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DIVISOR CLASS GROUPS OF RATIONAL TRINOMIAL

VARIETIES

MILENA WROBEL

Abstract. We give an explicit description of the divisor class groups of ra-
tional trinomial varieties. As an application we show the connection between
the iteration of Cox rings of varieties with torus action of complexity one of
arbitrary dimension to the iteration of Cox rings of the Du Val surfaces.

1. Introduction

This article contributes to the explicit calculation of divisor class groups of affine
varieties; see [Fle81, Lan83, SS84, SS07] for some previous work and Remark 2.19
for the relations to our results. We consider affine algebraic varieties X defined over
the field C of complex numbers defined as the common vanishing set of trinomials

T l0

0 + T l1

1 + T l2

2 , θ1T l1

1 + T l2

2 + T l3

3 , . . . , θr−2T
lr−2

r−2 + T
lr−1

r−1 + T lr

r ,

with monomials T li

i = T li1

i1 · · · T
lini

ini
and pairwise different θi ∈ C∗. We call such

a variety a trinomial variety. Our first main result describes explicitly the divisor
class groups of rational non-factorial trinomial varieties. For each exponent vector
li set li := gcd(li1, . . . , lini

), denote l := gcd(l0, l1, l2) and define

c(0) := gcd(l1, l2), c(1) := gcd(l0, l2), c(2) := gcd(l0, l1),

c(i) :=
1

l
gcd(l1, l2) gcd(l0, l2) gcd(l0, l1) for i ≥ 3.

Note that due to [ABHW18, Cor. 5.8] one can easily decide if a given trinomial
variety is rational or factorial just in terms of the numbers li, see also Remark 2.2.

Theorem 1.1. Let X be an affine, rational, non-factorial trinomial variety and
set ñ :=

∑r
i=0((c(i) − 1)ni − c(i) + 1).

(i) If c := gcd(l0, l1) > 1 and gcd(li, lj) = 1 holds whenever j /∈ {0, 1}, then
the divisor class group Cl(X) is isomorphic to

(Z/l2Z)
c−1

×. . .×(Z/lrZ)
c−1

×Zñ.

(ii) If gcd(l0, l1) = gcd(l1, l2) = gcd(l0, l2) = 2 and gcd(li, lj) = 1 holds when-
ever j /∈ {0, 1, 2}, then the divisor class group Cl(X) is isomorphic to

Z/(l0l1l2/4)Z×(Z/l3Z)
3
×. . .×(Z/lrZ)

3
×Zñ.

In order to prove this result we make use of the fact that rational trinomial
varieties are T-varieties of complexity one, i.e., they are endowed with an effective
torus action T × X → X such that dim(T) = dim(X) − 1 holds. We use the
description of their total coordinate spaces, i.e. the spectrum of their Cox rings,
given in [HW18, Prop. 2.6] to prove the above theorem and obtain as a by-product
an explicit description of the divisor class group grading on the Cox ring of a rational
trinomial variety; see Corollary 2.20.

Using Corollary 2.20 we can give a new perspective on the iteration of Cox
rings for T-varieties of complexity one. For this let X be a hyperplatonic trinomial
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2 MILENA WROBEL

variety, i.e., l−1
0 + . . .+ l−1

r > r −1 holds. This means that after reordering l0, . . . , lr
decreasingly, li = 1 holds for all i ≥ 3 and (l0, l1, l2) is a platonic triple, i.e., one
of the triples (5, 3, 2), (4, 3, 2), (3, 3, 2), (x, 2, 2), (x, y, 1), where x, y ∈ Z≥1. We call
this triple the basic platonic triple of X . Note that these varieties comprise all total
coordinate spaces of affine log terminal varieties of complexity one; see [ABHW18]
for the precise statement. Due to [HW18, Thm. 1.1] a hyperplatonic variety X
admits iteration of Cox rings, i.e., there exists a chain

Xp

//Hp−1// Xp−1

//Hp−2// . . .
//H2 // X2

//H1// X1 := X,

where Xp is a factorial affine variety, and in each step, Xi+1 is the total coordinate
space of Xi and Hi := SpecC[Cl(Xi)]. Moreover any of the occurring total coor-
dinate spaces is again hyperplatonic and there are exactly the following possible
sequences of basic platonic triples arising from Cox ring iterations of hyperplatonic
varieties, see [HW17, Cor. 1.4]:

(i) (1, 1, 1) → (2, 2, 2) → (3, 3, 2) → (4, 3, 2),
(ii) (1, 1, 1) → (x, x, 1) → (2x, 2, 2),
(iii) (1, 1, 1) → (x, x, 1) → (x, 2, 2),
(iv) (l−1

01 l0, l−1
01 l1, 1) → (l0, l1, 1), where l01 := gcd(l0, l1) > 1.

In the above iterations, the steps corresponding to (1, 1, 1) → (x, x, 1) as well as
the step of Case (iv) are exactly those steps, where Hi is a torus. The remaining
parts of the iteration chains can be represented by Cox ring iterations of Du Val
surfaces: Any platonic triple (a, b, c) defines a Du Val singularity by

Y (a, b, c) := V(T a
1 + T b

2 + T c
3 ) ⊆ C3.

Case (i) corresponds to the chain C2 → A1 → D4 → E6 and (x, x, 1) → (2x, 2, 2)
resp. (x, x, 1) → (2x, 2, 2) correspond to the chains C2 → An resp. C2 → A2n with
n > 0 odd. Overall we obtain the following structural result.

Corollary 1.2. Let X be a hyperplatonic variety with basic platonic triple (l0, l1, l2).
Denote by (l′0, l′1, l′2) the basic platonic triple of the total coordinate space X ′ of X.
Then there is a commutative diagram

X ′

//T′

��

TCS // X

//T

��
Y (l′0, l′1, l′2)

TCS
// Y (l0, l1, l2),

where the horizontal arrows labelled ”TCS” are total coordinate spaces and the
downward arrows are good quotients by torus actions.

Parts of this paper have been written during a stay at Simon Fraser University
in Burnaby (BC). The author is thankful to Nathan Ilten for his kind hospitality.

2. Proof of the main results

We work in the notation of [HH13, HW17], where the Cox rings of rational T -
varieties of complexity one are described. Note that the trinomial varieties defined
in the introduction arise as the spectrum of these rings. We briefly recall the
necessary results and constructions here. For a general introduction to the theory
of Cox rings see e.g. [ADHL15].
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Construction 2.1. Fix integers r, n > 0, m ≥ 0 and a partition n = n0 + . . . + nr

with positive integers ni. For every i = 0, . . . , r, fix a tuple li ∈ Zni

>0 and define a
monomial

T li

i := T li1

i1 · · · T
lini

ini
∈ C[Tij , Sk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m].

We will also write C[Tij , Sk] for the above polynomial ring. Let A := (a0, . . . , ar)
be a 2 × (r + 1) matrix with pairwise linearly independent columns ai ∈ C2. For
every i = 0, . . . , r − 2 we define

gi := det

[

T li

i T
li+1

i+1 T
li+2

i+2

ai ai+1 ai+2

]

∈ C[Tij , Sk].

We build up an r × (n + m) matrix from the exponent vectors l0, . . . , lr of these
polynomials:

P0 :=







−l0 l1 0 0 . . . 0
...

...
. . .

...
...

...
−l0 0 lr 0 . . . 0






.

Denote by P ∗
0 the transpose of P0 and consider the projection

Q : Zn+m → K0 := Zn+m/im(P ∗
0 ).

Denote by eij , ek ∈ Zn+m the canonical basis vectors corresponding to the variables
Tij , Sk. Define a K0-grading on C[Tij , Sk] by setting

deg(Tij) := Q(eij) ∈ K0, deg(Sk) := Q(ek) ∈ K0.

This is the finest possible grading of C[Tij , Sk] leaving the variables and the gi

homogeneous and any other such grading coarsens this maximal one. In particular,
we have a K0-graded factor algebra

R(A, P0) := C[Tij , Sk]/〈g0, . . . , gr−2〉.

By the results of [HH13, HW17] the rings R(A, P0) are normal complete intersec-
tions and admit only constant homogeneous units. We use the following rationality
criterion from [ABHW18, Cor. 5.8] for the spectrum of a ring R(A, P0) as above:

Remark 2.2. Let R(A, P0) be a ring as in Construction 2.1 and set li :=
gcd(li1, . . . , lini

). Then Spec R(A, P0) is rational if and only if one of the following
conditions holds:

(i) We have gcd(li, lj) = 1 for all 0 ≤ i < j ≤ r, in other words, R(A, P0) is
factorial.

(ii) There are 0 ≤ i < j ≤ r with gcd(li, lj) > 1 and gcd(lu, lv) = 1 whenever
v 6∈ {i, j}.

(iii) There are 0 ≤ i < j < k ≤ r with gcd(li, lj) = gcd(li, lk) = gcd(lj , lk) = 2
and gcd(lu, lv) = 1 whenever v 6∈ {i, j, k}.

Definition 2.3. Let R(A, P0) be as above such that Spec R(A, P0) is rational. We
say that P0 is gcd-ordered if it satisfies the following two properties

(i) gcd(li, lj) = 1 for all i = 0, . . . , r and j = 3, . . . , r,
(ii) gcd(l1, l2) = gcd(l0, l1, l2).

If Spec R(A, P0) is rational, one can always achieve that P0 is gcd-ordered by
suitably reordering l0, . . . , lr, which does not affect the K0-graded algebra R(A, P0)
up to isomorphy.

In order to prove our main results we make use of the explicit description of the
total coordinate space of a rational trinomial variety given in [HW18]. We state
the two necessary results here:
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Lemma 2.4. [HW18, Lemma 2.5] Let R(A, P0) be a ring as in Construction 2.1
and X := Spec R(A, P0) be rational. Assume that P0 is gcd-ordered. Then, with
l := gcd(l0, l1, l2), the number c(i) of irreducible components of V (X, Tij), where
j = 1, . . . , ni, is given by

i 0 1 2 ≥ 3

c(i) gcd(l1, l2) gcd(l0, l2) gcd(l0, l1) 1
l

gcd(l1, l2) gcd(l0, l2) gcd(l0, l1)

Proposition 2.5. [HW18, Prop. 2.6] Let R(A, P0) be non-factorial with
Spec R(A, P0) rational. Assume that P0 is gcd-ordered and set

P1 :=



















−1
gcd(l0,l1) l0

1
gcd(l0,l1) l1 0 . . . 0 0 . . . 0

−1
gcd(l0,l2) l0 0 1

gcd(l0,l2) l2 0 0

−l0 0 l3 0
...

...
...

...
. . .

...
−l0 0 . . . 0 lr 0 . . . 0



















.

Moreover, let c(i) be as above and define numbers n′ := c(0)n0 + . . . + c(r)nr and

ni,1, . . . , ni,c(i) := ni, lij,1, . . . , lij,c(i) := gcd((P1)1,ij , . . . , (P1)r,ij).

Then the vectors li,α := (li1,α, . . . , lini,α) ∈ Zni,α build up an r′ × (n′ + m) matrix
P ′

0 with r′ = c(0) + . . . + c(r) − 1. With a suitable matrix A′, the affine variety
Spec R(A′, P ′

0) is the total coordinate space of the affine variety Spec R(A, P0).

Construction 2.6. Let R(A, P0) be a ring as in Construction 2.1. Choose an
integral s × (n + m) matrix d and build the (r + s) × (n + m) stack matrix

P :=

[

P0

d

]

.

We require the columns of P to be pairwise different primitive vectors generat-
ing Qr+s as a vector space. Let P ∗ denote the transpose of P and consider the
projection

Q : Zn+m → K := Zn+m/im(P ∗).

Denoting as before by eij , ek ∈ Zn+m the canonical basis vectors corresponding to
the variables Tij and Sk, we obtain a K-grading on K[Tij , Sk] by setting

deg(Tij) := Q(eij) ∈ K, deg(Sk) := Q(ek) ∈ K.

This K-grading coarsens the K0-grading of K[Tij , Sk] given in Construction 2.1 and
thus defines a grading on R(A, P0).

Now, consider a rational trinomial variety X := Spec R(A, P0). Let
Spec R(A′, P ′

0) be its total coordinate space and denote by R(X) its Cox ring. Then
there exists a K ′-grading on R(A′, P ′

0) such that R(A′, P ′
0) ∼= R(X) as graded rings.

In particular K ′ ∼= Cl(X) holds and there exists a good quotient

Spec R(A′, P ′
0)

//H′

−→ Spec R(A, P0)

with respect to the corresponding group action of H ′ := SpecC[K ′]. Moreover, due
to [HW17, Thm. 1.7] we find a description of this grading via a stack matrix

P ′ :=

[

P ′
0

d

]
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with K ′ = Zn′+m/im((P ′)∗) as in Construction 2.6. In particular the transpose

(P ′)∗ defines an injective map. Now consider the group K ′
0 := Zn′+m/im((P ′

0)∗)
and denote by (K ′

0)tors the torsionsubgroup of K ′
0. Then

(K ′
0)tors ⊆ Zn′+m/im((P ′)∗) = K ′ ∼= Cl(X)

holds and we call Cl(X)ctors := (K ′
0)tors the compulsory torsion of the divisor class

group of X .

Lemma 2.7. Let R(A, P0) be a non factorial ring such that X := Spec R(A, P0) is
rational and assume that P0 is gcd-ordered.

(i) If c := gcd(l0, l1) > 1 and gcd(li, lj) = 1 holds whenever j /∈ {0, 1}, then
the compulsory torsion of the divisor class group of X is

(Z/l2Z)
c−1

× · · · × (Z/lrZ)
c−1

.

(ii) If gcd(l0, l1) = gcd(l1, l2) = gcd(l0, l2) = 2 and gcd(li, lj) = 1 holds when-
ever j /∈ {0, 1, 2}, then the compulsory torsion of the divisor class group of
X is

Z/(l0/2)Z × Z/(l1/2)Z × Z/(l2/2)Z × (Z/l3Z)
3

× · · · × (Z/lrZ)
3

.

Proof. We prove (i). With our subsequent considerations we obtain that the divisor

class group of X is given as Zn′+m/im((P ′)∗), where P ′ is some (r′ + s′) × (n′ + m)
stack matrix

[

P ′
0

d′

]

,

of full row rank, and with Proposition 2.5 we get that P ′
0 is the r′ × (n′ +m) matrix

build up by the exponent vectors c−1l0, c−1l1 and c copies li,1, . . . , li,c of li for i ≥ 2.
Thus, to obtain the assertion, we compute the elementary divisors of P ′

0: Suitable
elementary column operations transform P ′

0 into












c−1l0 c−1l1 0 . . . 0 0 . . . 0

c−1l0 0 l2,1 0
...

. . .
...

c−1l0 0 . . . lr,c 0 . . . 0













.

As gcd(li, lj) = 1 holds for i, j /∈ {0, 1} we obtain for 1 ≤ t ≤ c that the (r′ −t+1)-th
determinantal divisor of P ′

0 equals l
c−t
2 · · · lc−t

r . The assertion follows.
For the proof of (ii) we note that in this case P ′

0 is built up by 2 copies of
1/2l0, 1/2l1 and 1/2l2 and 4 copies of each term li for i ≥ 3. Then, applying the
same arguments as above, we obtain the assertion. �

Construction 2.8. Let X be an irreducible, normal variety with Γ(X, O∗) =
C∗ and finitely generated divisor class group. Denote by WDiv(X) the group of
Weil-divisors of X and fix a finitely generated subgroup Zn ∼= 〈D1, . . . , Dn〉 ≤
WDiv(X) such that the map π : Zn → Cl(X) sending each Weil divisor D to its
class [D] ∈ Cl(X) is surjective. Let f1, . . . , fr be any linear relations between the
the classes of D1, . . . , Dr with

fj([D1], . . . , [Dn]) =

n
∑

i=1

αij [Di] = [0] ∈ Cl(X)

and set

P :=







α11 . . . α1n

...
...

αr1 . . . αrn






.
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Then there is a commutative diagram:

Zn π //

$$❏
❏❏

❏❏
❏❏

❏❏
❏

Cl(X)

Zn/im(P ∗)

88rrrrrrrrrr

In particular Cl(X) is a factor group of Zn/im(P ∗).

Lemma 2.9. Let li ∈ Zni

>0 be any tuple, k ∈ Z≥1 and consider the matrix

A(k, li) :=











li . . . 0
...

. . .
...

0 . . . li
Eni

. . . Eni











∈ Mat(k + ni, k · ni,Z),

where Eni
denotes the identity matrix of size ni. Then A(k, li) has rank ni −

1 + k and the (ni − 1 + k)-th determinantal divisor divides l
k−1
i , where li :=

gcd(li1, . . . , lini
).

Proof. Choose for any 2 ≤ t ≤ k an integer 1 ≤ jt ≤ ni and denote by ejt
the

column vector having 1 as jt-th entry and all other entries equal zero. Consider the
following (ni − 1 + k) × (ni − 1 + k) square matrix obtained by deleting the first
row and several of the last (k − 1) · ni columns of A(k, li)











0 . . . 0 lij2
. . . 0

...
...

...
. . .

...
0 . . . 0 0 . . . lijk

Eni
ej2

. . . ejk











.

The determinant of this matrix equals up to sign lij2
. . . lijk

.
With li = gcd(li1, . . . , lini

) we obtain

gcd(

k
∏

t=2

lijt
; jt ∈ {1, . . . , ni}) = l

k−1
i .

This shows that the (ni − 1 + k)-th determinantal divisor divides l
k−1
i . Moreover,

as A(k, li) is obviously not of full rank this proves the assertions. �

The rings R(A, P0) as defined in Construction 2.1 are in general not unique
factorization domains but have a similar property that will play an important role
in our further considerations:

Definition 2.10. Let K be an abelian group and R = ⊕w∈KRw a finitely generated
integral K-graded C-algebra. Set H := SpecC[K] and X := Spec R.

(i) A homogeneous element 0 6= f ∈ R \ R∗ is called K-prime if whenever
f |gh holds for homogeneous elements g, h ∈ R we have f |g or f |h.

(ii) We call R factorially K-graded if every homogeneous 0 6= f ∈ R \ R∗ is a
product of K-prime elements.

(iii) An H-prime divisor on X is a Weil divisor 0 6=
∑

aDD, where aD ∈ {0, 1},
the D are prime and those with aD = 1 are transitively permuted by H .

Remark 2.11. Let R(A, P0) be as in Construction 2.1. Then due to [ADHL15,
Thm. 3.4.2.3] R(A, P0) is factorially K0-graded and the variables Tij and Sk are
K0-prime. Due to [ADHL15, Prop. 1.5.3.3] this implies that the divisors div(Tij)
and div(Sk) are H0-prime, where H0 := SpecC[K0] holds.
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Remark 2.12. Let R(A, P0) be a K0-graded ring as in Construction 2.1 defining a
rational variety X := Spec R(A, P0). Then X is endowed with an action of the torus
H0

0 := SpecC[K0/Ktors
0 ] of complexity one, where Ktors

0 is the torsionsubgroup of
K0. Thus following the description of the Cox ring of a variety with torus action
provided in [HS10] and used for the explicit calculation of the total coordinate space
in Proposition 2.5, the variables Tij,k in the ring R(A′, P ′

0) correspond to the prime
components in the exceptional fibers of the map π : X0 → Y , where X0 ⊆ X is
the set of points with at most finite H0

0 -isotropy and the curve Y is the separation
of X0/H0

0 ; see [ADHL15, Section 4.4.1]. In particular for fixed i, j the variables
Tij,1, . . . , Tij,c(i) correspond to the prime divisors Dij,1, . . . Dij,c(i) inside V(X ; Tij),
where 1 ≤ j ≤ ni. Due to [HS10] the divisor class group grading on R(A′, P ′

0) is
thus defined as

deg(Tij,t) = [Dij,t] ∈ Cl(X).

Moreover the free variables S′
k in R(A′, P ′

0) arise from the free variables Sk of the
ring R(A, P0), which give rise to prime divisors V(X ; Sk) = Ek with infinite H0

0 -
isotropy. Due to Remark 2.11 the variable Sk is K0-prime and thus K0-factoriality
of R(A, P0) implies

deg(S′
k) = [Ek] = [0] ∈ Cl(X).

Note that all free variables of R(A′, P ′
0) arise this way.

Lemma 2.13. Let R(A, P0) be a ring defining a rational variety
X := Spec R(A, P0). Assume that P0 is gcd-ordered and gcd(l0, l1) > 1 and
gcd(li, lj) = 1 holds, whenever j /∈ {0, 1}. Then the defining relations of the Cox
ring R(A′, P ′

0) of X have Cl(X)-degree zero.

Proof. Note that due to Lemma 2.4 there is at least one integer i ∈ {0, 1, 2} such
that V(X, Tij) = Dij,1 is irreducible for j = 1, . . . , ni. As R(A, P0) is K0-factorial,
K0-primeness of the variable Tij implies that Dij,1 is a principal divisor for j =
1, . . . , ni; see Remark 2.11. We conclude

deg(T
li,1

i,1 ) =

ni
∑

j=1

lij,1[Dij,1] = [0] ∈ Cl(X).

As T
li,1

i,1 occurs as a term in at least one defining relation of R(A′, P ′
0) and all of

the defining relations have the same degree, the assertion follows. �

Proof of Theorem 1.1, Case (i). Set H0
0 := H0/Htors

0 . We recall that the H0
0 -

invariant prime divisors with finite isotropy generate the divisor class group of
X = Spec R(A, P0) and those are exactly the irreducible components of V(X, Tij),
where i = 0, . . . , r and 1 ≤ j ≤ ni. Our aim is to determine some relations between
the Cl(X)-degrees of the divisors arising this way. Using Construction 2.8 this gives
rise to an abelian group having Cl(X) as a factor group.

Let Dij,1 ∪· · ·∪Dij,c(i) be the decomposition of V(X, Tij) into prime divisors. As
R(A, P0) is K0-factorial and Tij is K0-prime, [ADHL15, Prop. 1.5.3.3], see Remark
2.11, implies

(2.13.1)

c(i)
∑

t=1

[Dij,t] = [0] ∈ Cl(X).

Moreover, due to Lemma 2.13 the defining relations of R(A′, P ′
0) have degree zero.

In particular, due to Proposition 2.5 for every i = 0, . . . , r and 1 ≤ t ≤ c(i) we

obtain a term T
li,t

i,t = T
lij,t

i1,t · · · T
lini,t

ij,t of degree zero occurring in the relations of
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R(A′, P ′
0). This gives rise to relations

(2.13.2)

ni
∑

j=1

lij,t[Dij,t] = [0] ∈ Cl(X),

where i = 0, . . . , r and t = 1, . . . , c(i). As li,1 = · · · = li,c(i) holds for any i =
0, . . . , r, the relations (2.13.1) and (2.13.2) give rise to block matrices A(c(i), li,1)
in a matrix P as in Construction 2.8. In particular we get an m′ × n′ matrix with
m′ :=

∑r
i=0(ni + c(i)) and n′ :=

∑r
i=0 c(i) · ni of the following form

(2.13.3) P :=











A(c(0), l0,1) 0 · · · 0
0 A(c(1), l1,1) · · · 0
...

...
. . .

...
0 0 . . . A(c(r), lr,1)











.

Note that P is of rank
∑r

i=0(ni − 1 + c(i)) and the rk(P )-th determinantal divisor
of P equals the product of the (ni − 1 + c(i))-th determinantal divisors of the block
matrices A(c(i), li,1). With Lemma 2.9 we conclude that the divisor class group of
X is isomorphic to a factor group of the group

(2.13.4) Zn′

/im(P ∗) ∼= Zn′−rk(P ) × G

with some finite abelian group G of order k with k|(l
c(0)−1
0,1 · · · l

c(r)−1
r,1 ).

We show that Zn′

/im(P ∗) ≤ Cl(X) and therefore equality holds. For this pur-
pose we compare the dimensions of X = Spec R(A, P0) and X = Spec R(A′, P ′

0):

dim(X) − dim(X) = n′ − (r′ − 1) − (n − (r − 1))

= n′ −

r
∑

i=0

c(i) + 2 −

r
∑

i=0

ni + (r − 1) = n′ − rk(P ).

With X = X // SpecC[Cl(X)] we conclude Zn′−rk(P ) ≤ Cl(X). Using Lemma 2.7
we obtain

|Cl(X)ctors| ≤ |G| ≤ |Cl(X)ctors|

and the assertion follows. �

We turn towards the proof of the second assertion of Theorem 1.1.

Definition 2.14. Let X be an irreducible normal variety and Y ⊆ X a prime
divisor. Let furthermore A := 〈f1, . . . , fr〉 ≤ O(X) be any ideal. Then we define
the order of A along Y to be min(ordY (fi); i = 1, . . . , r) =: ordY (A).

Lemma 2.15. Let X be an irreducible normal variety, A := 〈f1, . . . , fr〉 ≤ O(X)
any ideal and f ∈ O(X). Then the following statements are equivalent:

(i) ordY (A) = ordY (f) holds for all prime divisors Y ⊆ X.
(ii) 〈f〉 = A holds, i.e. A is a principal ideal.

In particular the Weil-divisor D :=
∑

ordY (A), where the sum runs over all prime
divisors Y ⊆ X, is principal if and only if A is a principal ideal.

Proof. We prove (i) ⇒ (ii). Observe that f | fi holds for i = 1, . . . , r as div(f) ≤
div(fi) by construction. In particular 〈f〉 ⊇ A. We prove the other inclusion.
Consider the covering ∪r

i=1Ui of X where

Ui := X \ (Yi1
∪ · · · ∪ Yiki

),

where all prime divisors Y with ordY (fi) 6= ordY (A) occur among the Yit
. Then

inside Ui we have fi | f . We obtain ci · fi = f with ci ∈ O(U)∗. Considering
the associated sheaf Ã of A we obtain f ∈ Ã(X) = A. The other implication is
clear. �
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Lemma 2.16. Let R(A, P0) be a ring as in Construction 2.1 with g0 of the form

T l0

0 +T l1

1 +T l2

2 and assume gcd(l0, l1) = gcd(l1, l2) = gcd(l0, l2) = 2 and gcd(li, lj) =
1 holds. Fix an integer y ∈ Z≥0 with y | l0 and set

Ay := 〈T
1/2l1

1 + i · T
1/2l2

2 , T
1/y·l0

0 〉 ≤ R(A, P0).

Then A is a principal ideal if and only if y = 1 holds.

Proof. Note that A1 = 〈T
1/2l1

1 + iT
1/2l2

2 〉 holds in R(A, P0). So let y 6= 1 and
assume there is an f ∈ Ay with 〈f〉 = A. Then there exist g1, g2, h1, h2 ∈ K[Tij , Sk]

with g1 · f + I = T
1/y·l0

0 + I and g2 · f + I = T
1/2l1

1 + iT
1/2l2

2 + I and

h1 · T
1/y·l0

0 + h2 · (T
1/2l1

1 + iT
1/2l2

2 ) + I = f + I.

Inserting the third formula into the first one we obtain

T
1/y·l0

0 + I = g1 · h1 · T
1/y·l0

0 + g1 · h2 · (T
1/2l1

1 + iT
1/2l2

2 ) + I

and so in particular

(2.16.1) h := (g1 · h1 − 1) · T
1/y·l0

0 + g1 · h2 · (T
1/2l1

1 + iT
1/2l2

2 ) ∈ I.

As there can not occur any term T
1/y·l0

0 in I for y 6= 1, we conclude that g1 and
h1 each have a constant term. Inserting the third formula above into the second,
we obtain a constant term in g2 and h2 with similar arguments. But this leads to

a term λ · (T
1/2l1

1 + i · T
1/2l2

2 ) with λ 6= 0 in (2.16.1); a contradiction to h ∈ I. �

Proof of Theorem 1.1, Case (ii). With the same arguments as in the Case (i) we
get relations of the form (2.13.1). Moreover since the degrees of the relations and
thus all terms occurring in the Cox ring R(A′, P ′

0) of X = Spec R(A, P0) coincide,
we obtain

(2.16.2)

n0
∑

j=1

l0j,1[D0j,1] =

ni
∑

j=1

lij,t(i)[Dij,t(i)] ∈ Cl(X),

where i = 0, . . . , r and 1 ≤ t(i) ≤ c(i). Those replace the relations (2.13.2). Suitably
ordered, this gives rise to a matrix

(2.16.3) P :=















−l0,1 l0,2 0 · · · 0
En0

En0
0 · · · 0

∗ 0 A(c(1), l1,1) · · · 0
...

...
...

. . .
...

∗ 0 0 . . . A(c(r), lr,1)















,

where we use c(0) = 2 and the ∗ indicates that there might be some non-zero
entries. By suitably swapping columns, applying elementary row operations and
using l0,1 = l0,2 one achieves a matrix

P ′ :=















−2l0,1 0 · · · 0
∗ A(c(1), l1,1) · · · 0 0
...

...
. . .

...
...

∗ 0 . . . A(c(r), lr,1) 0
En0

0 . . . 0 En0















.

The rank of P ′ equals
∑r

i=0(ni − 1 + c(i)). Using li,1 = li,2 = li/2 for i = 0, 1, 2,
we obtain with Lemma 2.9 that the (ni − 1 + c(i))-th determinantal divisors of
A(c(i), li,1) divides li/2 for i = 1, 2. Using li,1 = . . . = li,4 = li for i ≥ 3 we obtain
that the (ni − 1 + c(i))-th determinantal divisors of A(c(i), li,1) divides l3i for i ≥ 3.
Thus considering the maximal square submatrices just including one of the first n0

columns, Laplace expansion with respect to the first row shows that the rk(P ′)-th
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determinantal divisor of P ′ divides l0. If we delete all of the first n0 columns we
observe that the (rk(P ′) − 1)-th determinantal divisor of P ′ divides 1, i.e., it equals
1 up to sign. Thus Cl(X) is a factor group of

Zn′

/im(P∗) ∼= Zn′−rk(P ′) × G,

where G is a finite group of order k with k|(l0(l1/2)(l2/2)l33 . . . l3r).
We show equality of these groups. Observe that we may assume the relation

g0 of R(A, P0) to be of the form T l0

0 + T l1

1 + T l2

2 . In particular the irreducible
components D0j,1 and D0j,2 of V(X ; T0j) are of the form

D0j,1 = V(T0j , T
1/2l1

1 + i · T
1/2l2

2 ) and D0j,2 = V(T0j , T
1/2l1

1 − i · T
1/2l2

2 ).

We conclude that for y ∈ Z≥0 with y | l0

D :=

n0
∑

j=1

1

y
l0jD0j,1 =

∑

Y

ordY (Ay)

holds with Ay as in Lemma 2.16. As Ay is principal if and only if y = 1 holds, we
obtain Z/l0Z as a factor of the divisor class group of X . Calculating the difference
between the dimensions of Spec R(A, P0) and Spec R(A′, P ′

0) as in the proof of the

case (i) we conclude Zn′
−rk(P ′) ≤ Cl(X). As due to Lemma 2.7 and the assumption

that gcd(l0, l1) = gcd(l1, l2) = gcd(l0, l2) = 2 and gcd(li, lj) = 1 whenever j /∈
{0, 1, 2} holds, l0 does not divide |Cl(X)tors| but l0/2 does, we obtain

2 · |Cl(X)ctors| ≤ |G| ≤ 2 · |Cl(X)ctors|

and the assertion follows. �

Corollary 2.17. Let X be an affine, rational, trinomial variety. Then the divisor
class group of X is free abelian if and only if X is factorial or after reordering
decreasingly we have l0 ≥ l1 ≥ l2 = . . . = lr = 1.

Proof. Assume the divisor class group of X is free abelian. Then either X is fac-
torial and thus Cl(X) = {0} holds or we may apply Theorem 1.1 and conclude
gcd(l0, l1) > 1 and l2 = . . . = lr = 1 holds. The other direction is a direct conse-
quence of Theorem 1.1. �

As an application, we consider trinomial varieties with an isolated singularity;
recall that [LS13, Thm. 6.5] gives a complete description of all those with trivial
divisor class group.

Corollary 2.18. Let X be an affine, trinomial variety with an isolated singularity.
Then dim(X) ≤ 5 holds and we are in one the following cases:

(i) If dim(X) = 2 holds and X is rational then its divisor class group is a
torsion group.

(ii) If dim(X) = 3 holds then X is rational and its divisor class group is free
abelian.

(iii) If dim(X) ≥ 4 holds then X is factorial.

Proof. Assume X is two-dimensional. Then ni = 1 holds for all i = 0, . . . , r and X
has an isolated singularity at zero. Thus if X is rational, Theorem 1.1 implies that
its divisor class group is a torsion group.

Assume dim(X) ≥ 3 holds. Then, considering the Jacobian of X , we conclude
that X has an isolated singularity at zero if and only if X is a hypersurface with
defining relation g = T l0

0 + T l1

1 + T l2

2 , where 1 ≤ n0 ≤ n1 ≤ n2 = 2 and lij = 1
whenever ni = 2, see also [LS13]. In particular dim(X) ≤ 5 holds and X is rational
due to Remark 2.2. If n0 = n1 = 1 holds, i.e. X is of dimension three, we obtain
l0, l1 ≥ l2 = 1. Applying Corollary 2.17 we conclude that X is free abelian. In the
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case that n0 ≤ n1 = n2 = 2 holds, i.e. dim(X) ≥ 4 holds, we obtain l1 = l2 = 1
and thus X is factorial due to Remark 2.2. �

Remark 2.19. We compare our results with the existing works already stated in
the introduction.

In [Fle81] H. Flenner shows that rational three-dimensional quasihomogeneous
complete intersections over algebraically closed fields of arbitrary characteristic with
an isolated singularity have a free abelian divisor class group. Corollary 2.18 shows
that this is as well true for all trinomial varieties with isolated singularity of dimen-
sion at least three.

Using Corollary 2.17 one can construct examples of affine, rational, trinomial va-
rieties X with free abelian divisor class group having a higher dimensional singular
locus: The three-dimensional variety

V(T 4
01 + T 2

11 + T 3
21T 2

22) ⊆ C4

has divisor class group Z and a one-dimensional singular locus. Note that not any
three-dimensional trinomial variety has a free abelian divisor class group as for
instance, we obtain divisor class group Z × Z/3Z for the hypersurface

V(T 4
01 + T 2

11 + T 3
21T 3

22) ⊆ C4.

In [Lan83, SS84, SS07] J. Lang, A. Singh, S. Spiroff, G. Scheja and U.
Storch present divisor class group computations for hypersurfaces of the form
K[z, x1, . . . , xd]/〈zn − g〉, where g is a weighted homogeneous polynomial in
x1, . . . , xd of degree relatively prime to n are treated. In particular using various
methods they give explicit descriptions of the divisor class groups in any charac-
teristic. In particular the divisor class groups of trinomial hypersurfaces of the
form V(T l01

01 + T l1

1 + T l2

2 ) ⊆ C3 with gcd(l01, l1) = 1 = gcd(l01, l2) can be calcu-
lated with their results and are regained as part of our Theorem 1.1 (i). Note that
any rational trinomial variety fulfilling Remark 2.2 (iii) leaves the framework of
[Lan83, SS07, SS84] but can be treated via Theorem 1.1; explicit examples are the
two hypersurfaces given above.

As a direct consequence of the proof of Theorem 1.1 we obtain the following
description of the divisor class group grading on the Cox ring R(A′, P ′

0) of a rational
trinomial variety Spec R(A, P0):

Corollary 2.20. Let X := Spec R(A, P0) be a rational trinomial variety and as-
sume that P0 is gcd-ordered. Then the divisor class group grading on the Cox ring
R(A′, P ′

0) is given as

deg(Tij,k) = Q(eij,k), with Q : Zn′+m → Zn′+m/im(P ∗),

where P is one of the following:

(i) If c := gcd(l0, l1) > 1 and gcd(li, lj) = 1 holds whenever j /∈ {0, 1}, then P
is built up as in (2.13.3).

(ii) If gcd(l0, l1) = gcd(l1, l2) = gcd(l0, l2) = 2 and gcd(li, lj) = 1 holds when-
ever j /∈ {0, 1, 2}, then P is built up as in (2.16.3).

Remark 2.21. As a direct consequence of Theorem 1.1, we can compute the
divisor class groups of all affine varieties arising from a hyperplatonic Cox ring.
We list the basic platonic tuple (bpt) of R(A, P0) and the divisor class group of
X := Spec R(A, P0) in a table:
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Case bpt of R(A, P0) divisor class group

(i) (4, 3, 2) Zn1+n3+···+nr−(r−1) × Z/3Z

(ii) (3, 3, 2) Z2·(n2+···+nr−(r−1)) × Z/2Z × Z/2Z

(iii) (x, y, 1) Z(gcd(x,y)−1)·(n2+···+nr−(r−1))

(iv) (x, 2, 2) and 2 ∤ x Zn0+n3+···+nr−(r−1) × Z/xZ

(v) (x, 2, 2) and 2 | x Zn0+n1+n2+3·(n3+···+nr−(r−1)) × Z/xZ

.

With the explicit description of the grading of the Cox ring of a rational trinomial
variety given via the matrices P as described in Corollary 2.20, we are able to prove
our second main result.

Proof of Corollary 1.2. In a first step we show that for any hyperplatonic ring R
with basic platonic triple (l0, l1, l2), there exists a good quotient Cn+m ⊇ Spec R →
Y (l0, l1, l2) with respect to a quasitorus T. Setting

P̃ :=







1
l0

l0 . . . 0
...

. . .
...

0 . . . 1
lr

lr






,

the map Q : Zn+m → Zn+m/im(P̃ ∗) defines a grading on R, which coarsens the
grading given by P0 as in Construction 2.1. Moreover the Veronese subalgebra S

with respect to the degree zero is generated by the monomials T
l0/l0
0 , . . . , T

lr/lr
r and

we conclude Spec S ∼= Y (l0, l1, l2).
Now denote by R′ resp. S′ the Cox rings of Spec R resp. Spec S as given in

Proposition 2.5 with the grading given by matrices P (R) resp. P (S) as in Corollary
2.20. We claim that we obtain the following commutative diagram

R′ Roo

S′

OO

S,

OO

oo

where the upward arrow on the r.h.s. is the embedding of a Veronese subalgebra
with respect to some grading group Zk and the other arrows denote the embeddings
of the Veronese subalgebras as defined above. This proves the assertion as consid-
ering the grading given by P (S) on S′ one directly checks that the isomorphism

S′ → C[T0, T1, T2]/〈T l0

0 + T l1

1 + T l2

2 〉 deleting the redundant relations is a graded
isomorphism with respect to the Cox ring grading on the latter ring.

To prove our result it is now only necessary to show that the composition of
the embeddings S → S′ → R′ given by the matrices P̃ and P (S) factorizes over
the embedding R → R′ given by P (R). Note that the grading giving rise to the
composed Veronese embedding S → S′ → R′ can be represented by a matrix of
the same shape and with the same number of columns as P (R) but replacing the
matrices A(c(i), li,1) by matrices of the following form:

B(c(i), li,1) :=











li,1 . . . 0
...

. . .
...

0 . . . li,1
li,1/li,1 . . . li,1/li,1











∈ Mat(k + ni, k · ni,Z),
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and in case of P as in (2.16.3) additionally replacing the rows 2 to n0 + 1 with
one row (l0,1/l0,1, l0,1/l0,1, 0, . . . , 0). In particular the row lattice of this matrix
is a sublattice of the row lattice of P (R) and we only have to show that it is a
saturated sublattice. By the structure of the occurring matrices this means that
the row lattice generated by the matrix B(c(i), lr,1) is a saturated sublattice of the
row lattice of the matrix A(c(i), li,1). Note that the row lattice of A(c(i), li,1) is
generated by the rows of











li,1 . . . 0 0
...

. . .
...

...
0 . . . li,1 0

Eni
. . . Eni

Eni











∈ Mat(k + ni, k · ni,Z).

In particular the last ni rows span a saturated sublattice of this row lattice. As the
lattice generated by (li/li, . . . , li/li) lies saturated in this sublattice, the assertion
follows. �
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