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Separability is an important problem in theory of quantum entanglement. By using the Bloch
representation of quantum states in terms of the Heisenberg-Weyl observable basis, we present a
new separability criterion for bipartite quantum systems. It is shown that this criterion can be
better than the previous ones in detecting entanglement. The results are generalized to multipartite
quantum states.
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INTRODUCTION

Quantum entanglement is a fascinating phenomenon
in quantum physics. In recent decades, much works have
been devoted to understand entanglement as it plays im-
portant roles in many quantum information processing.
Nevertheless, there are still many problems remain un-
solved in the theory of quantum entanglement. One ba-
sic problem is to determine whether a given bipartite
state is entangled or separable. Although the problem is
believed to be a nondeterministic polynomial-time hard
problem, there are a number of operational criteria to
deal with the problem, for example, the positive partial
transpose (PPT) criterion [2, 3], realignment criteria [4–
8], covariance matrix criteria [9–11], correlation matrix
criteria [12–14] and so on. More recently, some more
separability criteria have been proposed [15–20]. Among
them, Li et al. [15] presented separability criteria based
on correlation matrices and the Bloch vectors of reduced
density matrices. And by adding some extra parameters,
Ref.[20] presents a more general separability criterion for
bipartite states in terms of the Bloch representation of
density matrices.
The state of two quantum systems A and B, acting on

the finite-dimensional Hilbert space H = HA ⊗ HB , is
described by the density operator ρ. A state ρ is said to
be separable if ρ can be written as a convex combination
of product vectors [1], i.e.

ρ =
∑
i

pi|ψi, φi⟩⟨ψi, φi|, (1)

where 0 6 pi 6 1,
∑

i pi = 1, and |ψi, φi⟩ = |ψi⟩A⊗|φi⟩B
(|ψ⟩A ∈ HA and |φ⟩B ∈ HB). The state ρ is said to be
entangled, when ρ cannot be written as in form of Eq.(1).
In this article, we put forward a new Bloch represen-

tation in terms of the Heisenberg-Weyl (HW) observable

basis [21]. It is one of the standard Hermitian general-
ization of Pauli operators, constructed from HW opera-
tors [22–25]. They have distinct properties from those of
Gell-Mann matrices [21], Based on the Heisenberg-Weyl
representation of density matrices, we give a new sepa-
rability criterion for bipartite quantum states and multi-
partite states. By example, we show that this criterion
has advantages in determining whether a quantum state
is separable or entangled.

HW observable basis. First, we briefly introduce the
HW-operator basis [21]. The generalized Pauli “phase”

and “shift” operators are given by Z = e
i2πQ
N and

X = e
−i2πP

N , respectively, X|j⟩ = |j + 1 mod N⟩ and

Z|j⟩ = e
i2πj
N |j⟩. Q and P are the discrete position and

momentum operators describing a N ×N grid.
The phase-space displacement operators for N-level

systems are defined by

D(l,m) = ZlXme
−iπlm

N , (2)

i.e. [26]

D(l,m) =

N−1∑
k=0

e
2iπkl

N |k⟩⟨(k +m)mod N |, (3)

l,m = 0, 1, . . . , N − 1. These non-Hermitian orthogonal
basis operators satisfy the following orthogonality condi-
tion, Tr{D(l,m)D†(l′,m′)} = Nδl,l′ δm,m′ .

The complete set of Hermitian operators can be con-
structed from the HW operators D(l,m) by defining

Q(l,m) = XD(l,m) + X ∗D†(l,m) , (4)

where X = (1 ± i)/2. Q(l,m) are the so called HW
observable basis and satisfy the orthogonality condition,

Tr{Q(l,m)Q†(l′,m′)} = Nδl,l′ δm,m′ . (5)
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This basis simply reduces to the pauli matrices forN =
2. When N = 3, we have

Q(0, 1) =
1

2

 0 1 + i 1− i
1− i 0 1 + i
1 + i 1− i 0

 ,

Q(0, 2) =
1

2

 0 1− i 1 + i
1 + i 0 1− i
1− i 1 + i 0

 ,

Q(1, 0) =
1

2

 2 0 0

0 −1−
√
3 0

0 0
√
3− 1

 ,

Q(1, 1) =
1√
2

 0 e
π
4 i e

5
12πi

e−
π
4 i 0 e

11
12πi

e−
5
12πi e−

11
12πi 0

 ,

Q(1, 2) =
1√
2

 0 e−
11
12πi e

π
4 i

e
11
12πi 0 e

5
12πi

e−
π
4 i e−

5
12πi 0

 ,

Q(2, 0) =
1

2

 2 0 0

0
√
3− 1 0

0 0 −1−
√
3

 ,

Q(2, 1) =
1√
2

 0 e
π
4 i e−

11
12πi

e−
π
4 i 0 e−

5
12πi

e
11
12πi e

5
12πi 0

 ,

Q(2, 2) =
1√
2

 0 e
5
12πi e

π
4 i

e−
5
12πi 0 e−

11
12πi

e−
π
4 i e

11
12πi 0

 .

BLOCH REPRESENTATION UNDER
HEISENBERG-WELY OBSERVABLES

A state ρ ∈ CN of single quantum system can be ex-
pressed in terms of the N ×N identity operator IN and
the N2−1 traceless Hermitian HW observable operators
Q(l,m),

ρ =
1

N

N−1∑
l,m=0

rlmQ(l,m)

=
1

N
(IN +

N−1∑
l,m=0

(l,m) ̸=(0,0)

rlmQ(l,m)) ,
(6)

where Q(0, 0) = IN . The coefficients rlm in Eq.(6) are
given by

rlm = Tr(ρQ(l,m)) ,

where l = 0, 1, · · · , N − 1, m = 0, 1, · · · , N − 1 and
(l,m) ̸= (0, 0). We denote

r = (r0,1, r0,2, · · · , r0,N−1, r1,0, · · · , r1,N−1,

· · · , rN−1,0, · · · , rN−1,N−1). (7)

Lemma 1 For pure states,

∥ r ∥2=
√
N − 1 , (8)

where ∥ · ∥2 is the Euclidean norm on RN2−1.

Proof: According to the Eq.(6), we have

Trρ2 =
1

N2

N−1∑
l,m,l′,m′=0

rlmrl′m′Tr{Q(l,m)Q(l′,m′)}

=
1

N2
·N ·

N−1∑
l,m=0

r2lm

=
1

N
(1 +

N−1∑
l,m=0

(l,m) ̸=(0,0)

r2lm) =
1

N
(1+ ∥ r ∥22).

Since ρ is a pure state, one has Trρ = Trρ2 = 1. There-
fore ∥ r ∥22= N − 1. �

Now consider bipartite states ρ ∈ CM ⊗CN . Any state
ρ can be similarly represented as [27]

ρ =
1

MN
(IM ⊗ IN +

∑
(l,m) ̸=(0,0)

rlmQ(l,m)⊗ IN

+
∑

(k,n)̸=(0,0)

sknIM ⊗Q(k, n)

+
∑

(l,m),(k,n)̸=(0,0)

tlmknQ(l,m)⊗Q(k, n)),

(9)

In particular,

tlmkn = Tr{ρQ(l,m))⊗ Q̃(k, n)},

where l,m = 0, · · · ,M − 1, k, n = 0, · · · , N − 1 and
(l,m), (k, n) ̸= (0, 0).

SEPARABILITY CRITERIA FOR BIPARTITE
STATES

Similarly to (7), we denote r =
(r0,1, · · · , r0,M−1, · · · , rM−1,0, · · · , rM−1,M−1)

t and
s = (s0,1, · · · , s0,N−1, · · · , sN−1,0, · · · , sN−1,N−1)

t,
where t stands for transpose. Set T = (tij),
where the entries tij are given by the coefficients
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tlmkn, l,m = 0, · · · ,M − 1, k, n = 0, · · · , N − 1,
(l,m), (k, n) ̸= (0, 0)), with the first two indices lm
associated with the array index i, and the last two
indices kn with the column index j of T .
Let us consider the following matrix,

Sm
α,β(ρ) =

(
αβEm×m βωm(s)t

αωm(r) T

)
, (10)

where

ωm(x) =
(
x · · · x

)︸ ︷︷ ︸
m columns

,

α and β are nonnegative real numbers, m is a given nat-
ural number, Em×m is an m×m matrix with all entries
being 1. We have the following theorem,

Theorem 1 If the state ρ in CM ⊗CN is separable, then

∥ Sm
α,β(ρ) ∥tr≤

√
(mβ2 +M − 1)(mα2 +N − 1) , (11)

where ||·||tr stands for the trace norm (the sum of singular
values).

Proof: Since ρ is separable, from [14] there exist vec-

tors ui ∈ RM2−1, vi ∈ RN2−1 satisfying Eq.(8), and
weights pi satisfying 0 ≤ pi ≤ 1,

∑
i pi = 1 such that

T =
∑
i

piuiv
t
i , r =

∑
i

piui , s =
∑
i

pivi.

From Lemma 1, we have

∥ ui ∥2=
√
M − 1 , ∥ vi ∥2=

√
N − 1 .

The matrix (10) has the form,

Sm
α,β(ρ) =

∑
i

pi

(
αβEm×m βωm(vi)

t

αωm(ui) uiv
t
i

)
,

=
∑
i

pi

(
βEm×1

ui

)(
αE1×m vt

i

)
.

Hence

∥ Sm
α,β(ρ) ∥tr = ∥

∑
i

pi

(
βEm×1

ui

)(
αE1×m vt

i

)
∥tr

≤
∑
i

pi ∥
(
βEm×1

ui

)(
αE1×m vt

i

)
∥tr .

Accounting to that for any vectors |i⟩ =
(i1, i2, · · · , im)t and |j⟩ = (j1, j2, · · · , jn)t, one has

∥ |i⟩⟨j| ∥tr = Tr
√

(|i⟩⟨j|)†|i⟩⟨j|

= Tr
√

|j⟩(⟨i||i⟩)⟨j|

=
√
(i21 + i22 + · · ·+ i2m)(j21 + j22 + · · ·+ j2n)

= ∥ |i⟩ ∥2∥ |j⟩ ∥2 , (12)

we have ∑
i

pi ∥
(
βEm×1

ui

)(
αE1×m vt

i

)
∥tr

= ∥
(
βEm×1

ui

)
∥2∥

(
αEm×1

vi

)
∥2

=
√
(mβ2 +M − 1)(mα2 +N − 1) ,

which gives rise to (11). �
Remark Theorem 1 implies that a pure bipartite quan-

tum state in Bloch representation Eq. (9) is separable if
and only if

Sm
α,β(ρ) =

(
βEm×1

r

)(
αE1×m st

)
=

(
αβEm×m βωm(s)t

αωm(r) rst

)
.

Note that Eq.(9) can be rewritten as

ρ = ρA ⊗ ρB +
1

MN
[(tlmkn − rlmskn)Q(l,m)⊗Q(k, n)],

where ρA and ρB are the reduced density matrices. Since
Q(l,m) ⊗ Q̃(k, n) are linearly independent, (tlmkn −
rlmskn)Q(l,m) ⊗ Q̃(k, n) = 0 if and only if tlmkn −
rlmskn = 0, i.e. T = rst, for any l,m, k, n. Moreover, for
N = M = 2, the HW observable basis is equivalent to
Pauli matrices. In this case Theorem 1 is equivalent to
the Theorem 1 in [20].

For high dimensional quantum states, let us consider
the following 2 × 4 bound entangled state [28] as an ex-
ample,

ρ =
1

7b+ 1



b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1
2 (1 + b) 0 0 1

2

√
1− b2

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0 1
2

√
1− b2 0 0 1

2 (1 + b)


.

where 0 < b < 1. We mix the above state with state
|ξ⟩ = 1√

2
(|00⟩+ |11⟩),

ρx = x|ξ⟩⟨ξ|+ (1− x)ρ.

By choosing

α =

√
1

d1 − 1
, β =

√
1

d2 − 1
, m = 1, b = 0.9,

our Theorem 1 can detect the entanglement in ρx for
0.22349 ≤ x ≤ 1, while the Theorem 1 in [20], the V-B
criterion [14] and the L-B criterion [15] can only detect
the entanglement in ρx for 0.2283 ≤ x ≤ 1, 0.2293 ≤
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x ≤ 1 and 0.2841 ≤ x ≤ 1, respectively. In this case, our
criterion is better in detecting entanglement.
Here, instead of (4), if we define Q(l,m) =

k(XD(l,m) + X ∗D†(l,m)), k =
√

2/N , then ∥ r ∥2=√
N(N−1)

2 , and the conclusion becomes

∥ Sm
α,β(ρ) ∥tr≤

1

2

√
(2mβ2 +M2 −M)(2mα2 +N2 −N) .

In this case, the least upper bound in Theorem 1 is equal
to the Theorem 1 [20].

SEPARABILITY CRITERIA FOR
MULTIPARTITE STATES

We now generalize our result in Theorem 1 to mul-
tipartite case. Let S be an f1 × · · · × fN tensor, A
and Ā be two nonempty subsets of {1, . . . , N} satisfying
A ∪ Ā = 1, . . . , N . Let SA|Ā denote the A, Ā matriciza-
tion of S, see [20, 29] for detail.
For any state ρ in Cd1 ⊗· · ·⊗CdN , we import a natural

number m and nonnegative real parameters α1, . . . αN ,
and define

δ
(di)
(ki,ni)

=


αiIdi

, 1 ≤ ki = ni ≤ m

Q(di)(ki −m,ni −m),
m ≤ ki,
ni ≤ di +m− 1,
(ki, ni) ̸= (m,m),

where i = 1, . . . , N . Denote W(m)
α1,α2,...,αN (ρ) the tensor

given by elements of the following form,

w(k1,n1)...(kN ,nN ) = Tr(ρδ
(d1)
(k1,n1)

⊗ · · · ⊗ δ
(dN )
(kN ,nN )),

where 1 ≤ ki = ni ≤ m, m ≤ ki, ni ≤ di + m − 1.
Below we give the full separability criterion based on

W(m)
α1,α2,...,αN (ρ).

Theorem 2 If a state ρ in Cd1 ⊗ · · · ⊗CdN is fully sep-
arable, then for any subset A of {1, . . . , N}, we have

∥ (W(m)
α1,α2,...,αN

(ρ))A|Ā ∥tr≤
N∏

k=1

√
(mα2

k + dk − 1).

(13)

Proof: Without loss of generality, we assume

A = {q1, . . . , qM}, q1 < · · · < qM ,

Ā = {qM+1, . . . , qN}, qM + 1 < · · · < qN .

Since ρ is fully separable, from [30] there exist vectors

u
(k)
i ∈ Rd2

k−1 such that

W(m)
α1,α2,...,αN

(ρ) =
∑
i

pi

(
α1Em×1

u
(1)
i

)
⊗ · · · ⊗

(
αNEm×1

u
(N)
i

)
,

where ∥ u
(k)
i ∥2=

√
dk − 1. Thus

∥ (W(m)
α1,α2,...,αN

(ρ))A|Ā ∥tr

=∥
∑
i

pi
M
⊗
l=1

(
αqlEm×1

u
(ql)
i

)
N
⊗

p=M+1

(
αqpEm×1

u
(qp)
i

)t

∥tr

≤
∑
i

pi ∥
M
⊗
l=1

(
αqlEm×1

u
(ql)
i

)
N
⊗

p=M+1

(
αqpEm×1

u
(qp)
i

)t

∥tr

=
∑
i

pi ∥
M
⊗
l=1

(
αqlEm×1

u
(ql)
i

)
∥2∥

N
⊗

p=M+1

(
αqpEm×1

u
(qp)
i

)
∥2

=
∑
i

pi

√√√√tr(
M
⊗
l=1

(

(
αqlEm×1

u
(ql)
i

)† (
αqlEm×1

u
(ql)
i

)
))

·

√√√√tr(
N
⊗

p=M+1
(

(
αqpEm×1

u
(qp)
i

)† (
αqpEm×1

u
(qp)
i

)
))

=
∑
i

pi

√√√√ N∑
k=1

tr(

(
αkEm×1

u
(k)
i

)† (
αkEm×1

u
(k)
i

)
)

=
N∏

k=1

√
(mα2

k + dk − 1),

where we have used the equality Eq.(12) and tr(A⊗B) =
trA · trB.

CONCLUSION

We have studied the separability problem based on the
Bloch representation of density matrices in terms of the
Heisenberg-Weyl observable basis. New separability cri-
teria have been derived for both bipartite and multipar-
tite quantum systems, which provide more efficient ways
in detecting quantum entanglement for certain kinds of
quantum states. These criteria can experimentally im-
plemented.

In [20] the traceless Hermitian generators of SU(d) sat-
isfying the orthogonality relations have been used in the
Bloch representation of density matrices. While in this
paper we have adopted the same approach as the one used
in [20] but used the Heisenberg-Weyl observable basis in
the Bloch representation of density matrices. An inter-
esting fact here is that the ability of detecting quantum
entanglement can be improved by using different observ-
able basis in the Bloch representation. Hence our results
are complementary to the ones obtained in [20] in detect-
ing entanglement for some quantum states. Just like the
case that one needs different witnesses to detect the en-
tanglement of different quantum states, we need to mea-
sure the quantum systems with suitable local observable
sets in entanglement detection. The choices of suitable
observable basis depend on the detailed entangled states
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to be detected. It would be more interesting if such state-
dependent choices of observable basis can be analytically
derived optimally. It is also possible to improve such
separability criteria by taking into account measurement
outcomes of more observable bases simultaneously, sim-
ilar to the cases that involve all the mutually unbiased
bases [31, 32], or mutually unbiased measurements [33],
or general symmetric informationally complete positive
operator-valued measurements [34].
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