical manifold, let us consider the canonical

divergences D(q, p) and D∗(p, q) that, both, generate the dual structure (g,∇,∇∗) of M. Then,

there exists a function Υ : [0,K]→ R+ satisfying the conditions Υ(0) = 0, Υ′(0) > 0 such that

D(q, p) = Υ(D∗(p, q)) . (92)
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Proof. From the symmetry of the pseudo-squared-norm rp(q) in its arguments we have that

Dq(p) + ϕ∗q(p) = D∗p(q) + ϕp(q) .

This implies that Dq(p) = D∗p(q) + ϕp(q)− ϕ∗q(p). Now by Eq. (89) and Eq. (91) we can write

Dq(p) = (f∗ + Id− h−1)ϕp(q) ,

where f∗ is the dual of f in the sense that it provides the same relation as Eq. (89) but between

ϕ∗ and D∗. Moreover, Id is the identity map and h−1 is the inverse of the map h in Eq. (91).

Finally, we get statement (92) by defining Υ := f∗ + Id− h−1. �

IV. COMPARISON WITH THE DIVERGENCE OF AY AND AMARI

In this section we compare the canonical divergence defined by Eq. (75) with respect to the one

proposed by Ay and Amari in [5]. Recall that the latter has been defined by path integration of

the vector field Xt(q) = exp−1
σ(t)(q) along the ∇-geodesic σ(t). In particular, when the ∇-geodesic

σ goes from p to q, the divergence of Ay and Amari assumes the nice form (8), i.e.

D(p, q) =

∫ 1

0
t‖σ̇(t)‖2 dt .

In order to carry out this comparison, let us consider for each t ∈ [0, 1] the loop Σt based at p

and passing by σ(t). This is defined as follows,

Σt(s) =


σ∗t (2s), s ∈ [0, 1/2]

σt(2− 2s), s ∈ [1/2, 1]

, (93)

where ∇ and ∇∗ geodesics σt and σ∗t go from p to σ(t). By means of Lemma A.1 in [Appendix A]

we know that, if Σt lies in a sufficiently small neighborhood of p, then

PΣtXp(t) = Xp(t) +RΣt

(
X∗p(t),Xp(t)

)
, (94)

where

RΣt

(
X∗p(t),Xp(t)

)
:=

∫
Bt

P [R (X∗(t),X(t)) X(t)]

‖X∗p(t) ∧Xp(t)‖
dA (95)

with X∗(t) and X(t) being the parallel transport with respect to ∇ of X∗p(t) and Xp(t), respectively,

from p to each point of Bt along the unique ∇-geodesic joining them. Here, R is the curvature
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tensor [Appendix A] of ∇, Bt denotes the disk defined by the curve Σt and Xp(t) =
∗

expp
−1

(σ(t)),

Xp(t) = exp−1
p (σ(t)) are linearly independent on Bt. In addition, P within the integral denotes the

parallel translation from each point in Bt to p along the unique ∇-geodesic segment joining them.

Now, we can write PΣt as the parallel transport with respect to ∇ along σ∗t and along σt, but in

the reversed direction. In particular we have that

PΣtXp(t) =
(
P−1
σt ◦ Pσ∗t

)
Xp(t) .

Then, from Eq. (94) and by the definition of vector Πt(p), we obtain

Πt(p) = Pσ∗t Xp(t)

= PσtXp(t) + Pσt
[
RΣt

(
X∗p(t),Xp(t)

)]
. (96)

Let us recall that the canonical divergence Dp is defined by means of the path integration of the

vector field Πt(p) along the ∇-geodesic σ(t) from p to q. Since Xp(t) = exp−1
p (σ(t)) is the velocity

vector at p of the ∇-geodesic σt, we have that

PσtXp(t) = σ̇t(1) = t σ̇(t) . (97)

Therefore, by Eq. (75) we obtain

D(p, q) =

∫ 1

0
t ‖σ̇(t)‖2 dt+

∫ 1

0
〈Pσt

[
RΣt

(
X∗p(t),Xp(t)

)]
, σ̇(t)〉σ(t) dt . (98)

The decomposition of D(p, q) given by Eq. (98) allows us to provide sufficient conditions for the

positivity of D(p, q) whenever exist unique ∇- geodesic and unique ∇∗-geodesic both connecting p

and q.

Proposition IV.1. Consider p ∈ M and a neighborhood Up ⊂ M of p as the one in (21). Let us

assume the following conditions on the Riemannian curvature tensor R [Appendix A],

(i) ∇ R ≡ 0

(ii) R (X,Y, Y, Y ) ≥ 0 ∀ X, Y ∈ T (M) . (99)

Then, we have that

D(p, q) ≥ 0 ∀ q ∈ Up, D(p, q) = 0 ⇐⇒ p = q . (100)

Proof. In order to prove this statement, let us decompose the canonical divergence D(p, q) ac-

cording to Eq. (98). By ∇R ≡ 0 we know that the curvature tensor is invariant under all parallel
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translations with respect to ∇-connection [10]. Therefore, by Eq. (95) and by recalling the defini-

tion of P below Eq. (95) we obtain

RΣt

(
X∗p(t),Xp(t)

)
=

∫
Bt

P [R (X∗(t),X(t)) X(t)]

‖X∗p(t) ∧Xp(t)‖
dA

=

∫
Bt

R (PX∗(t),PX(t)) PX(t)

‖X∗p(t) ∧Xp(t)‖
dA

=

∫
Bt

R
(
X∗p(t),Xp(t)

)
Xp(t)

‖X∗p(t) ∧Xp(t)‖
dA

= εt R
(
X∗p(t),Xp(t)

)
Xp(t) , (101)

where

εt :=
Area(Bt)

‖X∗p(t) ∧Xp(t)‖
.

Moreover, from Eq. (97) we have that∫ 1

0
〈Pσt

[
RΣt

(
X∗p(t),Xp(t)

)]
, σ̇(t)〉σ(t) dt =

∫ 1

0

εt
t

R
(
PσtX

∗
p(t),PσtXp(t),PσtXp(t),PσtXp(t)

)
dt

≥ 0

because of Condition (ii) in Eq. (99). Finally, from Eq. (98) we arrive at D(p, q) ≥ 0 for all q ∈ Up

with D(p, q) = 0 iff p = q. �

By replacing ∇ and R in Eq. (99) with ∇∗ and R∗, respectively, we obviously obtain that

D∗(p, q) ≥ 0 for all q ∈ Up with D∗(p, q) = 0 iff p = q, as well.

A. Divergence in self dual manifolds

A statistical manifold S = (M, g,∇,∇∗) is self-dual when ∇ = ∇∗. In this case S reduces to a

Riemannian manifold endowed with the Levi-Civita connection. Indeed, it is well-known that [1],

∇LC =
1

2
(∇+∇∗) .

Since ∇ = ∇∗ then ∇ and ∇∗ geodesics coincide. For this reason we have

Xp(t) = X∗p(t), ∀ t ∈ [0, 1] .

Indeed, in our approach Xp(t) and X∗p(t) are tangent vectors at p of∇ and∇∗ geodesics, respectively.

Therefore, by recalling the definition (95) of RΣt we obtain that the second term of the right hand

side of Eq. (98) reduces to zero. This trivially follows by the skew-symmetry of the curvature

tensor that implies R(X(t),X(t)) ≡ 0 for all t ∈ [0, 1]. Therefore, we have that.∫ 1

0
〈Pσt [RΣt (X(t),X(t)))] , σ̇(t)〉σ(t) dt ≡ 0
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where now X(t) is the parallel transport of the tangent vector Xp(t) at p of ∇LC-geodesic σ(t) and

P denotes the parallel transport with respect to ∇LC-connection. This leads to

D(p, q) =

∫ 1

0
t ‖σ̇(t)‖2 dt (102)

and proves that our divergence coincides with the one of Ay and Amari in the case of self-dual

manifold.

In addition, we know from classical Riemannian Geometry that the term ‖σ̇(t)‖2 is constant with

respect to the parameter t. Then, we can conclude that the novel canonical divergence corresponds

to the energy of the ∇LC-geodesic σ(t) from p to q, that is

D(p, q) =
1

2
d2(p, q) ,

where d(p, q) is the Riemannian distance between p and q.

B. Divergence in dually flat manifolds

The statistical manifold S = (M, g,∇,∇∗) is called dually flat when the curvature tensors of ∇

and ∇∗ are zero, i.e. R = R∗ ≡ 0. Then, since R ≡ 0 implies that RΣt ≡ 0 we have that in this

particular case Eq. (98) reduces to

D(p, q) =

∫ 1

0
t ‖σ̇(t)‖2 dt .

This proves that also in case of dually flat manifold our divergence coincides with the one of Ay

and Amari.

In a dually flat manifold we can rely on an affine coordinate system θ = (θ1, . . . , θn) and a potential

function φ(θ). In addition, the dual affine coordinates η = (η1, . . . , ηn) are given by

ηi =
∂φ(θ)

∂θi
, i = 1, . . . , n .

The dual potential is then defined as

φ∗(η) = φ(θ)− θ · η

where θ · η = θi ηi and θ is a function of η. Since by definition of affine coordinate system we have

that Γijk(θ) ≡ 0, then the geodesic connecting p and q assumes the form

θ(t) = θp + t(θq − θp) .
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Hence, the velocity is constant

θ̇ = z = θq − θp .

The novel canonical divergence from p to q is defined by

D(p, q) =

∫ 1

0
t gij(θ(t)) z

izj dt .

Since gij = ∂i∂jφ, we have

D(p, q) =

∫ 1

0
t ∂i∂jφ(θp + tz)zizj dt

=

∫ 1

0
t φ̈(θ(t)) dt

= −
∫ 1

0
φ̇(θ(t)) dt+

[
tφ̇(θ(t))

]1

0

= φ(θp) + φ∗(ηq)− θp · ηq .

This shows that our divergence is the same as the canonical divergence defined in terms of the

Bregman divergence of M.

By considering the dual divergence D∗(p, q), Eq. (98) assumes in the dually flat case the

following form,

D∗(p, q) =

∫ 1

0
t ‖σ̇∗(t)‖2 dt ,

that corresponds to the dual version of the divergence of Ay and Amari [5]. By using the dual

affine coordinates {η} and the dual potential function φ∗(η) we obtain the expression of D∗(p, q)

as Bregman divergence of M which proves that Dq(p) = D∗p(q).

Let us now consider the case of α-connections within the class of conjugate symmetric manifolds

[Appendix A]. Recall that a statistical manifold S = (M, g,∇,∇∗) is conjugate symmetric when

the curvature tensors of ∇ and ∇∗ are the same, i.e. R ≡ R∗. A very remarkable relation between

the curvature tensor of
α
∇ (see [Appendix A]) and R is provided in [25] and for conjugate symmetric

manifolds reads as follows,

α
R (X,Y )Z =

1

2
R(X,Y )Z +

1− α2

2

(
T̃ (Y, T̃ (X,Z))− T̃ (X, T̃ (Y,Z)

)
(103)

for all X,Y, Z ∈ T (M). Here, T̃ (X,Y ) is the “difference tensor” and it is defined by [Appendix A]

T̃ (X,Y ) = ∇XY −∇∗XY . (104)
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Therefore, if R = R∗ ≡ 0, then the α curvature tensor is given in terms of the difference tensor

T̃ . Now, by resorting to the affine local coordinate {θ} of ∇-connection, we have that Γijk(θ) ≡ 0.

Hence, from Eq. (103) we have that the local expression of α curvature is given by

α
R
k

lij=
1− α2

2

[
∗Γkim

∗Γmjl − ∗Γ
m
il
∗Γkjm

]
=

1− α2

2

∗
R
k

jil ,

which is zero because
∗
R≡ 0. As a result, from Eq. (95) and Eq. (98) we obtain the following

expression for the α-divergence,

Dα(p, q) =

∫ 1

0
t‖σ̇α(t)‖2 dt, (105)

where σα(t) is the
α
∇-geodesic from p to q. This proves that also in the case of α-connection our

divergence coincides with the one of Ay and Amari.

C. Divergence of Henmi and Kobayashi

In this section we address our investigation to the divergence proposed by Henmi and Kobayashi

in [11]. Given a statistical manifold S = (M, g,∇,∇∗), the authors have considered the function

W ∗(p‖q) :=−
∫ 1

0

[
gij(σ̄

∗(t))
d

dt
σ̄∗i(t)

d

ds
σ̄jt (0)

]
dt , (106)

where σ̄∗(t) is the ∇∗-geodesic from q to p and σ̄t(s) is the ∇-geodesic from σ̄∗(t) to q. The vector

field

F(σ̄∗(t)) :=
d

ds

∣∣∣∣
s=0

σ̄t(s) (107)

has been interpreted in [11] as the force field (the stress) that is obtained by applying Hook’s

law to the ∇-geodesic σ̄t(s) at each σ̄∗(t) = σ̄t(0). The ∇-geodesic σ̄t(s) is here understood as a

spring which is stretched by F from the equilibrium state q. By means of this interpretation, the

function W ∗(p‖q) is the work which is necessary to move a point of unit mass from q to p along

the ∇∗-geodesic σ̄∗(t) against the force field F(σ∗)(t).

In [11], the authors showed that if

(i) R(X,Y, Y, Y ) = 0 ∀ X,Y ∈ T (M)

(ii) ∇ R = 0, (108)

are satisfied, then each ∇-geodesic emanating from q is perpendicular to the level-hyepersurface of

the functional W∗(·‖q), where

W∗(p‖q) := −
∫ 1

0

[
gij(σ(t))

d

dt
σi(t)

d

ds
σ̄jt (0)

]
dt (109)
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and the ∇-geodesic σ̄(t) substitutes the path σ̄∗(t) connecting q and p. In (108) R denotes the

Riemannian curvature tensor (see [Appendix A]). In this way they proved that their divergence

function is independent of the particular path from q to p. In addition, they proved that the

integral curves of grad W∗(·‖q) coincides with the ∇-geodesics starting from q. For the rest of this

subsection we assume that conditions (108) hold.

Let us now consider the effects that conditions (108) have on our divergence. Firstly, consider

Eq. (95). Since now ∇R ≡ 0, we have that the curvature tensor is invariant under all parallel

translations with respect to the ∇-connection. From this analysis it follows that

RΣt

(
X∗p(t),Xp(t)

)
=

∫
Bt

P [R (X∗(t),X(t)) X(t)]

‖X∗p(t) ∧Xp(t)‖
dA

=

∫
Bt

R (PX∗(t),PX(t)) PX(t)

‖X∗p(t) ∧Xp(t)‖
dA

=

∫
Bt

R
(
X∗p(t),Xp(t)

)
Xp(t)

‖X∗p(t) ∧Xp(t)‖
dA ,

where the last equality is obtained by recalling the definition of P below Eq. (95). More explicitly,

we can write

RΣt

(
X∗p(t),Xp(t)

)
= εt R

(
X∗p(t),Xp(t)

)
Xp(t), εt =

Area(Bt)

‖X∗p(t) ∧Xp(t)‖
. (110)

Therefore, the second term of the right hand side in Eq. (98) becomes∫ 1

0
〈Pσt

[
RΣt

(
X∗p(t),Xp(t)

)]
, σ̇(t)〉σ(t) dt =

∫ 1

0
εt 〈R

(
PσtX

∗
p(t),PσtXp(t)

)
PσtXp(t), σ̇(t)〉σ(t) dt

=

∫ 1

0

εt
t
〈R
(
PσtX

∗
p(t),PσtXp(t)

)
PσtXp(t),PσtXp(t)〉σ(t) dt

=

∫ 1

0

εt
t

R
(
PσtX

∗
p(t),PσtXp(t),PσtXp(t),PσtXp(t)

)
dt

= 0 ,

where the first equality follows by ∇R ≡ 0, the second one follows by recalling the implication of

the relation σt(s) = σ(st) on the derivative and the last equality follows from Condition (i) in Eq.

(108). As result, we obtain that under Conditions (108) our divergence is given by

D(p, q) =

∫ 1

0
t ‖σ̇(t)‖2 dt,

which proves that also in this case our divergence coincides with the one of Ay and Amari.

In order to single out a connection between the divergence D(p, q) proposed in the present

article and the one introduced in [11], consider the definition of D(q, p). By interchanging p and q



38

in Eq. (75), we obtain

D(q, p) ≡ Dq(p) =

∫ 1

0
〈Πt(q), ˙̄σ(t)〉σ̄(t) dt , (111)

where the ∇-geodesic σ̄(t) goes from q to p and

Πt(q) = Pσ∗t Xq(t),

with σ∗t being the ∇∗-geodesic from q to σ(t) and Xq(t) = exp−1
q (σ(t)). We now investigate the

relation between Πt(q) and the vector field F(σ(t)) = ˙̄σt(0). Firstly, we may observe that

Xq(t) = −P−1
σt

˙̄σt(0),

where σt is the ∇-geodesic from q to σ̄(t). Then, by repeating the same methods as the ones that

have led to Eq. (96) together the nice representation (110) of RΣt under Conditions (108), we

obtain that

Πt(q) = −Pσ∗t ◦ P−1
σt

˙̄σt(0)

= − ˙̄σt(0) + εt R
(
X∗q(t), ˙̄σt(0)

)
˙̄σt(0) . (112)

Since σ̄t(s) is a re-parametrization of the ∇-geodesic σ̄(t), namely σ̄t(s) = σ̄((1 − t)s + t), then

˙̄σt(0) = (1−t) ˙̄σ(t). Therefore, by integrating Πt(q) along σ̄(t) we get D(q, p) and from Eq. (112) we

are able to establish the connection between our divergence and the one of Henmi and Kobayashi,

D(q, p) =

∫ 1

0
〈Πt(q), ˙̄σ(t)〉σ̄(t) dt

= −
∫ 1

0
〈 ˙̄σt(0), ˙̄σ(t)〉σ̄(t) dt+

∫ 1

0

1

1− t
R
(
X∗q(t), ˙̄σt(0), ˙̄σt(0), ˙̄σt(0)

)
dt

= W ∗(p‖q), (113)

where we used ∇R ≡ 0 and the last equality follows from Condition (i) of (108) and by recalling

definition (106). The function W ∗(p‖q) is actually the dual divergence of W (p‖q) and in [11] the

following symmetric property has been proved,

W ∗(p‖q) = f∗ (W (q‖p)) , (114)

where f∗ is a function such that f∗(0) = 0 and (f∗)′ (0) = 1. Finally, from Eq. (114) we can carry

out the following connection between D(q, p) and W (q‖p),

D(q, p) = f∗ (W (q‖p)) . (115)
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V. CONCLUDING REMARKS

The main result obtained in this work is Theorem II.1, which gives a geometric interpretation

of Theorem I.1. In particular, we showed that the rays of hypersurfaces Hp at q are generated by

the sum of the tangent vectors Πq + Π∗q . Hypersurfaces Hp are level-sets of the pseudo-squared-

norm rp(q). The symmetry of rp(q) suggested that it is not a good candidate to put forward for

defining the novel canonical divergence since, commonly, divergences are not necessarily symmet-

ric. However, in classical Information Theory [13] we recover such a symmetry by adding to the

Kullback-Leibler divergence its dual function that is obtained from the Kullback-Leibler divergence

by just exchanging the role of p and q.

Inspired by this property of the Kullback-Leibler divergence for positive and probability mea-

sures, we made the choice to define the novel divergence by integrating Π along the ∇-geodesic

connecting p to q. The dual divergence is then defined by the path integration of Π∗ along the

∇∗-geodesic connecting p to q. Nevertheless, it does not happen that rp(q) = Dp(q) + D∗p(q). To

overcome this difficulty, we introduced two more functions, namely the Phi-functions in this paper.

In this way, we provided a split of rp(q) in terms of both the sums, ϕp+D∗p and ϕ∗p+Dp. A further

relevance of these Phi-functions consists in supplying local decompositions of Π and Π∗ in terms

of gradϕp and gradϕ∗p, respectively.

We proved that both the functions, the canonical divergence D and the Phi-function ϕ gener-

ate the dual geometry of a statistical manifold S = (M, g,∇,∇∗). Very surprisingly, we showed

that they coincide up to a suitable monotonic function. This nice result led us to address our

investigation to the symmetry of D(p, q) as stated by Eguchi in [9]. We were able to prove that

D(q, p) = Υ(D∗(p, q)), where Υ is a suitable monotonic function.

In addition, we proved that D(p, q) reduces to the divergence introduced by Ay and Amari

when M is self dual, when M is dually flat and when M satisfies a property that is the statistical

geometric analogue of the concept of symmetric spaces in Riemannian geometry. The last class of

statistical manifold drove our study to the approach proposed by Henmi and Kobayashi in [11] and

then we described a close connection between our divergence and the one of Henmi and Kobayashi.

Several examples of divergences can be found in literature arising from a wide range of physical

sciences. In [8] a divergence is defined as the solution of the Hamilton-Jacobi problem associated

with a canonical Lagrangian defined in TM. In [17] by resorting to the dual structure of the

Hamiltonian and Lagrangian formulation of mechanics in T∗M and TM, it is established that the

divergence function agrees with the exact discrete Lagrangian up to third order if and only if
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M is a Hessian manifold. In this manuscript, we explored the intrinsic geometric structure of a

statistical manifold S = (M, g,∇,∇∗) when only the torsion freeness of ∇ and ∇∗ is required. This

investigation identified appropriate vector fields upon which it is based a very natural definition

of divergence and its dual function. The present approach also paves the way for investigating

the geometric structure of submanifolds of M in order to generalize the Pythagorean Theorem and

then provide a deeper understanding of the projection theorem. This will constitute the study of

forthcoming investigation.
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APPENDIX A: DIFFERENTIAL GEOMETRY OF STATISTICAL MANIFOLDS

In this section we review useful tools of differential geometry of statistical manifolds mainly

focusing on the curvature tensor. We describe classes of statistical manifolds in terms of curvature

tensor features of them and give description of conjugate symmetric and dually flat statistical

manifolds. For a more detailed presentation we refer to [15], [1] and [6]. A statistical manifold

S = (M, g,∇,∇∗) is the datum of a C∞ manifold M, a metric tensor g and two affine connections

∇ and ∇∗ such that Eq. (1) holds true. Let us recall that an affine connection ∇ on M is a linear

connection on the tangent bundle TM,

∇ : T (M)× T (M)→ T (M), (X,Y ) 7→ ∇XY ,
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such that

∇fX1+gX2X = f∇X1X + g∇X2X ∀X1, X2, X ∈ T (M) and f, g ∈ C∞(M)

∇X(aX1 + bX2) = a∇XX1 + b∇XX2 ∀X1, X2, X ∈ T (M) and a, b ∈ R

∇X(fY ) = f∇XY +X(f)Y ∀X,Y ∈ T (M) and f ∈ C∞(M) .

Roughly speaking, an affine connection is directional derivative of vector fields. In particular, ∇XY

is the change of Y in the direction of X. The rule for comparing vectors in two distinct tangent

spaces TpM and TqM is established by the notion of parallel transport.

Let us now introduce such a notion by relying on a smooth curve γ : [0, 1]→ M of M. A vector

field along γ is a smooth map V : [0, 1]→ TM such that V (t) ∈ Tγ(t)M for all t ∈ [0, 1]. Let T (γ)

the space of all vector fields along γ, then the covariant derivative ∇t : T (γ)→ T (γ) of V ∈ T (γ)

along γ is defined in terms of the connection ∇ as ∇tV (t) := ∇γ̇(t)Ṽ , where Ṽ is the extension of

V to T (M). A vector field V ∈ T (γ) is said to be parallel along γ with respect to ∇ if ∇tV (t) ≡ 0

for all t ∈ [0, 1]. Therefore, a basic result in Calculus allows us to consider the isomorphism

Pγ : Tγ(t0)M→ Tγ(t)M, V 7→ Pγ(V ) (A1)

where Pγ(V ) := V (t) and V ∈ T (γ) is the unique parallel vector along γ such that V (t0) ≡ V .

Likewise, we have the parallel transport with respect to the ∇∗-connection,

P∗γ : Tγ(t0)M→ Tγ(t)M, V 7→ P∗γ(V ) . (A2)

All the concepts that we are from here describing can be naturally passed to the ∇∗ connection;

so for the sake of simplicity, we only refer to the ∇ connection.

The expression of ∇ connection in local coordinates ξip at p ∈ M is given in terms of the local

basis {∂i}p (∂i = ∂/∂ξip) of the tangent space TpM by means of the Christoffel’s symbols Γkij ,

∇∂i∂j = Γkij∂k,

where we adopted Einstein’s summation convention according to which whenever an index appears

in an expression as upper and lower index, we sum over that index. The same happens for ∇∗

connection, i.e. ∇∗∂i∂j = ∗Γkij∂k.

By relying on local coordinates {ξ}, we can also give the local expression of the parallel transport

P. ConsiderX ∈ T (γ), then we haveX(t) = Xi(t)∂i(t), where {∂i(t)} is a local frame of the tangent

space Tγ(t)M. Then, we have that

dXk(t)

dt
+ Γkij(γ(t))γ̇i(t)Xj(t) = 0 . (A3)
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It is clear from Eq. (A3) that whenever we specify one initial condition Xi(0) = Xi
p ∈ TpM we get

one solution of the differential equation and then we can define the isomorphism (A1).

A geodesic of ∇ is a curve with parallel tangent vector field,

∇tγ̇ ≡ 0 , (A4)

and in local coordinates it reads as

γ̈k + Γkij γ̇
iγ̇j = 0 . (A5)

For all p ∈ M and Xp ∈ TpM there is a unique geodesic γXp such that,

γXp(0) = p, and γ̇Xp(0) = Xp. (A6)

Hence, by defining for Xp ∈ TpM,

expp(Xp) := γXp(1), (A7)

we obtain the exponential map at p. The exponential map is in general well-defined at least in a

neighborhood of zero in TpM and, moreover, can be globally defined in special cases.

1. Conjugate Symmetric Statistical Manifolds

To the affine connection ∇ we can associate two tensors, the torsion and the curvature. They

are given by

Tor(X,Y ) = ∇XY −∇YX − [X,Y ] (A8)

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (A9)

where X,Y, Z ∈ T (M) and [X,Y ] = XY − Y X is the Lie bracket of X and Y .

Analogously, we can associate two tensors to the dual connection: the torsion tensor and the

curvature tensor of ∇∗,

Tor∗(X,Y ) = ∇∗XY −∇∗YX − [X,Y ] (A10)

R∗(X,Y )Z = ∇∗X∇∗Y Z −∇∗Y∇∗XZ −∇∗[X,Y ]Z . (A11)
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Then S = (M, g,∇,∇∗) is called a statistical manifold when both the connections ∇ and ∇∗

are torsion free, i.e Tor ≡ 0 and Tor∗ ≡ 0. From this, it follows that the curvature R satisfies the

first Bianchi identity,

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0 (A12)

for all X,Y, Z ∈ T (M). The same holds true for the curvature tensor R∗.

Given the metric structure on M, we can also consider the Riemann curvature tensor of ∇ that

is defined as follows

R(X,Y, Z,W ) := g (RXY Z,W ) . (A13)

From definition (A9) it immediately follows that R(X,Y, Z,W ) = −R(Y,X,Z,W ) and in particular

R(X,X,Z,W ) = 0. Moreover, from the first Bianchi identity (A12) we have that

R(X,Y, Z,W ) + R(Y, Z,X,W ) + R(Z,X, Y,W ) = 0 .

Analogously we can define the Riemann curvature tensor of ∇∗,

R∗(X,Y, Z,W ) := g (R∗XY Z,W ) , (A14)

and same equalities as R hold true as well.

Consider now Riemann curvature tensors R and R∗ both together. We have the following result

[15],

Proposition A.1. If R is the Riemann curvature tensor of ∇ and R∗ the one of ∇∗ we have that

R(X,Y, Z,W ) = −R∗(X,Y,W,Z) . (A15)

Proof. By considering X,Y as part of an orthonormal frame on the tangent bundle TM we can

assume that [X,Y ] = 0. Owing to this consideration we have that

XY g (Z,W ) = X (Y g(Z,W ))

= X (g (∇Y Z,W ) + g (Z,∇∗YW ))

= g (∇X∇Y Z,W ) + g (∇Y Z,∇∗XW ) + g (∇XZ,∇∗YW ) + g (Z,∇∗X∇∗YW )

By alternating X and Y we arrive at

0 = [X,Y ]g(Z,W ) = XY g(Z,W )− Y Xg(Z,W )

= R(X,Y, Z,W ) + R∗(X,Y, Z,W ) �

As direct consequence we have
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Corollary A.1. The following conditions are equivalent,

1. R ≡ R∗

2. R(X,Y, Z,W ) = −R(X,Y,W,Z)

From the second condition in Cor. A.1 we trivially have that

g (R(X,Y )Z,Z) ≡ 0 for all X,Y, Z ∈ T (M) . (A16)

Another consequence of Cor. A.1 is that ∇ is flat if and only if ∇∗ is flat. Let us now briefly

discuss about the second condition of Cor. A.1, or equivalently the Eq. (A16), and see for which

classes of statistical manifolds it holds true.

Given the dual structure (g,∇,∇∗), we can obtain the Levi-Civita connection as follows [1],

∇ :=
1

2
(∇+∇∗) . (A17)

In addition, we can define a totally symmetric cubic tensor T [15],

T (X,Y, Z) := g
(
T̃ (X,Y ), Z

)
, where T̃ (X,Y ) := ∇XY −∇∗XY . (A18)

Let us now define a 1-parameter family of α-connections on M as follows,

α
∇X Y := ∇XY −

1

2
T̃ (X,Y ). (A19)

From the torsion-freeness of the statistical manifold S and the symmetry of T̃ we immediately have

that ( α
∇
)∗

=
−α
∇ and

1
∇= ∇,

−1
∇= ∇∗ . (A20)

We say that a statistical manifold S = (M, g,∇,∇∗) is conjugate symmetric if for all α the

curvature tensor
α
R fulfils the following relation,

α
R≡
−α
R . (A21)

Therefore, by means of Cor. A.1 we have

Proposition A.2. Sufficient conditions for a statistical S = (M, g,∇,∇∗) being conjugate sym-

metric are

1. There exists α 6= 0 such that
α
R ≡

−α
R .
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2. There exists α 6= 0 such that
α
R≡ 0, i.e. S is α-flat.

Finally, in a conjugate symmetric manifold, the Riemann curvature tensor satisfies all the

identities as the Riemann curvature tensor of the Levi-Civita connection, i.e.

α
R (X,Y, Z,W ) = −

α
R (Y,X,Z,W ); (A22)

α
R (X,Y, Z,W )+

α
R (Y,Z,X,W )+

α
R (Z,X, Y,W ) = 0; (A23)

α
R (X,Y, Z,W ) = −

α
R (X,Y,W,Z); (A24)

α
R (X,Y, Z,W ) =

α
R (Z,W,X, Y ). (A25)

The statistical manifold S = (M, g,∇,∇∗) is called dually flat if R ≡ 0 ≡ R∗. Then, according

to Eq. (A21) and Pro. A.2 we can say that a dually flat manifold is conjugate symmetric. In this

particular case, there exists α0 such that
α0

R≡ 0 and then the statistical manifold S is often referred

as equivalent to dually flat manifold [1]. In this particular case, we can rely on two sets of local

coordinates {θi} and {ηi} such that

Γijk(θ) = 0, and
∗
Γijk (η) = 0 .

Here, Γijk and
∗
Γijk are the connection symbols of ∇ and ∇∗, respectively. In local coordinates

they are expressed by

Γijk = gilΓ
l
jk,

∗
Γijk= gil

∗Γljk , (A26)

where Γljk and ∗Γjk are the Christoffel’s symbols of ∇ and ∇∗, respectively. Additionally, if we

consider the tangent vectors {∂i} and {∂i} of the local coordinates {θi} and {ηi} we have that

gij∂i∂
j = δji , (A27)

meaning that these tangent vectors are reciprocal orthogonal with respect to the metric tensor g.

2. Parallel transport and curvature tensor

Now we describe the connection between the parallel transport and the curvature tensor of the

connection ∇. Obviously, the same is for ∇∗ connection. Roughly speaking, parallel transport

along a loop Σ based at p ∈ M provides the Lie group of rotations PΣ : TpM → TpM. This is

called the holonomy group of ∇ at p. Then, the Lie algebra of it is spanned by the curvature tensor

of ∇.
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Given p ∈ M, let

Lp := {Σ : [0, 1]→ M | Σ(0) = Σ(1) = p} (A28)

be the set of piecewise smooth loop based on p and assume that M is simply connected. Then,

each Σ ∈ Lp is homotopic to the trivial loop.

Therefore the holonomy of ∇ at p ∈ M is defined as the subset of Aut(TpM), i.e. the automor-

phisms of TpM,

Holp := {PΣ ∈ Aut(TpM) | Σ ∈ Lp} . (A29)

Basics properties of Holp are listed in the following proposition.

Proposition A.3. The following basic properties of Holp hold true:

1. Holp is a closed Lie subgroup of Aut(TpM) and its Lie algebra holp ⊂ End(TpM) is called

the holonomy algebra at p.

2. Given Σ′ : [0, 1]→ M such that Σ′(0) = p and Σ′(1) = q. Let PΣ′ : TpM→ TqM the parallel

transport along Σ′. Then

PΣ′ ◦Holp ◦ PΣ′
−1 = Holq.

From the second property in the latter Proposition, it follows that the holonomy groups are

independent of the base point.

Since ∇ is torsion free, the Ambrose-Singer Holonomy Theorem [20] supply a very remarkable

connection between the curvature tensor R and the holonomy algebra holp(∇) of ∇. It states that

holp(∇) is generated by operators RΣ(x, y) := Pα ◦ R(PΣ
−1x,PΣ

−1y) ◦ PΣ
−1,

holp = 〈{(R)Σ(x, y) | x, y ∈ TpM,Σ a loop at p}〉. (A30)

Eq. (A30) shows that holp(∇) is the vector subspace of End(TpM) spanned by the endomorphisms

RΣ(x, y). Thus, R determines holp(∇) and, hence Hol(∇). Therefore, if we consider the case of a

flat manifold we have that R ≡ 0. Then holp(∇) = 0, from which it follows that Hol(∇) = Id.

For the purpose of the present manuscript, the previous theoretical setting for highlighting

connection between holonomy and curvature tensor is performed into the following result.
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Lemma A.1. Let B be a smooth closed 2-disk such that p ∈ ∂B and B is foliated by connecting

∇-geodesics segment starting from p. Then

PΣZp − Zp =

∫
B

P (R(X,Y )Z)

‖X ∧ Y ‖
dA, (A31)

where

• dA is the surface area measure on B induced by the Riemannian metric tensor g on M.

• X and Y are linearly independent vector fields on B.

• Σ : I → ∂B is a parametrization of ∂B such that Σ(0) = Σ(1) = p and, given any inward

pointing vector X ∈ TpB, the orientation of (Σ̇, X) is the same as (X,Y ).

• Zp ∈ TpM and Z is defined by parallel translating Zp first along the parametrized curve Σ

and then, for each 0 ≤ s ≤ 1, along the unique ∇-geodesic segment going from Σ(s) ∈ ∂B to

B.

• P is parallel translation from each point in B to p along the unique ∇-geodesic segment

joining them.

Proof. The proof of this result is provided in [24]. However, for both the sake of completeness

and its usefulness we report it here.

Consider a map H : [0, 1] × [0, 1] → B such that H(1, t) = Σ(t) and H(·, t) is the ∇-geodesic

connecting p to Σ(t), for all t ∈ [0, 1]. Let us denote

S(s, t) =
∂H

∂s
, T (s, t) =

∂H

∂t

then we have [S, T ] = 0 since ∇ is torsion free. Let us observe that T is the Jacobi vector field

along each geodesic H(·, t). Define now

J = T − g (S, T )

‖S‖2
S.

Clearly J is orthogonal to T . Then we have that

dA = ‖T ∧ S‖dsdt = ‖S‖‖T‖dsdt.

Let {ei} ⊂ TpM be an orthonormal frame and extend it by parallel transport along each ∇

geodesic H(·, t). In particular we have that

∇tei(0, t) = 0, ∇sei(s, t) = 0,
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for all (s, t) ∈ [0, 1]× [0, 1]. In addition, we also have that

∇tZ(1, t) = 0, ∇sZ(s, t) = 0,

for all (s, t) ∈ [0, 1]× [0, 1]. Let us now note that Zp = Z(0, 0) = Z(1, 0) and that PΣZp = Z(1, 1) =

Z(0, 1). Then we have that

〈ei(p), (PΣZp − Zp)〉p = 〈ei(0, 1), Z(0, 1)〉p − 〈ei(0, 0), Z(0, 0)〉p

=

∫ 1

0
∂t〈ei(0, t), Z(0, t)〉dt

=

∫ 1

0
〈ei,∇tZ(0, t)〉dt

=

∫ 1

0

[
〈ei,∇tZ(1, t)〉 −

∫ 1

0
∂s〈ei,∇tZ(s, t)〉ds

]
dt

= −
∫ 1

0

∫ 1

0
〈ei,∇s∇tZ(s, t)〉dsdt

= −
∫ 1

0

∫ 1

0
〈ei,R(S, T )Z(s, t)〉dsdt

= −
∫ 1

0

∫ 1

0
〈ei,R(S, J)Z(s, t)〉dsdt

= −
∫ 1

0

∫ 1

0
〈ei,R(σ, τ)Z(s, t)〉‖S‖‖T‖dsdt

=

∫ 1

0

〈ei,R(X,Y )Z〉
‖X ∧ Y ‖

dA,

where σ = S/‖S‖, τ = T/‖T‖ form an orthonormal frame on B. Finally the result follows from

PΣ (R(X,Y )Z) =
∑
i

ei(0, 0)〈ei(s, t),R(X,Y )Z〉 .
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