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WASSERSTEIN PROXIMAL OF GANS

ALEX TONG LIN, WUCHEN LI, STANLEY OSHER, AND GUIDO MONTÚFAR

Abstract. We introduce a new method for training GANs by applying the Wasserstein-
2 metric proximal on the generators. This approach is based on the gradient operator
induced by optimal transport theory, which connects the geometry of the sample space
and the parameter space in implicit deep generative models. From this theory, we obtain
an easy-to-implement regularizer for the parameter updates. Our experiments demon-
strate that this method improves the speed and stability in training GANs in terms of
wallclock time and Fréchet Inception Distance (FID) learning curves.

1. Introduction

Generative Adversarial Networks (GANs)[12] are a powerful approach to learning gener-
ative models. Here, a discriminator tries to tell apart the data generated from a real source
and the data generated by a generator, whereas the generator tries to fool the discrimi-
nator. This adversarial game is formulated as an optimization problem over an implicit
generative model for the generator. An implicit generative model is a parametrized family
of functions mapping a noise source to sample space. In trying to fool the discriminator,
the generator should try to recreate the density distribution from the real source.

The problem of matching a target density can be formulated as the minimization of a
discrepancy measure. The Kullback–Leibler (KL) divergence is known to be difficult when
the distributions have a low dimensional support set, as is commonly the case in applica-
tions with structured data and high dimensional sample spaces. An alternative approach
to define a discrepancy measure between densities is optimal transport, a.k.a. Wasserstein
distance, or Earth Mover’s distance. This has been used recently to define the loss func-
tion for learning generative models [31, 11]. In particular, the Wasserstein GAN [5] has
attracted much interest in recent years.

Besides defining the loss function, optimal transport can also be used to introduce struc-
tures serving the optimization itself, in terms of the gradient operator. In full probability
space, this is known as the Wasserstein steepest descent flow [16, 33]. In this paper we
derive the Wasserstein steepest descent flow for deep generative models in GANs. We use
the Wasserstein-2 metric function, which allows us to obtain a Riemannian structure and
a corresponding natural (i.e., Riemannian) gradient. A well known example of a natural
gradient is the Fisher-Rao natural gradient, which is induced by the KL divergence. In
learning problems, one often finds that the natural gradients can offer advantages com-
pared to the Euclidean gradient [2, 3]. In GANs, because of the low dimensional support
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sets and the associated difficulties with the KL divergence, the Fisher-Rao natural gra-
dient is problematic. Therefore, we propose to use the gradient operator induced by the
Wasserstein-2 metric [22, 23].

We compute the proximal operator for the generators of GANs, where the regularization
is the squared constrained Wasserstein-2 distance. In practice, the constrained distance
can be approximated by a simple neural network. In implicit generative models, the
constrained Wasserstein-2 metric exhibits a simple structure. We generalize the metric and
introduce the relaxed proximal operator for generators, which allows us to further simplify
the computation. The resulting relaxed proximal operator involves only the difference of
outputs, so that the proximal computation has very simple parameter updates. The
method can be easily implemented and used as a drop-in regularizer for the generator
updates.

This paper is organized as follows. In Section 2, we briefly introduce the Wasserstein
natural gradient. A Wasserstein proximal method is introduced in Algorithm 1. In Sec-
tion 3, we demonstrate the effectiveness of the proposed methods in experiments with
various types of GANs. Section 4 reviews related work.

2. Wasserstein proximal

In this section, we briefly present optimal transport and its proximal operator on a
parameter space. We then apply them to the optimization problems of GANs.

2.1. Wasserstein natural gradient. Optimal transportation defines a class of distance
functions between probability densities. Given a pair ρ0, ρ1 ∈ Pp(Rn) of probability
densities with finite p-th moment,

Wp(ρ0, ρ1)p = inf

∫
Rn×Rn

‖x− y‖pπ(x, y)dxdy, (1)

where the infimum is over all joint probability densities π(x, y) with marginals ρ0(x), ρ1(y).
In the literature (see [37]), Wp is referred to as the Wasserstein-p distance. In this paper,
we focus on the case p = 2, and further denote W2 by W .

Following [7], the Wasserstein-2 distance has a dynamical formulation as a trajectory
transporting the initial density ρ0 to the final density ρ1 along a trajectory of minimal
kinetic energy. The classic theory does not consider the setting where the density path is
constrained to lie within a parametrized model. In the following we extend the classic the-
ory to cover parameterized density models. Consider a parameterized probability ρ(θ, x),
with parameter space Θ ⊂ Rd. Suppose that ρ(θ, x) is locally injective as a mapping from
Θ to P2(Rn). Then the Wasserstein-2 metric function constrained to the parameter space
is given as follows (see [22]).

Theorem 1 (Constrained Wasserstein-2 metric). The constrained Wasserstein-2 metric
function dW : Θ×Θ→ R+ has the following formulation:

dW (θ0, θ1)2 = inf
{∫ 1

0

∫
Rn
‖∇Φ(t, x)‖2ρ(θ(t), x)dxdt :

∂tρ(θ(t), x) +∇ · (ρ(θ(t), x)∇Φ(t, x)) = 0, θ(0) = θ0, θ(1) = θ1

}
,
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where the infimum is among all feasible Borel potential functions Φ: [0, 1]× Rn → R and
continuous parameter paths θ : [0, 1]→ Rd. Here ∇· and ∇ are the divergence and gradient
operators over Rn.

We note that the constrained metric on parameter space can be different from the
Wasserstein-2 distance on the full density set. The metric dW can be used to define a
steepest descent optimization scheme. This can be formulated in two general ways.

One way is in terms of the corresponding Riemannian structure, i.e., an inner product
between tangent vectors. A well known example is the Fisher natural gradient [2, 3].
The constrained Wasserstein-2 metric allows us to obtain a Riemannian metric structure,
from which we obtain the following constrained Wasserstein-2 gradient. We also call it
Wasserstein natural gradient.

Theorem 2 (Wasserstein natural gradient). Given a loss function F : Θ→ R, the Wasser-
stein gradient operator is given by

∇Wθ F (θ) = G(θ)−1∇θF (θ),

where G(θ) = (G(θ)ij)1≤i,j≤d ∈ Rd×d is given by

G(θ)ij =

∫
Rn
∇Φi(x)∇Φj(x)ρ(θ, x)dx.

Here for each i ∈ {1, · · · , d}, Φi : Rn → R is a solution (up to additive constants) of
∂
∂θi
ρ(θ, x) +∇ · (ρ(θ, x)∇Φi(x)) = 0.

Here ∇Wθ represents the natural gradient operator with respect to the constrained
Wasserstein metric, ∇θ represents the ordinary Euclidean gradient operator, and G is
the matrix representing the Wasserstein Riemannian metric. The steepest descent flow is
given by

d

dt
θ(t) = −G(θ(t))−1∇θF (θ(t)). (2)

The corresponding gradient descent iteration (forward Euler method) satisfies

θk+1 = θk − hG(θk)−1∇θF (θk),

where h > 0 is the step size. Often in practice, the computation of matrix G(θ)−1 is
difficult.

The second way of obtaining a numerical scheme for (2) is in terms of the proximal op-
erator. This is the backward Euler method, also named Jordan-Kinderlehrer-Otto (JKO)
scheme [16], which is given by

θk+1 = arg min
θ∈Θ

F (θ) +
1

2h
dW (θ, θk)2. (3)

Here, at each step, the distance of the parameter update acts as a regularization to the
original loss function.

Computing dW is also often challenging. However, we can approximate the dW distance
locally by a second order Taylor expansion. This approximation is particularly tractable
within the parameterized setting that we discussed above.

This allows us to derive other first order schemes, such as the Semi-Backward Euler
method:
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Proposition 3 (Semi-Backward Euler method). The Semi-Backward Euler method for
the gradient flow of loss function F : Θ→ R is given by

θk+1 = arg min
θ∈Θ

F (θ) +
1

h
sup

Φ

∫
Rn

Φ(x)(ρ(θ, x)− ρ(θk, x))− 1

2
(∇Φ(x))2ρ(θk, x)dx,

where the supremum is taken over Φ: Rn → R with sufficient regularity for the integral to
be well defined.

The Semi-Backward Euler method is often easier to approximate than the forward Euler
method, because it does not require computing and inverting G(θ), and it is often simpler
than the backward Euler method (JKO), because the constrained optimization over Φ is
more tractable than the time-dependent constraint involved in computing dW .

We implement the Semi-Backward Euler method in implicit generative model as follows.
For each parameter θ ∈ Rd, let the generator be given by gθ : Rm → Rn; z 7→ x = g(θ, z).
This takes an input noise prior Z ∼ p(z) ∈ P2(Rm) to an output sample with density
given by X = g(θ, Z) ∼ ρ(θ, x). Here Rd is the parameter space, Rm is the latent space,
and Rn is the sample space.

In this case, the update in Proposition 3 forms

θk+1 = arg min
θ∈Θ

sup
Φ

F (θ) +
1

h
EZ∼p(z)[Φ(g(θ, Z))− Φ(g(θk, Z))− 1

2
‖∇xΦ(g(θk, Z))‖2].

In practice, we apply a neural network to approximate variable Φ. See details in Appen-
dix G.

2.2. Regularization on generators. In fact, the constrained Wasserstein-2 metric in
implicit generative models allows for yet a simpler formulation. This reformulation allows
us to define the relaxed Wasserstein metric, and further introduces a simple algorithm for
proximal operator on generators.

Proposition 4 (Constrained Wasserstein-2 metric in implicit generative models).

dW (θ0, θ1)2 = inf
{∫ 1

0
EZ∼p(z)‖

d

dt
g(θ(t), Z)‖2dt :

d

dt
g(θ(t), Z)−∇xΦ(t, g(θ(t), Z)) = 0, θ(0) = θ0, θ(1) = θ1

}
,

where the infimum is among all feasible Borel potential functions Φ: [0, 1]× Rn → R and
continuous parameter paths θ : [0, 1]→ Rd.

Here the constrained Wasserstein metric requires that the derivative of the generator g
w.r.t. θ ∈ Rd be a gradient vector field of Φ w.r.t x ∈ Rn. In other words, if we denote
x(t) = g(θ(t), z), then

d

dt
x(t) = ∇xΦ(t, x(t)). (Gradient constraint)

The gradient constraint is satisfied if the sample space is 1 dimensional, i.e., n = 1. In
general, this is not true. Here Φ(t, x) is the other function depending on the parameter
space Θ. Finding Φ involves computational difficulties. Fitting the gradient constraint is
an open problem for the computations of Wasserstein proximal operator.
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For simple computations, we withdraw the gradient constraint and consider a relaxed
Wassersetin metric on parameter space:

d(θ0, θ1)2 = inf
θ(t)

{∫ 1

0
EZ∼p(z)‖

d

dt
g(θ(t), Z)‖2dt : θ(0) = θ0, θ(1) = θ1

}
.

We approximate the relaxed Wasserstein proximal operator based on the new metric d to
obtain

θk+1 = arg min
θ∈Θ

F (θ) +
1

2h
EZ∼p(z)‖g(θ, Z)− g(θk, Z)‖2, (4)

where the infimum is among all feasible continuous parameter path θ : [0, 1]→ Rd.

In fact, when the sample space is high dimensional, i.e., n > 1, the above update is not
exactly the Wasserstein proximal. Instead, it simply regularizes the generator by the
expectation of squared difference in sample space.

Algorithm 1 Relaxed Wasserstein Proximal, where Fω is a parameterized function to
minimize

Require: Fω, a parameterized function to minimize (e.g. Wasserstein-1 with a parame-
terized discriminator). gθ the generator.

Require: h proximal step-size, B batch size.
Require: OptimizerFω and Optimizergθ .
Require: max iterations, and generator iterations

for k = 0 to max iterations do
Sample real data {xi}Bi=1 and latent data {zi}Bi=1

ωk ← OptimizerFω

(
1
B

∑B
i=1 Fω(gθ(zi))

)
for ` = 0 to generator iterations do

Sample latent data {zi}Bi=1

θk ← Optimizergθ

(
1
B

∑B
i=1 Fω(gθ(zi)) + 1

h‖gθ(zi)− gθk−1(zi)‖2
)

end for
end for

2.3. Illustration of Wasserstein proximal. We present a toy example to illustrate the
effectiveness of Wasserstein proximal operator in GANs.

Consider a family of distribution with two weighted delta measures. Let Θ = {θ =
(a, b) : a < 0, b > 0}, and define

ρ(θ, x) = αδa(x) + (1− α)δb(x),

where α ∈ [0, 1] is a given ratio and δa(x) is the delta function supported at point a. See
Figure 2.3.

In this model, for a loss function F : Θ → R, the proximal regularization is given as
follows:

θk+1 = arg min
θ∈Θ

F (θ) +
1

2h
d(θ, θk)2,

where θ = (a, b) and θk = (ak, bk). We check the following commonly used statistical
distance (divergence) functions d between parameters θ and θk.
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Figure 1. Illustration of the example from Section 2.3. The Wasserstein
proximal penalizes parameter steps in proportion to the mass being trans-
ported, which results in updates pointing towards the minimum of the loss
function. The Euclidean proximal penalizes all parameters equally, which
results in updates naively orthogonal to the level sets of the loss function.

1. Wasserstein-2 distance:

dW (θ, θk)2 = α(a− ak)2 + (1− α)(b− bk)2;

2. Euclidean distance:

dE(θ, θk)2 = (a− ak)2 + (b− bk)2;

3. Kullback–Leibler divergence:

dKL(ρθ‖ρθk) =

∫
Rn
ρ(θ, x) log

ρ(θ, x)

ρ(θk, x)
dx =∞;

4. L2-distance:

dL2(ρθ, ρθk)2 =

∫
Rn
|ρ(θ, x)− ρ(θk, x)|2dx =∞.

Here the KL divergence and L2-distance cannot measure the difference of probability
models. The Wasserstein-2 and Euclidean distances still work in these cases. In addition,
the Euclidean distance dE does not depend on the structure of model ρ(θ, x), while the
constrained Wasserstein-2 metric dW does.

Proposition 5. Given θ∗ = (a∗, b∗) ∈ Θ, consider the Wasserstein-1 metric as the loss
function, i.e.,

FW1(θ) = W1(ρθ, ρθ∗) = α|a− a∗|+ (1− α)|b− b∗|.
Denote θk+1

W = arg minθ FW1(θ)+ 1
2hdW (θ, θk)2, and θk+1

E = arg minθ FW1(θ)+ 1
2hdE(θ, θk)2.

For each stepsize h > 0, then

FW1(θk+1
E ) ≥ FW1(θk+1

W ).

On each step of the update, the solution obtained by Wasserstein proximal decreases
the objective function further than the one by Euclidean proximal. Here the proof is based
on a simple fact of the shrinkage operator, see details in Appendix B.

This example introduces a case that Wasserstein-2 proximal works better than Euclidean
proximal for the Wasserstein-1 loss function.
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3. Experiments on GANs

Here we present numerical experiments using the Relaxed Wasserstein Proximal (RWP)
algorithm and the Semi-Backward Euler (SBE) method in order to perform Wasserstein
gradient-descent on various GANs. We find that the Relaxed Wasserstein Proximal pro-
vides both better speed (measured by wallclock) and stability in training GANs.

3.1. Results of Relaxed Wasserstein Proximal. The Relaxed Wasserstein Proximal
(RWP) algorithm is intended to be an easy-to-implement, drop-in replacement to improve
speed and convergence of GAN training. It does this by applying regularization on the
generator during training. This is novel as most GAN training focuses on regularizing the
discriminator, e.g. with a gradient penalty [13, 34, 17, 1, 30], and there has been limited
exploration in regularizing the generator [9]. Specifically, we modify the update rule for
the generator by:

• Update for ` number of iterations before updating the discriminator:

θ ← Optimizerθ

(
Original loss +

1

2h
‖gθ − gθk−1‖2

)
So two hyperparameters are introduced: the proximal step-size h, and the number of
iterations `. In some GANs, one may update the discriminator a number of times and
then update the generator a number of times, and then repeat; we will call one loop of
this update an outer-iteration.

A more detailed description of the algorithm is given in Appendix D.

We test the Relaxed Wassersteing Proximal regularization on three GAN types:

• Standard GANs [12],
• WGAN-GP [14], and
• DRAGAN [17].

We use the CIFAR-10 dataset [18], and the aligned and cropped CelebA dataset [26]. And
we utilize the DCGAN [35] architecture for the discriminator and generator. To measure
the quality of generated samples, we employ the Fréchet Inception Distance (FID) [15]
both to measure performance and to measure convergence of GAN training (lower FID is
better); we used 10,000 generated images to measure the FID. For CIFAR-10, we measure
the FID every 1000 outer-iterations, and for CelebA we measure the FID every 10,000
outer-iterations.

Our particular hyperparameter choices for training are given in Appendix C. Note that
since we intend RWP to be a drop-in regularization, the non-RWP hyperparameters (i.e.
not h nor `) are chosen to work well before applying RWP.

To summarize our results, the Relaxed Wasserstein Proximal regularization improves
both the speed (wallclock) and stability of convergence. It is a tricky to compare the result
of using RWP, as it performs multiple generator iterations. We thus align the comparison
according to wallclock time (this procedure was also used by [15]). In Figure 2 we see
that our regularization improves convergence speed (measured in wallclock time), and
also obtains a lower FID for all GAN types. In particular, in DRAGAN we see a 20%
improvement in sample quality according to the FID. The same results are also found
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for the CelebA dataset, shown in Figure 3. We note that multiple generator iterations
will sometimes prevent Standard GANs on CelebA from learning initially, at which point
we restart the algorithm, and once it starts learning then the run is successful. This
is practically very easy to detect and provides minimal trouble, so Figure 3 focuses on
successful runs. We predict this defect will be rectified with a more stable loss function,
such as WGAN-GP, or with different h’s and `’s.

We also examine the effect of multiple generator updates compared to discriminator
updates. More specifically, in RWP since we update the generator multiple times before
updating the discriminator, then it is worth examining the effect of not using the regular-
ization. We see in Figure 4 that even using the most stable GAN type out of the three
– WGAN-GP – if we omit regularization then the FID has high variance and even tends
to rise in the end. But with RWP, the FID converges with more stability and achieves a
lower FID.

Figure 2. The effect of using RWP regularization, on the CIFAR-10
dataset. The experiments are averaged over 5 runs. The bold lines are
the average, and the enveloping lines are the minimum and maximum.
From the three graphs, we see that using the easy-to-implement RWP reg-
ularization improves speed as measured by wallclock time, and it also is
able to achieve a lower FID.

Samples from the models are provided in Appendix E. We also performed latent space
walks [35] to show RWP regularization does not cause the GAN to memorize. For details
see Appendix F.

3.2. Results of Semi-backward Euler method. The training of Semi-Backward Euler
(SBE) is a more complicated. Here we attempt to approximate three functions: the usual
discriminator and generator, and the potential function Φp. The algorithm and particular
hyperparameter settings are presented in the appendix in Section G. We present our
attempts at optimizing over the three networks in Figure 5. Since both the standard
WGAN-GP and the SBE on WGAN-GP had the same generator iterations, then we align
according to this. As we see, the Semi-Backward Euler method is comparable to norm
WGAN-GP. We leave deeper investigation of the Semi-Backward Euler method for future
work.
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Figure 3. The effect of
Relaxed Wasserstein Prox-
imal (RWP) regularization
on Standard GANs, on the
CelebA dataset. The exper-
iment was averaged over 5
runs. The bold lines are
the average, and the envelop-
ing lines are the minium and
maximum. Here we see RWP
regularization improves the
speed (via wallclock time),
and achieves a lower FID.
We note multiple generator
iterations might cause initial
learning to fail, but once it
starts then it remains suc-
cessful. This is practically
easy to detect, so we show
successful runs.

Figure 4. An experiment
demonstrating the effect
of performing 10 generator
iterations per outer-iteration
with and without RWP,
where an outer-iteration is a
single loop of: a number of
discriminator iterations, then
a number of generator itera-
tions. This experiment goes
to 1,000,000 outer-iterations
to show long-term behavior.
With RWP regularization we
obtain convergence, as well
as lower FID. Without RWP,
the training is highly variable
and the FID is even on a
rising trend in the end.

Figure 5. The effect of the
Semi-Backward Euler (SBE)
method, on the CIFAR-10
dataset. As we observe,
the training is comparable to
the standard way of training
using the WGAN-GP loss.
The experiment was aver-
aged over 5 runs. The bold
lines is the average, and the
enveloping lines are the min-
imum and maximum.

4. Related Works

In the literature, many different aspects of optimal transport have been applied into
machine learning and GANs.

1. Loss function. Many studies apply the Wasserstein distance as the loss function.
There are mainly two reasons for using the Wasserstein loss function [11, 31]. On the one
hand, the Wasserstein distance is a statistical distance depending on the metric of the
sample space. So it introduces a statistical estimator, named the the minimal Wasserstein
estimator [6], depending on the geometry of the data. On the other hand, the Wasserstein
distance is useful for comparing probability distributions supported on lower dimensional
sets. This is often intractable for other divergence functions. In GANs, these properties
have been leveraged in Wasserstein GAN [5]. In this case, the loss function is chosen as
the Wasserstein-1 distance function. In its computations, the discriminator, also called
the Kantorovich dual variable, needs to satisfy the 1-Lipschitz condition. Many studies
work on the regularization of the discriminator in order to satisfy this condition [13, 34].
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2. Gradient flows in full probability set. The Wasserstein-2 metric provides a metric
tensor structure [27, 33, 21], under which the probability space forms an infinite dimen-
sional Riemannian manifold, named the density manifold [19]. The gradient flow in the
density manifold links with many transport-related partial differential equations [37, 32].
A famous example is that the Fokker-Planck equation, the probability transition equation
of Langevin dynamics, is the gradient flow of the KL divergence function. In this perspec-
tive, two angles have been developed in the learning communities. Firstly, many groups
try to leverage the gradient flow structure in probability space supported on the parameter
space. They study the stochastic gradient descent by the transition equation in the prob-
ability over parameters [29]. Secondly, many nonparametric models have been studied,
such as the Stein gradient descent method [25]. It can be viewed as the generalization
of Wasserstein gradient flow. In addition, [10] consider an approximate inference method
for computing Wasserstein gradient flow in full probability set. Here an approximation
towards Kantorovich dual variables is introduced.

3. Gradient flow constrained on parameter space. The Wasserstein structure can also
be constrained on parameter space. [8] studied the constrained Wasserstein gradient with
fixed mean and variance. Here the density subset is still infinite dimensional. Many
approaches also focus on Gaussian families or elliptical distributions [36]. The Wasserstein
gradient flow in Gaussian family has been studied by [28].

Compared to previous works, our approach applies the Wasserstein gradient to work on
general implicit generative models.

5. Discussion

In this work, we apply the constrained Wasserstein gradient and its relaxations on
implicit generative models. Whereas much work has focused on regularizing the discrim-
inator, in this work we focus on regularizing the generator. For Wasserstein GAN (with
gradient penalty), we compute the Wasserstein-2 gradient flow of Wasserstein-1 distance
on parameter space. Experimentally, the proposed method allows us to obtain a better
minimizer in the sense of FID, with faster convergence speeds in wall-clock time.
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[28] L. Malagò, L. Montrucchio, and G. Pistone. Wasserstein Riemannian Geometry of Positive Definite

Matrices. arXiv:1801.09269 [math, stat], 2018.
[29] S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer neural

networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.
[30] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial

networks. In International Conference on Learning Representations, 2018.
[31] G. Montavon, K.-R. Müller, and M. Cuturi. Wasserstein Training of Restricted Boltzmann Machines.

In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 3718–3726. Curran Associates, Inc., 2016.

[32] E. Nelson. Quantum Fluctuations. Princeton series in physics. Princeton University Press, Princeton,
N.J, 1985.

[33] F. Otto. The geometry of dissipative evolution equations the porous medium equation. Communica-
tions in Partial Differential Equations, 26(1-2):101–174, 2001.

[34] H. Petzka, A. Fischer, and D. Lukovnicov. On the regularization of Wasserstein GANs.
arXiv:1709.08894 [cs, stat], 2017.

[35] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. CoRR, abs/1511.06434, 2015.



12 LIN, LI, OSHER, AND MONTÚFAR
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Appendix A. Review of Wasserstein statistical manifold

In the full probability set, we consider a metric function W2 : P2(Rn)× P2(Rn)→ R+,

W2(ρ0, ρ1)2 = inf
Φt

{∫ 1

0

∫
Rn
‖∇Φ(t, x)‖2ρ(t, x)dxdt :

∂tρ(t, x) +∇ · (ρ(t, x)∇Φ(t, x)) = 0, ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x)
}
,

(5)

where the infimum is taken among all feasible Borel potential functions Φ: [0, 1]×Rn → R
and continuous density path ρ : [0, 1]× Rn → R+ satisfying the continuity equation.

The variational formulation in (5) introduces a Riemannian structure in density space.
Consider the set of smooth and strictly positive probability densities

P+ =
{
ρ ∈ C∞(Rn) : ρ(x) > 0,

∫
Rn
ρ(x)dx = 1

}
⊂ P2(Rn).

Denote F := C∞(Rn) the set of smooth real valued functions. The tangent space of P+

is given by

TρP+ =
{
σ ∈ F :

∫
Rn
σ(x)dx = 0

}
.

Given Φ ∈ F and ρ ∈ P+, define

VΦ(x) := −∇ · (ρ(x)∇Φ(x)).

Thus VΦ ∈ TρP+. The elliptic operator ∇· (ρ∇) identifies the function Φ modulo additive
constants with the tangent vector VΦ of the space of densities.

Given ρ ∈ P+, σi ∈ TρP+, i = 1, 2, define

gWρ (σ1, σ2) =

∫
Rn

(∇Φ1(x),∇Φ2(x))ρ(x)dx,

where Φi(x) ∈ F/R, such that −∇ · (ρ∇Φi) = σi.

The inner product gW endows P+ with a Riemannian metric tensor. In other words,
the variational problem (5) is a geometric action energy in (P+, g

W ).

Given a loss function F : P+ → R, the Wasserstein gradient operator in (P+, g
W ) is

given as follows.

gradWF (ρ) = −∇ · (ρ∇ δ

δρ(x)
F (ρ)).

Thus the gradient flow satisfies

∂ρ

∂t
= −gradWF (ρ) = ∇ · (ρ∇ δ

δρ(x)
F (ρ)).

More analytical results on the Wasserstein-2 gradient flow are provided in [4].

We next consider Wasserstein-2 metric and gradient operator constrained on statistical
models. A statistical model is defined by a triplet (Θ,Rn, ρ). For simple presentation of
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paper, we assume Θ ⊂ Rd and ρ : Θ → P(Rn) is a parameterization function. In this
case, ρ(Θ) ⊂ P(Rn). We assume that the parameterization map ρ is locally injective and
under suitable regularities. We define a Riemannian metric g on ρ(Θ) by pulling back the
Wasserstein-2 metric tensor gW .

Definition 6 (Wasserstein statistical manifold). Given θ ∈ Θ and σi ∈ TθΘ, i = 1, 2, we
define

gθ(σ1, σ2) =

∫
Rn
∇Φ1(x)∇Φ2(x)ρ(θ, x)dx,

where

−∇ · (ρ(θ, x)∇Φi(x)) = (∇θρ(θ, x), σi).

Here ∇θρ = ( ∂
∂θi
ρ(θ, x))di=1 ∈ Rd and (·, ·) is an Euclidean inner product in Rd.

In particular, we denote

gθ(σ, σ) = σTG(θ)σ,

where G(θ) = (G(θ)ij)1≤i,j≤d ∈ Rd×d is the associated metric tensor defined in Theorem 2.

Here we assume that G(θ) is smooth and positive definite, so that (Θ, gθ) forms a
smooth Riemannian manifold. In this case, Theorem 2 studies the constrained Wassertein
gradient operator in parameter space.

Appendix B. Proofs of Wasserstein natural gradient

Proof of Theorem 1. The distance dW can be written into the action function in Wasser-
stein statistical manifold. In other words, consider

dW (θ0, θ1)2 = inf
{∫ 1

0
θ̇(t)TG(θ(t))θ̇(t) : θ(0) = θ0, θ(1) = θ1

}
where the infimum is taken over θ(t) ∈ C1([0, 1],Θ). Following the definition of metric
tensor in definition 6, we have

θ̇(t)TG(θ(t))θ̇(t) =

∫
Rn

(∇Φ(t, x))2ρ(θ(t), x)dx,

with Φ(t, x) satisfying

∂tρ(θ(t), x) = ∇θρ(θ(t), x)θ̇(t) = −∇(ρ(θ(t), x)∇Φ(t, x)).

We finish the proof.

Proof of Theorem 2. The gradient operator on a Riemannian manifold (Θ, gθ) is defined
as follows.

For any σ ∈ TθΘ, then the Riemannian gradient ∇Wθ F (θ) ∈ TθΘ satisfies

gθ(σ,∇Wθ F (θ)) = (∇θF (θ), σ).

In other words,

θ̇TG(θ)∇Wθ F (θ) = ∇θF (θ)Tσ.

Since θ ⊂ Rd and G(θ) is positive definite, then

∇Wθ F (θ) = G(θ)−1∇θF (θ).
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Proof of Proposition 3. We next present the derivation of the proposed semi-backward
method.

Claim: Denote ‖θ − θk‖ = h, then

(θk − θ)TG(θk)(θk − θ) = dW (θ, θk)2 +O(h2), (6)

and

1

2
(θk − θ)TG(θk)(θk − θ) +O(h2) = sup

Φ

∫
Rn

Φ(x)(ρ(θ, x)− ρ(θk, x))− 1

2
‖∇Φ(x)‖2ρ(θk, x)dx.

(7)

Proof of Claim. We next prove the claim. Denote the geodesic path θ∗(t), t ∈ [0, 1], with
θ∗(0) = θ, θ∗(1) = θk, s.t.

dW (θ, θk)2 =

∫ 1

0
(
d

dt
θ∗(t))TG(θ∗(t))

d

dt
θ∗(t)dt.

We reparameterize the time of θ∗(t) into the time interval [0, h]. Denote τ = ht and

θ(τ) = θ∗(ht). Thus θ(τ) = θk + θ−θk
h τ +O(τ2) and d

dτ θ(τ) = θ−θk
h +O(τ),

dW (θ, θk)2 =h

∫ h

0

d

dτ
θ(τ)TG(θ(τ))

d

dτ
θ(τ)dτ

=h

∫ h

0
(
θ − θk
h

+O(h))TG(θk +O(h))(
θ − θk
h

+O(h))dτ

=(θ − θk)TG(θk)(θ − θk) +O(h2),

which proves (6).

We next prove (7). On the L.H.S. of (7),

∇θρ(θk, x)(θ − θk) = ρ(θ, x)− ρ(θk, x) +O(h).

From the definition of G(θ),

1

2
(θ − θk)TG(θk)(θ − θk) =

1

2

∫
Rn

(∇Φ(x))2ρ(θk, x)dx,

where

−∇ · (ρ(θk, x)∇Φ(x)) = ∇θρ(θk, x)(θ − θk) = ρ(θk, x) +O(h).

On the R.H.S. of (7), the maximizer Φ∗ satisfies

ρ(θ, x)− ρ(θk, x) +∇ · (ρ(θk, x)∇Φ∗(x)) = 0. (8)

Applying (8) into the R.H.S. of (7), we have∫
Rn

Φ∗(x)(ρ(θ, x)− ρ(θk, x))− 1

2
‖∇Φ∗(x)‖2ρ(θk, x)dx

=

∫
Rn

Φ∗(x)[−∇ · (ρ(θk, x)∇Φ∗(x)]− 1

2
∇Φ∗(x)ρ(θk, x)dx

=

∫
Rn
‖∇Φ∗(x)‖2ρ(θk, x)− 1

2
‖∇Φ∗(x)‖2ρ(θk, x)dx

=
1

2

∫
Rn
‖∇Φ∗(x)‖2ρ(θk, x)dx.

Comparing the L.H.S. and R.H.S. of (7), we prove the claim.
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From the claim,

θk+1 = arg min
θ∈Θ

F (θ) +
1

h

dW (θ, θk)2

2

= arg min
θ∈Θ

F (θ) +
1

2h
(θk − θ)TG(θk)(θk − θ) +O(h)

= arg min
θ∈Θ

F (θ) +
1

h
sup

Φ

∫
Rn

Φ(x)(ρ(θ, x)− ρ(θk, x))− 1

2
‖∇Φ(x)‖2ρ(θk, x)dx+O(h).

Thus we derive a consistent numerical method in time, known as the Semi-backward
method:

θk+1 = θk − hG(θk)−1∇θF (θk+1).

Proof of Proposition 4. This result is proven in [24]. We present it here for the comple-
tion of paper. The implicit model is given by the following push-forward relation. Denote
gθ#p(z) = ρ(θ, x), i.e.,∫

Rm
f(g(θ, z))p(z)dz =

∫
Rn
f(x)ρ(θ, x)dx, for any f ∈ C∞c (Rn). (9)

Given the gradient constraint

d

dt
g(θ(t), z) = ∇Φ(t, g(θ(t), z)),

we shall show that the probability density transition equation of g(θ(t), z) satisfies the
constrained continuity equation

∂

∂t
ρ(θ(t), x) +∇ · (ρ(θ(t), x)∇Φ(t, x)) = 0, (10)

and

EZ∼p(z)‖
d

dt
g(θ(t), Z)‖2 =

∫
Rn
‖∇Φ(t, x))‖2ρ(θ(t), x)dx. (11)

On the one hand, consider f ∈ C∞c (Rn), then

d

dt
EZ∼p(z)f(g(θ(t), Z)) =

d

dt

∫
Rm

f(g(θ(t), z))p(z)dz

=
d

dt

∫
Rn
f(x)ρ(θ(t), x)dx

=

∫
Rn
f(x)

∂

∂t
ρ(θ(t), x)dx,

(12)

where the second equality holds from the push forward relation in (9).
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On the other hand, consider

d

dt
EZ∼p(z)f(g(θ(t), Z)) = lim

∆t→0
EZ∼p(z)

f(g(θ(t+ ∆t), Z)− f(g(θ(t), Z))

∆t

= lim
∆t→0

∫
Rm

f(g(θ(t+ ∆t), z))− f(g(θ(t), z))

∆t
p(z)dz

=

∫
Rm
∇f(g(θ(t), z))

d

dt
g(θ(t), z)p(z)dz

=

∫
Rm
∇f(g(θ(t), z))∇Φ(t, g(θ(t), z))p(z)dz

=

∫
Rn
∇f(x)∇Φ(t, x)ρ(θ(t), x)dx

=−
∫
Rn
f(x)∇ · (∇Φ(t, x)ρ(θ(t), x))dx,

(13)

where ∇, ∇· are gradient and divergence operators w.r.t. x ∈ Rn. The second to last
equality holds from the push forward relation (9), and the last equality holds using the
integration by parts w.r.t. x. Since (12) equals (13) for any f ∈ C∞c (Rn), we prove (10).

In addition, by the definition of the push forward operator (9), we have

EZ∼p(z)‖
d

dt
g(θ(t), Z)‖2 =

∫
Rn
‖∇Φ(t, g(θ(t), z))‖2p(z)dz

=

∫
Rn
‖∇Φ(t, x)‖2ρ(θ(t), x)dx.

Thus we prove (11).

Proof of Proposition 5. This example allows us to compute the proximal operator
explicitly. On the one hand, we compute the Wasserstein proximal operator explicitly:

θk+1
W = (ak+1

W , bk+1
W ) = arg min

θ
FW1(θ) +

1

2h
dW (θ, θk)2

= arg min
(a,b)

α|a− a∗|+ (1− α)|b− b∗|+ 1

2h
(α|a− ak|2 + (1− α)|b− bk|).

I.e.,

aWk+1 = arg min
a
|a− a∗|+ 1

2h
|a− ak|2, bWk+1 = arg min

b
|b− b∗|+ 1

2h
|b− bk|2.

Here

ak+1
W = shrinka∗(ak, h) =


ak − h if ak > a∗ + h;

ak + h if ak < a∗ − h;

a∗ otherwise.

Similarly, bk+1
W = shrinkb∗(b

k, h).

On the other hand, we calculate the Euclidean proximal operator explicitly:

θk+1
E = (ak+1

E , bk+1
E ) = arg min

θ
FW1(θ) +

1

2h
dE(θ, θk)2

= arg min
(a,b)

α|a− a∗|+ (1− α)|b− b∗|+ 1

2h
(|a− ak|2 + |b− bk|2).
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I.e.,

ak+1
E = arg min

a
α|a− a∗|+ 1

2h
|a− ak|2, bk+1

E = arg min
b

(1− α)|b− b∗|+ 1

2h
|b− bk|2.

Here

ak+1
E = shrinka∗(ak, αh) =


ak − αh if ak > a∗ + αh;

ak + αh if ak < a∗ − αh;

a∗ otherwise.

Similarly, bk+1
E = shrinkb∗(b

k, (1− α)h).

Here we only need to check that for all possible cases, FW1(θk+1
E ) > FW1(θk+1

W ). If

ak > a∗ + h and bk > b∗ + h, then

FW1(θk+1
W ) =α[(ak − a∗ − h) +

h

2
] + (1− α)[(bk − b∗ − h) +

h

2
]

=α(ak − a∗) + (1− α)(bk − b∗)− h

2
,

and

FW1(θk+1
E ) =α[(ak − a∗ − αh)] +

(αh)2

2h
+ (1− α)[(bk − b∗ − αh)] +

(1− α)2h2

2h

=α(ak − a∗) + (1− α)(bk − b∗)− h

2
[α2 + (1− α)2].

Since α ∈ [0, 1], then α2 + (1−α)2 ≤ [α+ (1−α)]2 = 1, then FW1(θk+1
W ) ≤ FW1(θk+1

E ). In
other cases, the proof follows similarly. We finish the proof.

Appendix C. Hyperparameters for Relaxed Wasserstein Proximal
experiments

The following hyperparameter settings for the Relaxed Wasserstein Proximal experi-
ments in Section 3.1 are:

• A batch size of 64 for all experiments.
• For CIFAR-10 with WGAN-GP: The Adam optimizer with learning rate 0.0001,
β1 = 0.5, and β2 = 0.9 for both the generator and discriminator. We used a latent
space dimension of 128, h = 0.1, and ` = 10 generator iterations.
• For CIFAR-10 with Standard and DRAGAN: The Adam optimizer with learning

rate 0.0002, β1 = 0.1, and β2 = 0.999 for both the generator and discriminator.
We used a latent space dimension of 100, h = 0.2, and ` = 5 generator iterations.
• For aligned and cropped CelebA with Standard: The Adam optimizer with learning

rate 0.0002, β1 = 0.5, and β2 = 0.999 for both the generator and discriminator.
We used a latent space dimension of 100, h = 0.2, and ` = 5 generator iterations.

Appendix D. A practical description of the Relaxed Wasserstein Proximal

As mentioned in Section 3.1, the Relaxed Wasserstein Proximal is meant to be an
easy-to-implement, drop-in regularization. For instructional purposes, we take a specific
example to showcase the algorithm: Relaxed Wasserstein Proximal on Standard GANs
(with non-saturating gradient for the generator):
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• Given:
– A generator gθ, and discriminator Dω,
– The distance function Fω(gθ) = Ex∼real[log(Dω(x))]−Ez∼N (0,1)[log(1−Dω(gθ(z))],
– Choice of optimizers, Adamω and Adamθ,
– Proximal step-sizes h, and generator iterations `, and
– Batch size B.

Then the algorithm follows:

(1) Sample real data {xi}Bi=1, and latent data {zi}Bi=1.
(2) Update the discriminator:

ωk ← Adamω

(
− 1

B

B∑
i=1

log(Dω(xi))−
1

B

B∑
i=1

log(1−Dω(gθ(zi)))

)

(3) Sample latent data {zi}Bi=1
(4) Perform Adam gradient descent ` number of times:

θk ← Adamθ

(
− 1

B

B∑
i=1

log(Dω(gθ(zi)))−
1

B

B∑
i=1

1

2h
‖gθ(zi)− gθk−1(zi)‖22

)
,

for ` number of times.

(5) Repeat the above until a chosen stopping condition (e.g. maximum number of
iterations).

As one can analyze above, the only difference between the standard way of training GANs
and using the Relaxed Wasserstein Proximal, are the ‖gθ(zi)− gθk−1(zi)‖22 terms and the
number of generator iterations `. Note that in this paper, we call a single loop of updating
a discriminator a number of times and then updating the generator a number of a time,
an outer-iteration.

Appendix E. Generated samples from the model

In Figure 6, we have samples generated from a Standard GAN with RWP regularization,
trained on the CelebA dataset. The FID of these images was 17.105.

In Figure 7, we have samples generated from WGAN-GP with RWP , trained on the
CIFAR-10 dataset. The FID for these images is 38.3.
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Figure 6. A sample of images generated by RWP regularization on Stan-
dard GANs, on CelebA.
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Figure 7. A sample of images generated by RWP regularization on
WGAN-GP, on CIFAR-10.

Appendix F. Latent space walk

[35] suggest that walking in the latent space could detect whether a generator was
memorizing. We see in Figure 8 and Figure 9 that we have smooth transitions, so this is
not the case for GANs with RWP regularization.

Figure 8. A latent space walk for a network with RWP regularization on
Standard GANs, on CelebA. As we have smooth transitions, this shows the
generator is not overfitting. The latent space walk is done by interpolating
between 4 points in the latent space.
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Figure 9. A latent space walk for a network with RWP regularization on
WGAN-GP, on CIFAR-10. As we have smooth transitions, this shows the
generator is not overfitting. The latent space walk is done by interpolating
between 4 points in the latent space.

Appendix G. Algorithm and particular hyperparameters for the
Semi-backward Euler method

Algorithm 2 Semi-backward Euler method, where Fω is a parameterized function to
minimize.

Require: Fω, a parameterized function to minimize (e.g. Wasserstein-1 with a parame-
terized discriminator). gθ the generator. Φp the potential.

Require: h the proximal step-size, m the batch size.
Require: OptimizerFω , Optimizergθ , and OptimizerΦp
Require: The number of generator iterations and p iterations to do per update.

1: for k = 0 to max iterations do
2: Sample real data {xi}Bi=1 and latent data {zi}Bi=1.

3: ωk ← OptimizerFω

(
1
B

∑B
i=1 Fω(gθ(zi))

)
4: for s = 0 to phi iterations do
5: Sample latent data {zi}Bi=1

6: pk ← OptimizerΦp

(
1
h

1
B

∑B
i=1 Φp(gθ(zi))− Φp(gθk−1(zi))− 1

2∇Φp(gθk−1(zi))
)

7: end for
8: for ` = 0 to generator iterations do
9: Sample latent data {zi}Bi=1

10: θk ← Optimizergθ

(
1
B

∑B
i=1 Fω(gθ(zi)) + 1

h

(
Φp(gθ(zi))− Φp(gθk−1(zi))− 1

2∇Φp(gθk−1(zi))
))

11: end for
12: end for

The specific hyperparameter settings used for the Semi-Backward Euler (SBE) on
WGAN-GP, trained on CIFAR-10, are:

• A batch size of 64.
• The DCGAN architecture for the discriminator and generator. A one-hidden-layer

fully-connected network (a.k.a. MLP) for the potential Φp. We also used layer-
normalization [20] for each layer.
• We used the Adam optimizer with learning rate 0.0002, β1 = 0.1, and β2 = 0.999

for both the generator, discriminator, and potential Φp. We used a latent space
dimension of 100, and h = 0.2.
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• Every outer-iteration loop, we updated the discriminator 5 times (as suggested
in WGAN-GP), the generator once, and the potential 5 times. Note an outer-
iteration is defined as one loop of: updating the discriminator a number of times,
updating the potential a number of times, and updating the generator a number
of times.
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