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Abstract

We study unextendible maximally entangled bases (UMEBs) in Cd ⊗ Cd′
(d < d′). An

operational method to construct d(d′−1)-number UMEBs is established, and two 25-member
UMEBs in C5 ⊗ C6 and C5 ⊗ C12 are given as examples. Furthermore, a systematic way
of constructing d(d′ − r)-number UMEBs in Cd ⊗ Cd′

is presented for r = 1, 2, · · · , d − 1.
Correspondingly, two UMEBs in C3 ⊗ C10 are obtained.

1 Introduction

Quantum entanglement lies in the heart of the quantum information processing. It plays

important roles in many fields such as quantum teleportation, quantum coding, quantum key

distribution protocol, quantum non-locality [1, 2, 3, 4]. Maximally entangled states attract much

attention due to their importance in ensuring the highest fidelity and efficiency in quantum

teleportation [5]. A pure state |ψ⟩ is said to be a d ⊗ d′ (d < d′) maximally entangled state

if and only if for an arbitrary given orthonormal basis {|iA⟩} of subsystem A, there exists an

orthonormal basis {|iB⟩} of subsystem B such that |ψ⟩ can be written as |ψ⟩ = 1√
d

∑d−1
i=0 |iA⟩ ⊗

|iB⟩ [6].

Since the unextendible product basis (UPB) has been studied, many interesting conclusions

have been gained towards its applications [7]. Bravyi and Smolin [8] generalized the notion of

UPB to unextendible maximally entangled bases (UMEB). Chen and Fei [9] provided a way to

construct d2-member UMEBs in Cd ⊗Cd′ (d
′

2 < d < d′). Later, Nan et al. [10] and Li et al. [11]

constructed two sets of UMEBs in Cd⊗Cd′ (d < d′) independently. Wang et al. [12] put forward

a method of constructing UMEBs in Cqd ⊗ Cqd from that in Cd ⊗ Cd, and gave a 30-member

UMEB in C6 ⊗ C6. They proved that there exist UMEBs in Cd ⊗ Cd except for d = p or 2p,
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where p is a prime and p = 3 mod 4. They also presented a 23-member UMEB in C5 ⊗ C5 and

a 45-member UMEB in C7⊗C7 [13]. Then Guo [14, 15, 16] proposed a scenario of constructing

UMEBs via the space decomposition, which improves the previous work about UMEBs.

In this paper, we give two methods of constructing UMEBs in Cd ⊗ Cd′(d ≤ d′). In Sec.

2 we first recall some basic notions and lemmas about UMEB and space decomposition. In

Sec. 3 we give an operational method to construct d(d′ − 1)-number UMEB and then present

explicit constructions of UMEBs in C5 ⊗ C6 and C5 ⊗ C12. In Sec. 4 we present an approach

of systematically constructing d(d′ − r)-member UMEBs in Cd ⊗Cd′ for r = 1, 2, · · · , d− 1, and

give two examples in C3 ⊗ C10. We summarize in Sec. 5.

2 Preliminaries

Throughout this paper, we assume that d < d′. Let us first recall some basic notions and

lemmas [8, 9, 14]. Let {|k⟩} and {|ℓ′⟩} be the standard computational bases of Cd and Cd′ ,

respectively, and {|ϕi⟩}dd
′

i=1 an orthonormal basis of Cd⊗Cd′ . Let Md×d′ be the Hilbert space of

all d×d′ complex matrices equipped with the inner product defined by ⟨A|B⟩ = Tr(A†B) for any

A,B ∈ Md×d′ . If {Ai}dd
′

i=1 constitutes a Hilbert-Schmidt basis of Md×d′ , where ⟨Ai|Aj⟩ = dδij ,

then there is a one-to-one correspondence between {|ϕi⟩} and {Ai} as follows [15, 16]:

|ϕi⟩ =
∑
k,ℓ

a
(i)
kl |k⟩|ℓ

′⟩ ∈ Cd ⊗ Cd′ ⇔ Ai = [
√
da

(i)
kℓ ] ∈ Md×d′ ,

Sr(|ϕi⟩) = rank(Ai), ⟨ϕi|ϕj⟩ =
1

d
Tr(A†

iAj), (1)

where Sr(|ϕi⟩) denotes the Schmidt number of |ϕi⟩. Obviously, |ϕi⟩ is a maximally entangled

pure state in Cd ⊗ Cd′ iff
√
dAi is a d × d′ singular-value-1 matrix (a matrix whose singular

values all equal to 1).

A basis {|ϕi⟩}dd
′

i=1 constituted by maximally entangled states in Cd⊗Cd′ is called a maximally

entangled basis (MEB) of Cd⊗Cd′ . A set of pure states {|ϕi⟩}ni=1 ∈ Cd⊗Cd′ with the following

conditions is called an unextendible maximally entangled basis (UMEB) [8, 9]:

(i) |ϕi⟩, i = 1, 2, 3...n are all maximally entangled states.

(ii) ⟨ϕi|ϕj⟩ = δij , i, j = 1, 2, 3...n.

(iii) n < dd′, and if a pure state |ψ⟩ satisfies that ⟨ϕi|ψ⟩ = 0, i = 1, 2, 3...n, then |ψ⟩ can not

be maximally entangled.
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A Hilbert-Schmidt basis {Ai}dd
′

i=1 constituted by single-value-1 matrices in Md×d′ is called

single-value-1 Hilbert-Schmidt basis (SV1B) of Md×d′ . A set of d × d′ matrices {Ai}ni=1 with

the following conditions is called unextendible singular-value-1 Hilbert-Schmidt basis (USV1B)

of Md×d′ [14]:

(i) Ai, i = 1, 2, 3...n are all single-value-1 matrices.

(ii) Tr(A†
iAj) = dδij , i, j = 1, 2, 3...n.

(iii) n < dd′, and if a matrix X satisfies that Tr(X†Ai) = 0, i = 1, 2, 3...n,then X can not

be a single-value-1 matrix.

It is obvious that {Ai}dd
′

i=1 is an SV1B of Md×d′ iff {|ϕi⟩}dd
′

i=1 is a MEB of Cd ⊗ Cd′ , and

{Ai}ni=1 is a USV1B of Md×d′ iff {|ϕi⟩}ni=1 is a UMEB of Cd ⊗Cd′ . Therefore, for convenience,

we may just call an SV1B {Ai}dd
′

i=1 of Md×d′ an MEB {|ϕi⟩}dd
′

i=1 of Cd ⊗ Cd′ , and call a USV1B

{Ai}ni=1 of Md×d′ a UMEB {|ϕi⟩}ni=1 of Cd ⊗ Cd′ .

In deriving our main results, we need the following lemma in Ref [14].

Lemma 1. [14] Let Md×d′ = M1
⊕

M⊥
1 . If {|ϕi⟩} is a MEB in M1 and {|ψi⟩} is a UMEB

in M⊥
1 , then {|ϕi⟩} ∪ {|ψi⟩} is a UMEB in M. If {|ϕi⟩} is a MEB in M1 and M⊥

1 contains no

single-value-1 matrix (maximally entangled state), then {|ϕi⟩} is a UMEB in M.

3 d(d′ − 1)-member UMEBs in Cd ⊗ Cd′

In this section, we will establish a flexible method to construct d(d′ − 1)-member UMEBs in

Cd ⊗ Cd′ .

Theorem 1. Let Md×d′ be the Hilbert space of all d × d′ complex matrices. If V is a

subspace of Md×d′ such that each matrix in V is a d×d′ matrix ignoring d entries which occupy

different rows and N columns with N < d, then there exists a d(d′ − 1)-member MEB in V , as

well as a d(d′ − 1)-member UMEB in Md×d′ .

Proof. Without loss of generality, we can always assume the ignored d entries in V only

occupy the former N columns. Let bi, i = 0, 1, ..., d−1, denote the column number of the ignored

element in the i-th row. Obviously, bi+1 − bi = 0 or 1.

Denote

C(k, l) =

{
1, l = bk;
0, otherwise.

(2)
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We can construct d(d′ − 1) pure states in Cd ⊗ Cd′ as follows,

|ϕ′j,n⟩ =
1√
d

d−1∑
m=0

ωnm
d |m⟩|tmj⟩, j = 0, 1..., d′ − 2; n = 0, 1..., d− 1, (3)

where ωd = e
2π

√
−1

d , and

tmj =

{
j + 1, m = 0;
tm−1,j + 1⊕d′C(m, tm−1,j + 1), m = 1, 2...d− 1,

(4)

p⊕d′ m denotes (p+m) mod d′.

Next, we prove that all the states in (3) constitute an MEB in V .

(i) Maximally entangled.

If C(m, tm−1,j ⊕d′ 1) = 0 for any m, it is obvious that tmj ̸= tm′j for m ̸= m′.

If C(m, tm−1,j ⊕d′ 1) = 1 for some m ̸= 0, from the definition of tmj one has tm−1,j ̸= bm−1.

Note that bm − bm−1 =0 or 1, then tm−1,j = bm−1 ⊕d′ 1.

From the definition of tmj , we also have C(k + 1, tkj + 1) = 0 for k ̸= m− 1. Hence

tkj =

{
tm−1,j ⊖d′ (m− 1− k), 0 6 k < m− 1;
tmj ⊕d′ (k −m), k > m.

(5)

where p⊖d′ m denotes (p−m) mod d′. In particular,

t0j = tm−1,j ⊖d′ (m− 1), td−1,j = tmj ⊕d′ (d− 1−m). (6)

Then

td−1,j − t0j = tmj ⊕d′ (d− 1−m)− tm−1,j ⊖d′ (m− 1)

= d− 2 + (tmj − tm−1,j)

= d < d′. (7)

Hence tmj ̸= tm′j for m ̸= m′. Namely, the states |ϕ′j,n⟩ in (3) are all maximally entangled.

(ii) Orthogonality.

We first show that |tmj⟩ = |tmj′⟩ if and only if j = j′.

Obviously, tmj = tmj′ for j = j′. If j ̸= j′, without loss of generality, let j′ > j. It is easy

to show that tmj ̸= tmj′ when tm−1,j ̸= tm−1,j′ . Otherwise, from the definition of tmj we have

tmj = tm−1,j′ ⊖d′ C(m, tm−1,j ⊕ 1) when C(m, tm−1,j ⊕d′ 1) = 1. Note that tm−1,j′ = bm−1 ⊖d′ 1
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when C(m, tm−1,j ⊕d′ 1) = 1, as proved in (i). Therefore, tm−1,j′ = bm−1, which contradicts to

the definition of tmj . Furthermore, tmj ̸= tmj′ when t0j ̸= t0j′ . Therefore,

⟨ϕ′j,n|ϕ′j′,n′⟩ =
1

d

d−1∑
m=0

ωn′mωnm⟨tmj |tmj′⟩

=
1

d

d−1∑
m=0

ω(n−n′)mδjj′

= δnn′δjj′ . (8)

Thus, the d(d′ − 1) states {|ϕj,n⟩} in (3) constitutes an MEB in V . Furthermore, there exist no

MEBs in V ⊥ because N < d. Hence {|ϕj,n⟩} is a UMEB in Md×d′ , as well as in Cd ⊗ Cd′ .

Example 1. Constructing two UMEBs in C5 ⊗ C6, whereas V =


0 0 0 ∗ 0 0
0 ∗ 0 0 0 0
0 0 0 ∗ 0 0
0 0 0 0 0 ∗
0 0 0 ∗ 0 0

 .

We can get the following matrix V ′ by using suitable unitary transformation on V ,

V ′ = PV Q =


∗ 0 0 0 0 0
∗ 0 0 0 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 ∗ 0 0 0

 ,

where

P =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

 , Q =



0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

 .

According to Theorem 1, we first construct an MEB {|ϕ′j⟩}25j=1 in V
′, i.e. a UMEB in C5⊗C6

as follows: 

|ϕ′1,2,3,4,5⟩ =
1√
5
(|01′⟩+ α|12′⟩+ α2|23′⟩+ α3|34′⟩+ α4|45′⟩),

|ϕ′6,7,8,9,10⟩ =
1√
5
(|02′⟩+ α|13′⟩+ α2|24′⟩+ α3|35′⟩+ α4|40′⟩),

|ϕ′11,12,13,14,15⟩ =
1√
5
(|03′⟩+ α|14′⟩+ α2|25′⟩+ α3|30′⟩+ α4|41′⟩),

|ϕ′16,17,18,19,20⟩ =
1√
5
(|04′⟩+ α|15′⟩+ α2|21′⟩+ α3|32′⟩+ α4|43′⟩),

|ϕ′21,22,23,24,25⟩ =
1√
5
(|05′⟩+ α|11′⟩+ α2|22′⟩+ α3|33′⟩+ α4|44′⟩),

(9)
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where α = 1, ω5, ω
2
5, ω

3
5, ω

4
5.

By inverse unitary transformation |ϕj⟩ = (P−1 ⊗ Q−1)|ϕ′j⟩, we get the following MEB

{|ϕj⟩}25j=1 in V , i.e., another UMEB in C5 ⊗ C6:

|ϕ1,2,3,4,5⟩ =
1√
5
(|01′⟩+ α|25′⟩+ α2|40′⟩+ α3|12′⟩+ α4|34′⟩),

|ϕ6,7,8,9,10⟩ =
1√
5
(|05′⟩+ α|20′⟩+ α2|42′⟩+ α3|14′⟩+ α4|33′⟩),

|ϕ11,12,13,14,15⟩ =
1√
5
(|00′⟩+ α|22′⟩+ α2|44′⟩+ α3|13′⟩+ α4|31′⟩),

|ϕ16,17,18,19,20⟩ =
1√
5
(|02′⟩+ α|24′⟩+ α2|41′⟩+ α3|15′⟩+ α4|30′⟩),

|ϕ21,22,23,24,25⟩ =
1√
5
(|04′⟩+ α|21′⟩+ α2|45′⟩+ α3|10′⟩+ α4|32′⟩),

(10)

where α = 1, ω5, ω
2
5, ω

3
5, ω

4
5.

Remark 1. Actually both (9) and (10) are UMEBs in C5⊗C6. However, they are different

although they can be unitarily transformed to each other. We will reveal the difference in the

following example.

Example 2. Constructing a UMEB in C5 ⊗ C12, whereas

V = (V1|V2) =


0 0 0 ∗ 0 0 ∗ 0 0 0 0 0
0 0 0 ∗ 0 0 0 0 0 ∗ 0 0
0 ∗ 0 0 0 0 ∗ 0 0 0 0 0
0 0 0 ∗ 0 0 0 0 0 ∗ 0 0
0 0 0 ∗ 0 0 ∗ 0 0 0 0 0

 . (11)

One can easily get the following simple formations V ′
1 and V ′

2 from V1 and V2 by elementary

transformation respectively:

V ′
1 = P1V1Q1 =


∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 ∗ 0 0 0 0
0 ∗ 0 0 0 0
0 ∗ 0 0 0 0

 , V ′
2 = P2V2Q2 =


∗ 0 0 0 0 0
∗ 0 0 0 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 ∗ 0 0 0 0

 . (12)

Then following Theorem 1 we can construct the following UMEBs {|ϕ′j⟩}25j=1 and {|ψ′
j⟩}25j=1
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in V ′
1 and V ′

2 respectively:

|ϕ′1,2,3,4,5⟩ =
1√
5
(|01′⟩+ α|12′⟩+ α2|23′⟩+ α3|34′⟩+ α4|45′⟩),

|ϕ′6,7,8,9,10⟩ =
1√
5
(|02′⟩+ α|13′⟩+ α2|24′⟩+ α3|35′⟩+ α4|40′⟩),

|ϕ′11,12,13,14,15⟩ =
1√
5
(|03′⟩+ α|14′⟩+ α2|25′⟩+ α3|30′⟩+ α4|42′⟩),

|ϕ′16,17,18,19,20⟩ =
1√
5
(|04′⟩+ α|15′⟩+ α2|20′⟩+ α3|32′⟩+ α4|43′⟩),

|ϕ′21,22,23,24,25⟩ =
1√
5
(|05′⟩+ α|10′⟩+ α2|22′⟩+ α3|33′⟩+ α4|44′⟩),

(13)



|ψ′
1,2,3,4,5⟩ =

1√
5
(|07′⟩+ α|18′⟩+ α2|29′⟩+ α3|3, 10′⟩+ α4|4, 11′⟩),

|ψ′
6,7,8,9,10⟩ =

1√
5
(|08′⟩+ α|19′⟩+ α2|2, 10′⟩+ α3|3, 11′⟩+ α4|46′⟩),

|ψ′
11,12,13,14,15⟩ =

1√
5
(|09′⟩+ α|1, 10′⟩+ α2|2, 11′⟩+ α3|3, 6′⟩+ α4|48′⟩),

|ψ′
16,17,18,19,20⟩ =

1√
5
(|0, 10′⟩+ α|1, 11′⟩+ α2|27′⟩+ α3|38′⟩+ α4|49′⟩),

|ψ′
21,22,23,24,25⟩ =

1√
5
(|0, 11′⟩+ α|17′⟩+ α2|28′⟩+ α3|39′⟩+ α4|4, 10′⟩)

(14)

where α = 1, ω5, ω
2
5, ω

3
5, ω

4
5.

By inverse transformation |ϕj⟩ = (P−1
1 ⊗ Q−1

1 )|ϕ′j⟩ and |ψj⟩ = (P−1
2 ⊗ Q−1

2 )|ψ′
j⟩, we can

obtain the following UMEBs {|ϕj⟩}25j=1 and {|ψj⟩}25j=1 in V1 and V2, respectively,

|ϕ1,2,3,4,5⟩ =
1√
5
(|01′⟩+ α|12′⟩+ α2|23′⟩+ α3|34′⟩+ α4|45′⟩),

|ϕ6,7,8,9,10⟩ =
1√
5
(|02′⟩+ α|13′⟩+ α2|24′⟩+ α3|35′⟩+ α4|40′⟩),

|ϕ11,12,13,14,15⟩ =
1√
5
(|03′⟩+ α|14′⟩+ α2|25′⟩+ α3|30′⟩+ α4|42′⟩),

|ϕ16,17,18,19,20⟩ =
1√
5
(|04′⟩+ α|15′⟩+ α2|20′⟩+ α3|32′⟩+ α4|43′⟩),

|ϕ21,22,23,24,25⟩ =
1√
5
(|05′⟩+ α|10′⟩+ α2|22′⟩+ α3|33′⟩+ α4|44′⟩),

(15)

7





|ψ1,2,3,4,5⟩ =
1√
5
(|07′⟩+ α|18′⟩+ α2|29′⟩+ α3|3, 10′⟩+ α4|4, 11′⟩),

|ψ6,7,8,9,10⟩ =
1√
5
(|08′⟩+ α|19′⟩+ α2|2, 10′⟩+ α3|3, 11′⟩+ α4|46′⟩),

|ψ11,12,13,14,15⟩ =
1√
5
(|09′⟩+ α|1, 10′⟩+ α2|2, 11′⟩+ α3|36′⟩+ α4|48′⟩),

|ψ16,17,18,19,20⟩ =
1√
5
(|0, 10′⟩+ α|1, 11′⟩+ α2|27′⟩+ α3|38′⟩+ α4|49′⟩),

|ψ21,22,23,24,25⟩ =
1√
5
(|0, 11′⟩+ α|17′⟩+ α2|28′⟩+ α3|39′⟩+ α4|4, 10′⟩).

(16)

Thus, {|ϕj⟩} ∪ {|ψj⟩} constitutes a UMEB in C5 ⊗ C12 with V in (8). However, neither

(P−1
1 ⊗Q−1

1 ) nor (P−1
2 ⊗Q−1

2 ) can transform {|ψ′
j⟩}∪{|ϕ′j⟩} to {|ϕj⟩}∪{|ψj⟩}, which shows the

difference between (9) and (10).

4 d(d′ − r)-member UMEBs in Cd ⊗ Cd′

In this section, we construct UMEBs consisting of fewer elements in Cd ⊗Cd′ . The following

theorem provides a systematic way of constructing d(d′ − r)-member UMEBs in Cd ⊗ Cd′ ,

r = 1, 2, · · · , d− 1, that is to say, it presents d− 1 constructions of UMEB in Cd ⊗ Cd′ .

Theorem 2. Let d′ =
∑s

i=1 ai + r, where s > 1, ai > d, 0 < r < d. Then the following

vectors constitute a d(d′ − r)-member UMEB in Cd ⊗ Cd′ :

|ϕl,j,n⟩ =
1√
d

d−1∑
m=0

ωnm
d |m⟩|bj + (lj+i⊕aj+1m)⟩, lj+1 = 0, 1, · · · , aj+1 − 1, (17)

where bj =
∑j

k=1 ak; j = 0, 1, · · · , s− 1; n = 0, 1, · · · , d− 1.

Proof. (i) It is obvious that |ϕl,j,n⟩ in (16) are all maximally entangled.

(ii) Orthogonality,

⟨ϕl,j,n|ϕl′,j′,n′⟩ =1

d

d−1∑
m=0

ωn′m
d ωnm

d ⟨bj + (lj+1⊕aj+1m)|bj′ + (l′j′+1⊕aj′+1
m)⟩

=
1

d

d−1∑
m=0

ω
(n−n′)m
d δjj′⟨lj+1⊕aj+1m|l′j′+1⊕aj′+1

m⟩

=
1

d

d−1∑
m=0

ω
(n−n′)m
d δjj′δll′

=δnn′δjj′δll′ .

(18)
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(iii) Denote M1 the d ⊗ (d′ − n) matrix space, a subspace of Md×d′ . Since the number of

{|ϕl,j,n⟩} in (17) equals to the dimension of M1, {|ϕl,j,n⟩} is an MEB of M1. Moreover, since

M⊥
1 is a d × r matrix space and r < d, there contains no UMEB in M⊥

1 . From Lemma 1,

{|ϕl,j,n⟩} is a UMEB of Cd ⊗ Cd′ .

Example 3. UMEBs in C3 ⊗ C10.

Obviously, 10 = 4 + 5 + 1 or 10 = 4 + 4 + 2. According to Theorem 2, we can construct the

following 27-number UMEB (19) and 24-number UMEB (20) in C3 ⊗ C10 respectively.

|ϕ1,2,3⟩ =
1√
3
(|00′⟩+ α|11′⟩+ α2|22′⟩),

|ϕ4,5,6⟩ =
1√
3
(|01′⟩+ α|12′⟩+ α2|23′⟩),

|ϕ7,8,9⟩ =
1√
3
(|02′⟩+ α|13′⟩+ α2|20′⟩),

|ϕ10,11,12⟩ =
1√
3
(|03′⟩+ α|10′⟩+ α2|21′⟩),

|ϕ13,14,15⟩ =
1√
3
(|04′⟩+ α|15′⟩+ α2|26′⟩),

|ϕ16,17,18⟩ =
1√
3
(|05′⟩+ α|16′⟩+ α2|27′⟩),

|ϕ19,20,21⟩ =
1√
3
(|06′⟩+ α|17′⟩+ α2|28′⟩),

|ϕ22,23,24⟩ =
1√
3
(|07′⟩+ α|18′⟩+ α2|24′⟩),

|ϕ25,26,27⟩ =
1√
3
(|08′⟩+ α|14′⟩+ α2|25′⟩),

(19)
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and 

|ϕ1,2,3⟩ =
1√
3
(|00′⟩+ α|11′⟩+ α2|22′⟩),

|ϕ4,5,6⟩ =
1√
3
(|01′⟩+ α|12′⟩+ α2|23′⟩),

|ϕ7,8,9⟩ =
1√
3
(|02′⟩+ α|13′⟩+ α2|20′⟩),

|ϕ10,11,12⟩ =
1√
3
(|03′⟩+ α|10′⟩+ α2|21′⟩),

|ϕ13,14,15⟩ =
1√
3
(|04′⟩+ α|15′⟩+ α2|26′⟩),

|ϕ16,17,18⟩ =
1√
3
(|05′⟩+ α|16′⟩+ α2|27′⟩),

|ϕ19,20,21⟩ =
1√
3
(|06′⟩+ α|17′⟩+ α2|24′⟩),

|ϕ22,23,24⟩ =
1√
3
(|07′⟩+ α|14′⟩+ α2|25′⟩),

(20)

where α = 1, ω3, ω
2
3.

Remark 2. Theorem 2 gives much more UMEBs in Cd ⊗ Cd′ than that from previous

results. For example, the 27-number UMEB (19) and 24-number UMEB (20) in Example 3 are

only two kinds of UMEBs in C3 ⊗ C10. Actually, according to Theorem 2, there are five more

kinds of UMEBs in C3 ⊗C10, since 10 = 3+5+2, 10 = 3+6+1, 10 = 3+3+3+1, 10 = 8+2

and 10 = 9 + 1.

Remark 3. Theorem 2 in Ref. [11] is a special case of the above Theorem 2 at d′ = a1 + r.

Theorem 1 in Ref. [10] and Theorem 1 in Ref. [11] are both special cases of our Theorem 1,

where all the ai are equal.

5 Conclusion

We have provided new constructions of unextendible maximally entangled bases in arbitrary

bipartite spaces Cd ⊗ Cd′ . We have presented a systematic way of constructing d(d′ − 1)-

member UMEB in Cd ⊗ Cd′ , and constructed two different UMEBs in C3 ⊗ C6 and C3 ⊗ C12

respectively. We have established a flexible method to construct d(d − r)-number UMEBs in

Cd ⊗ Cd′ , r = 1, 2, · · · , d − 1. Namely, we have presented more than d − 1 constructions of

UMEBs in Cd ⊗ Cd′ . Such generalized the main results in Ref.[11] and Ref.[10]. We have also

shown 27-number UMEB and 24-number UMEB in C3 ⊗ C10, respectively.
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