
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Unextendable maximally entangled

bases and mutually unbiased bases in

multipartite systems

by

Ya-Jing Zhang, Hui Zhao, Naihuan Jing, and

Shao-Ming Fei

Preprint no.: 6 2018





Unextendable maximally entangled bases and mutually unbiased

bases in multipartite systems∗

Ya-Jing Zhang1, Hui Zhao1†, Naihuan Jing2,3, Shao-Ming Fei 4

1College of Applied Sciences, Beijing University of Technology, Beijing 100124, China

2Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

3Department of Mathematics, Shanghai University, Shanghai 200444, China

4School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

March 15, 2017

Abstract

We generalize the notion of unextendable maximally entangled basis from bipartite systems to multi-

partite quantum systems. It is proved that there do not exist unextendible maximally entangled bases in

three-qubit systems. Moreover, two types of unextendable maximally entangled bases are constructed in

tripartite quantum systems and proved to be not mutually unbiased.
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1. Introduction

Quantum entanglement has played an important role in various quantum information processings such as

quantum teleportation,[1] quantum cryptography,[2] quantum dense coding,[3] and parallel computing.[4] As one

of the intrinsic features of quantum computation and information, quantum entanglement is closely related

to some of the fundamental problems in quantum mechanics such as reality and non-locality.[5] An important

issue concerns with the notion of unextendable product basis (UPB), which is a set of incomplete orthonormal

product basis whose complementary space has no product states.[6]

Corresponding to UPB is the unextendable maximally entangled basis (UMEB). It is known that there is no

UMEB in the two-qubit system.[7] The UMEB in bipartite systems was studied and some explicit constructions

of UMEB were given in Refs. [8,9,10]. In addition, the UMEB problem was generalized to states with given

Schmidt numbers.[11,12] Though the bipartite case is well understood, the question of UMEB for multipartite

systems is still an open problem.
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and Simons Foundation grant No.198129.
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Another related interesting notion is that of mutually unbiased base (MUB), which also plays an important

role in quantum information. The maximum number of MUB in Cd is known to be no more than d+ 1 for any

given d. It has been confirmed that there are indeed d + 1 MUBs when d is a prime power. [13] However, for

general d, the maximum number of MUB is still open.

In this paper, we study UMEB in three-qubit system and MUB in tripartite systems. The paper is organized

as follows: In Sect.2, we first generalize UMEB in bipartite systems to multipartite systems, then prove that

there does not exist UMEB in three-qubit systems. In Sect.3, we construct different UMEBs in tripartite

systems and show they are not mutually unbiased. Conclusions and discussions are given in Sect.4.

2. UMEB in C2 ⊗ C2 ⊗ C2

We first recall the definition of UMEB in the bipartite system. Let Cdα be the dα-dimensional complex

vector space. A set of states {|ϕi⟩ ∈ Cd1 ⊗ Cd2 , i = 1, 2, . . . , n, n < d1d2} is called an n-number UMEB if and

only if

(i) |ϕi⟩, i = 1, 2, . . . , n, are maximally entangled;

(ii) ⟨ϕi|ϕj⟩ = δij ;

(iii) If ⟨ϕi|φ⟩ = 0 for all i = 1, 2, . . . , n, then |φ⟩ cannot be maximally entangled.

Therefore the key component of the above UMEB is the concept of maximally entanglement of the bipar-

tite system. To generalize the notion of the UMEB to multipartite systems, we first recall the definition of

maximally entanglement in multipartite situation. As there is no unique way of characterizing the multipartite

entanglement, different definition captures different features of this quantum phenomenon. In this paper, we

employ the definition of maximally multipartite entangled states introduced by Facchi et al.[14] For the existence

of such maximally entangled states for qubit systems, see [15].

Consider a bipartition (A, Ā) of system S, where A ⊂ S, Ā = S \ A, S = {1, 2, . . . , n} and 1 ≤ nA ≤ nĀ,

with nA = |A|, the cardinality of party A. At the level of Hilbert spaces, we get H = HA ⊗HĀ.

Definition 1 State ρ ∈ HA ⊗HĀ, NA = dim(HA) ≤ dim(HĀ) is maximally entangled if and only if the

reduced state is maximally mixed under all possible bipartite partitions (A, Ā):

ρA = TrĀ(ρ) =
I

nA
, (1)

where I is corresponding identity matrix.

We now present the definition of UMEB in multipartite systems.

Definition 2 A set of states {|ϕi⟩ ∈ Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdk , i = 1, 2, . . . , n, n < d1d2 . . . dk} is called an

n-number UMEB if and only if

(i) |ϕi⟩, i = 1, 2, . . . , n, are maximally entangled;

(ii) ⟨ϕi|ϕj⟩ = δij ;

(iii) If ⟨ϕi|φ⟩ = 0 for all i = 1, 2, . . . , n, then |φ⟩ cannot be maximally entangled.

Next we focus on quantum states in C2 ⊗ C2 ⊗ C2.

Theorem 1 UMEB does not exist in C2 ⊗ C2 ⊗ C2.

Proof For three qubits, the maximally entangled states are local unitary equivalent to the GHZ state.[14]

Without loss of generality, a basis vector |ϕ⟩ of UMEB can be represented by a linear operator U ⊗ V acting
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on C2 ⊗ C2 such that

|ϕ⟩ = (I ⊗ U ⊗ V )|ϕ0⟩, (2)

where U, V are unitary matrices over C2, and |ϕ0⟩ =
1√
2
(|000⟩+ |111⟩).

We can construct eight vectors which are maximally entangled and orthogonal to each other.

|ϕ1⟩ = (I ⊗ I ⊗ I)|ϕ0⟩,

|ϕα+1⟩ = (I ⊗ I ⊗ σα)|ϕ0⟩, α = 1, 2, 3

|ϕβ+4⟩ = (I ⊗ σβ ⊗ I)|ϕ0⟩, β = 1, 2

|ϕγ+6⟩ = (I ⊗ σ1 ⊗ σγ)|ϕ0⟩, γ = 1, 2 (3)

by the Pauli spin matrices

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (4)

Any three-qubit pure state can be generally written in the form:[15]

|φ⟩ = λ0|000⟩+ λ1e
iθ|100⟩+ λ2|101⟩+ λ3|110⟩+ λ4|111⟩, (5)

where λi ≥ 0,
∑
i

λ2i = 1 and θ ∈ [0, π]. Next we will proof that if ⟨ϕi|φ⟩ = 0 for all i = 1, 2, . . . , 8, then |φ⟩

cannot be maximally entangled.

Suppose |φ⟩ is maximally entangled, consider |φ⟩ as a three-qubit system associated to qubits A, B and C.

Under the bipartition A|BC, the reduced state of |φ⟩ is of the form:

ρA = λ20|0⟩⟨0|+ λ0λ1e
−iθ|0⟩⟨1|+ λ0λ1e

iθ|1⟩⟨0|+ (λ21 + λ22 + λ23 + λ24)|1⟩⟨1|, (6)

where I is the identical operator in HA. Setting ρA =
I

2
, we get

λ20 =
1

2
, λ22 + λ23 + λ24 =

1

2
, λ1 = 0. (7)

Let

U =

 u11 u12

u21 u22

 , V =

 v11 v12

v21 v22

 . (8)
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Using Eq.(7) and ⟨ϕi|φ⟩ = 0 for all i = 1, 2, . . . , n, we have

⟨ϕ1|φ⟩ =
1√
2
(λ0u11v11 + λ2u21v22 + λ3u22v21 + λ4u22v22) = 0,

⟨ϕ2|φ⟩ =
1√
2
(λ0u11v21 + λ2u21v12 + λ3u22v11 + λ4u22v12) = 0,

⟨ϕ3|φ⟩ =
i√
2
(λ0u11v21 − λ2u21v12 − λ3u22v11 − λ4u22v12) = 0,

⟨ϕ4|φ⟩ =
1√
2
(λ0u11v11 − λ2u21v22 − λ3u22v21 − λ4u22v22) = 0,

⟨ϕ5|φ⟩ =
1√
2
(λ0u21v11 + λ2u11v22 + λ3u12v21 + λ4u12v22) = 0,

⟨ϕ6|φ⟩ =
i√
2
(λ0u21v11 − λ2u11v22 − λ3u12v21 − λ4u12v22) = 0,

⟨ϕ7|φ⟩ =
1√
2
(λ0u21v21 + λ2u11v12 + λ3u12v11 + λ4u12v12) = 0,

⟨ϕ8|φ⟩ =
i√
2
(λ0u21v21 − λ2u11v12 − λ3u12v11 − λ4u12v12) = 0. (9)

Hence

u11v11 = u11v21 = u21v11 = u21v21 = 0. (10)

This result contradicts to the unitarity of U and V , then |φ⟩ is not maximally entangled. Therefore we can

complete the basis |ϕ1⟩, . . . , |ϕ8⟩ in C2 ⊗ C2 ⊗ C2. Hence UMEB does not exist in C2 ⊗ C2 ⊗ C2.

3. MUB in C2 ⊗ C3 ⊗ C3

In this section we construct two UMEBs in C2 ⊗ C3 ⊗ C3 which are not mutually unbiased.

Definition 3[8] Two orthonormal bases B1 = {|bi⟩}di=1 and B2 = {|cj⟩}dj=1 of Cd are said to be mutually

unbiased if and only if

|⟨bi|cj⟩| =
1√
d
, ∀i, j = 1, . . . , d. (11)

According to Ref.[8], we have two types of UMEBs in C2 ⊗ C3. One is

|ϕ0⟩ =
1√
2
(|00⟩+ |11⟩),

|ϕi⟩ = (σi ⊗ I3)|ϕ0⟩, i = 1, 2, 3. (12)

Another is

|ψj⟩ =
1√
2
(σj ⊗ I3)(|0⟩|x⟩+ |1⟩|y⟩), j = 0, 1, 2, 3, (13)

where |x⟩ = 1√
3
(|0⟩+ 1 +

√
3i

2
|1⟩+ |2⟩), |y⟩ = 1√

3
(
−
√
3 + i

2
|0⟩+ i|1⟩ − i|2⟩) and σ0 = I.

We now adopt the method in Ref.[12]. Suppose {|ψi⟩} is an unextendible entangled bases with Schmidt

number k of Cd1 ⊗ Cd2 , where d1 ≤ d2, 1 ≤ k ≤ d1, |ψi⟩ =
k∑

l=0

λ
(i)
l |ψ(i)

l ⟩, and |ψ(i)
l ⟩ = |a(i)l ⟩|b(i)l ⟩ with

{|a(i)l ⟩ : l = 1, . . . , d1} an orthonormal basis of subsystem Cd1 , and {|b(i)l ⟩ : l = 1, . . . , d2} an orthonormal basis

of subsystem Cd2 . If all Schmidt coefficients are equal to 1√
k
and k = d1, an unextendible entangled bases with

Schmidt number k reduces to UMEB. Let

|ψi,j⟩ =
d1−1∑
l=0

λ
(i)
l |ψ(i)

l ⟩|j ⊕ l⟩, (14)
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where {|j⟩} is the standard computational basis of Cd3 , j = 0, 1, . . . , d3 − 1, j ⊕ l means j + l mod d3. Then

{|ψi,j⟩} is an UMEB of Cd1 ⊗ Cd2 ⊗ Cd3 , d1 ≤ d2 ≤ d3.
[12]. We can obtain two UMEBs in C2 ⊗ C3 ⊗ C3.

The first one is

|ϕ0,0⟩ =
1√
2
(|000⟩+ |111⟩),

|ϕ0,1⟩ =
1√
2
(|001⟩+ |112⟩),

|ϕ0,2⟩ =
1√
2
(|002⟩+ |110⟩),

|ϕi,0⟩ =
1√
2
(σi ⊗ I3 ⊗ I3)(|000⟩+ |111⟩),

|ϕi,0⟩ =
1√
2
(σi ⊗ I3 ⊗ I3)(|001⟩+ |112⟩),

|ϕi,0⟩ =
1√
2
(σi ⊗ I3 ⊗ I3)(|002⟩+ |110⟩), (15)

where i = 1, 2, 3.

The second one is

|ψj,0⟩ =
1√
2
(σj ⊗ I3 ⊗ I3)(|0⟩|x⟩|0⟩+ |1⟩|y⟩|1⟩),

|ψj,1⟩ =
1√
2
(σj ⊗ I3 ⊗ I3)(|0⟩|x⟩|1⟩+ |1⟩|y⟩|2⟩),

|ψj,2⟩ =
1√
2
(σj ⊗ I3 ⊗ I3)(|0⟩|x⟩|2⟩+ |1⟩|y⟩|0⟩), (16)

where j = 0, 1, 2, 3.

Due to ⟨ϕ0,0|ψ0,0⟩ =
1√
6
, the sets {|ϕi,l⟩} and {|ψj,l⟩} are not the MUBs in C2 ⊗ C3 ⊗ C3.

4. Conclusion

We have first time generalized the notion of UMEB from bipartite systems to multipartite quantum systems.

Based on this, we prove that there does not exist an UMEB in C2 ⊗ C2 ⊗ C2. Moreover, we have constructed

two types of UMEBs in C2 ⊗ C3 ⊗ C3 which are not mutually unbiased. Our results may highlight the further

investigation on UMEBs and MUBs for multipartite quantum states.
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