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We study the dynamics of coherence-induced state ordering under incoherent channels, partic-
ularly four specific Markovian channels − amplitude damping channel, phase damping channel,
depolarizing channel and bit flit channel for single-qubit states. We show that the amplitude damp-
ing channel, phase damping channel and depolarizing channel do not change the coherence-induced
state ordering by l1 norm of coherence, relative entropy of coherence, geometric measure of coherence
and Tsallis relative α-entropies, while the bit flit channel does change for some special cases.
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I. INTRODUCTION

Quantum coherence is a fundamental feature of quantummechanics, which distinguishes the quantum world from the
classical physics realm. It is an essential ingredient in many research fields such as low-temperature thermodynamics
[1–5], quantum biology [6–11], nanoscale physics [12, 13], etc. Quantifying the coherence of quantum states[14] has
become a hot issue. Recently, Baumgratz et al. proposed a strict framework to quantify quantum coherence [15].
Consequently, various coherence measures have been defined based on this framework, such as l1-norm of coherence,
relative entropy of coherence [15], geometric measure of coherence [16] and Tsallis relative α-entropies of coherence
measure [17], etc. Here, the Tsallis relative α-entropy of coherence measure violates the condition of a coherence
measure that is nonincreasing under mixing of states, while it satisfies a generalized monotonicity of average coherence
under subselection based on measurement.
Different coherence measures have been employed according to different physical context, thus give rise to different

values of coherence. Questions about ordering states with various coherence measures have also been discussed [17–
19]. Another interesting problem is that whether or not quantum operators change coherence-induced state ordering,
which has been proposed by Zhang et al [18].
Focused on single-qubit states, in this paper, we investigate such ordering problems under incoherent channels.

Particularly, we consider four Markovian channels − amplitude damping channel, phase damping channel, depolarizing
channel, and bit flit channel. Note that for some special cases, Zhang et al have studied the problem for single-qubit
states by using the amplitude damping channel and phase damping channel [18]. Here we also consider the geometric
measure of coherence for more general situations. We extend the results of Ref. [18] to general cases. Furthermore,
we show that the depolarizing channel does not change the coherence-induced state ordering while the bit flit channel
changes it when p = 1

2 .

II. PRELIMINARIES

In this section, we first recapitulate some concepts related to quantum coherence. Let H be a d-dimensional
Hilbert space and {|i⟩}d−1

i=0 be an orthonormal basis of H. An incoherent state is defined as ρ = Σd−1
i=0 pi|i⟩⟨i|, where

pi ≥ 0,Σipi = 1. Let I denote the set of incoherent states. An incoherent operation is defined as Λ(ρ) = ΣnKnρK
†
n,

where ΣnKnK
†
n = I and KnIK†

n ⊂ I. Baumgratz et al. proposed a framework to quantify quantum coherence, that
is, a function C can be taken as a coherence measure if it satisfied the following postulates [15]:
(C1) C(ρ) ≥ 0, C(ρ) = 0 if and only if ρ ∈ I;
(C2) C(Λ(ρ)) ≤ C(ρ) for any incoherent operation Λ;
(C3) ΣnpnC(ρn) ≤ C(ρ), where pn = Tr(KnρK

†
n), and ρn = KnρK

†
n/pn, {Kn} is a set of incoherent Kraus operators;

(C4) C(Σipiρi) ≤ ΣipiC(ρi) for any set of quantum states {ρi} and any probability distribution {pi}.
Several coherence measures have been put forward based on this framework. Here, we give the definitions of the

following four coherence measures for further use.
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Let ρ be a state defined on H, then

Cl1(ρ) =
∑
i̸=j

|ρij | (1)

is the l1 norm of coherence, where ρij are the entries of ρ. The relative entropy of coherence is defined by

Cr(ρ) = min
σ∈I

S(ρ∥σ) = S(ρdiag)− S(ρ), (2)

where S(ρ∥σ) = Tr(ρ log ρ−ρ log σ) is the quantum relative entropy, S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy,
and ρdiag = Σiρii|i⟩⟨i| is the diagonal part of ρ. The geometric measure of coherence is defined by

Cg(ρ) = 1−max
σ∈I

F (ρ, σ), (3)

where F (ρ, σ) =
(
Tr
√√

σρ
√
σ
)2

is the fidelity of two density operators ρ and σ. And the Tsallis relative α-entropy

of coherence is defined by

Cα(ρ) = min
δ∈I

Dα(ρ∥δ) =
rα − 1

α− 1
, (4)

where r = Σi⟨i|ρα|i⟩
1
α and α ∈ (0, 1) ∪ (1, 2].

Any single-qubit state can be expressed as

ρ =
1

2
(I + k⃗σ⃗) =

1

2
(I + tn⃗σ⃗), (5)

where k⃗ = (kx, ky, kz) is a real vector satisfying ∥k⃗∥ ≤ 1, t = ∥k⃗∥, n⃗ = (nx, ny, nz) is a unit vector and σ⃗ = (σx, σy, σz)

is the vector of Pauli matrices. Here, we note that nx, ny, nz represent the length of vector k⃗ along the direction
σx, σy, σz, respectively.

A non-coherence-generating channel (NC) Φ̃ is a CPTP map from an incoherent state to an incoherent state:

Φ̃(I) ⊂ I, where I denotes the set of incoherent states [20]. Any quantum channel Φ is called an incoherent channel

if there exists a Kraus decomposition Φ(·) = ΣnKn(·)K†
n such that ρn =

Kn(ρ)K
†
n

Tr(Kn(ρ)K
†
n)

is incoherent for any incoherent

state ρ.
A rank-2 qubit channel is an NC if and only if it has the Kraus decomposition either as [20]

Φ(1)(·) = E
(1)
1 (·)E(1)†

1 + E
(1)
2 (·)E(1)†

2 (6)

with

E
(1)
1 =

(
eiη cos θ cosϕ 0
− sin θ sinϕ eiξ cosϕ

)
, E

(1)
2 =

(
sin θ cosϕ eiξ sinϕ

e−iη cos θ sinϕ 0

)
(7)

or as

Φ(2)(·) = E
(2)
1 (·)E(2)†

1 + E
(2)
2 (·)E(2)†

2 (8)

with

E
(2)
1 =

(
cos θ 0
0 eiξ cosϕ

)
, E

(2)
2 =

(
0 sinϕ

eiξ sin θ 0

)
, (9)

where θ, ϕ, ξ and η are all real numbers. Here Φ(1) is not an incoherent channel unless sin θ cos θ sinϕ cosϕ = 0 and
Φ(2) is an incoherent channel.

III. MAIN RESULTS

In this section, we first study the coherence-induced ordering problem under arbitrary incoherent channels for single-
qubit states via the coherence measures Cl1 , Cr, Cα and Cg. Then we study the dynamics of coherence-induced state
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ordering under specific Markovian channels for single-qubit states by four Markovian channels amplitude damping,
phase damping channel, depolarizing channel and bit flit channel.

Suppose that an incoherent channel is defined as (6). Let a = 1−tnz

2 and b =
t(nx−iny)

2 with b =| b | eiβ . Then

Φ(ρ) =

(
A B
B∗ 1−A

)
with A = a cos2 ϕ+ (b∗eiξ + be−iξ) sin θ sinϕ

cosϕ + (1 − a) sin2 ϕ, B = beiη−iξ cos θ cos2 ϕ + b∗eiξ+iη cos θ sin2 ϕ. Thus, Cl1(Φ(ρ)) = 2 | beiη−iξ cos θ cos2 ϕ +
b∗eiξ+iη cos θ sin2 ϕ |. If sin θ = 0, then Φ is an incoherent operation and Cl1(Φ(ρ)) = 2 | b |√
eiβ−iξ cos2 ϕ+ eiξ−iβ sin2 ϕ. We find that the value of Cl1(ρ) depends on both b and the channel itself. In oth-

er words, there may exist incoherent channels such that Cl1(Φ(ρ1)) < Cl1(Φ(ρ2)) though Cl1(ρ1) > Cl1(ρ2).

Suppose that an incoherent channel is defined as (8). Then Φ(ρ) =

(
C D
D∗ 1− C

)
with C = a cos2 θ+(1−a) sin2 ϕ

and D = eiξ(b cos θ cosϕ + b∗ sin θ sinϕ). Thus, Cl1(ρ) = 2|b|
√
cos2 β cos2(θ − ϕ) + sin2 β cos2(θ + ϕ). Also we have

that the value of Cl1(ρ) depends on both b and the channel itself. In other words, there may exist incoherent channels
such that Cl1(Φ(ρ1)) < Cl1(Φ(ρ2)) though Cl1(ρ1) > Cl1(ρ2).
According to the above discussion, we can conclude that there exist incoherent channels changing the coherence-

induced state ordering under the coherence measure Cl1 . This is true also for the coherence measure Cg, since Cl1
and Cg give the same ordering for single-qubit states [21]. For the other coherence measures Cr and Cα, the issue
will become formidably difficult for general incoherent channels. However, we can consider some specific incoherent
channels to deal with the problem.

A. Amplitude damping channel

The amplitude damping channel is characterized by the Kraus’ operators: K0 = |0⟩⟨0| + √
p|1⟩⟨1|, K1 =√

1− p|0⟩⟨1|, where p ∈ [0, 1]. It is direct to verify that [18],

ε(ρ) =

(
1+tnz

2 + p(1−tnz)
2

√
1−pt(nx−iny)

2√
1−pt(nx+iny)

2
(1−p)(1−tnz)

2

)
, (10)

Cl1(ε(ρ)) = (1− p)t
√
1− n2

z, (11)

Cr(ε(ρ)) = h
(1 + t′n′

z

2

)
− h
(1 + t′

2

)
, (12)

Cα =
rα − 1

α− 1
, (13)

where h(x) = −x log x− (1− x) log(1− x), r =
[(

1+t′

2

)α
1+n′

z

2 + ( 1−t′

2

)α
1−n′

z

2

] 1
α

+
[(

1+t′

2

)α
1−n′

z

2 + ( 1−t′

2

)α
1+n′

z

2

] 1
α

,

t′ =
√
(1− p)t2(1− n2

z) + (p+ (1− p)nzt)2, n
′
x =

√
1−pnxt

t′ , n′
y =

√
1−pnyt

t′ and n′
z = p+(1−p)nzt

t′ .
Clearly, for the case p = 1, the amplitude damping channel transforms any single-qubit state to an incoherent state.

For p = 0, any single-qubit state is unchanged under amplitude damping channel.
It has been proved that the amplitude damping channel does not change the coherence-induced state ordering under

the coherence measure Cl1 [18]. In the following we study the case p ∈ (0, 1) for the coherence measures Cr and Cα
for α ∈ (0, 1) ∪ (1, 2]. By numerical calculation we find that for any p ∈ (0, 1), the amplitude damping channel does
not change the coherence-induced state ordering by Cr with fixed nz or fixed t, since Cr is an increasing function with
respect to t for every fixed nz while a decreasing function with respect to nz for every fixed t, see figures 1, 2 and 3
for the cases of p = 1

4 ,
1
2 and 3

4 .

For the coherence measure Cα, Zhang et al have proved that for p = 1
2 , the amplitude damping channel keeps

the coherence-induced state ordering with fixed nz or fixed t. In fact, we find that it holds for any p ∈ (0, 1) and
α ∈ (0, 1)∪ (1, 2]. In Figure 4, we give the variation of C2 for p = 1

8 ,
3
8 ,

5
8 and p = 7

8 . In Figure 5, we give the variation

of Cα for fixed p = 1
2 and α = 1

4 ,
3
4 ,

5
4 ,

7
4 .
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(a) p = 1
4

(b) p = 1
2

(c) p = 3
4

FIG. 1: The variation of Cr(ε(ρ)) with respect to t and nz under amplitude damping channel.

(a) p = 1
4

(b) p = 1
2

(c) p = 3
4

FIG. 2: For p = 1
4
, p = 1

2
and p = 3

4
, Cr(ε(ρ)) is an increasing function with respect to t for the cases nz = 0.3 (red line),

nz = 0.6 (green line) and nz = 0.9 (blue line).

B. Phase damping channel

Now we study the dynamics of coherence-induced state ordering under phase damping channel , which can be
characterized by the Kraus’ operators K0 =

√
pI, K1 =

√
1− p|0⟩⟨0|, K2 =

√
1− p|1⟩⟨1|, where 0 ≤ p ≤ 1. By

applying the phase damping channel to the state (5), we get

ε(ρ) =

(
1+tnz

2
tp(nx−iny)

2
tp(nx+iny)

2
1−tnz

2

)
. (14)

For p = 0, the phase damping channel transforms a state into an incoherent one. In the following, we study the

case p ̸= 0. For simplicity, we define A = 1 + (p2 − 1)(1 − nz)
2, B = 1+t

√
A

2 , C = (
√
A + nz)

2 and D = p2(1 − n2
z).

Substituting ε(ρ) into eq. (1), (2) and (4), we have

Cl1(ε(ρ)) = pt
√
1− nz = pCl1(ρ), (15)

Cr(ε(ρ)) = h(
1 + tnz

2
)− h(B), (16)

Cα(ε(ρ)) =
rα − 1

α− 1
, (17)

(a) p = 1
4

(b) p = 1
2

(c) p = 3
4

FIG. 3: For p = 1
4
, p = 1

2
and p = 3

4
, Cr(ε(ρ)) is a decreasing function with respect to nz for the cases t = 0.3 (red line), t = 0.6

(green line) and t = 0.9 (blue line).
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(a) p = 1
8

(b) p = 3
8

(c) p = 5
8

(d) p = 7
8

FIG. 4: The variation of C2 with respect to t and nz under amplitude damping channel for p = 1
8
, p = 3

8
, p = 5

8
and p = 7

8
.

(a) α = 1
4

(b) α = 3
4

(c) α = 5
4

(d) α = 7
4

FIG. 5: For fixed p = 1
2
, the variation of Cα with with respect to t and nz under amplitude damping channel for α = 1

4
, α =

3
4
, α = 5

4
and α = 7

4
.

where r = (Bα C
C+D + (1−B)α D

C+D )
1
α + ((1−B)α C

C+D +Bα D
C+D )

1
α . According to eq. (15) we have that the phase

damping channel does not change the coherence-induced state ordering by Cl1 for single-qubit states.
Next we consider the coherence measure Cr. According to eq.(16), we get

∂Cr(ε(ρ))
∂t

=
nz

2
log

1− tnz

1 + tnz
+

√
A

2
log

1 + t
√
A

1− t
√
A

≥ nz

2
log

1− tnz

1 + tnz
+

nz

2
log

1 + tnz

1− tnz
= 0,

since
√
A
2 log 1+t

√
A

1−t
√
A

is an increasing function with respect to p ∈ (0, 1]. Moreover, since ∂Cr(ρ)
∂t ≥ 0, the phase damping

channel does not change the coherence-induced state ordering by Cr for single-qubit states with fixed nz. According
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(a) α = 1
4

(b) α = 3
4

(c) α = 5
4

(d) α = 7
4

FIG. 6: The variation of Cα with respect to t and nz under phase damping channel for fixed p = 1
2
and α = 1

4
, 3

4
, 5

4
and α = 7

4
.

to eq.(15), we obtain

∂Cr(ε(ρ))
∂nz

= (
t

2
ln

1− tnz

1 + tnz
− (p2 − 1)nzt

2
√
A

ln
1 + t

√
A

1− t
√
A
)/ ln 2.

Set f(p) = (p2−1)√
A

ln 1+t
√
A

1−t
√
A
. Then

f ′(p) = p+pA√
A3

ln 1+t
√
A

1−t
√
A
+

2tp(1−n2
z)(p

2−1)
A(1−t2A) ≥ p+pA√

A3
ln 1+t

√
A

1−t
√
A
+

2tp(1−n2
z)(p

2−1)
A(1−A) = p

A (A+1√
A

ln 1+t
√
A

1−t
√
A
− 2t) ≥ 0,

since A+1√
A

ln 1+t
√
A

1−t
√
A
− 2t is an increasing function with respect to t ≥ 0. Thus,

∂Cr(ε(ρ))
∂nz

≤ (
t

2
ln

1− tnz

1 + tnz
− nzt

2
f(0))/ ln 2 = 0.

Therefore the phase damping channel keeps the coherence-induced state ordering by Cr for single-qubit states with

fixed t as ∂Cr(ρ)
∂nz

≤ 0.

According to eq.(16), for the coherence measure Cα, α ∈ (0, 1) ∪ (1, 2], we have ∂Cα(ε(ρ))
∂t = α

α−1r
α−1 ∂r

∂t , where

∂r
∂t =

√
A
2 {[Bα C

C+D + (1−B)α D
C+D ]

1
α−1[Bα−1 C

C+D − (1−B)α−1 D
C+D ]}

+
√
A
2 {[(1−B)α C

C+D +Bα D
C+D ]

1
α−1[Bα−1 D

C+D − (1−B)α−1 C
C+D ]}.

(18)

If α ∈ (0, 1), ∂r
∂t ≤ [Bα C

C+D + (1−B)α D
C+D ]

1
α−1(Bα−1 − (1−B)α−1) ≤ 0.

If α ∈ (1, 2], ∂r
∂t ≥ [Bα C

C+D + (1−B)α D
C+D ]

1
α−1(Bα−1 −(1−B)α−1) ≥ 0.

Then ∂Cα(ε(ρ))
∂t ≥ 0. Since ∂Cα(ρ)

∂t ≥ 0, the phase damping channel does not change the coherence-induced state
ordering by Cα for single-qubit states with fixed nz. In fact, the phase damping channel does not change the coherence-
induced state ordering by Cα for single-qubit states with fixed t. Generally, it is very difficult to discuss the monotony
of Cα for all parameters α ∈ (0, 1) ∪ (1, 2] and p ∈ (0, 1] with respect to nz. In figure 6 we present the variation of Cα
with fixed p = 1

2 for α = 1
4 ,

3
4 ,

5
4 and α = 7

4 .
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C. Depolarizing channel

Now we study the dynamics of coherence-induced state ordering under depolarizing channel. The state of the
quantum system after depolarizing channel is given by ε(ρ) = pI

2 + (1− p)ρ,

ε(ρ) =

(
1+tnz(1−p)

2
(1−p)(nx−iny)t

2
(1−p)(nx+iny)t

2
1−tnz(1−p)

2

)
. (19)

Substituting ε(ρ) into eq. (1), (2) and (4), we have

Cl1(ε(ρ)) = (1− p)t
√
1− nz = (1− p)Cl1(ρ), (20)

Cr(ε(ρ)) = h(
1 + tnz(1− p)

2
)− h(

1 + t(1− p)

2
), (21)

Cα(ε(ρ)) =
rα − 1

α− 1
, (22)

where r = [EαF + (1− E)α(1− F )]
1
α + [Eα(1− F ) + (1− E)αF ]

1
α , and E = 1+t(1−p)

2 , F = 1+nz

2 .
According to eq. (20), we have that the depolarizing channel keeps the coherence-induced state ordering under Cl1

for single-qubit states.
Next, we consider the coherence measure Cr. Clearly, Cr(ε(ρ)) is a decreasing function with respect to nz, since

∂Cr(ε(ρ))
∂nz

= t(1−p)
2 log 1−tnz(1−p)

1+tnz(1−p) ≤ 0. Thus, the depolarizing channel does not change the coherence-induced state

ordering by Cr for single-qubit states with fixed t, due to that Cr(ρ) is also a decreasing function with respect to nz.
In fact, Cr(ε(ρ)) is an increasing function with respect to t, as

∂Cr(ε(ρ))
∂t∂nz

=
(1− p)

2
log

1− tnz(1− p)

1 + tnz(1− p)
− t(1− p)2nz

1− t2n2
z(1− p)2

≤ 0.

Therefore,

∂Cr(ε(ρ))
∂t

=
(1− p)nz

2
log

1− tnz(1− p)

1 + tnz(1− p)
+

1− p

2
log

1 + t(1− p)

1− t(1− p)
≥ 0.

In addition, Cr(ρ) is an increasing function with respect to t [18]. Thus, the depolarizing channel does not change the
coherence-induced state ordering by Cr for single-qubit states with fixed nz.
Lastly, we consider the the coherence measure Cα, where α ∈ (0, 1)∪ (1, 2]. First of all, we show ∂r

∂t ≥ 0 if α ∈ (1, 2]

and ∂r
∂t ≤ 0 if α ∈ (0, 1). Clearly, we have

∂r
∂t = 1−p

2 {[EαF + (1− E)α(1− F )]
1
α−1[Eα−1F − (1− E)α−1(1− F )]+

[Eα(1− F ) + (1− E)αF ]
1
α−1[Eα−1(1− F )− (1− E)α−1F ]}.

(23)

Since xαy + (1− x)α(1− y) ≥ xα(1− y) + (1− x)αy, where α > 0, 1
2 ≤ x, y ≤ 1, we have

∂r

∂t
≥ 1− p

2
[EαF + (1− E)α(1− F )]

1
α−1[Eα−1 − (1− E)α−1] ≥ 0 (24)

if α ∈ (1, 2]. And if α ∈ (0, 1), we have

∂r

∂t
≤ 1− p

2
[EαF + (1− E)α(1− F )]

1
α−1[Eα−1 − (1− E)α−1] ≤ 0. (25)

Thus, ∂Cα(ε(ρ))
∂t = αrα−1

α−1
∂r
∂t ≥ 0. Since ∂Cα(ρ)

∂t ≥ 0, we obtain that the depolarizing channel does not change the
coherence-induced state ordering by Cα for single-qubit states with fixed nz.
On the other hand, as

∂r

∂nz
=

1

2α
[Eα − (1− E)α]{[Eα−1F − (1− E)

1
α−1(1− F )]

1
α−1 − [Eα(1− F ) + (1− E)αF ]

1
α−1}

and xαy− (1− x)α(1− y) ≥ xα(1− y)− (1− x)αy for α ≥ 0 and 1
2 ≤ x, y ≤ 1, one has ∂Cα(ε(ρ))

∂nz
≤ 0. Therefore, since

∂Cα(ρ)
∂nz

≤ 0, we have that the depolarizing channel keeps the coherence-induced state ordering by Cα for single-qubit
states with fixed t.
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D. Bit flit channel

Now we study the dynamics of coherence-induced state ordering under bit flit channel, which can be characterized
by the Kraus’ operators K0 =

√
pI, K1 =

√
1− pσx, where 0 ≤ p ≤ 1. Applying the bit flit channel to the state (5),

we get

ε(ρ) =

(
1+tnz(2p−1)

2
tnx−itny(2p−1)

2
tnx+itny(2p−1)

2
1−tnz(2p−1)

2

)
. (26)

Substituting this ε(ρ) into eq. (1), (2) and (4), we have

Cl1(ε(ρ)) =
√
t2n2

x + (2p− 1)2t2n2
y =

√
(2p− 1)2C2

l1
(ρ) + 4(p− p2)t2n2

x, (27)

Cr(ε(ρ)) = h(
1 + tnz(2p− 1)

2
)− h(H), (28)

Cα(ε(ρ)) =
rα − 1

α− 1
, (29)

where r = [Hα M
M+N +(1−H)α N

M+N ]
1
α +[(1−H)α M

M+N +Hα N
M+N ]

1
α , and G =

√
1 + 4(p2 − p)(1− n2

x), H = 1+t
√
G

2 ,

M = n2
x + (2p− 1)2n2

y and N = (
√
G− (2p− 1)nz)

2.

Let us consider the special case p = 1
2 . Thus,

Cl1(ε(ρ)) = tnx, (30)

Cr(ε(ρ)) = 1− h(
1 + tnx

2
), (31)

Cα(ε(ρ)) =
rα − 1

α− 1
, (32)

where r = 2[ 12 (
1+tnx

2 )α + 1
2 (

1−tnx

2 )α]
1
α . Hence,

∂Cl1
(ε(ρ))

∂nx
= t ≥ 0, ∂Cr(ε(ρ))

∂nx
= t

2 log
1+tnx

1−tnx
≥ 0 and

∂Cα(ε(ρ))
∂nx

=
αt

2(α− 1)
rα−1[

1

2
(
1 + tnx

2
)α +

1

2
(
1− tnx

2
)α]

1
α−1[(

1 + tnx

2
)α−1 − (

1− tnx

2
)α−1] ≥ 0.

Let ρ1 = 1
2 (I + t1n⃗1σ⃗) and ρ2 = 1

2 (I + t2n⃗2σ⃗), where n1 = (n1x, n1y, n1z), n2 = (n2x, n2y, n2z). As-
sume t1 = t2, n1x < n2x and n1z < n2z. Then we find that Cl1(ρ1) > Cl1(ρ2), Cl1(ε(ρ1)) < Cl1(ε(ρ2)),
Cr(ρ1) > Cr(ρ2), Cr(ε(ρ1)) < Cr(ε(ρ2)), Cα(ρ1) > Cα(ρ2) and Cα(ε(ρ1)) < Cα(ε(ρ2)). Thus, the bit flit channel
changes the coherence-induced state ordering by the coherence measures Cl1 , Cr and Cα for single-qubit states with
fixed t, where α ∈ (0, 1) ∪ (1, 2].
Now assume t1 > t2, n1x < n2x and n1z = n2z such that t1n1x < t2n2x. Then we find that Cl1(ρ1) >

Cl1(ρ2), Cl1(ε(ρ1)) < Cl1(ε(ρ2)), Cr(ρ1) > Cr(ρ2), Cr(ε(ρ1)) < Cr(ε(ρ2)), Cα(ρ1) > Cr(ρ2) and Cα(ε(ρ1)) < Cr(ε(ρ2)),
since the coherence measures Cl1 , Cr and Cα are all increasing functions with respect to tnx. Thus, bit flit channel
changes the coherence-induced state ordering by the coherence measures Cl1 , Cr and Cα for single-qubit states with
fixed nz, where α ∈ (0, 1) ∪ (1, 2].

IV. CONCLUSION

We have discussed whether or not a quantum channel changes the coherence-induced state ordering, for four specific
Markovian channels − amplitude damping channel, phase flit channel, depolarizing channel and bit flit channel. We
have showed that the depolarizing channel does not change the coherence-induced state ordering by Cl1 , Cr, Cα and
Cg. For the bit flit channel, we have shown that it does change the coherence-induced state ordering under these four
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coherence measures for the case of p = 1
2 . Our results enrich the understanding of coherence-induced state ordering

under quantum channels.
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