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Abstract

We introduce the tensor numerical method for solution of the d-dimensional optimal
control problems with fractional Laplacian type operators in constraints discretized on
large spacial grids. It is based on the rank-structured approximation of the matrix val-
ued functions of the corresponding fractional elliptic operator. The functions of finite
element (finite difference) Laplacian on a tensor grid are diagonalized by using the fast
Fourier transform (FFT) matrix and then the low rank tensor approximation to the
multi-dimensional core diagonal tensor is computed. The existence of low rank canon-
ical approximation to the class of matrix valued functions of the fractional Laplacian
is proved based on the sinc quadrature approximation method applied to the integral
transform of the generating function. The equation for the control function is solved
by the PCG method with the rank truncation at each iteration step where the low
Kronecker rank preconditioner is precomputed by using the canonical decomposition
of the core tensor for the inverse of system matrix. The right-hand side, the solution,
and the governing operator are maintained in the rank-structured tensor format. Nu-
merical tests for the 2D and 3D control problems confirm the linear complexity scaling
of the method in the univariate grid size.

1 Introduction

Optimization problems with partial differential equations (PDEs) as constraints are well
known in the mathematical literature. They admit a number of applications in various fields
of natural science and have been studied for many years, see [35] for comprehensive presen-
tation. Of particular interest are tracking-type problems, where the objective functional is
the deviation of the PDE solution from a given target function in some norm.
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Optimal control problems pose a major challenge from a computational point of view
due to the complexity of constraint: evaluating the constraint requires the solution of a
partial differential equation. Therefore, to make these problems tractable, specially tailored
solvers are required. In the classical sense, partial differential equations are given by local
operators, i.e. only local information is required to evaluate the operator at a given point
in the domain. When the PDE is discretized, the locality of the operator infers sparsity
of the discrete operator—to evaluate the operator on a grid point, only the information
at the neighboring grid points is needed. In this case, classical elliptic problem solvers for
the forward problem can be modified to apply to the optimization problems, see [16] for
an overview. Multigrid methods for elliptic equations are shown to be particularly efficient
since their computational complexity is linear in the number of degrees of freedom, i.e. in
the number of grid points in the computational domain in R?, see [4, 5].

In recent literature the study of problems with nonlocal constraints has attracted par-
ticular interest, where the operator is not differential but of integral type. The prototypical
example of this kind of problems is the fractional Laplacian operator, which is attained by
taking a fractional power of the classical Laplacian operator, see for example [32, 31, 17, 13].
These problems pose an additional computational challenge: since local information is not
sufficient for the evaluation of the operator, the discretized operator will be a dense ma-
trix instead of a sparse one—if implemented in a straightforward way, even the simplest
matrix-vector operations would have a quadratic complexity in the number of degrees of
freedom in the computational box in R?. This would make these problems intractable even
on moderately fine grids, especially in the three-dimensional case.

A number of approaches have been proposed in the literature to circumvent these diffi-
culties, see papers [19, 17, 37, 11, 18] which consider approximation methods for fractional
elliptic operator and [10, 38] related to time dependent problems. An extension method
has been proposed [6], which reduces a fractional Laplacian problem to a classical Laplacian
problem in a higher-dimensional space, allows to make the problem tractable in some cases.
Recently, a proof of concept for an optimal control solver based on the extension approach
has been proposed, see [1].

However, note that above methods based on the conventional techniques of numerical
analysis are providing a linear scaling in the problem size, thus exhibiting an exponential
growth in the storage and computational complexity as O(n?) in the number of dimensions
d, where n is the univariate grid size. One of the promising approaches which exploits the
structure of involved quantities for the extraction of essential information in the system of
interest is based on the concept of rank-structured tensor representation (approximation) of
the target multivariate functions and operators, which allows to avoid the so-called “curse
of dimensionality”.

In the last decades an extensive research have been focused on different aspects of multi-
linear algebra, tensor calculus and related issues, see [7, 29, 14, 25] for an overview. Recent
tensor numerical methods appeared as a bridging of the well-known tensor decompositions
from multilinear algebra with basic results in nonlinear approximation theory by using the
low-rank separable representation of the multidimensional functions and operators [12, 13].
In the recent years, the development of low-rank tensor numerical methods has been a prior
direction of mathematical research in scientific computing [25, 21, 30, 9]. The main idea
of tensor methods is in reducing the numerical solution of the multidimensional integral-



differential equations to one-dimensional tensor product operations.

In this article, we introduce the tensor numerical method for the efficient numerical solu-
tion of the d-dimensional optimal control problems with fractional Laplacian type operators
in constraints discretized on large spacial grids. We propose and analyze the approximate
low-rank structure representations of functions of the fractional Laplacian (—A)%, and its
inverse (—A)~®, a > 0, in the bounded domain in R, d = 2,3, by using the canonical tensor
format. There are many equivalent definitions of fractional elliptic operator based on either
integral or spectral formulation, see [32, 31, 17, 13]. Our tensor approach is based on the
spectral decomposition of the target operators.

The functions of finite element (finite difference) Laplacian on a tensor grid are diag-
onalized by using the fast Fourier transform (FFT) matrix and then the low rank tensor
approximation to the multi-dimensional core diagonal tensor is computed. In 3D case the
multigrid Tucker tensor decomposition [27] and Tucker-to-canonical transform are employed
[21]. The theoretical justification on the low-rank canonical and Tucker tensor approxi-
mation of functions of the discrete fractional Laplacian is provided. We then show that
these low-parametric representations transfer to the solution operator of an optimal control
problem governed by the fractional Laplacian. In this way the spacial dimensions can be
approximately separated to admit a low-rank tensor structure in the solution vector. Our
approach allows to make the solution of the considered optimal control problems compu-
tationally tractable in both the two- and three-dimensional cases. We justify that optimal
control problems of this class can be solved with a cost that is only slightly larger than linear
in the number of grid points in one spacial dimension, independent of the number of spacial
dimensions, which is a considerable improvement over classical solvers, whose cost scales in
the spacial dimension exponentially. We provide convincing numerical results to support our
theoretical reasoning.

Notice that the low-rank tensor methods in the context of fractional time dependent
optimal control based on a one-dimensional fractional Laplacian operator have been recently
reported in [10].

The rest of the paper is organized as follows. Section 2 describes the considered problem
classes. Section 3 discusses the FEM /FDM discretization schemes, formulates the traditional
Lagrange multiplies approach and describes the Kronecker product tensor structure in the
discrete Laplacain type matrices in many dimensions. In Section 4 we recall the main defini-
tion and basic properties of the canonical and Tucker tensor format to be applied for tensor
approximation. Section 5 analyzes the tensor approximation of the inverse to fractional
Laplace operator and to some related matrix valued functions of fractional Laplacian in R?
arising in representation of the unknown control and design functions. Finally, in Section 6,
we collect the results of numerical tests for 2D and 3D examples which confirm the efficiency
of the tensor approximation in the considered class of optimal control problems.

2 Problem setting

Our goal is the construction of fast solution schemes for solving the control problems with
d-dimensional fractional elliptic operators in constraints. For this reason we restrict ourself
to the case of rectangular domains and to the class of generalized Laplacian type elliptic
operators with separable coefficients.



Given the design function yq € L2(2) on Q := (0,1)4, d = 1,2, 3, first, we consider the
optimization problem for the cost functional

min J(y, u) := /Q(y(x) —yo(z))*dr + z/gtﬂ(x) dx, (2.1)

Ysu 2
constrained by the elliptic boundary value problem in €2 for the state variable y € H} (),
Ay = -V A@)Vy =pu, 1€Q, u€ Ly(), B>0, (2.2)

endorsed with the homogeneous Dirichlet boundary conditions on I' = 941, i.e., y;r = 0. The
coefficient matrix A(z) € R4 is supposed to be symmetric, positive definite and uniformly
bounded in ) with positive constants ¢ > 0 and C' > 0, i.e.,

cloxa < A(x) < C Igxq.

Under above assumptions the associated bilinear form
A(u,v) = / A(x)Vu(z) - Vo(x)dx
Q

defined on V x V, V := {v € Hj()} is symmetric, coercive and bounded on V with the
same constants ¢ and C'.

In what follows, we describe the tensor method for fast numerical solution of the opti-
mization problem with the generalized constraints

A% = Bu(x), =z €, (2.3)

such that for 0 < a < 1, the fractional power of the elliptic operator A is defined by

o0

A%y(z) = Z Meabi(x), y=> ci(w), (2.4)

=1

where {¢;(x)}2, is the set of Ly-orthogonal eigenfunctions of the symmetric, positive definite
operator A, while {\;}32, are the corresponding (real and positive) eigenvalues.

Notice that the elliptic operator inverse A™' = T : Ly(Q2) — V, where A = T 1, provides
the explicit representation for the state variable, y = fTu = SA " u in case (2.2), while in
the general case (2.3) we have

y = BT% = A “u. (2.5)

Here T is a compact, symmetric and positive definite operator on Lo(£2) and its eigenpairs
{4ps, i}, i =1,...,00, provide an orthonormal basis for Ly(€2). Clearly, we have \; ' = p;.

There are several equivalent representations (definitions) for the fractional powers of the
symmetric, positive definite operators A® and A~* with 0 < a < 1, see for example the sur-
vey paper [31]. In particular, the Dunford-Taylor contour integral and the Laplace transform
integral representations could be applied. In the presented computational schemes based on
low rank tensor decompositions we apply the Laplace transform integral representation. For
a > 0, the integral representation based on the Laplace transform

1 o0
A = —/ to e A gt (2.6)
0
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suggests the numerical schemes for low rank canonical tensor representation of the operator
(matrix) A~ by using the sinc quadrature approximations for the integral on the real axis
[12]. The efficiency of this approach is based on the exponentially fast convergence of the
sinc quadratures on a class of analytic functions. This techniques is to be applied in the
present paper for both the theoretical analysis of the rank decomposition schemes and for
the description of their constructive representation.

Further more, for & > 0 the Dunford-Taylor (or Dunford-Cauchy) contour integral rep-
resentation reads (see for example [19, 17, 13])

A = L 2 (A - 2T) Yz, (2.7)
21 Jg

where the contour G in the complex plane includes the spectrum of operator (matrix) A.
This representation applies to any u € Lo(2) and it allows to define the negative fractional
powers of elliptic operator as a finite sum of elliptic resolvents R,(L) = (2Z — L)™' by
application of certain quadrature approximations, see also [17, 12, 13]. This opens the way
for multigrid type or H-matrix (see [13]) schemes approximating the fractional powers of
elliptic operator with variable coefficients of rather general form.

It is worth to notice that both integral representations (2.6) and (2.7) can be applied to
rather general class of analytic functions of operator f(.A), including the case f(A) = A™?,
see [19, 12, 13].

The constraints equation (2.5) allows to derive the Lagrange equation for the control u
in the explicit form as follows (see §3 concerning the Lagrange equations)

(BA™ + ZA)u = yo, (2.8)

for some positive constants § > 0 and v > 0. This equation implies the following represen-
tation for the state variable

y=BAu = (T + HA*) 'yq. (2.9)
The practically interesting range of parameters includes the case f = O(1) for the small
values of v > 0. Out tensor numerical scheme is focused on the solution of equations (2.8)
and (2.9) that include the nonlocal operators of “integral-differential” type. The efficiency of
the rank-structured tensor approximations presupposes that the design function in the right-
hand side of these equations, yo(x1,x2, z3), allows the low rank separable approximation.
Since we aim for the low-rank (approximate) tensor representation of all functions and
operators involved in the above control problem, we further assume that the equation coef-
ficients matrix takes a diagonal form

A(z) = diag{a; (1), a2(22)}, ae(ze) >0, £=1,2,
in 2D case, and similar for d = 3
A(z) = diag{ai(z1), as(x2), az(x3)},  ae(ze) >0, (=1,2,3. (2.10)

In what follows, we consider the discrete matrix formulation of the optimal control prob-
lem (2.1), (2.3) based on the FEM/FDM discretization of d-dimensional elliptic operators
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defined on the uniform n; X ny X ... X ng tensor grid in €2. We use the collocation grid repre-
sentation of functions, such that the L, scalar product will be substituted by the Euclidean
scalar product (-, -) of vectors in R".

The fractional elliptic operator A% is approximated by its FEM/FDM representation
(Ap)“, subject to the homogeneous Dirichlet boundary condition, where the operator (ma-
trix) (Ap)® is defined as in (2.4), where the eigenpairs for the corresponding grid discretiza-
tion A, of the elliptic operator A are used. Here h = hy; = 1/n, is the univariate mesh
parameter. The FEM/FDM approximation theory for fractional powers of elliptic operator
was presented in [11], see also literature therein.

3 Optimality conditions and representations in a low-
rank format

The solution of problem (2.1) with constraint (2.3) requires solving for the necessary op-
timality conditions. In this section, we will derive these conditions based on a discretize-
then-optimize-approach. Then, we will discuss how the involved discretized operators can be
applied efficiently in a low-rank format, and how this can be used to design a preconditioned
conjugate gradient (PCG) scheme for the necessary optimality conditions.

3.1 Discrete optimality conditions

We consider the discretized version of the control problem (2.1)-(2.3). We assume we have a
uniform grid in each space dimension, i.e. we have N = nyny (for d = 2) or N = nynyns (for
d = 3) grid points. We will denote the discretized state y, design yq and control u by vectors
V,ya,u € RV respectively. For simplicity, we assume that we use the same approximation
for all quantities.

Then, the discrete problem is given as

. 1
n;nun :i(y —ya) " M(y —yo) + %UTMU

s.t. A%y =fMu,

where A = A, denotes a discretization of the elliptic operator A by finite elements or finite
diferences. The matrix M will be a mass matrix in the finite element case and simply the
identity matrix in the finite difference case.

For the discrete adjoint p define the Lagrangian function

1
L(y,u,p) = 5(y - ya) ' M(y — ya) + %uTMu +p’ (A% — BMu), (3.1)

and compute the necessary first order conditions, given by the Karush-Kuhn-Tucker (KKT)
system,

M O A“ y Yo
O M —pM| [u|l=1]0]. (3.2)
A —M O p 0



We can solve the state equation for y, getting
y = fA u,
and the design equation for p getting

p:%u.

Hence the adjoint equation gives us an equation for the control u, namely

(BA™ + %Ao‘)u =vyon. (3.3)

3.2 Matrix-vector multiplication in the low-rank format

Now we derive a decomposition of the discrete Laplacian A which is compatible with low-
rank data. Let Ij;) denote the identity matrix, and A(; the discretized one-dimensional
Laplacian on the given grid in the ith mode, then we have

To obtain the matrices A, we simply discretize the one-dimensional subproblems

—y () = Bu(zy)
y(0) =0 =y(1).

Using a uniform grid with grid size h;, we obtain the discretizations

2 -l (© L0
1 hn 1
— -1 : =7
he 1w O
1 9 7 ne
=)

The one-dimensional operator Ay has an eigenvalue decomposition in the Fourier basis,
1. e.

In the case of homogeneous Dirichlet boundar(y) conditions the matrix F; defines the sin-
(

Fourier transform while Ay = diag{/\gg), ..., An’ }, where )\ denote the eigenvalues of the
univariate discrete Laplacian with Dirichlet boundary conditions. These are given by
4 wk 4 wkhy
A = —— sin? [ ———— | = —— sin® . 3.5
gl () e

Thus, using the properties of the Kronecker product, we can write the first summand in
(3.4) as

AL I = (FTAqF) @ (Fy L F) @ (F313F3)
= (FY @ F5 @ F3)(Aq) ® I, ® I3)(Fy ® Fo ® F3).
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The decomposition of the second and third summand works analogously, thus we can write
equation (3.4) as

A=(Ff @ Fy @ F5)(A @ I, ® I3)(F1 ® F, ® F3)
+(FFRF @F)L® A L) (FLQ F,® F)
+ (Fy @ Fy @ F3) (I ® I, ® A3)(F1 ® F> ® F3)

=(FoFoF)(MeLel)+(hoAel)+ (L L) (F®FheF).
(3.6)

The above expression gives us the eigenvalue decomposition, which can be used to efficiently
compute functions of A.
In the case d = 2, the expression simplifies to

A= (Ff @ F7) (A4 @ I)(Fy © Fy) + (F} @ F5) (1 ® A)(F1 @ F)
= (Fy @ F)) (4 ® L) + (1 ® A)) (F1 ® F). (3.7)

-~

Note that expression (3.7) gives us the eigenvalue decomposition of A. Therefore, for a
function F applied to A, we get

F(A) = (F @ F5)F(A)(F, @ F). (3.8)

Now assume that F(A) may be expressed approximately by a linear combination of
Kronecker rank 1 operators. Then, to approximate F(A) it is sufficient to approximate the
diagonal matrix F(A). Assume we have a decomposition

Zdlag ®u2 )),

with vectors u;”’ € R™ and R < min(n;,ny). Now let x € RY be a vector given in a low
rank format, i.e.
S
x=3 "% &x{),
j=1

U) ¢ Rm and S < min(ny,n2). Then, we can compute a matrix-vector product

with vectors x;
R
F(A)x = (Ff ® F;)(Zdlag (0¥ @ uff >)) (Fy @ F) (le ® x(]))
k=1 j=1 (3.9)
Fra o Fx?) @ By (ud? o Fxd)),

M:u
MU)

k=1 j=1

where ® denotes the componentwise (Hadamard) product.
Using the sin-FFT, expression (3.9) can be computed in factored form in O(RSnlogn)
flops, where n = max(ny, ns).



In the case d = 3, with completely analogous reasoning, equation (3.9) becomes
FAx =YY Fr’orx?) e o mxd) o Fuf’ o i), (3.10)
k=

1 =1

and similar in the case of d > 3.

3.3 The low-rank PCG scheme

For operators func and precond given in a low-rank format, such as (3.9) (for d = 2) or
(3.10) (for d = 3), Krylov subspace methods can be applied very efficiently, since they only
require matrix-vector products. The formulation of the PCG method in Algorithm 1 is
independent of d, as long as an appropriate rank truncation procedure trunc is chosen.

Algorithm 1 Preconditioned CG method in low-rank format

Input: Rank truncation procedure trunc, rank tolerance parameter ¢, linear function in

o T e T T e T e T e T o e S

)
<

N DN
N

23:
24

low rank format fun, preconditioner in low rank format precond, right-hand side tensor
B, initial guess X, maximal iteration number kpax
R©® + B — fun(X®)
Z©® + precond(R(®)
ZO©) « trunc(ZW©, ¢)
P(O) — (Z(O))
k<0
repeat
S*) « fun(P®)
S®) < trunc(S® ¢)

(R(k),z(k>>
Ok < P s

XE+D) o XE) 4 o, PK)

XE+D ¢ trunc(X*+D ¢)

Rt D « R®) — o, S)

R*+D ¢ trunc(R*+V ¢)

if R+ is sufficiently small then
return X®*+1
break

end if

Z 1) « precond(R*+V)

Z#+) « trunc(Z*H g)
<R(k+1)’z(k+1))
Bk (ZF RK)Y

P(k-l—l) s Z(k—H) +ﬁkP(k)
PH+H) « trunc(PH+Y) ¢)
k< k+1

until £ = kpax

Output: Solution X of fun(X) =B




As the rank truncation procedure, in our implementation we apply the reduced SVD
algorithm in 2D case and the RHOSVD based canonical-to-Tucker-to-canonical algorithm
(see [27]) as described in Section 4.

4 Rank-structured decomposition of function related
tensors

The basic tensor formats used in multilinear algebra for the low-rank representation of the
multidimensional tensors are the canonical [20] and Tucker [36] tensor formats. These rank-
structured tensor representations have been commonly used for the quantitative analysis
of correlations in multi-dimensional experimental data in chemometrics, psychometrics and
signal processing [7, 29]. Application of these and of the new tensor formats in scientific
computing and in computational chemistry are described in [25, 21], where it is shown that
due to logarithmically low Tucker tensor ranks for function related tensors [22] solution of
the multidimensional integral-differential equations is reduced to principally one-dimensional
calculations. For the readers convenience, in this section we recall the main tensor techniques
applied in this paper.

A tensor of order d in a full format, is defined as a multidimensional array over a d-tuple
index set:

T = [ti17---7id] = [t(il, .. ,’id)] € R™M> X" with g € Ip:= {1, R ,ng}. (41)

For a tensor in a full size format (assuming n, = n, £ = 1,...d) the required storage, as well
as operations with tensors scale exponentially! in the dimension size d, as n?.

To avoid exponential scaling in the dimension, the rank-structured separable represen-
tations (approximations) of the multidimensional tensors can be used. By using a tensor

product of vectors u® in each dimension £ = 1,...d, a rank-1 tensor is constructed as

T = u(l) ®..® u(d) c Rnlx...xnd’
with entries ¢;,  ;, = uﬂ) e ul(j). Such tensor requires only dn numbers for storage (taking for
simplicity n, = n). The rank-1 canonical tensor may be considered as a discrete counterpart
of a separable d-variate function represented as the product of univariate functions,

f(ZL'l,ZE27 e ,ZL’d) = fl(xl)fg(xg) e fd(xd)~

A tensor in the R-term canonical format is defined by a sum of rank-1 tensors

R 1 d
T=% " &ule. ..oy’ GeR (4.2)

where u,(f) € R™ are normalized vectors, and R is the canonical rank. The storage cost of
this parametrization is bounded by dRn. An alternative (contracted product) notation for

a canonical tensor can be used (cf. the Tucker tensor format, (4.4))

T=Cx;UY x,U® x5--- x4 UD, (4.3)

IThis exponential growth in dimension size is the so-called “curse of dimensionality” [2].
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where C = diag{ci, ..., cq} € RE® is a super-diagonal tensor, U®) = [ugé) . u%)] € Rnexi

are the side matrices, and x, denotes the contacted product in mode /.

For d > 3, there is lack of stable algorithms to compute the canonical rank representation
of a general tensor T, that is, with the minimal number R in representation (4.2), and the
respective decomposition with the polynomial cost in d, i.e., the computation of the canonical
decomposition is in general an N-P hard problem.

The Tucker tensor format is suitable for stable numerical decompositions with a fixed
truncation threshold. We say that the tensor T is represented in the rank-r orthogonal

Tucker format with the rank parameter r = (ry,...,7y) if
T1 Td
T = Z . Z Burra VI @V @ VZ(Z), (4.4)
v1=1 vg=1
where {V,(,i)}:;‘;:l € R™, ¢ = 1,...,d represents a set of orthonormal vectors and B =

[Burwy) € RX7d g the Tucker core tensor. The storage cost for the Tucker tensor
format is bounded by drn + r?, with r = |r| := max, r,. Using the orthogonal side matrices
VO = [vgg) .. .v,(nf,)], the Tucker tensor decomposition can be presented by using contracted
products,

Te =8x1 VY xa VP xg3.. x, VD, (4.5)
(3)
I3 B
3
3 3)
n2 ; ul ur
o 8
T T
e 5 uld oD

ny

Figure 4.1: Tucker tensor decomposition of the full size tensor, and canonical tensor decom-
position of the Tucker core.

In general, the problem of the best Tucker tensor approximation to a given tensor is the
following minimization problem,

ToeV,: f(T):=|T—Tol* > min over T € T,, (4.6)

which is equivalent to the maximization problem [8]

2

g(v(1)7 7v(d)> = HTO X1 V(l)T X ... Xq V(d)T — mazx (47>

11



over the set M, of orthogonal matrices V) € R™*™ ¢ =12, ..., d. For given maximizers
V) the core B that minimizes (4.6) is computed as

B=Tyx, VO x, . x, V@ ¢ grixxra (4.8)

yielding contracted product representation (4.5). The Tucker tensor format provides a stable
decomposition algorithm [8], based on following steps (consider for simplicity d = 3).

e SVD-type higher order singular value decomposition (HOSVD) of matrix unfolding of
a tensor T(,, £ = 1, 2, 3 for finding the so-called initial guess.

e Tucker ALS iteration for finding the best orthogonal approximation to side matrices
V0 ¢=1,2,...d, by fixing all dimensions except one;

e Calculation of the core 8 by simple contractions (4.8).

Figure 4.2 shows the construction of the unfolding matrix of a 3D tensor for mode ¢ = 1.
The complexity of HOSVD is O(n¢t1) which makes this techniques intractable for higher
dimensions and in 3D in case of larger mode sizes ny, £ =1, 2, 3.

T N T

SVD

ny

ng 3 2

n)
Figure 4.2: HOSVD of the full size ny X ng x n3 tensor (SVD of its matrix unfolding).

It appeared that the Tucker tensor decomposition for function related tensors exhibits
exceptional approximation properties. It was proven [22] and demonstrated numerically that
for a class of higher order tensors arising from the discretization of linear operators and func-
tions in R? the approximation error of the Tucker decomposition decays exponentially in the
Tucker rank [22, 26]. Previous papers on the low-rank approximation of the multidimen-
sional functions and operators, in particular, based on the sinc-quadratures [12]| described
the constructive way for the analytical low-rank canonical representations.

The multigrid Tucker tensor decomposition for function related tensors introduced in [27]
leads to solution of the minimization problem (4.6) over a sequence of nested subspaces

TyoC...CTyp, C... C Ty,

using the sequence of dyadic refined grids of size n = ng 2™ ! withm =1, ..., M. The Tucker
decomposition problem for a tensor Ty 5y € V,,,, obtained as discretization of a function over
the fine grid of size nj; is based on the successive reiteration of the ALS Tucker approximation
on a sequence of refined grids. The initial guess is computed by HOSVD only at the coarsest

grid with ng < nyy, at the moderate cost O(nd™). For finer grids the initial guess is obtained

12



by interpolation of the orthogonal Tucker vectors in {Vﬁll}gﬂ from the previous grid level.
The multigrid approach applies the HOSVD requirements only to the coarsest grid, and thus
reduces complexity of the 3D Tucker tensor decomposition from O(nj,) to O(n3,), where
nys is the largest univariate grid size.

Figure 4.3 displays the exponentially fast convergence in r of the Tucker tensor approxi-
mation error in Frobenius norm,

ITo — Tyl
EF — STV
Tl

for the 3D tensor Gy = [g2(3, j, k)] corresponding to a function of three variables, see (5.13),
with o = 1/2 (left panel) and o = 1/10 (right panel). The function g, is discretized on a
sequence of n x n x n 3D Cartesian grids. Figure 4.3 shows that the separable representation
for this function with accuracy of the order of ~ 10~7, can be constructed using ten Tucker
vectors in each space dimension, nearly independently on the size of discretization grid.

—8—n=127 —a—n=127
—=—n=255 —=—n=255
—a—n=511 —a—n=511
105 10°°
5 5
5] @
]
0
0
10710 ¢ i i N, 10710 L | | I
5 10 15 5 10 15
Tucker rank Tucker rank

Figure 4.3: Multigrid Tucker approximation of Go for o = 1/2 (left) and o = 1/10 (right) vs.
Tucker rank r for n x n x n 3D Cartesian grids with univariate grid size n = 127, 255, 511.

For tensors given in the rank-R canonical format, T¢ € Cgn, With large ranks and with
large univariate size n, both construction of the full size tensor representation and HOSVD
become intractable. The remedy is the reduced higher order singular value decomposition
(RHOSVD) introduced in [27] as a part of the canonical-to-Tucker (C2T) decompositions for
function-related tensors, which does not require the construction of a full size tensor. Then
minimization problem in 7, for tensors given in R-term canonical tensor format

Vs (4.9)

To € CR7n CcV,: T(r) = argminVETr,n ||TC — T|

is equivalent to [27]
2

[Z(l), e Z(d)] = argmaxy (e, , (4.10)

R
36 (V) .5 (VT u)
v=1

Ve

V® ¢ Rmxe — orthogonal. Instead of HOSVD, the initial guess Z(()e) is computed by
RHOSVD, i.e., by the truncated SVD of side matrices U¥) = [uge)...u%)] in (4.3),

U9 ~ Z0s, Wi, (4.11)
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under the compatibility condition 7, < rank(U®). The RHOSVD exhibits complexity
O(nR?) (or O(n*R) if n < R) (does not depend on the dimension of a canonical tensor)
and thus it allows to avoid the curse of dimensionality for the Tucker-type decompositions,
see [25, 21] for details. The Tucker tensor is built by the contractions of the tensors of type
(4.3) with matrices of type (4.11) in the course of ALS iteration and final calculation of a
Tucker core 3, see details in [27, 21]. Figure 4.4 shows the RHOSVD of one of the canonical
matrices in (4.3).

R ry r

1
SVD o Wy

1)
25

ny v —

Figure 4.4: RHOSVD for the side matrix U®), ¢ = 1 of the rank-R canonical tensor.

In general, C2T with RHOSVD and Tucker-to-canonical (T2C) decomposition? are main
tools for reducing the ranks of a canonical tensor representation of the multivariate functions
in the process of the numerical solution of the multidimensional problem. In this paper, they
are used for the low rank approximation of the target matrix valued functions as well as for
reducing the tensor ranks in the course of iteration process for solution of the considered 3D
control problems.

5 Low-rank tensor approximation of functions of frac-
tional Laplacian

In this section we analyze the rank structured tensor decompositions of various matrix (ten-
sor) valued functions on the discrete Laplacian arising in the solution of problems (2.8) and
(2.9) including different combinations of fractional Laplacian in R

The elements of the core diagonal matrix A in (3.6) can be represented as a three-tensor

G = [g(i1,12,13)] € R"™7™*™ 4, e {1,...,ng},

where
g(i1,72,13) = Aiy + Niy + Aiss

implying that G has the exact rank-3 decomposition. In the case d = 2 we have similar
two-term representation, g(iy,is) = Ai; + Asy-

2This decomposition applies to a small size core tensor see Figure 4.1 for the mixed Tucker-canonical
format of type

R
Tw= <Z bku’(cl) ®"'®ul(cd)> X1 VO %V xg . xg VD,
k=1

providing the canonical tensor rank of the order of R < r? [21].
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We consider the matrices A;, Ay and Az defined as the matrix valued functions of the
discrete Laplacain A, by the equations

Ay = A (5.1)
Ay = A" + Ap, (5.2)

and .
Az = (A, +AY) = Ay (5.3)

respectively. It is worth to notice that the matrix Az defines the solution operator in equation
(2.8), which allows to calculate the optimal control in terms of the design function yq on
the right-hand side of (2.8) as follows

u" = Asyq. (5.4)
Finally, the state variable is calculated by
y = Ayyq, and Ay = (I+ A7) = AYASL (5.5)

In the following numerics we consider the behavior of the SVD or Tucker decompositions
for the corresponding multi-indexed core tensors/matrices G1, Gy, G and G4 representing
the matrix valued functions A;, Ay, A3 and A, in the Fourier basis. It is well suited for the
rank-structured algebraic operations since the d-dimensional Fourier transform matrix has
Kronecker rank equals to one (see §3)

F=F®FRe ;.

Let {\;}, be the set of eigenvalues for the 1D finite difference Laplacian in H}(0,1) dis-
cretized on the uniform grid with the mesh size h = 1/(n + 1).
In the 2D case we analyze the singular value decomposition of the n x n core matrices

GP = [gp(laj)L b= 17 2a 37 47 (56)
with entries defined by
1
,j) = ———), 5.7
1
L)) = e (A )% 5.8
1 -1
) = | s F A 5.9
w(i) = (e + F ) (5.9)
.o 20\ —1
94(1,7) = (1 + (A +A5) ) ; (5.10)
In the 3D case we consider the Tucker decomposition of the n x n x n core tensor
G, = [gp(i,j, k)], p=1,23,4 (5.11)
with entries defined by
1
1,5, k) = 5.12
91(27]7 ) (/\i—i_)\j"i_)\k)a’ ( )
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1

k) = A4 A+ )Y 5.13

1 -1
k) = TN EN AN 5.14
mii) = (e O v A7) (5.14)
9a(i, 3, k) = (14 N+ A+ 0)2) 7 (5.15)

The error estimate for the rank decomposition of the matrices GG, and the respective 3D
tensors Gy, can be derived based on the sinc-approximation theory. We consider the class
of matrix valued functions of the discrete Laplacian, Ai(Ap),. .., As(Ap), given by (5.1) —
(5.3) and (5.5), respectively. In view of the FFT diagonalization, the tensor approximation

problem is reduced to the analysis of the corresponding function related tensors Gy, ..., Gy
specified by multivariate functions of the discrete argument, g1, ..., gy, given by (5.12) —
(5.15).

Our approach applies to the class of simplified “directionally fractional” Laplacian-type
operators A, (with the diagonal coefficient as in (2.10)) obtained by the modification of
(2.2) as follows

Ao ==Y (V] -alz)Vy)", a>0. (5.16)

1

¢
In this case the core tensors in (5.12) — (5.15) representing the operator A, in the Fourier
basis are simplified to (for as(x,) = const, d = 3)

1

gi1(i, 5, k) = ————— 5.17
gl(zvja ) )\?4-)\?4-)\%’ ( )
Go(1, 5, k) = ————— + XS+ AT + A 5.18
92(27]; ) )\ZQ{+>\?+)\? + 7 + g + k> ( )

-1
g3(1, 5, k) = | —————— + A + AT+ AT 5.19
93(2737 ) ()\?+)\?+)\g+ z+ j+ k) ) ( )
i, g k) = (L4 OF 27 +29)°) (5.20)

correspondingly. Hence the rank behavior in the tensor decomposition of these discrete
functions is completely similar to the case of Laplacian like operator in (5.12) — (5.15)
corresponding to the fractional power aw = 1. This special case was considered in [10].

In the general case of variable coefficients a,(z,) > 0 in (5.16) the orthogonal matrices
Fy, ¢ =1,...,d, of the univariate Fourier transforms in (3.6) should be substituted by the
orthogonal matrices of the eigenvalue decomposition for the discretized elliptic operators
Ay (stiffness matrices) corresponding to Ay = —V7] - ay(x,)V,. The eigenvalues in (5.17) —
(5.20) are obtained from the solution of the eigenvalue problem A, u; = \; ou;, £ =1,....d.

In the rest of this section, we sketch the proof of the existence of the low rank canoni-
cal/Tucker decomposition of the core tensors G,, p =1,...,4. Following [34], we define the
Hardy space H'(Ds) of functions which are analytic in the strip

Ds:={z€C:|¥z| <4}, 0<5<g,
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and satisfy
N(f, Dy) = /R(|f(x +id)| 4+ |f(x — i0)]) dz < oo,

Recall that for f € H'(Ds), the integral

:/Qf(m)dm Q=R orQ=Ry)

can be approximated by the Sinc-quadrature (trapezoidal rule)

b):=b > f(kb),  |[I(f)=T(f,h)]=0(""), b0,

k=—00

that converges exponentially fast in h — 0. Similar estimates hold for computable truncated
sums, see [34]

M
Tn(f.0):=b Y f(kb). (5.21)
k=M
Indeed, if f € H'(Ds) and |f(x)| < Cexp(—b|z|) for all z € R b,C > 0, then
6—27r5/b 1
\I(f) —Tu(f,h)| < C {m (f, Ds) + 3¢ e MY (5.22)

In our context, the Sinc-quadrature approximation applies to multivariate functions F' :
R? — R of a sum of single variables, say, F(z1,...,24) = f(p) with p = 320 fi(z) > 0,
where f, : R — R, by using the integral representatlon of the analytic univariate functlon
f: Ry =R,

/ G(t)ePEOdt, Qe {R,R,, (a,b)}.
In the cases (5.1) — (5.3) and (5.5) the related functions f(p) take the particular form

fo)=p"" [fle)=@"+p )" flp)=0+p")"

The univariate function f may have point singularities or cusps at p = 0, say, f(p) = p=*
Applying the Sinc-quadrature (5.21) to the Laplace-type transform leads to rank-R separable
approximation of the function F,

R R d
F@) = () = F(fi () + -+ falwa) = 3w, Gty )e P = 3 ¢, T[ e frerP),
v=1 v=1 /=1

(5.23)
with ¢, = w,G(t,) and R =2M + 1.

Notice that the generating function f can be defined on the discrete argument, i.e., on
the multivariate index i = (iy,...,4q), % = 1,...,n, such that each univariate function f,
in (5.23) is defined on the index set {is}, ¢ = 1,...,d. In our particular applications to
functions of the discrete fractional Laplacian A we have

4 oh
feie) = Ny = —75 sin” (m; €>, (5.24)




where );, denote the eigenvalues of the univariate discrete Laplacian with the Dirichlet
boundary conditions, see (3.5) and (5.12) — (5.15).

In this case the integral representation of the function f(p) = p=*, p = Z?:l fo(xe) >0,
with f, given by (5.24) o > 0, takes a form

- 1 / = a1t
p = —— t* et dt, pell,B], B>1. (5.25)
I'(a) Jo
Several efficient sinc-approximation schemes for classes of multivariate functions and
operators have been developed, see [12, 15, 22, 25]. In the case (5.25) the simple modification
of Lemma 2.51 in [25] can be applied, see also [15]. To that end, the substitution t = ¢(u) :=
log(1 + €"), that maps ¢ : R — R, , leads to the integral

[log(1 + e*)]ote—rloa(ite™)
14+e

Y

= ﬁ / fi(w)du,  fu(u) =

which can be approximated by the sinc-quadrature with the choice h = \;’—% with some
0 < v < 1. This argument justifies the accurate low-rank representation of functions in (5.7)
and (5.12) representing the fractional Laplacian inverse.

The numerical results presented in Section 6 clearly illustrate the high accuracy of of the
low-rank approximations to the other matrix valued functions of the fractional Laplacian
defined in (5.7) — (5.10) and in (5.12) — (5.15). In our numerical tests the rank decomposition
of the 2D and 3D tensors under consideration was performed by the multigrid Tucker-to-
canonical scheme as described in Section 4.

Remark 5.1 The presented approach is applicable with minor modifications to the case of
more general elliptic operators of the form (for d =3)

where F' is the rather general analytic function of the univariate Laplacian. In this case
the fractional operators A* and A~ can be introduced by the similar way, where the values
{\:} in the representation of the core tensors G,, p = 1,2,3,4, should be substituted by
{F(\)}. Given the symmetric positive definite operator (matriz) X, then the particular
choice F(X) = X*, «a > 0, suites well for the presented approach.

We notice that the rank structured approximation of the control problem with the Lapla-
cian type operator in the form (5.26) with the particular choice F/(—A;) = (—A;)* was con-
sidered in [10]. Since the operator in (5.26) only includes the univariate fractional Laplacain,
this case can be treated as for the standard Laplacian type control problems.

6 Numerics on rank-structured approximations
In this section we analyze the rank decomposition of all matrix entities involved in the

solution operator (2.8). For the ease of exposition, in what follows, we set the model constants
as f = v = 1 and assume that ny = ny = n3. Recall that A = F*GF with the notation
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A = A, where A; is the FDM approximation to the elliptic operator A and G is the
diagonal core matrix represented in terms of eigenvalues of the discrete Laplacian A = A,,.
All numerical simulations are performed in MATLAB on a laptop.

First, we illustrate the smoothing properties of the elliptic operator A, * in 2D (or by the
other words, the localization properties of the fractional operator Af) in the equation for
control depending on the fractional power a > 0. Figures 6.1, 6.1, 6.3 and 6.4 represent the
shape of the design function yq and the corresponding optimal control u* in the equation
(5.4) computed for different values of the parameter o and for fixed grid size n = 255.

0.5
250
200

250
200
150 100

50

Figure 6.1: Shapes of the right-hand side yg used in the 2D equation (5.4) computed with n=255.

0.025
0.02
0.015
0.01
0.005

250

250
200

Figure 6.3: Solutions u* for above right-hand sides with a = 1/2 for n = 255.
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Figure 6.4: Solutions u* for above right-hand sides with o = 1/10 for n = 255.

One observes the nonlocal features of the elliptic resolvent A;l and highly localized action

1
of the operator A, .

6.1 Numerical tests for 2D case

Figure 6.5, left, represents the singular values of the matrix G, with entries given by (5.7)
for different univariate grid size n = 255,511, and 1023 and fixed o = 1 (Laplacian inverse).
Figure 6.5, right, shows the decay of respective singular values for (G; with fixed univariate
grid size n = 511 and for different o = 1,1/2,1/10.

10 ‘ 10
—n=255
—n=511
107 —n=1023 1078
107% 107%
107" 107
107 : : : : 107 : : : :
0 10 20 30 40 50 0 10 20 30 40 50
cinniilar valiiee cinatilar valiiee

Figure 6.5: Decay of singular values for G; with o = 1 vs. n (left); singular values for Gy
vs. a > 0 with fixed n = 511 (right).

Figure 6.6 demonstrates the behavior of singular values for matrices Go and G3, with
the entries corresponding to (5.8) and (5.9), respectively, vs. a = 1,1/2,1/10 with fixed
univariate grids size n = 511. In all cases we observe exponentially fast decay of the singular
values which means there exists the accurate low Kronecker rank approximation of the matrix
functions A, Ay and Aj (see equations (5.1), (5.2) and (5.3)) including fractional powers of
the elliptic operator.
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Figure 6.6: Decay of singular values of Gy (left) and G5 (right) vs. a = 1,1/2,1/10 for
n = 511.

Decay of the error for the optimal control obtained as the solution of equation (5.4) with
rank- R approximation of the solution operator As is shown in Figure 6.7.

a —a—square
X —&—ring
- L-shape
n,
L W ]

10-10 L

10°71® ‘
0 10 20 30

Figure 6.7: Decay of the error for the optimal control vs. truncation rank parameter.

As we have shown theoretically in Section 3, a single PCG iteration has a complexity,
which is slightly higher than linear in the univariate grid size n. Figure 6.8 shows that the
CPU times show the expected behavior. Thus, with Figure 6.8 and Tables 6.1 and 6.2, the
overall cost of the algorithm is almost linear in the univariate grid size n for the problem
discretized on n x n 2D Cartesian grid.

We also test the properties of the low-rank discrete operator as a preconditioner. This
means, we solve the equations in R?, d = 2, 3,

A% = b,
(I+ A®)x =b,

with a preconditioned conjugate gradient scheme, using a low-rank direct solver as a precon-
ditioner discussed above. We simplify the notation by A = A,,.
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Figure 6.8: CPU times (sec) vs. univariate grid size n for a single iteration of Algorithm 1 for a
2D problem, for different fractional operators and fixed preconditioner rank r = 5.

In numerical tests we solve the equations (6.1) - (6.3) on a grid of size n, using a rank-r
preconditioner. Tables 6.1 and 6.2 show the number of CG iteration counts for convergence
to a relative residual of 107¢ of (6.1)-(6.3) with a = 1/2 and «a = 1/10, respectively. The

dash ‘“— indicates failure to converge to converge in 100 iterations.
91 94 93

, " 256 | 512 | 1024 | 2048 || 256 | 512 | 1024 | 2048 || 256 | 512 | 1024 | 2048
1 20 24 24 29 — | — 83 80 20 24 24 19

2| —| — 3 3 3| — 38 36 — | — 3 3

3 7 9 10 14 9 | — 17 16 7 9 10 14

4 5 6 6 9 31| — 3 3 5 6 6 9

5 4 4 4 5 11 - ) 5 4 4 4 )

6 3 3 3 4 6 13 2 2 3 3 3 4

7 3 3 3 3 4 7 6 4 3 3 3 3

8 2 2 2 2 3 ) 4 2 2 2 2 2

9 2 2 2 2 3 4 3 4 2 2 2 2

10 2 2 2 2 3 3 2 3 2 2 2 2

Table 6.1: PCG iteration counts for convergence to a relative residual of 107 for the equations
(6.1) - (6.3) for a 2D fractional Laplacian with v = 1/2 vs. the univariate grid size n and separation
rank 7.

As can be seen in Tables 6.1 and 6.2, we achieve almost grid-independent preconditioning;
the iteration counts only grow logarithmically with the number of grid points, as can be
expected from the theoretical reasoning. As can be seen in Table 6.1, the ranks of the
preconditioner should be chosen sufficiently large to ensure reliability. In the cases tested
here, » = 6 is sufficient to achieve reliable preconditioning even in the most difficult case of
equation (6.2) with v = 1/2.
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g1 g4 g3

, & 256 | 512 | 1024 | 2048 || 256 | 512 | 1024 | 2048 || 256 | 512 | 1024 | 2048
1 9 9 10 11 11 13 14 16 7 7 8 9
2 6 4 7 8 7 8 8 9 5 5 6 6
3 4 ) 5 6 ) ) 6 7 4 4 ) )
4 4 4 4 5 4 4 4 5 3 4 4 4
5 3 3 4 4 3 4 4 4 3 3 3 4
6 3 3 3 4 3 3 3 4 2 3 3 3
7 2 3 3 3 2 3 3 3 2 2 3 3
8 2 2 2 3 2 2 2 3 2 2 2 3
9 2 2 2 2 2 2 2 2 2 2 2 3
10 2 2 2 2 2 2 2 2 2 2 2 2

Table 6.2: PCG iteration counts for convergence to a relative residual of 107 for the equations
(6.1) - (6.3) for a 2D fractional Laplacian with e = 1/10 vs. the univariate grid size n and separation
rank 7.

6.2 Numerical tests for 3D case

In the following examples we solve the problems governed by the 3D operators in (5.1) —
(5.3), with a 3D fractional Laplacian with @ = 1,1/2 and o = 1/10. The rank-structured
approximation to the above fractional operators is performed by using the multigrid Tucker
decomposition of the 3D tensors Gy, k = 1,2,3,4, described by (5.12) — (5.14), and the
consequent Tucker-to-canonical decomposition of the Tucker core tensor thus obtaining a
canonical tensor with a smaller rank. The rank truncation procedure in the PCG Algorithm 1
is performed by using the RHOSVD tensor approximation and its consequent transform to
the canonical format, see Section 4.

Figures 6.9 — 6.11 demonstrate the exponential convergence of the approximation error
with respect to the Tucker rank for operators given by (6.1) — (6.3).

—a— =1
—=—o =1/2
—=—q =1/10

error

5 10 15 20
Tucker rank

Figure 6.9: Tucker tensor approximation of G vs. rank parameter for « = 1,1/2,1/10.

We solve the equations (6.1) - (6.3) using n x n xn 3D Cartesian grids with the univariate
grid size n, using a rank-r preconditioner. Tables 6.3 and 6.4 show the number of CG
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Figure 6.10: CPU times (in seconds) vs. univariate grid size n for a single iteration of Algorithm 1
for a 3D problem, for different fractional operators and fixed preconditioner rank r.

iteration counts for convergence to a relative residual of 107° of (6.1) - (6.3) with a = 1/2
and a = 1/10, respectively.

Similarly to the previous subsection, we see that the low-rank approximation gives us an
approximately grid-independent preconditioner. In the cases tested here, r = 6 is sufficient
to achieve reliable preconditioning even in the most difficult case of equation (6.2) with
a=1/2.

g1 g4 93

, E 64 | 128 | 256 | 512 || 64 | 128 | 256 | 512 || 64 | 128 | 256 | 512
4 1 2 1 1 1 6 1 2 1 2 1 1

5 1 1 1 2 1 1 8 4 1 1 1 2

6 1 1 1 1 2 2 1 1 1 1 1 1

7 1 3 1 2 1 1 5 4 1 2 1 2

8 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 2 1 6 5 4 1 1 1 2

10 1 1 1 1 1 6 1 1 1 1 1 1

Table 6.3: PCG iteration counts for convergence to a relative residual of 107% for the equations
(6.1) - (6.3) for a 3D fractional Laplacian with o = 1/2. Here n is the univariate grid size, r is the
separation rank.

Our numerical test indicates that all three matrices A;, Ay and Az, as well as the cor-
responding three-tensors have e-rank approximation such that the rank parameter depends
logarithmically on €, i.e., r = O(|logel), that means that the low rank representation of the
design function yq ensures the low rank representation of both optimal control and optimal
state variable.

We show as well that, using rank-structured tensor methods for the numerical solution
of this optimization problem using the operators of type A, Ay and A3 can be implemented
at low cost that scales linearly in the univariate grid size, O(nlogn), see Figure 6.10.
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g1 g4 93

, K 64 | 128 | 256 | 512 || 64 | 128 | 256 | 512 || 64 | 128 | 256 | 512
4 2 1 9 20 2 1 10 17 1 1 9 18

5 1 1 1 1 1 1 1 1 1 2 1 13

6 1 1 1 2 1 1 1 2 1 1 1 7

7 1 1 1 2 1 1 1 2 1 1 2 1

8 1 1 1 1 1 1 1 1 1 1 1 2

9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 2 1 1 1 2 1 1 1 1

Table 6.4: CG iteration counts for convergence to a relative residual of 107 for the equations
(6.1)-(6.3) for a 3D fractional Laplacian with a = 1/10. Here n is the univariate grid size, r is the
separation rank.

¢ ; ; . & .
q ——q =1 ) —— =1
—e—q =1/2 —e—q =1/2
5 —e—q =1/10 —e—q =1/10
10 ¢ ¥ 5
10
5 5
o [
-10
10 v 10701
D
D
5 10 15 20 5 10 15 20
Tucker rank Tucker rank

Figure 6.11: Tucker tensor approximation of G and Gg vs. rank parameter for « = 1,1/2,1/10.

rr’&r\" \
_-=

1 0.5 0.5

Figure 6.12: Solutions of the equation with 3D right-hand sides (analogous to Figure 6.1) with
a =1 for n = 255.
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Figure 6.13: Solutions of the equation with 3D right-hand sides
with a = 1/2 for n = 255.

Figure 6.14: Solutions of the equation with 3D right-hand sides (analogous to Figure 6.1) with
a =1/10 for n = 255.

7 Conclusions

We have introduced and analyzed a new approach for the optimal control of a fractional
Laplacian equation using tensor numerical methods. The fractional Laplacian is diagonal-
ized in the FFT basis on a tensor grid and a low-rank approximation to the core diagonal
tensor is computed. We present the novel rank-structured representation of functions of the
fractional elliptic operator based on sinc-approximation method applied to the core tensor.
This representation exhibits the exponential decay of the approximation error in the rank
parameter.

These results apply to the fractional Laplacian itself, as well as to the solution operators
of a fractional control problem, resulting from first-order necessary conditions. Due to the
separation of the spatial variables, the application of the arising matrix-valued functions of
a fractional Laplacian to a given rank-structured vector has a complexity which is nearly
linear (linear-logarithmic) in the univariate grid size, independently of the spatial dimension
of the problem.

The PCG algorithm for solving the equation for control function with adaptive rank
truncation is implemented. In 3D case the rank truncation is based on the RHOSVD-
Tucker approximation and its transform to the low-rank canonical form. The numerical
study illustrates the exponential decay of the approximation error of the canonical tensor
decompositions of the target tensors in the rank parameter, and indicates the almost linear
complexity scaling of the rank-truncated PCG solver in the univariate grid size n for 3D
problems discretized on n x n x n Cartesian grid. The low-rank preconditioner provides
the uniform convergence rate in the grid size n and other model parameters. All numerical
simulations are performed in Matlab on a laptop.
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The approach can be applied to generalized Laplacian-type control operator and to the
case of fractional elliptic operator with variable coefficients. On the other hand, the further
reduction of the numerical complexity to the logarithmic scale can be achieved by using
the quantized-TT (QTT) representation of all discrete functions and operators involved (see
24, 33, 25]).
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