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Abstract

Monogamy relations characterize the distributions of entanglement in multipartite systems. We

investigate the monogamy relations satisfied by the concurrence of assistance and the negativity

of assistance for multiqubit generalized W -class states. Analytical monogamy inequalities are

presented for both concurrence of assistance and negativity of assistance, which are shown to be

tighter than the existing ones. Detailed examples have been presented.
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INTRODUCTION

Quantum entanglement [1–8] is an essential feature of quantum mechanics. As one of

the fundamental differences between quantum entanglement and classical correlations, a key

property of entanglement is that a quantum system entangled with one of the subsystems

limits its entanglement with the remaining subsystems. The monogamy relations character-

ize the distribution of quantum entanglement in multipartite systems. Monogamy property

is also an essential feature allowing for security in quantum key distribution [9].

For a tripartite system A, B and C, the authors [10] show that there is a trade-off between

A′s entanglement with B and its entanglement with C. In [11], the authors present a simple

identity which captures the trade-off between entanglement and classical correlation, which

can be used to derive rigorous monogamy relations. They also proved various monogamous

trade-off relations for other entanglement measures and correlation measures. In [12], the

author proved the longstanding conjecture of Coffman, Kundu, and Wootters [10] that the

distribution of bipartite quantum entanglement, measured by the tangle τ , amongst n qubits

satisfies a tight inequality: τρA1A2 + τρA1A3 + · · ·+ τρA1An ≤ τρA1|A2···An , where τρA1|A2···An

denotes the bipartite quantum entanglement measured by the tangle under the bipartition

A1 and A2A3 · · ·An.

Recently, the monogamy of entanglement for multiqubit W -class states has been inves-

tigated, and the monogamy relations for tangle and the squared concurrence have been

presented in Ref. [13, 14]. In Ref. [15], the general monogamy inequalities of the α-th power

of concurrence and entanglement of formation are presented for N -qubit states. However, the

concurrence of assistance does not satisfy monogamy relations for general quantum states.

Therefore, special classes of quantum states have been taken into account for monogamy

relations satisfied by the concurrence of assistance. The monogamy relations for the x-power

of concurrence of assistance for the generalized multiqubit W -class states have been derived

in [16]. In [17], a tighter monogamy relation of quantum entnglement for multiqubit W -class

states has been presented.

In this paper, we show that the monogamy inequalities for concurrence of assistance

obtained so far can be further improved. We present entanglement monogamy relations for

the x-th (x ≥ 2) power of the concurrence of assistance, which are tighter than those in

[16, 17] and give rise to finer characterizations of the entanglement distributions among the
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multipartite W -class states. Moreover, we present the general monogamy relations for the

x-power of negativity of assistance for the generalized multiqubit W -class states, which are

also better than that in [16, 17].

IMPROVED MONOGAMY RELATIONS FOR CONCURRENCE OF ASSIS-

TANCE

Let HX denote a discrete finite dimensional complex vector space associated with a

quantum subsystem X. For a bipartite pure state |ψ〉AB in vector space HA ⊗ HB, the

concurrence is given by C(|ψ〉AB) =
√

2 [1− Tr(ρ2A)] [18–20], where ρA is the reduced density

matrix, ρA = TrB(|ψ〉AB〈ψ|). The concurrence for a bipartite mixed state ρAB is defined by

the convex roof extension C(ρAB) = min{pi,|ψi〉}
∑

i piC(|ψi〉), where the minimum is taken

over all possible pure state decompositions of ρAB =
∑

i pi|ψi〉〈ψi|, with pi ≥ 0 and
∑

i pi = 1

and |ψi〉 ∈ HA ⊗HB.

For an N -qubit state ρAB1···BN−1
∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1

, the concurrence

C(ρA|B1···BN−1
) of the state ρA|B1···BN−1

, viewed as a bipartite state under the bipartition

A and B1, B2, · · · , BN−1, satisfies [15]

Cx(ρA|B1,B2··· ,BN−1
) ≥ Cx(ρAB1) + Cx(ρAB2) + · · ·+ Cx(ρABN−1

),

for α ≥ 2, where ρABi
= TrB1···Bi−1Bi+1···BN−1

(ρAB1···BN−1
). The above monogamy relation

is improved such that for α ≥ 2, if C(ρABi
) ≥ C(ρA|Bi+1···BN−1

) for i = 1, 2, · · · ,m, and

C(ρABj
) ≤ C(ρA|Bj+1···BN−1

) for j = m+ 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, then [21],

Cx(ρA|B1B2···BN−1
) ≥

Cx(ρAB1) +
x

2
Cx(ρAB2) + · · ·+

(x
2

)m−1
Cx(ρABm)

+
(x

2

)m+1 (
Cx(ρABm+1) + · · ·+ Cx(ρABN−2

)
)

+
(x

2

)m
Cx(ρABN−1

). (1)

In [22], (1) is further improved such that for x ≥ 2, one has

Cx(ρA|B1B2···BN−1
) ≥

Cx(ρAB1) + hCx(ρAB2) + · · ·+ hm−1Cx(ρABm)

+hm+1
(
Cx(ρABm+1) + · · ·+ Cx(ρABN−2

)
)

+hmCx(ρABN−1
) (2)
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for all x ≥ 2, where h = 2
x
2 − 1.

For a tripartite pure state |ψ〉ABC , the concurrence of assistance is defined by [23, 24]

Ca(|ψ〉ABC) ≡ Ca(ρAB) = max{pi,|ψi〉}
∑
i

piC(|ψi〉),

where the maximum is taken over all possible decompositions of ρAB = TrC(|ψ〉ABC〈ψ|) =∑
i pi|ψi〉AB〈ψi|. When ρAB is a pure state, then one has C(|ψ〉AB) = Ca(ρAB).

Different from the Coffman-Kundu-Wootters inequality satisfied by the concurrence, the

concurrence of assistance does not satisfy the monogamy relations in general. However, for

N -qubit generalized W -class state, |ψ〉AB1···BN−1
∈ HA ⊗HB1 ⊗ · · · ⊗HBN−1

defined by

|ψ〉AB1···BN−1
= a|10 · · · 0〉+ b1|01 · · · 0〉+ · · ·+ bN−1|00 · · · 1〉, (3)

with |a|2 +
∑N−1

i=1 |bi|2 = 1, one has [16],

C(ρABi
) = Ca(ρABi

), i = 1, 2, ..., N − 1, (4)

where ρABi
= TrB1···Bi−1Bi+1···BN−1

(|ψ〉AB1···BN−1
〈ψ|), and the concurrence of assistance

Ca(|ψ〉A|B1···BN−1
) satisfies the monogamy inequality [16],

Cx
a (|ψ〉A|B1,B2··· ,BN−1

) ≥ Cx
a (ρAB1) + Cx

a (ρAB2) + · · ·+ Cx
a (ρABN−1

), (5)

for x ≥ 2. (5) has been further improved such that for x ≥ 2, if C(ρABi
) ≥ C(ρA|Bi+1···BN−1

)

for i = 1, 2, · · · ,m, and C(ρABj
) ≤ C(ρA|Bj+1···BN−1

) for j = m + 1, · · · , N − 2, ∀ 1 ≤ m ≤

N − 3, N ≥ 4, then [17],

Cx
a (|ψ〉A|B1B2···BN−1

) ≥

Cx
a (ρAB1) +

x

2
Cx
a (ρAB2) + · · ·+

(x
2

)m−1
Cx
a (ρABm)

+
(x

2

)m+1 (
Cx
a (ρABm+1) + · · ·+ Cx

a (ρABN−2
)
)

+
(x

2

)m
Cx
a (ρABN−1

). (6)

In fact, as a kind of characterization of the entanglement distribution among the subsys-

tems, the monogamy inequalities satisfied by the concurrence of assistance can be further

refined and become tighter.

[Theorem 1]. Let ρABj1
···Bjm−1

denote the m-qubit reduced density matrix of the N -

qubit generalized W -class state |ψ〉AB1···BN−1
∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1

. If C(ρABji
) ≥
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C(ρABji+1
···Bjm−1

) for i = 1, 2, · · · t, and C(ρABjk
) ≤ C(ρABjk+1

···Bjm−1
) for k = t +

1, · · · ,m− 2, ∀ 1 ≤ t ≤ m− 3, m ≥ 4, the concurrence of assistance satisfies

Cx
a (ρA|Bj1

···Bjm−1
) ≥ Cx

a (ρABj1
)

+hCx
a (ρABj2

) + · · ·+ ht−1Cx
a (ρABjt

)

+ht+1
(
Cx
a (ρABjt+1

) + · · ·+ Cx
a (ρABjm−2

)
)

+htCx
a (ρABjm−1

) (7)

for all x ≥ 2, where h = 2
x
2 − 1.

[Proof]. For the N -qubit generalized W -class states |ψ〉AB1···BN−1
, according to the def-

initions of C(ρ) and Ca(ρ), one has Ca(ρA|Bj1
···Bjm−1

) ≥ C(ρA|Bj1
···Bjm−1

). When x ≥ 2, we

have

Cx
a (ρA|Bj1

···Bjm−1
) ≥ Cx(ρA|Bj1

···Bjm−1
) ≥ Cx(ρABj1

)

+hCx(ρABj2
) + · · ·+ ht−1Cx(ρABjt

)

+ht+1
(
Cx(ρABjt+1

) + · · ·+ Cx(ρABjm−2
)
)

+htCx(ρABjm−1
)

= Cx
a (ρABj1

) + hCx
a (ρABj2

) + · · ·+ ht−1Cx
a (ρABjt

)

+ht+1
(
Cx
a (ρABjt+1

) + · · ·+ Cx
a (ρABjm−2

)
)

+htCx
a (ρABjm−1

), (8)

where we have used in the first inequality the relation ax ≥ bx for a ≥ b ≥ 0, x ≥ 2. The

second inequality is due to (2). The equality is due to (4).

As for x ≥ 2, ht ≥ (x/2)t for all 1 ≤ t ≤ m − 3, comparing with the monogamy

relations for concurrence of assistance (5) and (6), our formula (7) in Theorem 1 gives a

tighter monogamy relation with larger lower bound. In Theorem 1 we have assumed that

some C(ρABji
) ≥ C(ρABji+1

···Bjm−1
) and some C(ρABjk

) ≤ C(ρABjk+1
···Bjm−1

) for the N -qubit

generalized W -class states. If all C(ρABji
) ≥ C(ρABji+1

···Bjm−1
) for i = 1, 2, · · · ,m− 2, then

we have the following conclusion:

[Theorem 2]. If C(ρABji
) ≥ C(ρABji+1

···Bjm−1
) for i = 1, 2, · · · ,m− 2, we have

Cx
a (ρA|Bj1

···Bjm−1
) ≥ Cx

a (ρABj1
) + hCx

a (ρABj2
) + · · ·+ hm−2Cx

a (ρABjm−1
) (9)

for all x ≥ 2, where h = 2
x
2 − 1.
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FIG. 1: y is the value of Ca(|W 〉A|B1B2B3). Solid (red) line is the exact value of

Ca(|W 〉A|B1B2B3), dashed (blue) line is the lower bound of Ca(|W 〉A|B1B2B3) in (7), dot

dashed (green) line is the lower bound in [17], and dotted (black) line is the lower bound in

[16] for x ≥ 2.

Example 1. Let us consider the 4-qubit generlized W -class state,

|W 〉AB1B2B3 =
1

2
(|1000〉+ |0100〉+ |0010〉+ |0001〉). (10)

We have Cx
a (|W 〉A|B1B2B3) = (

√
3
2

)x. From our result (7) we have Cx
a (|W 〉A|B1B2B3) ≥[

2 · 2x
2 − 1

]
(1
2
)x, from (6) one has Cx

a (|W 〉A|B1B2B3) ≥ (x + 1)(1
2
)x, and from (5) one has

Cx
a (|W 〉A|B1B2B3) ≥ 3(1

2
)x, x ≥ 2. One can see that our result is better than that in [16] and

[17] for x ≥ 2, see Fig. 1.

IMPROVED MONOGAMY RELATIONS FOR NEGATIVITY OF ASSISTANCE

Another well-known quantifier of bipartite entanglement is the negativity. Given a bipar-

tite state ρAB in HA⊗HB, the negativity is defined by [25], N(ρAB) = (||ρTAAB||−1)/2, where

ρTAAB is the partially transposed ρAB with respect to the subsystem A, ||X|| denotes the trace

norm of X, i.e ||X|| = Tr
√
XX†. Negativity is a computable measure of entanglement, and

is a convex function of ρAB. It vanishes if and only if ρAB is separable for the 2⊗2 and 2⊗3
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systems [26]. For the purpose of discussion, we use the following definition of negativity,

N(ρAB) = ||ρTAAB|| − 1. For any bipartite pure state |ψ〉AB, the negativity N(ρAB) is given

by N(|ψ〉AB) = 2
∑

i<j

√
λiλj = (Tr

√
ρA)2− 1, where λi are the eigenvalues for the reduced

density matrix ρA of |ψ〉AB. For a mixed state ρAB, the convex-roof extended negativity

(CREN) is defined by

Nc(ρAB) = min
∑
i

piN(|ψi〉AB), (11)

where the minimum is taken over all possible pure state decompositions {pi, |ψi〉AB} of ρAB.

CREN gives a perfect discrimination of positive partial transposed bound entangled states

and separable states in any bipartite quantum systems [27, 28]. For a mixed state ρAB, the

convex-roof extended negativity of assistance (CRENOA) is defined as [29]

Na(ρAB) = max
∑
i

piN(|ψi〉AB), (12)

where the maximum is taken over all possible pure state decompositions {pi, |ψi〉AB} of

ρAB.

For an N -qubit state ρAB1···BN−1
∈ HA ⊗HB1 ⊗ · · · ⊗HBN−1

, we denote Nc(ρA|B1···BN−1
)

the negativity of the state ρA|B1···BN−1
, viewed as a bipartite state under the partition A

and B1, B2, · · · , BN−1. If Nc(ρABi
) ≥ Nc(ρA|Bi+1···BN−1

) for i = 1, 2, · · · ,m, and Nc(ρABj
) ≤

Nc(ρA|Bj+1···BN−1
) for j = m+ 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, then [17]

Nx
c (ρA|B1B2···BN−1

)

≥ Nx
c (ρAB1) +

x

2
Nx
c (ρAB2) + · · ·+

(x
2

)m−1
Nx
c (ρABm)

+
(x

2

)m+1

(Nx
c (ρABm+1) + · · ·+Nx

c (ρABN−2
))

+
(x

2

)m
Nx
c (ρABN−1

), (13)

for all x ≥ 2. The inequality (13) is further improved that for x ≥ 2 [22]

Nx
c (ρA|B1B2···BN−1

)

≥ Nx
c (ρAB1) + hNx

c (ρAB2) + · · ·+ hm−1Nx
c (ρABm)

+hm+1(Nx
c (ρABm+1) + · · ·+Nx

c (ρABN−2
))

+hmNx
c (ρABN−1

) (14)

where h = 2
x
2 − 1.
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The negativity of assistance does not satisfy a monogamy relation in general. How-

ever, for an N -qubit generlized W -class state |ψ〉AB1···BN−1
∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1

,

if Nc(ρABi
) ≥ Nc(ρA|Bi+1···BN−1

) for i = 1, 2, · · · ,m, and Nc(ρABj
) ≤ Nc(ρA|Bj+1···BN−1

) for

j = m + 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, then the negativity of assistance

Na(|ψ〉A|B1···BN−1
) of the state |ψ〉AB1···BN−1

satisfies the inequality [17],

Nx
a (|ψ〉A|B1B2···BN−1

) ≥

Nx
a (ρAB1) +

x

2
Nx
a (ρAB2) + · · ·+

(x
2

)m−1
Nx
a (ρABm)

+
(x

2

)m+1 (
Nx
a (ρABm+1) + · · ·+Nx

a (ρABN−2
)
)

+
(x

2

)m
Nx
a (ρABN−1

), (15)

for all x ≥ 2.

In fact, to have a better characterization of the entanglement distribution among the

subsystems, the monogamy inequalities satisfied by the negativity of assistance can be fur-

ther refined and become tighter. Taking into account the fact that for N -qubit generlized

W -class states (3) [17],

Nc(ρABi
) = Na(ρABi

), i = 1, 2, · · · , N − 1 (16)

where ρABi
= TrB1···Bi−1Bi+1···BN−1

(|ψ〉AB1···BN−1
〈ψ|), we have the following relations:

[Theorem 3]. For the N -qubit generalized W -class states |ψ〉AB1···BN−1
∈ HA ⊗ HB1 ⊗

· · · ⊗ HBN−1
, if Nc(ρABji

) ≥ Nc(ρABji+1
···Bjm−1

) for i = 1, 2, · · · , t, and Nc(ρABjk
) ≤

Nc(ρABjk+1
···Bjm−1

) for k = t + 1, · · · ,m− 2, ∀ 1 ≤ t ≤ m− 3, m ≥ 4, then the CRENOA

satisfies

Nx
a (ρA|Bj1

···Bjm−1
) ≥ Nx

a (ρABj1
)

+hNx
a (ρABj2

) + · · ·+ ht−1Nx
a (ρABjt

)

+ht+1
(
Nx
a (ρABjt+1

) + · · ·+Nx
a (ρABjm−2

)
)

+htNx
a (ρABjm−1

) (17)

for all x ≥ 2, where h = 2
x
2 − 1.

[Proof]. For the N -qubit generalized W -class states |ψ〉AB1···BN−1
, according to the defi-

nitions of Nc(ρ) and Na(ρ), one has Na(ρA|Bj1
···Bjm−1

) ≥ Nc(ρA|Bj1
···Bjm−1

). When x ≥ 2, we
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have

Nx
a (ρA|Bj1

···Bjm−1
) ≥ Nx

c (ρA|Bj1
···Bjm−1

) ≥ Nx
c (ρABj1

)

+hNx
c (ρABj2

) + · · ·+ ht−1Nx
c (ρABjt

)

+ht+1
(
Nx
c (ρABjt+1

) + · · ·+Nx
c (ρABjm−2

)
)

+htNx
c (ρABjm−1

)

= Nx
a (ρABj1

) + hNx
a (ρABj2

) + · · ·+ ht−1Nx
a (ρABjt

)

+ht+1
(
Nx
a (ρABjt+1

) + · · ·+Nx
a (ρABjm−2

)
)

+htNx
a (ρABjm−1

), (18)

where we have used in the first inequality the relation ax ≥ bx for a ≥ b ≥ 0, x ≥ 2. Due to

the (14), one gets the second inequality. The equality is due to relation (16).

As for x ≥ 2, ht ≥ (x/2)t for all 1 ≤ t ≤ m − 3, comparing with the monogamy

relations for CRENOA in (15), our formula (17) in Theorem 3 gives a tighter monogamy

relation with larger lower bounds. In Theorem 3 we have assumed that some Nc(ρABji
) ≥

Nc(ρABji+1
···Bjm−1

) and some Nc(ρABjk
) ≤ Nc(ρABjk+1

···Bjm−1
) for the N -qubit generalized W -

class states. If all Nc(ρABji
) ≥ Nc(ρABji+1

···Bjm−1
) for i = 1, 2, · · · ,m− 2, then we have the

following conclusion:

[Theorem 4]. If Nc(ρABji
) ≥ Nc(ρABji+1

···Bjm−1
) for i = 1, 2, · · · ,m− 2, we have

Nx
a (ρA|Bj1

···Bjm−1
) ≥ Nx

a (ρABj1
) + hNx

a (ρABj2
) + · · ·+ hm−2Nx

a (ρABjm−1
) (19)

for all x ≥ 2, where h = 2
x
2 − 1.

Example 2. Let us consider the N -qubit pure W -class state,

|W 〉AB1···BN−1
=

1√
N

(|10 · · · 0〉+ |01 · · · 0〉+ · · ·+ |00 · · · 1〉). (20)

It is straightforword to check: Nx
a (|W 〉A|B1···BN−1

) = (2
√
N−1
N

)x, Nx
a (ρAB1) = Nx

a (ρAB2) =

· · · = Nx
a (ρABN−1

) = ( 2
N

)x. Let us choose N = 5. Then Nx
a (|W 〉A|B1···B4) = (4

5
)x.

From our result (17) we have Nx
a (|W 〉A|B1···B4) ≥

[
3 · 2x

2 − 2
]

(1
2
)x, while from (15) one

has Nx
a (|W 〉A|B1···B4) ≥ (3x

2
+ 1)(1

2
)x, x ≥ 2. Obviously, our result is better than that in [17]

with x ≥ 2, see Fig. 2.
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FIG. 2: y is the value of Nx
a (|W 〉A|B1···B4). Solid (red) line is the exact value of

Nx
a (|W 〉A|B1···B4), dashed (blue) line is the lower bound of Nx

a (|W 〉A|B1···B4) in (17), dot

dashed (green) line is the lower bound in [17] for x ≥ 2.

CONCLUSION

Entanglement monogamy is a fundamental property of multipartite entangled states. We

have presented tighter monogamy inequalities for the x-power of concurrence of assistance

Cx
a (ρA|Bj1

···Bjm−1
) of the m-qubit reduced density matrices, 4 ≤ m ≤ N , for the N -qubit

generalized W -class states, when x ≥ 2. The monogamy relations for the x-power of neg-

ativity of assistance for the N -qubit generalized W -class states have been also investigated

for x ≥ 2. These relations give rise to the restrictions of entanglement distribution among

the qubits in generalized W -class states. It should be noted that entanglement of assis-

tances like concurrence of assistance and negativity of assistance are not genuine measures

of quantum entanglement. They quantify the maximum average amount of entanglement

between two parties, Alice and Bob, which can be extracted given assistance from a third

party, Charlie, by performing a measurement on his system and reporting the measurement

outcomes to Alice and Bob. Nevertheless, similar to quantum entanglement, we see that the

entanglement of assistances also satisfy certain monogamy relations.
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