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Abstract

Quantum coherence is one of the most significant theories in quantum physics. Ordering

states with various coherence measures is an intriguing task in quantification theory of coherence.

In this paper, we study this problem by use of four important coherence measures – the l1 norm

of coherence, the relative entropy of coherence, the geometric measure of coherence and the

modified trace distance measure of coherence. We show that each pair of these measures give a

different ordering of qudit states when d ≥ 3. However, for single-qubit states, the l1 norm of

coherence and the geometric coherence provide the same ordering. We also show that the relative

entropy of coherence and the geometric coherence give a different ordering for single-qubit states.

Then we partially answer the open question proposed in [Quantum Inf. Process. 15, 4189 (2016)]

whether all the coherence measures give a different ordering of states.

Key words: l1-norm of coherence, relative entropy of coherence, geometric measure of coher-

ence, modified trace distance of coherence, ordering states.

1 Introduction

Quantum coherence is one of the most outstanding features in quantum mechanics. It is very

essential in various research fields such as low-temperature thermodynamics [1, 2, 3, 4, 5], quantum

biology [6, 7, 8, 9, 10, 11], nanoscale physics [12, 13], etc. Although formulating resource theory of

quantum coherence is a long-standing open problem, it has only been proposed by Baumgratz et al.

recently [14]. In their seminal work, conditions that a suitable measure of coherence should satisfy

have been put forward. After that, many efforts have been made in quantification of coherence. Up

to now, various proper quantifiers have been given, such as the l1 norm of coherence, the relative

entropy of coherence [14], the geometric measure of coherence [15] and the modified trace distance

measure of coherence [16, 17], etc.

Based on various physical contexts, different values of coherence may reflect different proper-

ties of quantum states. Generally, one cannot say that the coherence of a state ρ1 is smaller than

that of ρ2, since different coherence measures may provide a different ordering for these two states.
∗Corresponding author: chenbin5134@163.com.
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Similar to the case of quantum entanglement, different measures of quantum coherence characterize

different aspects of the state, and play different roles in quantum information processing. Hence, a

given quantum state may behavior better in one information processing, but worse in another infor-

mation task. On the other hand, one can identify two measures of coherence to some extent if they

give the same ordering for all quantum states. Therefore, it is worthy of a study on the ordering of

quantum states under different measures of quantum coherence. It should be noted that this issue has

been extensively investigated in the theory of quantum entanglement. In [18], Virmani et al. showed

that any two entanglement measures placing the same ordering on states must be identical, as long

as they coincide on pure states. However, less has been known for quantum coherence. In this paper,

we focus on ordering states based on various coherence measures.

In [19], Liu et al. consider the l1 norm of coherence and the relative entropy of coherence,

and show that these two measures do not give the same ordering of states. Then they propose an

open question: whether all the coherence measures give a different ordering of states? That is to

say, whether there exist quantum states ρ1 and ρ2, such that the following relation fails for any two

coherence measures CA and CB: CA(ρ1) ≤ CA(ρ2) iff CB(ρ1) ≤ CB(ρ2). In this paper, we investigate

this problem. We mainly focus on four coherence measures – the l1 norm of coherence, the relative

entropy of coherence, the geometric measure of coherence and the modified trace distance measure

of coherence. We show that each pair of these measures do not give the same ordering of high-

dimensional states in general. However, the l1 norm of coherence and the geometric coherence

provide the same ordering for single-qubit states, while the relative entropy of coherence and the

geometric coherence still give rise to a different ordering in this case. Thus we partially answer the

open question proposed in [19]. Additionally, we provide some special sets of quantum states such

that each pairs of the four coherence measures give the same ordering.

This paper is organized as follows. In Sect. 2, we review some basic concepts about quan-

tification theory of coherence and some coherence measures we will use in this paper. In Sect. 3,

we present our main results via detailed examples by using pairwise coherence measures. We also

extend our discussion to the coherence of formation and the Tsallis relative α-entropy of coherence

for single-qubit states. We conclude our results in Sect. 4.

2 The quantification of coherence

In this section, we first review some basic concepts about quantification of coherence.

For a given d-dimensional Hilbert space H , let us fix an orthonormal basis {|i〉}di=1. Then the

incoherent states are defined as:

σ =

d∑
i=1

pi|i〉〈i|, (1)

where pi ≥ 0, Σd
i=1 pi = 1. The set of all the incoherent states is denoted as I. Let Λ be a completely

positive trace preserving (CPTP) map:

Λ(ρ) =
∑

n

KnρK†n , (2)
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where {Kn} is a set of Kraus operators satisfying ΣnK†n Kn = Id, with Id the identity operator. If

KnIK†n ⊆ I for all n, then we call {Kn} a set of incoherent Kraus operators, and the corresponding Λ

an incoherent operation.

In Ref. [14], Baumgratz et al. proposed a resource-theoretic framework for quantifying quan-

tum coherence. Any function C defined on a space of quantum states can be employed as a proper

measure of coherence, if it satisfies the following four conditions :

(B1) C(ρ) ≥ 0, C(ρ) = 0 if and only if ρ ∈ I;

(B2) C(Λ(ρ)) ≤ C(ρ) for any incoherent operation Λ;

(B3) Σn pnC(ρn) ≤ C(ρ), where pn = Tr(KnρK†n ), ρn = KnρK†n/pn, {Kn} is a set of incoherent

Kraus operators;

(B4) C(Σi piρi) ≤ Σi piC(ρi) for any set of quantum states {ρi} and any probability distribution

{pi}.

Recently, Yu et al. put forward an alternative framework for quantifying coherence [16]. This

framework is equivalent to the previous one proposed by Baumgratz et al.[14]. A nonnegative

function C can be used as a measure of coherence, if it satisfies:

(C1) C(ρ) ≥ 0, C(ρ) ≥ 0 if and only if ρ ∈ I;

(C2) C(Λ(ρ)) ≤ C(ρ) for any incoherent operation Λ;

(C3) C(p1ρ1 ⊕ p2ρ2) = p1C(ρ1) + p2C(ρ2) for block diagonal states ρ in the incoherent basis.

In accordance with the above frameworks, several legitimate coherence measures have been

provided so far. In this paper, we mainly consider four coherence measures – the l1 norm of coher-

ence, the relative entropy of coherence, the geometric measure of coherence and the modified trace

distance measure of coherence.

The l1 norm of coherence is defined as

Cl1 (ρ) =
∑
i, j

|ρi j|, (3)

where ρi j = 〈i|ρ| j〉.

The relative entropy of coherence is defined as

Cr(ρ) = min
σ∈I
S(ρ‖σ) = S(ρdiag) − S(ρ), (4)

where S(ρ‖σ) = Tr(ρ log ρ− ρ logσ) is the quantum relative entropy, S(ρ) = −Tr(ρ log ρ) is the von

Neumann entropy, and ρdiag = Σiρii|i〉〈i|.

The geometric measure of coherence is defined as

Cg(ρ) = 1 −max
σ∈I

F(ρ, σ), (5)

where F(ρ, σ) =
(
Tr

√
√
σρ
√
σ
)2

is the fidelity of two density operators ρ and σ. When ρ is a pure

state, Cg(ρ) = 1 −maxi{ρii}, where ρii = 〈i|ρ|i〉 [20].

The modified trace distance measure of coherence is defined as

C′tr(ρ) = min
λ≥0,δ∈I

‖ ρ − λδ ‖tr . (6)
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It has been shown that C′tr(ρ) = Cl1 (ρ) if ρ is a single-qubit state [17].

It should be noted that the last two coherence measures have no analytical expressions in gen-

eral. However, for some special classes of coherent states, explicit formulae have been presented in

[20, 17]. For example, for the maximally coherent mixed states (MCMS) [21],

ρm = p|φd〉〈φd | +
1 − p

d
Id, (7)

where 0 < p ≤ 1, and |φd〉 = 1
√

d

∑d
i=1 |i〉 is the maximally coherent state, one has Cg(ρm) = 1 −

[
√

1 − p + 1
d (

√
1 − p + dp −

√
1 − p)]2 [20], and C′tr(ρm) = p [17].

3 Ordering states with coherence measures

Let us recall the concept of ordering states with coherence measures. We first note that all the

states can be ordered under a coherence measure C, since C(ρ) is always a nonnegative real number.

Then a natural question is raised: are there any two coherence measures CA and CB which give rise

to the same ordering of all states? Here the same ordering means that the following relation holds

for any two states ρ1 and ρ2:

CA(ρ1) ≤ CA(ρ2)⇔ CB(ρ1) ≤ CB(ρ2). (8)

Otherwise, we say that the two measures give a different ordering.

In this section, we discuss ordering states with pairs of coherence measures among Cl1 , Cr, Cg

and C′tr via detailed examples. We will show that Cl1 , Cr, Cg and C′tr generate a different ordering of

qudit (d ≥ 3) states. For single-qubit states, we show that Cl1 and Cg give the same ordering, while

Cr and Cg provide a different ordering.

3.1 Ordering states with Cl1 and Cg

We first consider two-dimensional quantum systems. Any density operator acting on a two-

dimensional quantum system can be generally written as

ρ =

 a b

b∗ 1 − a

 , (9)

where |a|2 + |b|2 ≤ 1. Then we have Cl1 (ρ) = 2|b| and Cg(ρ) =
1−
√

1−4|b|2

2 [20]. It can be seen that

Cl1 (ρ) and Cg(ρ) are both increasing functions with respect to |b|. Thus, for all single-qubit states,

the coherence measures Cl1 and Cg give the same ordering, since Cl1 (ρ1) ≤ Cl1 (ρ2) ⇔ |b1| ≤ |b2| ⇔

Cg(ρ1) ≤ Cg(ρ2), where ρ1 =

 a1 b1

b∗1 1 − a1

 and ρ2 =

 a2 b2

b∗2 1 − a2

 are arbitrary single-qubit

states.

We now discuss the case of high-dimensional quantum systems. Let |ψ〉 =
∑d

i=1
√
λi|i〉 and

|φ〉 =
∑d

i=1
√
µi|i〉 be two pure states, where λi ≥ 0,

∑d
i=1 λi = 1, and µi ≥ 0,

∑d
i=1 µi = 1. Then we

have Cl1 (|ψ〉) ≤ Cl1 (|φ〉) ⇔
∑d

i=1
√
λi ≤

∑d
i=1
√
µi, and Cg(|ψ〉) ≤ Cg(|φ〉) ⇔ maxi{λi} ≥ maxi{µi}.
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Thus Cl1 (|ψ〉) ≤ Cl1 (|φ〉) ⇔ Cg(|ψ〉) ≤ Cg(|φ〉) if the two conditions
∑d

i=1
√
λi ≤

∑d
i=1
√
µi and

maxi{λi} ≥ maxi{µi} hold at the same time.

Let us consider a special case where λ1 = λ ≥ 0, λ2 = λ3 = · · · = λd, i.e., |ψ〉 =
√
λ|1〉 +√

1−λ
d−1

∑d
i=2 |i〉. Then we have Cl1 (|ψ〉) = (

√
λ +

√
(d − 1)(1 − λ))2 − 1. Note that Cl1 (|ψ〉) is an

increasing function with respect to λ when λ ≤ 1
d , while a decreasing function when λ ≥ 1

d . Let

|φ〉 =
√
µ|1〉 +

√
1−µ
d−1

∑d
i=2 |i〉. We consider the following cases:

(i) If λ ≤ 1
d , µ ≤

1
d , then we have Cl1 (|ψ〉) ≤ Cl1 (|φ〉)⇔ λ ≤ µ⇔ Cg(|ψ〉) = 1 − 1−λ

d−1 ≤ Cg(|φ〉) =

1 − 1−µ
d−1 . Thus the coherence measures Cl1 and Cg generate the same ordering in this case.

(ii) If λ ≥ 1
d , µ ≥

1
d , then we have Cl1 (|ψ〉) ≤ Cl1 (|φ〉) ⇔ λ ≥ µ ⇔ Cg(|ψ〉) = 1 − λ ≤ Cg(|φ〉) =

1 − µ. Thus Cl1 and Cg also generate the same ordering in this case.

(iii) If λ ≥ 1
d , µ <

1
d , then we have Cg(|ψ〉) ≤ Cg(|φ〉) ⇔ (d − 1)λ ≥ 1 − µ. To find different

ordering pairs, one may choose λ and µ that satisfy Cl1 (|ψ〉) > Cl1 (|φ〉) ⇔
√
λ +
√

(d − 1)(1 − λ) >
√
µ +

√
(d − 1)(1 − µ). This implies that

√
1 − λ +

√
1 − µ >

√
(d − 1)λ +

√
(d − 1)µ ≥

√
1 − µ +√

(d − 1)µ. Hence 1−µ
d−1 ≤ λ < 1 − (d − 1)µ, d ≥ 3, and in this case Cl1 and Cg generate a different

ordering. Therefore we conclude that the coherence measures Cl1 and Cg do not give the same

ordering in d-dimensional quantum systems when d ≥ 3. They can only provide the same ordering

for families of quantum states.

As another example, let us consider ρm defined in (7). We have that Cl1 and Cg provide the same

ordering for this class of states, since Cl1 (ρm) = (d−1)p and Cg(ρm) = 1−[
√

1 − p+ 1
d (

√
1 − p + dp−√

1 − p)]2 are both increasing functions with respect to p, thus Cl1 (ρm) ≤ Cl1 (ρ̃m) ⇔ p ≤ p̃ ⇔

Cg(ρm) ≤ Cg(ρ̃m), where ρ̃m = p̃|φd〉〈φd | +
1−p̃

d Id.

3.2 Ordering states with Cr and Cg

In Ref. [19], the authors have shown that Cr and Cl1 give rise to a different ordering of single-

qubit states. Taking into account the previous result that Cl1 and Cg provide the same ordering of

single-qubit states, we have that Cr and Cg must provide a different ordering in this case. Just like

the discussion in [22], to find σ1 and σ2 that satisfy both Cr(σ1) > Cr(σ2) and Cg(σ1) < Cg(σ2),

one can choose t1 and t2 (t1 < t2) such that H
( 1−
√

1−t2
1

2

)
> 1 − H

(
1−t2

2

)
, and then find z1 and z2

(0 ≤ z1, z2 ≤ 1) by using H
(

1
2 −

z1
2

)
− H

(
1
2 −

√
z2

1+t2
1

2

)
> H

(
1
2 −

z2
2

)
− H

(
1
2 −

√
z2

2+t2
2

2

)
, where σ1 =

1
2

 1 + z1 t1
t1 1 − z1

 , σ2 = 1
2

 1 + z2 t2
t2 1 − z2

, and H(x) = −x log x − (1 − x) log(1 − x). For

instance, assume

σ1 =

 4
5

2
5

2
5

1
5

 , σ2 =

 1
2

1
√

6
1
√

6
1
2

 . (10)

we have that Cr and Cg must provide a different ordering. This can be seen from the fact that

Cr(σ1) = 0.7219 > Cr(σ2) = 0.5576, and Cg(σ1) = 1
5 < Cg(σ2) = 3−

√
3

6 .

For high-dimensional quantum systems, let us define two d-dimensional states (d ≥ 3) as fol-

lows:

σ(d)
1 = pσ1 ⊕ (1 − p)δ(d−2)

1 , σ(d)
2 = pσ2 ⊕ (1 − p)δ(d−2)

2 , (11)
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where 0 < p ≤ 1, and δ(d−2)
1 , δ(d−2)

2 are (d − 2)-dimensional incoherent states. Then Cr(σ
(d)
1 ) =

pCr(σ1) > pCr(σ2) = Cr(σ
(d)
2 ), and Cr(σ

(d)
1 ) = pCg(σ1) < pCg(σ2) = Cg(σ(d)

2 ). Thus, the coherence

measures Cr and Cg give rise to a different ordering of arbitrary dimensional states.

However, for some special classes of states, Cr and Cg could generate the same ordering. For

instance, it has been shown that for all single-qubit states with a fixed mixedness, the coherence

measures Cl1 and Cr have the same ordering [23], thus Cr and Cg also have the same ordering in this

case, since Cl1 and Cg provide the same ordering for all single-qubit states. Let us consider again a

class of MCMS ρm, one has Cr(ρm) = log d +
1+(d−1)p

d log 1+(d−1)p
d +

(d−1)(1−p)
d log 1−p

d . It can been

seen that Cr(ρm) and Cg(ρm) are both increasing functions with respect to p, hence give rise to the

same ordering.

3.3 Ordering states with C′tr and Cg

It is obvious that C′tr and Cg give the same ordering of single-qubit states, since in this case

C′tr(ρ) = Cl1 (ρ), Cl1 and Cg provide the same ordering.

For high-dimensional quantum systems, since the two coherence measures C′tr and Cg have no

analytical expressions in general, we can only take into account special examples to show that they

do not provide the same ordering. To this end, let us consider two qutrit states ρ1 = |φ2〉〈φ2| ⊕ 0, and

ρ2 = p|φ3〉〈φ3| +
1−p

3 I3, where |φ2〉 = 1
√

2

∑2
i=1 |i〉, and |φ3〉 = 1

√
3

∑3
i=1 |i〉. Then we have C′tr(ρ1) =

C′tr(|φ2〉〈φ2|) = 1, C′tr(ρ2) = p, Cg(ρ1) = Cg(|φ2〉〈φ2|) = 1
2 , Cg(ρ2) = 1 − ( 2

3

√
1 − p + 1

3

√
1 + 2p)2.

It can be seen that Cg(ρ2) ≤ 2
3 , since Cg(ρ2) is an increasing function with respect to p. Thus there

exists a p < 1 such that Cg(ρ2) > Cg(ρ1). For instance, let ρ′2 = 99
100 |φ3〉〈φ3| +

1
300 I3, then we get

Cg(ρ′2) > Cg(ρ1), and C′tr(ρ
′
2) = 99

100 < C′tr(ρ1) = 1. That is to say, C′tr and Cg provide a different

ordering of qutrit states. Using similar approach which transforms a 3 × 3 density matrix to a d × d

density matrix (d ≥ 3) by direct sum of an incoherent state, we have that the coherence measures C′tr
and Cg generate a different ordering of qudit (d ≥ 3) states.

Similar to the above discussion, C′tr and Cg provide the same ordering for ρm, since C′tr(ρm) and

Cg(ρm) are both increasing functions with respect to p.

3.4 Ordering states with C′tr and Cl1

Before discussing ordering states with C′tr and Cl1 , let us first provide an upper bound of C′tr.

Let σ be a pure qudit state and δi = |i〉〈i|, 1 ≤ i ≤ d. Then we have

C′tr(σ) ≤ min
λ≥0,1≤i≤d

‖ σ − λδi ‖tr

= min
λ≥0

√
λ2 + (2 − 4max

i
{σii})λ + 1

=


√

1 − (2max
i
{σii} − 1)2 if max

i
{σii} ≥

1
2 ,

1 if max
i
{σii} <

1
2 .

Thus, for any qudit state ρ, C′tr(ρ) ≤ Σi piC
′
tr(ρi) ≤ 1, where ρ = Σi piρi is any pure state decomposi-

tion of ρ with pi ≥ 0, Σi pi = 1. For single-qubit states, since Cl1 (ρ) = C′tr(ρ), Cl1 and C′tr of course
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provide the same ordering in this case.

Now consider the following pure qutrit states, |ψ〉 =
√
λ1|1〉 +

√
λ2|2〉 and |φ〉 =

√
µ1|1〉 +

√
µ2(|2〉 + |3〉), where λ1 + λ2 = 1, µ1 + 2µ2 = 1. Assume that 1

2 ≤ λ1 < µ1 <
8
9 . Then we find

C′tr(|φ〉) ≤
√

1 − (2µ1 − 1)2 < 2
√
λ1(1 − λ1) = C′tr(|ψ〉), and Cl1 (|φ〉) = (

√
µ1 +

√
2(1 − µ1))2 − 1 >

1 ≥ Cl1 (|ψ〉). For instance, let ρ1 and ρ2 be two pure qutrit states,

ρ1 =


1
2

1
2 0

1
2

1
2 0

0 0 0

 , ρ2 =


3
4

√
6

8

√
6

8√
6

8
1
8

1
8√

6
8

1
8

1
8

 .
Using the previous results, one can easily get C′tr(ρ2) ≤

√
1 − (2 · 3

4 − 1)2 =
√

3
2 < C′tr(ρ1) = 1, and

Cl1 (ρ2) = 2
√

6+1
4 > Cl1 (ρ1) = 1. Thus the coherence measures C′tr and Cl1 give a different ordering

in this case, hence also give a different ordering of states in d-dimensional quantum systems when

d ≥ 3.

Noting that Cl1 (ρm) = (d − 1)p and C′tr(ρm) = p are both increasing functions with respect

to p, they provide the same ordering for ρm. If we consider the density matrices which have the

block-diagonal form under the incoherent basis, and the dimension of each block is at most 2, then

the coherence measures Cl1 and C′tr also give the same ordering.

3.5 Ordering states with C′tr and Cr

Consider the coherence measures C′tr and Cr for arbitrary d-dimensional quantum systems.

When d = 2, C′tr(ρ) = Cl1 (ρ), it has been proved in [19] that C′tr and Cr give rise to a different

ordering. When d ≥ 3, similar to the discussion in Sect. 3.2, one can demonstrate that C′tr and Cr

also give rise to a different ordering.

There also have been sets of quantum states such that C′tr and Cr provide the same ordering.

Note that the coherence measures Cl1 and Cr have the same ordering for all single-qubit states with

a fixed mixedness. Thus C′tr and Cr also provide the same ordering in this case, since C′tr(ρ) = Cl1 (ρ)

for all single-qubit states. Besides, similarly to the previous discussion, C′tr and Cr give the same

ordering for ρm.

We now extend our discussion to other coherence measures – the coherence of formation and

the Tsallis relative α-entropies of coherence. The coherence of formation is defined as C f (ρ) =

min
{pi,ϕi}

Σi piS(|ϕi〉〈ϕi|diag), where ρ = Σi pi|ϕi〉〈ϕi| is any pure state decomposition of ρ. The Tsallis

relative α-entropies of coherence is defined as Cα(ρ) = min
δ∈I
Dα(ρ‖δ) = rα−1

α−1 , where r = Σi〈i|ρα|i〉
1
α ,

α ∈ (0, 1) ∪ (1, 2].

It has been shown that for single-qubit states, Cl1 , C f give the same ordering [19]. Thus the four

measures Cl1 , C′tr, Cg and C f provide the same ordering of single-qubit states. Moreover, we claim

that Cα and Cg, Cα and C′tr, as well as Cα and C f do not generate the same ordering of single-qubit

states when α = 1
2 and 2, since in this case, Cα and Cl1 generate a different ordering [22]. The fact

that Cα and Cr give rise to a different ordering of single-qubit states has also been proposed in Ref.

[22].
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In Ref. [23], the authors studied the coherent-induced state ordering with fixed mixedness.

They proved that Cl1 , Cr and Cα give the same ordering of single-qubit states with a fixed mixedness.

Thus, we get that with a fixed mixedness, the coherence neasures Cl1 , Cr, Cg, C′tr, C f and Cα give

the same ordering of single-qubit states. Therefore the problem of ordering single-qubit states with

these six coherence measures is completely solved.

4 Conclusion

We have investigated the issue of ordering states with the l1 norm of coherence, the relative

entropy of coherence, the geometric measure of coherence and the modified trace distance measure

of coherence. For single-qubit states, the l1 norm of coherence, the modified trace distance measure

of coherence and the geometric coherence give the same ordering. We also have shown that the

relative entropy of coherence and the geometric measure of coherence do not give the same ordering

of single-qubit states. Furthermore, for high-dimensional quantum systems, each pair of the four

measures Cl1 , Cr, Cg and C′tr give a different ordering. However, for some special classes of quantum

states, each pair of these measures may provide the same ordering. For instance, we have shown that

they give the same ordering for a class of maximally coherent mixed states ρm. We also have com-

pletely solved the problem of ordering single-qubit states with the above four measures, coherence

of formation and the Tsallis relative α-entropies of coherence. For each pair of the four measures

Cl1 , Cr, Cg and C′tr, we also give some sets under which they give the same ordering. It should be

noted that, as it was shown in [24], the ”non-equivalence” between the relative entropy and l1-norm

coherence is due to the dependence of the first on the density matrix populations, in contrast to the

last. However, we cannot follow the idea in this paper since the two coherence measures Cg and

C′tr have no analytical expressions in general. In other words, we do not know whether or not these

two coherence measures are dependence of density matrix populations. Further efforts can be made

towards whether or not there exist other coherence measures which generate the same ordering of

qudit states.
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