Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Tighter monogamy relations in multi-qubit systems

Zhi-Xiang Jin, Jun Li, Tao Li, and Shao-Ming Fei

Tighter monogamy relations in multi-qubit systems

Zhi-Xiang Jin, ${ }^{1, *}$ Jun Li, ${ }^{1, \dagger}$ Tao Li, ${ }^{2}$, \ddagger and Shao-Ming Fei ${ }^{1,3,}{ }^{3}$
${ }^{1}$ School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
${ }^{2}$ School of Science, Beijing Technology and Business University, Beijing 100048, China
${ }^{3}$ Max-Planck-Institute for Mathematics in the Sciences, Leipzig 04103, Germany

Abstract

Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate monogamy relations related to the concurrence C, the entanglement of formation E, negativity N_{c} and Tsallis- q entanglement T_{q}. New α-th power of entanglement monogamy relations have been derived, which are tighter than the existing entanglement monogamy relations for some classes of quantum states. Detailed examples are presented.

PACS numbers:

INTRODUCTION

Due to the essential roles played in quantum communication and quantum information processing, quantum entanglement [1-8] has been the subject of many recent studies in recent years. The study of quantum entanglement from various viewpoints has been a very active area and has led to many impressive results. As one of the fundamental differences between quantum and classical correlations, an essential property of entanglement is that a quantum system entangled with one of other subsystems limits its entanglement with the remaining ones. The monogamy relations give rise to the distribution of entanglement in the multipartite quantum systems. Moreover, the monogamy property has emerged as the ingredient in the security analysis of quantum key distribution [9].

For a tripartite system A, B and C, the usual monogamy of an entanglement measure \mathcal{E} implies that [10] the entanglement between A and $B C$ satisfies $\mathcal{E}_{A \mid B C} \geq \mathcal{E}_{A B}+\mathcal{E}_{A C}$. However, such monogamy relations are not always satisfied by all entanglement measures for all quantum states. In fact, it has been shown that the squared concurrence $C^{2}[11,12]$ and entanglement of formation E^{2} [13] satisfy the monogamy relations for multi-qubit states. The monogamy inequality was further generalized to various entanglement measures such as continuous-variable entanglement [14-16], squashed entanglement [10, 17, 18], entanglement negativity [19-23], Tsallis-q entanglement [24, 25], and Renyi-
entanglement [26-28].
In this paper, we derive monogamy inequalities which are tighter than all the existing ones, in terms of the concurrence C, entanglement of formation E, negativity N_{c} and Tsallis- q entanglement T_{q}.

TIGHTER MONOGAMY RELATIONS FOR CONCURRENCE

We first consider the monogamy inequalities satisfied by the concurrence. Let H_{X} denote a discrete finite-dimensional complex vector space associated with a quantum subsystem X. For a bipartite pure state $|\psi\rangle_{A B} \in \mathbb{H}_{A} \otimes \mathbb{H}_{B}$, the concurrence is given by [2931], $C\left(|\psi\rangle_{A B}\right)=\sqrt{2\left[1-\operatorname{Tr}\left(\rho_{A}^{2}\right)\right]}$, where ρ_{A} is the reduced density matrix by tracing over the subsystem B, $\rho_{A}=\operatorname{Tr}_{B}\left(|\psi\rangle_{A B}\langle\psi|\right)$. The concurrence for a bipartite mixed state $\rho_{A B}$ is defined by the convex roof extension, $C\left(\rho_{A B}\right)=\min _{\left\{p_{i},\left|\psi_{i}\right\rangle\right\}} \sum_{i} p_{i} C\left(\left|\psi_{i}\right\rangle\right)$, where the minimum is taken over all possible decompositions of $\rho_{A B}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, with $p_{i} \geq 0$ and $\sum_{i} p_{i}=1$ and $\left|\psi_{i}\right\rangle \in \mathbb{H}_{A} \otimes \mathbb{H}_{B}$.

For a tripartite state $|\psi\rangle_{A B C}$, the concurrence of assistance is defined by [32, 33]

$$
C_{a}\left(|\psi\rangle_{A B C}\right) \equiv C_{a}\left(\rho_{A B}\right)=\max _{\left\{p_{i},\left|\psi_{i}\right\rangle\right\}} \sum_{i} p_{i} C\left(\left|\psi_{i}\right\rangle\right)
$$

where the maximum is taken over all possible decompositions of $\rho_{A B}=\operatorname{Tr}_{C}\left(|\psi\rangle_{A B C}\langle\psi|\right)=\sum_{i} p_{i}\left|\psi_{i}\right\rangle_{A B}\left\langle\psi_{i}\right|$. When $\rho_{A B}=|\psi\rangle_{A B}\langle\psi|$ is a pure state, one has $C\left(|\psi\rangle_{A B}\right)=C_{a}\left(\rho_{A B}\right)$.

For an N-qubit state $\rho_{A B_{1} \cdots B_{N-1}} \in \mathbb{H}_{A} \otimes \mathbb{H}_{B_{1}} \otimes$ $\cdots \otimes \mathbb{H}_{B_{N-1}}$, the concurrence $C\left(\rho_{A \mid B_{1} \cdots B_{N-1}}\right)$ of the state $\rho_{A \mid B_{1} \cdots B_{N-1}}$, viewed as a bipartite state under the partition A and $B_{1}, B_{2}, \cdots, B_{N-1}$, satisfies [34]

$$
\begin{align*}
& C^{\alpha}\left(\rho_{A \mid B_{1}, B_{2} \cdots, B_{N-1}}\right) \geq \\
& C^{\alpha}\left(\rho_{A B_{1}}\right)+C^{\alpha}\left(\rho_{A B_{2}}\right)+\cdots+C^{\alpha}\left(\rho_{A B_{N-1}}\right) \tag{1}
\end{align*}
$$

for $\alpha \geq 2$, where $\quad \rho_{A B_{i}}=$ $\operatorname{Tr}_{B_{1} \cdots B_{i-1} B_{i+1} \cdots B_{N-1}}\left(\rho_{A B_{1} \cdots B_{N-1}}\right)$. It is further improved that for $\alpha \geq 2$, if $C\left(\rho_{A B_{i}}\right) \geq C\left(\rho_{A \mid B_{i+1} \cdots B_{N-1}}\right)$ for $i=1,2, \cdots, m$, and $C\left(\rho_{A B_{j}}\right) \leq C\left(\rho_{A \mid B_{j+1} \cdots B_{N-1}}\right)$ for $j=m+1, \cdots, N-2, \forall 1 \leq m \leq N-3, N \geq 4$, then [35],

$$
\begin{align*}
& C^{\alpha}\left(\rho_{A \mid B_{1} B_{2} \cdots B_{N-1}}\right) \geq \\
& C^{\alpha}\left(\rho_{A B_{1}}\right)+\frac{\alpha}{2} C^{\alpha}\left(\rho_{A B_{2}}\right)+\cdots+\left(\frac{\alpha}{2}\right)^{m-1} C^{\alpha}\left(\rho_{A B_{m}}\right) \\
& +\left(\frac{\alpha}{2}\right)^{m+1}\left(C^{\alpha}\left(\rho_{A B_{m+1}}\right)+\cdots+C^{\alpha}\left(\rho_{A B_{N-2}}\right)\right) \\
& +\left(\frac{\alpha}{2}\right)^{m} C^{\alpha}\left(\rho_{A B_{N-1}}\right) \tag{2}
\end{align*}
$$

and for all $\alpha<0$,

$$
\begin{align*}
& C^{\alpha}\left(\rho_{A \mid B_{1} B_{2} \cdots B_{N-1}}\right)< \\
& K\left(C^{\alpha}\left(\rho_{A B_{1}}\right)+C^{\alpha}\left(\rho_{A B_{2}}\right)+\cdots+C^{\alpha}\left(\rho_{A B_{N-1}}\right)\right), \tag{3}
\end{align*}
$$

where $K=\frac{1}{N-1}$.
In the following, we show that these monogamy inequalities satisfied by the concurrence can be further refined and become even tighter. For convenience, we denote $C_{A B_{i}}=C\left(\rho_{A B_{i}}\right)$ the concurrence of $\rho_{A B_{i}}$ and $C_{A \mid B_{1}, B_{2} \cdots, B_{N-1}}=C\left(\rho_{A \mid B_{1} \cdots B_{N-1}}\right)$. We first introduce two Lemmas.
[Lemma 1]. For any real numbers x and $t, 0 \leq t \leq$ $1, x \in[1, \infty)$, we have $(1+t)^{x} \geq 1+\left(2^{x}-1\right) t^{x}$.
[Proof]. Let $f(x, y)=(1+y)^{x}-y^{x}$ with $x \geq 1, y \geq 1$. Then $\frac{\partial f}{\partial y}=x\left[(1+y)^{x-1}-y^{x-1}\right] \geq 0$. Therefore, $f(x, y)$ is an increasing function of y, i.e., $f(x, y) \geq f(x, 1)=2^{x}-1$. Set $y=\frac{1}{t}, 0<t \leq 1$, we obtain $(1+t)^{x} \geq 1+\left(2^{x}-1\right) t^{x}$. When $t=0$, the inequality is trivial.
[Lemma 2]. For any $2 \otimes 2 \otimes 2^{n-2}$ mixed state $\rho \in$ $\mathrm{H}_{A} \otimes \mathrm{H}_{B} \otimes \mathrm{H}_{C}$, if $C_{A B} \geq C_{A C}$, we have

$$
\begin{equation*}
C_{A \mid B C}^{\alpha} \geq C_{A B}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) C_{A C}^{\alpha} \tag{4}
\end{equation*}
$$

for all $\alpha \geq 2$.
[Proof]. It has been shown that $C_{A \mid B C}^{2} \geq C_{A B}^{2}+C_{A C}^{2}$ for arbitrary $2 \otimes 2 \otimes 2^{n-2}$ tripartite state $\rho_{A B C}[11,37]$. Then, if $C_{A B} \geq C_{A C}$, we have

$$
\begin{aligned}
C_{A \mid B C}^{\alpha} & \geq\left(C_{A B}^{2}+C_{A C}^{2}\right)^{\frac{\alpha}{2}} \\
& =C_{A B}^{\alpha}\left(1+\frac{C_{A C}^{2}}{C_{A B}^{2}}\right)^{\frac{\alpha}{2}} \\
& \geq C_{A B}^{\alpha}\left[1+\left(2^{\frac{\alpha}{2}}-1\right)\left(\frac{C_{A C}^{2}}{C_{A B}^{2}}\right)^{\frac{\alpha}{2}}\right] \\
& =C_{A B}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) C_{A C}^{\alpha}
\end{aligned}
$$

where the second inequality is due to Lemma 1 . As the subsystems A and B are equivalent in this case, we have assumed that $C_{A B} \geq C_{A C}$ without loss of generality. Moreover, if $C_{A B}=0$, we have $C_{A B}=C_{A C}=0$. That is to say the lower bound becomes trivially zero.

From Lemma 2 we have the following Theorem.
[Theorem 1]. For N-qubit mixed state, if $C_{A B_{i}} \geq$ $C_{A \mid B_{i+1} \cdots B_{N-1}}$ for $i=1,2, \cdots, m$, and $C_{A B_{j}} \leq$ $C_{A \mid B_{j+1} \cdots B_{N-1}}$ for $j=m+1, \cdots, N-2, \forall 1 \leq m \leq N-3$, $N \geq 4$, we have

$$
\begin{align*}
& C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq \\
& C_{A B_{1}}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) C_{A B_{2}}^{\alpha}+\cdots+\left(2^{\frac{\alpha}{2}}-1\right)^{m-1} C_{A B_{m}}^{\alpha} \\
& +\left(2^{\frac{\alpha}{2}}-1\right)^{m+1}\left(C_{A B_{m+1}}^{\alpha}+\cdots+C_{A B_{N-2}}^{\alpha}\right) \\
& +\left(2^{\frac{\alpha}{2}}-1\right)^{m} C_{A B_{N-1}}^{\alpha} \tag{5}
\end{align*}
$$

for all $\alpha \geq 2$.
[Proof]. From the inequality (4), we have

$$
\begin{align*}
& C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \\
& \geq C_{A B_{1}}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) C_{A \mid B_{2} \cdots B_{N-1}}^{\alpha} \\
& \geq C_{A B_{1}}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) C_{A B_{2}}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right)^{2} C_{A \mid B_{3} \cdots B_{N-1}}^{\alpha} \\
& \geq \\
& \geq \\
& \geq C_{A B_{1}}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) C_{A B_{2}}^{\alpha}+\cdots+\left(2^{\frac{\alpha}{2}}-1\right)^{m-1} C_{A B_{m}}^{\alpha} \tag{6}\\
& \quad+\left(2^{\frac{\alpha}{2}}-1\right)^{m} C_{A \mid B_{m+1} \cdots B_{N-1}}^{\alpha} .
\end{align*}
$$

Similarly, as $C_{A B_{j}} \leq C_{A \mid B_{j+1} \cdots B_{N-1}}$ for $j=m+$ $1, \cdots, N-2$, we get

$$
\begin{align*}
& C_{A \mid B_{m+1} \cdots B_{N-1}}^{\alpha} \\
& \geq\left(2^{\frac{\alpha}{2}}-1\right) C_{A B_{m+1}}^{\alpha}+C_{A \mid B_{m+2} \cdots B_{N-1}}^{\alpha} \\
& \geq\left(2^{\alpha}-1\right)\left(C_{A B_{m+1}}^{\alpha}+\cdots+C_{A B_{N-2}}^{\alpha}\right) \\
& \quad+C_{A B_{N-1}}^{\alpha} . \tag{7}
\end{align*}
$$

Combining (6) and (7), we have Theorem 1.

As for $\alpha \geq 2,\left(2^{\frac{\alpha}{2}}-1\right)^{m} \geq(\alpha / 2)^{m}$ for all $1 \leq m \leq$ $N-3$, our formula (5) in Theorem 1 gives a tighter monogamy relation with larger lower bounds than (1) and (2). In Theorem 1 we have assumed that some $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ and some $C_{A B_{j}} \leq C_{A \mid B_{j+1} \cdots B_{N-1}}$ for the $2 \otimes 2 \otimes \cdots \otimes 2$ mixed state $\rho \in \mathbb{H}_{A} \otimes \mathbb{H}_{B_{1}} \otimes$ $\cdots \otimes \mathbb{H}_{B_{N-1}}$. If all $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for $i=$ $1,2, \cdots, N-2$, then we have the following conclusion:
[Theorem 2]. If $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for all $i=$ $1,2, \cdots, N-2$, then we have

$$
\begin{align*}
& C_{A \mid B_{1} \cdots B_{N-1}}^{\alpha} \geq \\
& C_{A B_{1}}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) C_{A B_{2}}^{\alpha}+\cdots+\left(2^{\frac{\alpha}{2}}-1\right)^{N-3} C_{A B_{N-2}}^{\alpha} \\
& +\left(2^{\frac{\alpha}{2}}-1\right)^{N-2} C_{A B_{N-1}}^{\alpha} . \tag{8}
\end{align*}
$$

Example 1. Let us consider the three-qubit state $|\psi\rangle$ in the generalized Schmidt decomposition form [38, 39],

$$
\begin{align*}
|\psi\rangle= & \lambda_{0}|000\rangle+\lambda_{1} e^{i \varphi}|100\rangle+\lambda_{2}|101\rangle \\
& +\lambda_{3}|110\rangle+\lambda_{4}|111\rangle, \tag{9}
\end{align*}
$$

where $\lambda_{i} \geq 0, i=0,1,2,3,4$ and $\sum_{i=0}^{4} \lambda_{i}^{2}=1$. From the definition of concurrence, we have $C_{A \mid B C}=$ $2 \lambda_{0} \sqrt{\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}}, C_{A B}=2 \lambda_{0} \lambda_{2}$, and $C_{A C}=2 \lambda_{0} \lambda_{3}$. Set $\lambda_{0}=\lambda_{1}=\frac{1}{2}, \lambda_{2}=\lambda_{3}=\lambda_{4}=\frac{\sqrt{6}}{6}$, one has $C_{A \mid B C}=\frac{\sqrt{2}}{2}, C_{A B}=C_{A C}=\frac{\sqrt{6}}{6}$, then $C_{A \mid B C}^{\alpha}=\left(\frac{\sqrt{2}}{2}\right)^{\alpha}$, $C_{A B}^{\alpha}+C_{A C}^{\alpha}=2\left(\frac{\sqrt{6}}{6}\right)^{\alpha}, C_{A B}^{\alpha}+\frac{\alpha}{2} C_{A C}^{\alpha}=\left(1+\frac{\alpha}{2}\right)\left(\frac{\sqrt{6}}{6}\right)^{\alpha}$, $C_{A B}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) C_{A C}^{\alpha}=2^{\frac{\alpha}{2}}\left(\frac{\sqrt{6}}{6}\right)^{\alpha}$. One can see that our result is better than the results in [34] and [35] for $\alpha \geq 2$, see Fig 1.

TIGHTER MONOGAMY REALATIONS FOR EOF

The entanglement of formation (EoF) [40, 41] is a well defined important measure of entanglement for bipartite systems. Let H_{A} and H_{B} be m and n dimensional ($m \leq n$) vector spaces, respectively. The EoF of a pure state $|\psi\rangle \in \mathbb{H}_{A} \otimes \mathbb{H}_{B}$ is defined by

$$
\begin{equation*}
E(|\psi\rangle)=S\left(\rho_{A}\right) \tag{10}
\end{equation*}
$$

where $\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)$ and $S(\rho)=-\operatorname{Tr}\left(\rho \log _{2} \rho\right)$. For a bipartite mixed state $\rho_{A B} \in \mathbb{H}_{A} \otimes \mathbb{H}_{B}$, the entanglement of formation is given by,

$$
\begin{equation*}
E\left(\rho_{A B}\right)=\min _{\left\{p_{i},\left|\psi_{i}\right\rangle\right\}} \sum_{i} p_{i} E\left(\left|\psi_{i}\right\rangle\right), \tag{11}
\end{equation*}
$$

FIG. 1: The axis y is the concurrence of $|\psi\rangle$ and its lower bound, which are functions of α. The black solid line represents the concurrence of $|\psi\rangle$ in Example 1, red dashed line represents the lower bound from our result, blue dotted (green dotdashed) line represents lower bound from the result in [35] ([34]).
with the minimum taking over all possible pure stae decompositions of $\rho_{A B}$.

Denote $f(x)=H\left(\frac{1+\sqrt{1-x}}{2}\right)$, where $H(x)=$ $-x \log _{2}(x)-(1-x) \log _{2}(1-x)$. From (10) and (11), one has $E(|\psi\rangle)=f\left(C^{2}(|\psi\rangle)\right)$ for $2 \otimes m(m \geq 2)$ pure state $|\psi\rangle$, and $E(\rho)=f\left(C^{2}(\rho)\right)$ for two-qubit mixed state ρ [42]. It is obvious that $f(x)$ is a monotonically increasing function for $0 \leq x \leq 1 . f(x)$ satisfies the following relations:

$$
\begin{equation*}
f^{\sqrt{2}}\left(x^{2}+y^{2}\right) \geq f^{\sqrt{2}}\left(x^{2}\right)+f^{\sqrt{2}}\left(y^{2}\right) \tag{12}
\end{equation*}
$$

where $f^{\sqrt{2}}\left(x^{2}+y^{2}\right)=\left[f\left(x^{2}+y^{2}\right)\right]^{\sqrt{2}}$.
It has been shown that the EoF does not satisfy the inequality $E_{A B}+E_{A C} \leq E_{A \mid B C}$ [43]. In [44] the authors showed that EoF is a monotonic function satisfying $E^{2}\left(C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}\right) \geq E^{2}\left(\sum_{i=1}^{N-1} C_{A B_{i}}^{2}\right)$. For N-qubit systems, one has [34],

$$
\begin{equation*}
E_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq E_{A B_{1}}^{\alpha}+E_{A B_{2}}^{\alpha}+\cdots+E_{A B_{N-1}}^{\alpha} \tag{13}
\end{equation*}
$$

for $\alpha \geq \sqrt{2}$, where $E_{A \mid B_{1} B_{2} \cdots B_{N-1}}$ is the entanglement of formation of ρ in bipartite partition $A \mid B_{1} B_{2} \cdots B_{N-1}$, and $E_{A B_{i}}, i=1,2, \cdots, N-1$, is the EoF of the mixed states $\rho_{A B_{i}}=\operatorname{Tr}_{B_{1} B_{2} \cdots B_{i-1}, B_{i+1} \cdots B_{N-1}}(\rho)$. It is further improved that for $\alpha \geq \sqrt{2}$, if $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for $i=1,2, \cdots, m$, and $C_{A B_{j}} \leq C_{A \mid B_{j+1} \cdots B_{N-1}}$ for $j=$
$m+1, \cdots, N-2, \forall 1 \leq m \leq N-3, N \geq 4$, then [35]

$$
\begin{align*}
& E_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq \\
& E_{A B_{1}}^{\alpha}+(\alpha / \sqrt{2}) E_{A B_{2}}^{\alpha} \cdots+(\alpha / \sqrt{2})^{m-1} E_{A B_{m}}^{\alpha} \\
& +(\alpha / \sqrt{2})^{m+1}\left(E_{A B_{m+1}}^{\alpha}+\cdots+E_{A B_{N-2}}^{\alpha}\right) \\
& +(\alpha / \sqrt{2})^{m} E_{A B_{N-1}}^{\alpha} . \tag{14}
\end{align*}
$$

In fact, generally we can prove the following results.
[Theorem 3]. For any N -qubit mixed state $\rho \in$ $\mathbb{H}_{A} \otimes \mathbb{H}_{B_{1}} \otimes \cdots \otimes \mathbb{H}_{B_{N-1}}$, if $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for $i=1,2, \cdots, m$, and $C_{A B_{j}} \leq C_{A \mid B_{j+1} \cdots B_{N-1}}$ for $j=m+$ $1, \cdots, N-2, \forall 1 \leq m \leq N-3, N \geq 4$, the entanglement of formation $E(\rho)$ satisfies

$$
\begin{align*}
& E_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq \\
& E_{A B_{1}}^{\alpha}+\left(2^{t}-1\right) E_{A B_{2}}^{\alpha} \cdots+\left(2^{t}-1\right)^{m-1} E_{A B_{m}}^{\alpha} \\
& +\left(2^{t}-1\right)^{m+1}\left(E_{A B_{m+1}}^{\alpha}+\cdots+E_{A B_{N-2}}^{\alpha}\right) \\
& +\left(2^{t}-1\right)^{m} E_{A B_{N-1}}^{\alpha}, \tag{15}
\end{align*}
$$

for $\alpha \geq \sqrt{2}$, where $t=\alpha / \sqrt{2}$.
[Proof]. For $\alpha \geq \sqrt{2}$, we have

$$
\begin{align*}
& f^{\alpha}\left(x^{2}+y^{2}\right) \\
& =\left(f^{\sqrt{2}}\left(x^{2}+y^{2}\right)\right)^{t} \\
& \geq\left(f^{\sqrt{2}}\left(x^{2}\right)+f^{\sqrt{2}}\left(y^{2}\right)\right)^{t} \\
& \geq\left(f^{\sqrt{2}}\left(x^{2}\right)\right)^{t}+\left(2^{t}-1\right)\left(f^{\sqrt{2}}\left(y^{2}\right)\right)^{t} \\
& =f^{\alpha}\left(x^{2}\right)+\left(2^{t}-1\right) f^{\alpha}\left(y^{2}\right), \tag{16}
\end{align*}
$$

where the first inequality is due to the inequality (12), and the second inequality is obtained from a similar consideration in the proof of the second inequality in (4).

Let $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \in \mathbb{H}_{A} \otimes \mathbb{H}_{B_{1}} \otimes \cdots \otimes \mathbb{H}_{B_{N}-1}$ be the optimal decomposition of $E_{A \mid B_{1} B_{2} \cdots B_{N-1}}(\rho)$ for the

N -qubit mixed state ρ, we have

$$
\begin{aligned}
& E_{A \mid B_{1} B_{2} \cdots B_{N-1}}(\rho) \\
& =\sum_{i} p_{i} E_{A \mid B_{1} B_{2} \cdots B_{N-1}}\left(\left|\psi_{i}\right\rangle\right) \\
& =\sum_{i} p_{i} f\left(C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}\left(\left|\psi_{i}\right\rangle\right)\right) \\
& \geq f\left(\sum_{i} p_{i} C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}\left(\left|\psi_{i}\right\rangle\right)\right) \\
& \geq f\left(\left[\sum_{i} p_{i} C_{A \mid B_{1} B_{2} \cdots B_{N-1}}\left(\left|\psi_{i}\right\rangle\right)\right]^{2}\right) \\
& \geq f\left(C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}(\rho)\right),
\end{aligned}
$$

where the first inequality is due to that $f(x)$ is a convex function. The second inequality is due to the CauchySchwarz inequality: $\left(\sum_{i} x_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i} y_{i}^{2}\right)^{\frac{1}{2}} \geq \sum_{i} x_{i} y_{i}$, with $x_{i}=\sqrt{p_{i}}$ and $y_{i}=\sqrt{p_{i}} C_{A \mid B_{1} B_{2} \cdots B_{N-1}}\left(\left|\psi_{i}\right\rangle\right)$. Due to the definition of concurrence and that $f(x)$ is a monotonically increasing function, we obtain the third inequality. Therefore, we have

$$
\begin{aligned}
& E_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha}(\rho) \\
& \geq f^{\alpha}\left(C_{A B_{1}}^{2}+C_{A B_{2}}^{2}+\cdots+C_{A B_{m-1}}^{2}\right) \\
& \geq f^{\alpha}\left(C_{A B_{1}}^{2}\right)+\left(2^{t}-1\right) f^{\alpha}\left(C_{A B_{2}}^{2}\right)+\cdots+\left(2^{t}-1\right)^{m-1} f^{\alpha}\left(C_{A B_{m}}^{2}\right) \\
& \quad+\left(2^{t}-1\right)^{m+1}\left(f^{\alpha}\left(C_{A B_{m+1}}^{2}\right)+\cdots+f^{\alpha}\left(C_{A B_{N-2}}^{2}\right)\right) \\
& \quad+\left(2^{t}-1\right)^{m} f^{\alpha}\left(C_{A B_{N-1}}^{2}\right) \\
& =E_{A \mid B_{1}}^{\alpha}+\left(2^{t}-1\right) E_{A B_{2}}^{\alpha}+\cdots+\left(2^{t}-1\right)^{m-1} E_{A B_{m}}^{\alpha} \\
& \quad+\left(2^{t}-1\right)^{m+1}\left(E_{A B_{m+1}}^{\alpha}+\cdots+E_{A B_{N-2}}^{\alpha}\right) \\
& \quad+\left(2^{t}-1\right)^{m} E_{A B_{N-1}}^{\alpha},
\end{aligned}
$$

where we have used the monogamy inequality in (1) for N-qubit states ρ to obtain the first inequality. By using (16) and the similar consideration in the proof of Theorem 1, we get the second inequality. Since for any $2 \otimes 2$ quantum state $\rho_{A B_{i}}, E\left(\rho_{A B_{i}}\right)=f\left[C^{2}\left(\rho_{A B_{i}}\right)\right]$, one gets the last equality.

As for $\left(2^{\alpha / \sqrt{2}}-1\right) \geq \alpha / \sqrt{2}$ for $\alpha \geq \sqrt{2}$, (15) is obviously tighter than (13) and(14). Moreover, similar to the concurrence, for the case that $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for all $i=1,2, \cdots, N-2$, we have a simple tighter monogamy relation for entanglement of formation:
[Theorem 4]. If $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for all $i=$ $1,2, \cdots, N-2$, we have

$$
\begin{align*}
E_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq \quad & E_{A B_{1}}^{\alpha}+\left(2^{\alpha / \sqrt{2}}-1\right) E_{A B_{2}}^{\alpha}+\cdots \\
& +\left(2^{\alpha / \sqrt{2}}-1\right)^{N-2} E_{A B_{N-1}}^{\alpha}, \tag{17}
\end{align*}
$$

FIG. 2: The axis y is the EOF of the W state $|W\rangle$ and its lower bounds, which are functions of α. The black solid line represents the EOF of the state $|W\rangle$ in Example 2, red dashed line represents the lower bound from our result, blue dotted (green dotdashed) line represents the lower bound from the result in [35] ([34]).
for $\alpha \geq \sqrt{2}$.
Example 2. Let us consider the W state, $|W\rangle=\frac{1}{\sqrt{3}}(|100\rangle+|010\rangle+|001\rangle)$. We have $E_{A B}=$ $E_{A C}=0.550048, E_{A \mid B C}=0.918296$, then $E_{A \mid B C}^{\alpha}=$ $(0.918296)^{\alpha}, E_{A B}^{\alpha}+E_{A C}^{\alpha}=2(0.550048)^{\alpha}, E_{A B}^{\alpha}+$ $\frac{\alpha}{\sqrt{2}} E_{A C}^{\alpha}=\left(1+\frac{\alpha}{\sqrt{2}}\right)(0.550048)^{\alpha}, E_{A B}^{\alpha}+\left(2^{\frac{\alpha}{\sqrt{2}}}-1\right) E_{A C}^{\alpha}=$ $2^{\frac{\alpha}{\sqrt{2}}}(0.550048)^{\alpha}$. It is easily verified that our results is better than the results in [34] and [35] for $\alpha \geq \sqrt{2}$, see Fig 2.

TIGHTER MONOGAMY RELATIONS FOR NEGATIVITY

Another well-known quantifier of bipartite entanglement is the negativity. Given a bipartite state $\rho_{A B}$ in $\mathbb{H}_{A} \otimes \mathbb{H}_{B}$, the negativity is defined by [45], $N\left(\rho_{A B}\right)=$ $\left(\left\|\rho_{A B}^{T_{A}}\right\|-1\right) / 2$, where $\rho_{A B}^{T_{A}}$ is the partial transpose with respect to the subsystem $A,\|X\|$ denotes the trace norm of $X,\|X\|=\operatorname{Tr} \sqrt{X X^{\dagger}}$. Negativity is a computable measure of entanglement, and is a convex function of $\rho_{A B}$. It vanishes if and only if $\rho_{A B}$ is separable for the $2 \otimes 2$ and $2 \otimes 3$ systems [46]. For the purpose of discussion, we use the following definition of negativity, $N\left(\rho_{A B}\right)=\left\|\rho_{A B}^{T_{A}}\right\|-1$. For any bipartite pure state $|\psi\rangle_{A B}$, the negativity $N\left(\rho_{A B}\right)$ is given by $N\left(|\psi\rangle_{A B}\right)=$
$2 \sum_{i<j} \sqrt{\lambda_{i} \lambda_{j}}=\left(\operatorname{Tr} \sqrt{\rho_{A}}\right)^{2}-1$, where λ_{i} are the eigenvalues for the reduced density matrix of $|\psi\rangle_{A B}$. For a mixed state $\rho_{A B}$, the convex-roof extended negativity (CREN) is defined as

$$
\begin{equation*}
N_{c}\left(\rho_{A B}\right)=\min \sum_{i} p_{i} N\left(\left|\psi_{i}\right\rangle_{A B}\right) \tag{18}
\end{equation*}
$$

where the minimum is taken over all possible pure state decompositions $\left\{p_{i},\left|\psi_{i}\right\rangle_{A B}\right\}$ of $\rho_{A B}$. CREN gives a perfect discrimination of positive partial transposed bound entangled states and separable states in any bipartite quantum systems [47, 48].

Let us consider the relation between CREN and concurrence. For any bipartite pure state $|\psi\rangle_{A B}$ in a $d \otimes d$ quantum system with Schmidt rank $2,|\psi\rangle_{A B}=$ $\sqrt{\lambda_{0}}|00\rangle+\sqrt{\lambda_{1}}|11\rangle$, one has $N\left(|\psi\rangle_{A B}\right)=\||\psi\rangle\left\langle\left.\psi\right|^{T_{B}} \|\right.$ $-1=2 \sqrt{\lambda_{0} \lambda_{1}}=\sqrt{2\left(1-\operatorname{Tr} \rho_{A}^{2}\right)}=C\left(|\psi\rangle_{A B}\right)$. In other words, negativity is equivalent to concurrence for any pure state with Schmidt rank 2, and consequently it follows that for any two-qubit mixed state $\rho_{A B}=$ $\sum p_{i}\left|\psi_{i}\right\rangle_{A B}\left\langle\psi_{i}\right|$,

$$
\begin{align*}
N_{c}\left(\rho_{A B}\right) & =\min \sum_{i} p_{i} N\left(\left|\psi_{i}\right\rangle_{A B}\right) \\
& =\min \sum_{i} p_{i} C\left(\left|\psi_{i}\right\rangle_{A B}\right) \\
& =C\left(\rho_{A B}\right) \tag{19}
\end{align*}
$$

With a similar consideration of concurrence, we obtain the following result.
[Theorem 5]. For any N-qubit state $\rho \in \mathbb{H}_{A} \otimes$ $\mathbb{H}_{B_{1}} \otimes \cdots \otimes \mathbb{H}_{B_{N-1}}$, if $N_{c A B_{i}} \geq N_{c A \mid B_{i+1} \cdots B_{N-1}}$ for $i=$ $1,2, \cdots, m$, and $N_{c A B_{j}} \leq N_{c A \mid B_{j+1} \cdots B_{N-1}}$ for $j=m+$ $1, \cdots, N-2, \forall 1 \leq m \leq N-3, N \geq 4$, we have

$$
\begin{align*}
& N_{c A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq N_{c A B_{1}}^{\alpha} \\
& +\left(2^{\frac{\alpha}{2}}-1\right) N_{c A B_{2}}^{\alpha}+\cdots+\left(2^{\frac{\alpha}{2}}-1\right)^{m-1} N_{c A B_{m}}^{\alpha} \\
& +\left(2^{\frac{\alpha}{2}}-1\right)^{m+1}\left(N_{c A B_{m+1}}^{\alpha}+\cdots+N_{c A B_{N-2}}^{\alpha}\right) \\
& +\left(2^{\frac{\alpha}{2}}-1\right)^{m} N_{c A B_{N-1}}^{\alpha} \tag{20}
\end{align*}
$$

for all $\alpha \geq 2$.
In Theorem 5 we have assumed that some $N_{c A B_{i}} \geq$ $N_{c A \mid B_{i+1} \cdots B_{N-1}}$ and some $N_{c A B_{j}} \leq N_{c A \mid B_{j+1} \cdots B_{N-1}}$. If all $N_{c A B_{i}} \geq N_{c A \mid B_{i+1} \cdots B_{N-1}}$ for $i=1,2, \cdots, N-2$, then we have the following conclusion:

FIG. 3: The axis y is the concurrence of $|\psi\rangle$ and its lower bound, which are functions of α. The black solid line represents the concurrence of $|\psi\rangle$ in Example 3, red dashed line represents the lower bound from our result, blue dotted (green dotdashed) line represents lower bound from the result in [36] ([34]).
[Theorem 6]. If $N_{c A B_{i}} \geq N_{c A \mid B_{i+1} \cdots B_{N-1}}$ for all $i=1,2, \cdots, N-2$, we have

$$
\begin{align*}
& N_{c}{ }_{A \mid B_{1} \cdots B_{N-1}}^{\alpha} \geq \\
& N_{c}^{\alpha}{ }_{A B_{1}}+\left(2^{\frac{\alpha}{2}}-1\right) N_{c}^{\alpha}{ }_{A B_{2}}^{\alpha}+\cdots \\
& +\left(2^{\frac{\alpha}{2}}-1\right)^{N-2} N_{c}^{\alpha}{ }_{A B_{N-1}} . \tag{21}
\end{align*}
$$

Example 3. Let us consider again the three-qubit state $|\psi\rangle$ (9). From the definition of CREN, we have $N_{c A \mid B C}=2 \lambda_{0} \sqrt{\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}}, \quad N_{c A B}=2 \lambda_{0} \lambda_{2}$, and $N_{c A C}=2 \lambda_{0} \lambda_{3}$. Set $\lambda_{0}=\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\frac{\sqrt{5}}{5}$. One gets $N_{c}{ }_{A \mid B C}^{\alpha}=\left(\frac{2 \sqrt{3}}{5}\right)^{\alpha}, N_{c}{ }_{A B}^{\alpha}+N_{c}^{\alpha}{ }_{A C}=2\left(\frac{2}{5}\right)^{\alpha}$, $N_{c}{ }_{A B}^{\alpha}+\frac{\alpha}{2} N_{c}{ }_{A C}^{\alpha}=\left(1+\frac{\alpha}{2}\right)\left(\frac{2}{5}\right)^{\alpha}, N_{c_{A B}}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) N_{c_{A C}}^{\alpha}=$ $2^{\frac{\alpha}{2}}\left(\frac{2}{5}\right)^{\alpha}$. One can see that our result is better than the results in [34] and [36] for $\alpha \geq 2$, see Fig 3.

TIGHTER MONOGAMY RELATIONS FOR TSALLIS-Q ENTANGLEMENT

For a bipartite pure state $|\psi\rangle_{A B}$, the Tsallis- q entanglement is defined by [24],

$$
\begin{equation*}
T_{q}\left(|\psi\rangle_{A B}\right)=S_{q}\left(\rho_{A}\right)=\frac{1}{q-1}\left(1-\operatorname{tr} \rho_{A}^{q}\right), \tag{22}
\end{equation*}
$$

for any $q>0$ and $q \neq 1$. If q tends to $1, T_{q}(\rho)$ converges to the von Neumann entropy, $\lim _{q \rightarrow 1} T_{q}(\rho)=$ $-\operatorname{tr} \rho \log \rho=S_{q}(\rho)$. For a bipartite mixed state $\rho_{A B}$,

Tsallis-q entanglement is defined via the convex-roof extension, $T_{q}\left(\rho_{A B}\right)=\min \sum_{i} p_{i} T_{q}\left(\left|\psi_{i}\right\rangle_{A B}\right)$, with the minimum taken over all possible pure state decompositions of $\rho_{A B}$.

In [49], the author has proved an analytic relationship between Tsallis- q entanglement and concurrence for $\frac{5-\sqrt{13}}{2} \leq q \leq \frac{5+\sqrt{13}}{2}$,

$$
\begin{equation*}
T_{q}\left(|\psi\rangle_{A B}\right)=g_{q}\left(C^{2}\left(|\psi\rangle_{A B}\right)\right) \tag{23}
\end{equation*}
$$

where the function $g_{q}(x)$ is defined by
$g_{q}(x)=\frac{1}{q-1}\left[1-\left(\frac{1+\sqrt{1-x}}{2}\right)^{q}-\left(\frac{1-\sqrt{1-x}}{2}\right)^{q}\right]$
It has been shown that $T_{q}(|\psi\rangle)=g_{q}\left(C^{2}(|\psi\rangle)\right)$ for $2 \otimes m(m \geq 2)$ pure state $|\psi\rangle$, and $T_{q}(\rho)=g_{q}\left(C^{2}(\rho)\right)$ for two-qubit mixed state ρ [24]. Hence (23) holds for any q such that $g_{q}(x)$ in (24) is monotonically increasing and convex. In particular, $g_{q}(x)$ satisfies the following relations for $2 \leq q \leq 3$,

$$
\begin{equation*}
g_{q}\left(x^{2}+y^{2}\right) \geq g_{q}\left(x^{2}\right)+g_{q}^{2}\left(y^{2}\right) \tag{25}
\end{equation*}
$$

The Tsallis- q entanglement satisfies [24]

$$
\begin{equation*}
T_{q_{A \mid B_{1} B_{2} \cdots B_{N-1}}} \geq \sum_{i=1}^{N-1} T_{q_{A B_{i}}}, \tag{26}
\end{equation*}
$$

where $i=1,2, \cdots N-1,2 \leq q \leq 3$. It is futher proved in [49],
with $\frac{5-\sqrt{13}}{2} \leq q \leq \frac{5+\sqrt{13}}{2}$. In fact, generally we can prove the following results.
[Theorem 7]. For an arbitrary N-qubit mixed state $\rho_{A B_{1} \cdots B_{N-1}}$, if $C_{A B_{i}} \geq C_{A \mid B_{i+1} \cdots B_{N-1}}$ for $i=1,2, \cdots, m$, and $C_{A B_{j}} \leq C_{A \mid B_{j+1} \cdots B_{N-1}}$ for $j=m+1, \cdots, N-2, \forall$ $1 \leq m \leq N-3, N \geq 4$, the α-th power of Tsallis- q entanglement satisfies the monogamy relation

$$
\begin{align*}
& T_{q}{ }_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{\alpha} \geq \\
& T_{q}^{\alpha}{ }_{A B_{1}}+\left(2^{\alpha}-1\right) T_{q}^{\alpha}{ }_{A B_{2}}^{\alpha}+\cdots+\left(2^{\alpha}-1\right)^{m-1} T_{q}^{\alpha}{ }_{A B_{m}} \\
& +\left(2^{\alpha}-1\right)^{m+1}\left(T_{q}^{\alpha}{ }_{A B_{m+1}}+\cdots+T_{q_{A B_{N-2}}}^{\alpha}\right) \\
& +\left(2^{\alpha}-1\right)^{m} T_{q_{A B_{N-1}}}^{\alpha}, \tag{28}
\end{align*}
$$

where $\alpha \geq 1, T_{q_{A \mid B_{1} B_{2} \cdots B_{N-1}}}$ quantifies the Tsallisq entanglement in the partition $A \mid B_{1} B_{2} \cdots B_{N-1}$ and
$T_{q_{A B_{i}}}$ quantifies that in two-qubit subsystem $A B_{i}$ with $2 \leq q \leq 3$.
[Proof]. For $\alpha \geq 1$, we have

$$
\begin{align*}
g_{q}^{\alpha}\left(x^{2}+y^{2}\right) & \geq\left(g_{q}\left(x^{2}\right)+g_{q}\left(y^{2}\right)\right)^{\alpha} \tag{29}\\
& \geq g_{q}^{\alpha}\left(x^{2}\right)+\left(2^{\alpha}-1\right) g_{q}^{\alpha}\left(y^{2}\right)
\end{align*}
$$

where the first inequality is due to the inequality (25), and the second inequality is obtained from a similar consideration in the proof of the second inequality in (4).

Let $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \in \mathbb{H}_{A} \otimes \mathbb{H}_{B_{1}} \otimes \cdots \otimes \mathbb{H}_{B_{N}-1}$ be the optimal decomposition for the N -qubit mixed state ρ, we have

$$
\begin{align*}
& T_{q A \mid B_{1} B_{2} \cdots B_{N-1}}(\rho) \\
& =\sum_{i} p_{i} T_{q}\left(\left|\psi_{i}\right\rangle_{A \mid B_{1} B_{2} \cdots B_{N-1}}\right) \\
& =\sum_{i} p_{i} g_{q}\left[C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}\left(\left|\psi_{i}\right\rangle\right)\right] \\
& \geq g_{q}\left[\sum_{i} p_{i} C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}\left(\left|\psi_{i}\right\rangle\right)\right] \\
& \geq g_{q}\left(\left[\sum_{i} p_{i} C_{A \mid B_{1} B_{2} \cdots B_{N-1}}\left(\left|\psi_{i}\right\rangle\right)\right]^{2}\right) \\
& =g_{q}\left[C_{A \mid B_{1} B_{2} \cdots B_{N-1}}^{2}(\rho)\right], \tag{30}
\end{align*}
$$

where the first inequality is due to that $g_{q}(x)$ is a convex function. The second inequality is due to the CauchySchwarz inequality: $\left(\sum_{i} x_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i} y_{i}^{2}\right)^{\frac{1}{2}} \geq \sum_{i} x_{i} y_{i}$, with $x_{i}=\sqrt{p_{i}}$ and $y_{i}=\sqrt{p_{i}} C_{A \mid B_{1} B_{2} \cdots B_{N-1}}\left(\left|\psi_{i}\right\rangle\right)$. Due to the definition of Tsallis- q entanglement and that $g_{q}(x)$ is a monotonically increasing function, we obtain the third inequality. Therefore, we have

$$
\begin{align*}
& T_{q}^{\alpha}{ }_{A \mid B_{1} B_{2} \cdots B_{N-1}}(\rho) \\
& \geq g_{q}^{\alpha}\left[\sum_{i} C^{2}\left(\rho_{A B_{i}}\right)\right] \\
& \geq g_{q}{ }^{\alpha}\left(C_{A B_{1}}\right)+\left(2^{\alpha}-1\right) g_{q}{ }^{\alpha}\left(C_{A B_{2}}\right)+\cdots \\
& \quad+\left(2^{\alpha}-1\right)^{m-1}{g_{q}}^{\alpha}\left(C_{A B_{m}}\right) \\
& \quad+\left(2^{\alpha}-1\right)^{m+1}\left(g_{q}^{\alpha}\left(C_{A B_{m+1}}\right)+\cdots+g_{q}^{\alpha}\left(C_{A B_{N-2}}\right)\right) \\
& \quad+\left(2^{\alpha}-1\right)^{m} g_{q}^{\alpha}\left(C_{A B_{N-1}}\right) \\
& = \\
& =T_{q}^{\alpha}{ }_{A B_{1}}+\left(2^{\alpha}-1\right) T_{q}^{\alpha}{ }_{A B_{2}}+\cdots+\left(2^{\alpha}-1\right)^{m-1} T_{q}{ }_{A B B_{m}}^{\alpha} \\
& \quad+\left(2^{\alpha}-1\right)^{m+1}\left(T_{q}{ }_{A A_{m+1}}^{\alpha}+\cdots+T_{q}{ }_{A B_{N-2}}^{\alpha}\right) \tag{31}\\
& \quad+\left(2^{\alpha}-1\right)^{m} T_{q}^{\alpha}{ }_{A B_{N-1}},
\end{align*}
$$

FIG. 4: The axis y is the concurrence of $|\psi\rangle$ and its lower bound, which are functions of α. The black solid line represents the concurrence of $|\psi\rangle$ in Example 4, green dotdashed line represents the lower bound from our result, blue dotted line represents lower bound from the result in [24].
where we have used the monogamy inequality in (1) for N-qubit states ρ to obtain the first inequality. By using (29) and the similar consideration in the proof of Theorem 1 , we get the second inequality. Since for any $2 \otimes 2$ quantum state $\rho_{A B_{i}}, T_{q}\left(\rho_{A B_{i}}\right)=g_{q}\left[C^{2}\left(\rho_{A B_{i}}\right)\right]$, one gets the last equality.

Example 4. Let us consider again the three-qubit state $|\psi\rangle(9)$. From the definition of Tsallis- q entanglement, when $q=2$, we have $T_{2 A \mid B C}=2 \lambda_{0}^{2}\left(\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}\right)$, $T_{2 A B}=2 \lambda_{0}^{2} \lambda_{2}^{2}$, and $T_{2 A C}=2 \lambda_{0}^{2} \lambda_{3}^{2}$. Set $\lambda_{0}=\lambda_{1}=$ $\lambda_{2}=\lambda_{3}=\lambda_{4}=\frac{\sqrt{5}}{5}$. One gets $T_{2}{ }_{A \mid B C}=\left(\frac{6}{25}\right)^{\alpha}$, $T_{2}{ }_{A B}^{\alpha}+T_{2}{ }_{A C}^{\alpha}=2\left(\frac{2}{25}\right)^{\alpha}, T_{2}{ }_{A B}^{\alpha}+\left(2^{\frac{\alpha}{2}}-1\right) T_{2}{ }_{A C}^{\alpha}=2^{\alpha}\left(\frac{2}{25}\right)^{\alpha}$. One can see that our result is better than that in [34] for $\alpha \geq 2$, see Figure 4 .

CONCLUSION

Entanglement monogamy is a fundamental property of multipartite entangled states. We have presented monogamy relations related to the α-power of concurrence C, entanglement of formation E, negativity N_{c} and Tsallis- q entanglement T_{q}, which are tighter, at least for some classes of quantum states, than the existing entanglement monogamy relations for $\alpha>2, \alpha>\sqrt{2}, \alpha>2$ and $\alpha>1$, respectively. The necessary conditions that our new inequalities are strictly tighter can been seen from our monogamy relations. For instance, (8) is tighter than the existing ones for $\alpha>2$, for all quantum states
that at least one of the $C_{A B_{i}} \mathrm{~s}(i=2, \ldots, N-1)$ is not zero, which excludes the fully separable states that have no entanglement distribution at all among the subsystems. Another case that $C_{A B_{i}}=0$ for all $i=2, \ldots, N-1$ is the N-qubit GHZ state [50], which is genuine multipartite entangled. However, for the genuine entangled N-qubit W-state [51], one has $C_{A B_{i}}=\frac{2}{N}, i=2, \ldots, N-1$. In general, most of states have at least one non-zero $C_{A B_{i}}$ $(i=2, \ldots, N-1)$.

Monogamy relations characterize the distributions of entanglement in multipartite systems. Tighter monogamy relations imply finer characterizations of the entanglement distribution. Our approach may also be used to study further the monogamy properties related to other quantum correlations.

Acknowledgments This work is supported by the NSF of China under Grant No. 11675113.

* Corresponding author: jzxjinzhixiang@126.com
† Corresponding author: lijunnl123@163.com
\ddagger Corresponding author: litao@btbu.edu.cn; Corresponding author: lt881122@sina.com
${ }^{\S}$ Corresponding author: feishm@mail.cnu.edu.cn
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000.
[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
[3] F. Mintert, M. Kuś, and A. Buchleitner, Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions, Phys. Rev. Lett. 92, 167902 (2004).
[4] K. Chen, S. Albeverio, and S. M. Fei, Concurrence of Arbitrary Dimensional Bipartite Quantum States, Phys. Rev. Lett. 95, 040504 (2005).
[5] H. P. Breuer, Separability criteria and bounds for entanglement measures, J. Phys. A: Math. Gen. 39, 11847 (2006).
[6] H. P. Breuer, Optimal Entanglement Criterion for Mixed Quantum States, Phys. Rev. Lett. 97, 080501 (2006).
[7] J. I. de Vicente, Lower bounds on concurrence and separability conditions, Phys. Rev. A 75, 052320 (2007).
[8] C. J. Zhang, Y. S. Zhang, S. Zhang, and G. C. Guo, Optimal entanglement witnesses based on local orthogonal
observables, Phys. Rev. A 76, 012334 (2007).
[9] M. Pawlowski, Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations, Phys. Rev. A 82, 032313 (2010).
[10] M. Koashi and A. Winter, Monogamy of quantum entanglement and other correlations, Phys. Rev. A 69, 022309 (2004).
[11] T. J. Osborne and F. Verstraete, General Monogamy Inequality for Bipartite Qubit Entanglement, Phys. Rev. Lett. 96, 220503 (2006).
[12] Y. K. Bai, M. Y. Ye, and Z. D. Wang, Entanglement monogamy and entanglement evolution in multipartite systems, Phys. Rev. A 80, 044301 (2009).
[13] T. R. de Oliveira, M. F. Cornelio, and F. F. Fanchini, Monogamy of entanglement of formation, Phys. Rev. A 89, 034303 (2014).
[14] G. Adesso and F. Illuminati, Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems, New J. Phys. 8, 15 (2006).
[15] T.Hiroshima, G. Adesso, and F. Illuminati, Monogamy inequality for distributed Gaussian entanglement, Phys. Rev. Lett. 98, 050503 (2007).
[16] G. Adesso and F. Illuminati, Strong monogamy of bipartite and genuine multiparitie entanglement: the Guussian case, Phys. Rev. Lett. 99, 150501 (2007).
[17] M. Christandl and A. Winter, Squashed entanglement: an additive entanglement measure, J. Math. Phys. 45, 829 (2004).
[18] D. Yang, et al, Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof, IEEE Trans. Inf. Theory 55, 3375 (2009).
[19] Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75, 062308 (2007).
[20] J. S. Kim, A. Das, and B. C. Sanders, Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extend negativity, Phys. Rev. A 79, 012329 (2009).
[21] H. He and G. Vidal, Disentangling theorem and monogamy for entanglement negativity, Phys. Rev. A 91, 012339 (2015)
[22] J. H. Choi and J. S. Kim, Negativity and strong monogamy of multiparty quantum entanglement beyond qubits, Phys. Rev. A 92, 042307 (2015).
[23] Y. Luo and Y. Li, Monogamy of α-th power entanglement measurement in qubit system, Ann. Phys. 362, 511 (2015).
[24] J. S. Kim, Tsallis entropy and entanglement constraints
in multiqubit systems, Phys. Rev. A 81, 062328 (2010).
[25] J. S. Kim, Generalized entanglement constraints in multiqubit systems in terms of Tsallis entropy, arXiv: 1603. 02760.
[26] J. S. Kim and B. C. Sanders, Monogamy of multi-qubit entanglement using Rényi entropy, J. Phys. A: Math. Theor. 43, 445305 (2010).
[27] M. F. Cornelio and M. C. de Oliveira, Strong superadditivity and monogamy of the Renyi measure of entanglement, Phys. Rev. A 81, 032332 (2010).
[28] Y. X. Wang, L. Z. Mu, V. Vedral, and H. Fan, Entanglement Rényi-entropy, Phys. Rev. A 93, 022324 (2016).
[29] A. Uhlmann, Fidelity and concurrence of conjugated states, Phys. Rev. A 62, 032307 (2000).
[30] P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn, Universal state inversion and concurrence in arbitrary dimensions, Phys. Rev. A 64, 042315 (2001).
[31] S. Albeverio and S. M. Fei, A Note on Invariants and Entanglements, J. Opt. B: Quantum Semiclass Opt. 3, 223-227 (2001).
[32] T. Laustsen, F. Verstraete, and S. J. Van Enk, Local vs. joint measurements for the entanglement of assistance, Quantum Inf. Comput. 4, 64 (2003).
[33] C. S. Yu and H. S. Song, Entanglement monogamy of tripartite quantum states, Phys. Rev. A 77, 032329 (2008).
[34] X. N. Zhu and S. M. Fei, Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014).
[35] Z. X. Jin and S. M. Fei, Tighter entanglement monogamy relations of qubit systems, Quantum Inf Process 16:77 (2017).
[36] Z. X. Jin, S. M. Fei. Tighter monogamy relations of quantum entanglement for multiqubit W-class states. Quantum Inf Process 17:2 (2018).
[37] X. J. Ren and W. Jiang, Entanglement monogamy inequality in a $2 \otimes 2 \otimes 4$ system, Phys. Rev. A 81, 024305 (2010).
[38] A. Acin, A. Andrianov, L. Costa, E. Jané, J. I. Latorre, and R. Tarrach, Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States, Phys. Rev. Lett. 85, 1560 (2000).
[39] X. H. Gao and S. M. Fei, Estimation of concurrence for multipartite mixed states, Eur. Phys. J. Special Topics 159, 71-77 (2008).
[40] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53, 2046 (1996).
[41] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54, 3824 (1996).
[42] W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Phys. Rev. Lett. 80, 2245 (1998).
[43] V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61, 052306 (2000).
[44] Y. K. Bai, N. Zhang, M. Y. Ye, and Z. D. Wang, Exploring multipartite quantum correlations with the square of quantum discord, Phys. Rev. A 88, 012123 (2013).
[45] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A. 65, 032314 (2002).
[46] M. Horodecki, P. Horodecki, and R. Horodecki, MixedState Entanglement and Distillation: Is there a Bound Entanglement in Nature ? Phys. Rev. Lett. 80, 5239 (1998).
[47] P. Horodeki, Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A. 232, 333 (1997).
[48] W. Dür, J. I. Cirac, M. Lewenstein, and D. Bruß, Distillability and partial transposition in bipartite systems, Phys. Rev. A. 61, 062313 (2000).
[49] G. M. Yuan, W. Song, M. Yang, D. C. Li, J. L. Zhao, and Z. L. Cao, Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement, Sci. Rep. 6: 28719 (2016).
[50] D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement, Phys. Rev. Lett. 82, 1345, 1999.
[51] X. N. Zhu and S. M. Fei, General monogamy relations of quantum entanglement for multiqubit W-class states, Quantum Inf Process 16:53 (2017).

