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ABSTRACT

Lying in between entanglement and Bell nonlocality, the Einstein-Podolsky-Rosen (EPR) steering has received increasing at-
tention in recent years. To characterize the EPR-steering, many criteria have been proposed and experimentally implemented.
Nevertheless, only a few results are given to quantify the steerability with analytical results. In this work, we propose a method
to quantify the steerability for two-qubit quantum states in the two-setting EPR-steering senario, by using the connection be-
tween joint measurability and the steerability. We derive the analytical formula of the steerability for a class of X-states. The
sufficient and necessary conditions for two-setting EPR-steering are presented. Based on these results, a class of asymmetric
states: one-way steerable states are obtained.

Introduction
Quantum nonlocality, EPR-steering and quantum entanglement are important quantum correlations. EPR-steering, originally
given by Schrodinger in the context of famous Einstein-Podolsky-Rosen (EPR) paradox [1], lies in between quantum nonlo-
cality and quantum entanglement, which means that one observer, by performing a local measurement on one’s subsystem,
can nonlocally steer the state of the other subsystem. Recently EPR-steering was reformulated by Wiseman et al who showed
the hierarchy among Bell nonlocality, EPR-steering and quantum entanglement [2]. EPR-steering has shown to be of advan-
tages for the quantum tasks such as randomness generation, subchannel discrimination, quantum information processing and
one-sided device-independent processing in quantum key distribution [3, 4, 5, 6, 7] etc..

Many efforts have been made to detect and measure EPR-steering. Some steering inequalities based on uncertainty rela-
tions [8, 9, 10, 11, 12, 13], inequalities based on steering witnesses and Clauser-Horne-Shimony-Holt (CHSH)-like inequality,
and geometric Bell-like inequalities et al [16, 18, 19, 20, 14, 15, 17] are constructed to diagnose the steerability, which usually
are necessary conditions. Besides inequalities, all-versus-nothing proof without inequalities, were also presented to detect the
steerability [21]. But only a few methods are given to quantify EPR-steering based on maximal violation of steering inequal-
ities [22], steering weight [23] and steering robustness. In these cases semi-definite programming are needed to calculate the
measures. Recently, the radius of super quantum hidden state model was proposed to evaluate the steerability [25] by finding
the optimal super local hidden states. Nevertheless, it is formidably difficult to find the optimal super quantum hidden states.
A critical radius was proposed through the geometrical method and the critical radius of T-states was calculated explicitly [24].
The closed formulas for steering were derived in the two and three measurement scenarios [26], however, which is the case
when Alice and Bob are both allowed to measure the observables in their sites. It has been proven that there is a one to one
mapping between joint measurability and the steerability of any assemblage [27, 28, 29, 30]. By using the connection between
steering and joint measurability, the closed formula of the measure for two setting EPR-steering of Bell-diagonal states was
given [31]. However, for any two-qubit quantum states, one still lacks the closed formula for the steerability problem even for
2-setting scenario.

Different from the Bell nonlocality and quantum entanglement, steering exhibits asymmetric features, proposed by Wise-
man et al [2]. There exist quantum states ρAB, for which Alice can steer Bob’s state but Bob can not steer Alice’s state,
or vice versus. This distinguished feature would be useful for some one-way quantum information tasks such as quantum
cryptography. But until recently only a few asymmetric states are proposed and experimentally demonstrated [33, 34, 25, 32].

In this work we aim to investigate the analytical formula for the quantification of EPR-steering and get the necessary and
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sufficient condition of steerability for a class of quantum states. Then the asymmetric feature of EPR-steering will be also
investigated.

Setting up the stage
Consider a bipartite qubit system ρAB shared by Alice and Bob, with reduced density states ρA and ρB. Alice performs positive-
operator-valued measures (POVMs) Πκ |⃗n on subsystem A, where Πκ |⃗n =

1
2 (I2 +(−1)κ n⃗ · σ⃗), I2 is the identity matrix and σ⃗ =

(σx,σy,σz) are the Pauli matrices. Alice gets the result κ (κ = 0,1) when measuring along the direction n⃗. Bob’s unnormalized
conditional state is ρ̃κ |⃗n = TrA[ρAB(Πκ |⃗n ⊗ I)]. Bob’s unconditional state ρB = TrAρAB = ∑

κ
ρ̃κ |⃗n remains unchanged under any

measurement direction. A state assemblage ρ̃κ |⃗n is unsteerable if there exists a local hidden state model (LHSM) with the
state ensemble of piρi satisfying ρ̃κ |⃗n = ∑

i
P(κ |⃗n, i)piρi, where ρB = ∑

i
piρi and ∑

κ
P(κ |⃗n, i) = 1. The quantum state ρAB is

unsteerable from A to B if for all the local POVMs, the state assemblages are all unsteerable. The quantum state ρAB is
steerable from A to B if there exist measurements in Alice’s part that produce an assemblage that demonstrates the steerability.

The corresponding local hidden state model and the joint measurement observables are connected through Oκ |⃗n =
1√ρB

ρ̃κ ,⃗n
1√ρB

and Gi =
1√ρB

piρi
1√ρB

by the one to one mapping between the joint measurement problem and the steerability problem, when-
ever ρB is invertible [27]. The steerability can be detected through the joint measurability of the observables.

Two setting steering scenario: Any two-qubit quantum state can be expressed by ρAB =(I4+ a⃗ · σ⃗ ⊗I2+I2⊗ b⃗ · σ⃗ +
3
∑
i

ciσi⊗

σi)/4 under local unitary equivalence, where a⃗,⃗b, c⃗ ∈ R3, σ1 = σx, σ2 = σy, σ3 = σz, σ⃗ = {σ1,σ2,σ3}, C = Diag{c1,c2,c3}
is the correlation matrix.

When Alice performs two sets of POVMs Πκ |⃗ni = (I2 +(−1)κ n⃗i · σ⃗)/2 (i = 0,1, κ = 0,1) on A with n⃗i = (sinαi cosβi,
sinαi sinβi,cosαi), Bob’s unnormalized conditional states are ρ̃κ |⃗ni = Tr[ρ̃κ |⃗ni ](I2 +(−1)κ s⃗κ,i · σ⃗)/2, where Tr[ρ̃κ |⃗ni ] = (1+
(−1)κ a⃗ · n⃗i)/2 and s⃗κ,i = (⃗b+(−1)κC · n⃗i)/(2Tr[ρ̃κ |⃗ni ]). Then when |b| ̸= 1, the measurement assemblages

Oκ(xi, g⃗i) = 1√ρB
ρ̃κ |⃗ni

1√ρB
= 1

2 ((1+(−1)κ xi)I2 +(−1)κ g⃗i · σ⃗),

where g⃗i =U n⃗i, xi =V n⃗i with

U =
b⃗ a⃗T

|b|2 −1
+

(−1+
√

1−|b|2)⃗bb⃗TC
|b|2(|b|2 −1)

+
C√

1−|b|2
,

and V = a⃗T −⃗bT C
1−|b|2 . Then {ρ̃κ |⃗ni}κ,i are unsteerable assemblages if and only if {Oκ(xi, g⃗i)}κ,i are jointly measurable [37, 38, 39],

namely,

(1−F2
x0
−F2

x1
)(1−

x2
0

F2
x0

− x2
1

F2
x1

)− (g⃗0 · g⃗1 − x0x1)
2 6 0, (1)

where Fxi =
1
2 (
√
(1+ xi)2 −g2

i +
√
(1− xi)2 −g2

i ), gi = |⃗gi|.
(1) gives rise to the condition for Alice to steer Bob’s state. If Bob performs two sets of POVMs Πκ |⃗ni on his system to

steer Alice’s state, the corresponding condition can be similarly written by changing a⃗ → b⃗, b⃗ → a⃗ and C →CT in (1).
However, generally it is quite difficult to deal with the condition (1) and get explicit conditions to judge the steerability

for an arbitrary given two-qubit state. For Bell-diagonal states, a necessary and sufficient condition of steerability has been
derived from the relations between steerability and joint measurable problem [31]. In the following we study the steerability
of any arbitrary given two-qubit states. We present analytical steerability conditions for classes of two-qubit X-state.

Results
Steerability of two-qubit states
First, based on the jointly measurability condition (1) of {Oκ(xi, g⃗i)}κ,i for two-setting steering scenario we define the steer-
ability of two-qubit states ρAB by

S = max{max
αi,βi

(S1 −S2),0}, (2)

where S1 = (1−F2
x0
−F2

x1
)(1− x2

0
F2

x0
− x2

1
F2

x1
), S2 = (⃗g0 · g⃗1 − x0x1)

2, and the maximization runs over all the measurements Πκ |⃗ni ,

namely, over the parameters αi and βi, i = 0,1. It is obvious that S lies between 0 and 1. ρAB is steerable if and only if S > 0.
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For general two-qubit states, global search can be used to get the global minimum values of S. We give matlab code in the
supplementary material.

Due to the relationship between joint measurements and steerability, local hidden states ρ̃κ |⃗ni are represented as
√ρBGµv

√ρB

(µ = ±1,v = ±1), where Gµv =
1
4 (1+ µx0 + vx1 + µvZ +(µ v⃗z+ µ g⃗0 + v⃗g1)σ⃗) which are all possible sets of four measure-

ments satisfying the marginal constraints for any two jointly measurable observables {Oκ(xi, g⃗i)}κ,i [37, 38, 39]. The steering
radius R(ρAB) [25] can be calculated by optimizing z⃗ and Z.

In the following we calculate analytically the steerability S for some X-states ρX . We define a class of two-qubit X-states
to be zero-states ρzero if the X-states ρX satisfy the condition that the maximum points (stationary points) of S1 belong to the
zero points of S2 with respect to the measurement parameters αi and βi,(i = 1,2).

For any two-qubit X-state, ρX = 1
4 (I4 +a3σ3 ⊗ I2 +b3I2 ⊗σ3 +

3
∑
i

ciσi ⊗σi), we have U = Diag{u1,u2,u3}, V = [0,0, t3],

where u1 = c1/
√

1−b2
3, u2 = c2/

√
1−b2

3, u3 = (a3b3 − c3)/(−1+b2
3) and t3 = (a3 −b3c3)/(1−b2

3). We have the following
results:

Theorem. For the zero-states ρzero, the analytical formula of the steerability is given by

S = max{∆1,∆2,∆3,0}, (3)

where ∆1 = u2
1 + u2

2 − 1, ∆2 =
1
2 [u

2
1(u

2
3 − t2

3 )+ u2
1 + u2

3 + t2
3 − 1− (1− u2

1)
√
((1− t3)2 −u2

3)((1+ t3)2 −u2
3)], ∆3 =

1
2 [u

2
2(u

2
3 −

t2
3 )+u2

2 +u2
3 + t2

3 −1− (1−u2
2)×

√
((1− t3)2 −u2

3)((1+ t3)2 −u2
3)]. When S > 0, the optimal measurements which give rise

to maximal S are σx and σy if ∆1 > max{∆2,∆3,0}, σx and σz if ∆2 > max{∆1,∆3,0}, σy and σz if ∆3 > max{∆1,∆2,0},
respectively.

See proof in supplementary material.
It is obvious that any X-state with t3 = 0 belongs to ρzero, e.g. |ϕ⟩ = a|00⟩+

√
1−a2|11⟩ (0 < |a| < 1) and the Bell-

diagonal state ρ = 1
4 (I+ c1σ1 ⊗σ1 + c2σ2 ⊗σ2 + c3σ3 ⊗σ3) are all the zero states. For |ϕ⟩, we have S = 1.

For the Bell-diagonal state, interestingly the steerability S is given by the non-locality characterized by the maximal
violation of the CHSH inequality. Let BCHSH denote the Bell operator for the CHSH inequality [35], BCHSH = A1 ⊗B1 +
A1 ⊗B2 +A2 ⊗B1 −A2 ⊗B2, where Ai = a⃗i · σ⃗ , Bi = b⃗i · σ⃗ , a⃗i and b⃗i, i = 1,2, are unit vectors. Then the maximal violation of
the CHSH inequality is given by [36]

N = max
BC H S H

|⟨BC H S H ⟩ρ |= 2
√

τ1 + τ2, (4)

where τ1 and τ2 are the two largest eigenvalues of the matrix T †T , T is the matrix with entries Tαβ = tr[ρ σα ⊗σβ ], α, β =

1,2,3, † stands for transpose and conjugation. For the Bell-diagonal state, we have N = 2
√

c2
1 + c2

2 + c2
3 −min{c2

1,c
2
2,c

2
3}.

From (3) we get that the steerability of Bell-diagonal state is given by S = N2

4 −1.
For t3 ̸= 0, we give the explicit conditions of zero states in supplementary material.
In the following we present the maximum value of the steerability S for given N of ρzero.
Corollary 1: For zero-states ρzero with given N, 0 6 N 6 2, we have S 6 N

2 . Moreover, S = N/2 is attained when
a3 = 1− c3 +b3, b3 →−1, c1 =

√
(1+b3)(c3 −b3), c2 =−c1, i.e. ρzero has the following form,

ρX0 =


1+b3

2 0 0 ±
√

(1+b3)(c3−b3)

2
0 1−c3

2 0 0
0 0 0 0

±
√

(1+b3)(c3−b3)

2 0 0 c3−b3
2

 . (5)

The following corollary gives the conditions at which one gets the minimal value of S for given N.
Corollary 2: For zero-states ρzero with given CHSH value N, S gets the minimal value when a3 = 0 and b3 = 0 or

|a3 +b3|=
√
(1+ c3)2 − (c1 − c2)2 or |a3 −b3|=

√
(1− c3)2 − (c1 + c2)2.

The proofs of Corollary 1 and Corollary 2 are given in supplementary material. In Fig. 1, we give a description for the
boundaries of the steerability S for given value of N. From Fig. 1 we see that for any given N with 0 6 N 6 2, the lower bound
of S is always 0 and the upper bound of S is always less than 2 (light blue), and for N > 2 the lower bound of S is always
greater than 0 and the upper bound of S is always 2 (dark blue).
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Figure 1. The regions of the values taking by the steerability S for given N.

For zero-states ρzero the steering radius R(ρzero) can be obtained when Alice measures her qubit along the directions σx
and σy, or σx and σz or σy and σz. Actually, from the construction of joint measurements [37], when Alice measures her qubit
along the directions of σx and σz, the local hidden states can be expressed as

1
2
(I2 +

mxσx +mzσz

1+µa3 + v(b3z3 +Z)
),

where mx = µv(c1 +µ
√

1−b2
3z1), mz = b3 +µc3 + v(z3 +b3Z), µ =±1,v =±1. Therefore

R(ρzero) = max{r(ρx)xy,r(ρx)xz,r(ρx)yz}, (6)

where

r(ρzero)xy =
√

c2
1 + c2

2 +b2
3; r(ρzero)xz = min

z1,z3,Z
max
µ,v

√
rxz

µ,v; r(ρzero)yz = min
z1,z3,Z

max
µ,v

√
ryz

µ,v;

rxz
µ,v =

(c1 +µ
√

1−b2
3z1)

2 +(b3 +µc3 + v(z3 +b3Z))2

(1+µa3 + v(b3z3 +Z))2 ; ryz
µ,v =

(c2 +µ
√

1−b2
3z1)

2 +(b3 +µc3 + v(z3 +b3Z))2

(1+µa3 + v(b3z3 +Z))2 .

It is not easy to calculate r(ρzero)xz and r(ρzero)yz analytically. We give the analytical results for R(ρzero) for some special
states in the following.

Asymmetric two-setting EPR-steering
Different from Bell-nonlocality and quantum entanglement, EPR-steering has the asymmetric property - one-way EPR steer-
ing: Alice may steer Bob’s state but not the vice versa. The demonstration of asymmetric steerabiliy has practical implications
in quantum communication networks [40]. Till now only a few asymmetric steering states are found [33, 34, 25, 32]. Here we
present a class of asymmetric steering states of the form ρX0 in (5).

If Alice performs measurements on her qubit, the steerability is given by S(ρX0) = max{ 2c3−1−b3
1−b3

,0} which approaches c3
when b3 approaches to −1 and c3 > 0. If Bob performs measurements on his qubit, the related steerability is given by

S(ρX0) = max{ (1+b3)(b3 + c3)

(2+b3 − c3)2 ,0}

which equals to zero as long as (1+ b3)(b3 + c3) 6 0. Therefore, when 0 < c3 < −b3 and b3 →−1, Alice can always steer
Bob’s state, but Bob can never steer Alice’s state, see Fig. 2 for the asymmetric EPR-steering for b3 = −0.999. We see that
Alice can always steer Bob’s state, while Bob can not steer Alice’s state.

In the following part, we investigate the geometric features of the asymmetric steering state-ρx0 in terms of the steering
ellipsoid [41]. The steering ellipsoid of ρX0 when Alice performs POVMs is quite different from that of when Bob performs
POVMs. The center of the steering ellipsoid εB for Alice performing POVMs on her qubit is (0,0,(b3 −a3c3)/(1−a2

3)),
which goes to (0,0,−1) when b →−1. And the volume of the steering ellipsoid εB is

4π
3

|c1c2(c3 −a3b3)|
(1−a2

3)
2 =

4π
3

(1+b3)
2

(2− c3 +b3)2 ,

Here the steering ellipsoid is tangent to the Bolch sphere. The center of the steering ellipsoid εA for Bob performing POVMs
on his qubit is

(0,0,
a3 −b3c3

1−b2
3

= (0,0,
1− c3

1−b3
),
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Figure 2. The steerability S versus c3 for b3 =−0.999: dashed line for Alice steering Bob’s state, solid line (horizontal
coordinate) for Bob steering Alice’s state.

which goes to (1− c3)/2 when b3 →−1. The volume of the steering ellipsoid εA is given by

4π
3

|c1c2(c3 −a3b3)|
(1−b2

3)
2 =

4π(c3 −b3)
2

3(1−b3)2 ,

which goes to π(1+c3)
2

3 when b3 →−1. The steering ellipsoid is also tangent to the Bolch sphere. Here the ellipsoid represents
some peculiar feature, when b3 →−1 and c3 → 0, , the ellipsoid εB are almost 0, but Alice can still steer Bob; When b3 →−1
and c3 →−b3, , the ellipsoid εA are almost the whole Bloch sphere, but Bob can not steer Alice.

As a special case of ρX0 , we take a3 = 1−2η(1−χ), b3 = 2ηχ −1, c3 = 2η −1, c1 =−c2 =−2η
√

χ(1−χ). The state
has the following form,

W χ
η =


ηχ 0 0 −η

√
χ(1−χ)

0 1−η 0 0
0 0 0 0

−η
√

χ(1−χ) 0 0 η(1−χ)

 . (7)

From the Theorem, we get that when Alice measures her qubit,

S(W χ
η ) =max{1+η(−2+χ)

−1+ηχ
,

η(1+η(−2+χ))(−1+χ)
(1−ηχ)2 ,0}.

The sufficient and necessary condition in the two-setting steering scenario is η > 1/(2−χ) for Alice to steer Bob’s state. The
corresponding optimal measurements are σx and σy.

If Bob measures his qubit, the steerability is given by

S(W χ
η ) = max{ηχ(−1+η +ηχ)

(1+η(−1+χ))2 ,
−1+η +ηχ

1+η(−1+χ)
,0}.

The sufficient and necessary condition for Bob to steer Alice’s state is η > 1/(1+χ). The related optimal measurements are
σx and σy. The asymmetric property in quantum steering given by this example is shown in Fig. 3 and Fig. 4. The steering
radius is

√
1−4ηχ(1−η(2−χ)) when Alice measures her qubit, and

√
1−4η(1−χ)(1−η −ηχ) when Bob measures

his qubit.
As another example showing the asymmetry of quantum steering, we consider the state W θ

V [25],

W θ
V =V |ψ1⟩⟨ψ1|+(1−V )|ψ2⟩⟨ψ2|, (8)

where |ψ1⟩ = cosθ |00⟩+ sinθ |11⟩, |ψ2⟩ = cosθ |10⟩+ sinθ |01⟩, θ ∈ (0,π/2), V ∈ [0,1/2)∪ (1/2,1]. W θ
V is a zero state.

From our Theorem, we have that when Alice performs the measurements on her qubit, S(W θ
V ) = (1− 2V )2. The optimal

measurements are σx, σy or σx, σz. This state is always steerable for Alice except for V = 1/2.
When Bob performs two projective measurements on his qubit, we have

S(W θ
V ) =max{ (1−2V )2 − cos2 2θ

1− (1−2V )2 cos2 2θ
,

sin2θ 2((1−2V )2 − cos2 2θ)
(1− (1−2V )2 cos2 2θ)2 ,0}. (9)

The sufficient and necessary condition in the two-setting steering scenario for Bob to steer Alice’s state is |cos2θ |< |2V −1|,
with the optimal measurements σx and σy. For W θ

V the corresponding steering radius is
√

1+(1−2V )2 sin2 2θ when Alice
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Figure 3. The parameter region for which Alice (Bob) can steer Bob’s (Alice’s) state for the state W χ
η . In region I Alice can

steer Bob’s state and Bob can also steer Alice’s state. In region II (III) Alice (Bob) can steer Bob’s (Alice’s) state, but Bob
(Alice) can not steer Alice’s (Bob’s) state. In region IV neither Alice can steer Bob’s state, nor Bob can steer Alice’s state.
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(b)

Figure 4. Fig. (a) (Fig. (b)): S(W χ
η ) when Alice (Bob) measures her (his) qubit.

measures her qubit, and
√
(1−2V )2 + sin2 2θ when Bob measuring his qubit. From Fig. 5 we see that Alice can always steer

Bob’s state except for V = 1/2. While Bob can only steer Alice’s state for some V depending on θ .
From our Theorem, analytical results of steerability can be obtained for more detailed zero states. And the asymmetric

property of steering can be readily studied. In the following we give two examples of symmetric two-setting EPR-steering.
Example 1. The two-qubit nonmaximally entangled state mixed with color noise,

ρcn =V |ψ(θ)⟩⟨ψ(θ)|+ 1−V
2

(|00⟩⟨00|+ |11⟩⟨11|),

where |ψ(θ)⟩= cosθ |00⟩+sinθ |11⟩, θ ∈ (0,π/2), V ∈ (0,1]. The steerability is given by S(ρcn)=V 2 sin2 2θ/(1−V 2 cos2θ 2).
Therefore ρcn is steerable if and only if V sin2θ ̸= 0.

Example 2. The generalized isotropic state, ρgi = V |ψ(θ)⟩⟨ψ(θ)|+(1−V )I/4, where |ψ(θ)⟩ = cosθ |00⟩+ sinθ |11⟩,
θ ∈ (0,π/2), V ∈ (0,1]. The state reduces to the usual isotropic state when θ = π/4. By our theorem, we get the analytical
steerability of ρgi,

S(ρgi) =
1−V 2 cos2 4θ+(1−V )

√
(1+V )2−4V 2 cos2 2θ

4(1−V 2 cos2 2θ) × V 2(1+2sin2 2θ)−1−(1−V )
√

(1+V )2−4V 2 cos2 2θ
1−V 2 cos2 2θ .

Hence, the sufficient and necessary condition of steerability is 1+(1−V )
√
(1+V )2 −4V 2 cos2 2θ <V 2(1+2sin2 2θ).

Discussions
Based on the one-to-one correspondence between EPR-steering and the joint measurability, we have investigated the steer-
ability for any two-qubit systems in the two-setting measurement scenario. The steerability we introduced is invariant under
local unitary operations. Analytical formula of the steerability for a class of X-states has been derived, and the sufficient and
necessary conditions for two-setting EPR-steering has been presented. For general two-qubit states, it has been shown that the
lower and upper bounds of the steerability are explicitly connected to the non-locality of the states given by the CHSH values
of maximal violation. Moreover, we have also presented a class of asymmetric steering states by investigating the steerability
with respect to the measurements from Alice’s and Bob’s sides. Our strategy may be also used to study the quantification
of steerability for multi-setting scenarios, especially for three-setting scenarios since the joint measurability problem of three
qubit observables has already been investigated [42, 43]. Our method may also be used to the continuous variable steering,
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Figure 5. S(W θ
V ) versus θ : blue solid line when Alice measures her qubit; red dashed line (θ = π

6 ), red dotted line (θ = π
8 )

and red dot-dashed line (θ = π
16 ) when Bob measures his qubit.

temporal and channel steering. The steerability of the state assemblages or the instruments assemblages can be connected to
the incompatibility problems of the quantum measurement assemblages [44, 45], so the steerability of the quantum states or
the quantum channel may also be studied by investigating all their corresponding incompatibility problems through over all
the measurement parameters.
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4 Supplementary Information
4.1 Proof of the Theorem

Denote δ =

√
((1+x1)2−g2

1)((1−x1)2−g2
1)

((1+x0)2−g2
0)((1−x0)2−g2

0)
, δ1 = 1− x2

1 + g2
1 + δ (1+ x2

0 − g2
0), δ2 = 1+ x2

1 − g2
1 + δ (1− x2

0 + g2
0), δ3 = δ2

δ and

δ4 =
δ1
δ . To calculate the term max

αi,βi
S1 of the steerability, we compute the derivations of S1 with respect to the variables αi and

βi, i = 1,2,
∂S1

∂α1
= sinα1 cosα1[δ1u2

1 cos2 β1 +δ1u2
2 sin2 β1 −δ1u2

3 −δ2t2
3 ],

∂S1

∂β1
=δ1 sin2 α1 sinβ1 cosβ1(u2

2 −u2
1),

∂S1

∂α2
= sinα2 cosα2[δ3u2

1 cos2 β2 +δ3u2
2 sin2 β2 −δ3u2

3 −δ4t2
3 ],

∂S1

∂β2
=δ3 sin2 α2 sinβ2 cosβ2(u2

2 −u2
1).

From ∂S1
∂α1

= ∂S1
∂β1

= ∂S1
∂α2

= ∂S1
∂β2

= 0, we have the following solutions,
sinα1 cosα1 = 0 or ∆ = 0,

sin2 α1 sinβ1 cosβ1 = 0,
sinα2 cosα2 = 0 or Ω = 0,

sin2 α2 sinβ2 cosβ2 = 0,

where ∆ = δ1(u2
1 cos2 β1 +u2

2 sin2 β1 −u2
3)−δ2t2

3 and Ω = δ3(u2
1 cos2 β2 +u2

2 sin2 β2 −u2
3)−δ4t2

3 . Therefore we have either
sinα1 cosα1 = 0,

sin2 α1 sinβ1 cosβ1 = 0,
sinα2 cosα2 = 0,

sin2 α2 sinβ2 cosβ2 = 0,

(10)

or 
sinα1 cosα1 = 0,

sin2 α1 sinβ1 cosβ1 = 0,
sinα2 cosα2 ̸= 0 but Ω = 0,

sin2 α2 sinβ2 cosβ2 = 0,

(11)
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or 
sinα1 cosα1 ̸= 0 but ∆ = 0,

sin2 α1 sinβ1 cosβ1 = 0,
sinα2 cosα2 = 0,

sin2 α2 sinβ2 cosβ2 = 0,

(12)

or 
sinα1 cosα1 ̸= 0 but ∆ = 0,

sin2 α1 sinβ1 cosβ1 = 0,
sinα2 cosα2 ̸= 0 but Ω = 0,

sin2 α2 sinβ2 cosβ2 = 0.

(13)

Actually, (11) is equivalent to (12). Hence we only need to consider (10), (11) and (13). From (11), we have
cosα1 = 0,
sinβ1 cosβ1 = 0,
Ω = 0,
sinβ2 cosβ2 = 0,

or


sinα1 = 0,
Ω = 0,
sinβ2 cosβ2 = 0,

(14)

which gives rise to

α1 =
π
2
,

β1 =
(i−1)π

2
,

Ω = 0,

β2 =
( j−1)π

2
,

or


α1 = 0,
Ω = 0,

β2 =
( j−1)π

2
.

(15)

(13) is equivalent to


∆ = 0,
sinβ1 cosβ1 = 0,
Ω = 0,
sinβ2 cosβ2 = 0,

=⇒



∆ = 0,

β1 =
(i−1)π

2
,

Ω = 0,

β2 =
( j−1)π

2
.

(16)

Here i = 1,2 and j = 1,2. Form (15), given α1 = 0, β2 =
( j−1)π

2 or α1 =
π
2 , β1 =

(i−1)π
2 , β2 =

( j−1)π
2 , Ω = 0 is an equation

satisfied by α2. From (16), given β1 =
(i−1)π

2 ,β2 =
( j−1)π

2 , then ∆ = 0 and Ω = 0 are equations satisfied by the variables α1
and α2. Hence we have the following conditions:

(I) For α1 =
π
2 , β1 =

(i−1)π
2 and β2 =

( j−1)π
2 , if the equation Ω = 0

(a) does not have a solution, or
(b) only has the solution α2 =

mπ
2 (m = 0,1), or

(c) has the solutions α2 = α0
2 ̸= mπ

2 , but this solution α2 = α0
2 , together with α1 =

π
2 , β1 =

(i−1)π
2 and β2 =

( j−1)π
2 , are not

the maximum points of S1.
(II) For α1 = 0, β2 =

( j−1)π
2 , if the equation Ω = 0

(a) does not have a solution, or
(b) only has the solutions α2 =

mπ
2 , m = 0,1, or

(c) has the solutions α2 = α1
2 ̸= mπ

2 , but α2 = α1
2 , together with α1 = 0, β2 =

( j−1)π
2 , are not the maximum points of S1.

(III) For β1 =
(i−1)π

2 and β2 =
( j−1)π

2 , the equations ∆ = 0 and Ω = 0 are satisfied simultaneously if and only if α1 =
mπ
2 ,

α2 =
nπ
2 , m = 0,1,n = 0,1.
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It is obvious that if ρX satisfies all the conditions (I) to (III), the candidates of the maximal points of S1 are α1 =
π
2 , α2 = 0,

β1 = 0 or α1 =
π
2 , α2 = 0, β1 =

π
2 or α1 = 0, α2 =

π
2 , β2 = 0 or α1 = 0, α2 =

π
2 , β2 =

π
2 or α1 = 0, α2 = 0 or α1 =

π
2 , α2 =

π
2 ,

β1 = 0, β2 = π
2 or α1 = π

2 , α2 = π
2 , β1 = π

2 , β2 = 0, therefore the maximum points of S1 are all the zero points of S2, i.e.
the states satisfying (I)-(III) are zero-states ρzero. We do not need to consider the case α1 = α2 = 0, since when α1 = α2 = 0,
S1 −S2 6 0. Therefore, S = max{∆1,∆2,∆3,0}.

4.2 Conditions of ρzero for X-state
For any given two-qubit X-state, it is difficult to check if the state belongs to zero-state or not. Here we study further the
conditions that a X-state needs to satisfy to be a zero-state ρzero. In the following we denote condzero the conditions such that
ρX satisfying condzero is a zero state.

We have already classified the problem by conditions (I)-(III). For conditions (I): α1 =
π
2 , β1 =

(i−1)π
2 and β2 =

( j−1)π
2 ,(i, j =

1,2), Ω = 0 is actually an equation satisfied by cosα2. We can prove that the following conditions are equivalent to (I),
1a1).

u2
j < u2

3 or [(u2
i (u

2
j −u2

3 + t2
3 )− t2

3 )(u
2
j −u2

3)][u
2
j(u

2
j −u2

3 + t2
3 )−u2

j +u2
3]< 0, i = 1, j = 1

u2
j < u2

3 or [(u2
i (u

2
j −u2

3 + t2
3 )− t2

3 )(u
2
j −u2

3)][u
2
j(u

2
j −u2

3 + t2
3 )−u2

j +u2
3]< 0, i = 1, j = 2

u2
j < u2

3 or [(u2
i (u

2
j −u2

3 + t2
3 )− t2

3 )(u
2
j −u2

3)][u
2
j(u

2
j −u2

3 + t2
3 )−u2

j +u2
3]< 0, i = 2, j = 1

u2
j < u2

3 or [(u2
i (u

2
j −u2

3 + t2
3 )− t2

3 )(u
2
j −u2

3)][u
2
j(u

2
j −u2

3 + t2
3 )−u2

j +u2
3]< 0, i = 2, j = 2

1a2). if the conditions in 1a1) are not satisfied, that is, at least one of the four inequalities in 1a1) is not satisfied, i.e. for
the i and j which satisfy u2

j > u2
3 and [(u2

i (u
2
j −u2

3 + t2
3 )− t2

3 )(u
2
j −u2

3)][u
2
j(u

2
j −u2

3 + t2
3 )−u2

j +u2
3]> 0, we have



(u2
3 −u2

j + t2
3 +u2

j(u
2
j −u2

3 + t2
3 ))

(u2
j −u2

3 + t2
3 )

2 +
|t3||u2

i (u
2
j −u2

3 + t2
3 )+u2

j −u2
3 − t2

3 |
(u2

j −u2
3 + t2

3 )
2

√√√√ u2
3 −u2

j +u2
j(u

2
j −u2

3 + t2
3 )

(u2
j −u2

3)(u
2
i (u

2
j −u2

3 + t2
3 )− t2

3 )
> 1

(u2
3 −u2

j + t2
3 +u2

j(u
2
j −u2

3 + t2
3 ))

(u2
j −u2

3 + t2
3 )

2 −
|t3||u2

i (u
2
j −u2

3 + t2
3 )+u2

j −u2
3 − t2

3 |
(u2

j −u2
3 + t2

3 )
2

√√√√ u2
3 −u2

j +u2
j(u

2
j −u2

3 + t2
3 )

(u2
j −u2

3)(u
2
i (u

2
j −u2

3 + t2
3 )− t2

3 )
< 0.

1a3). if the conditions in 1a1) and 1a2) are not satisfied, i.e. for the i and j which satisfy u2
j > u2

3 and [(u2
i (u

2
j −u2

3 + t2
3 )−

t2
3 )(u

2
j −u2

3)][u
2
j(u

2
j −u2

3 + t2
3 )−u2

j +u2
3]> 0, we have


cos2 α2 =

(u2
3 −u2

j + t2
3 +u2

j(u
2
j −u2

3 + t2
3 ))

(u2
j −u2

3 + t2
3 )

2 +
|t3||u2

i (u
2
j −u2

3 + t2
3 )+u2

j −u2
3 − t2

3 |
(u2

j −u2
3 + t2

3 )
2

√√√√ u2
3 −u2

j +u2
j(u

2
j −u2

3 + t2
3 )

(u2
j −u2

3)(u
2
i (u

2
j −u2

3 + t2
3 )− t2

3 )
6 1

(−1+u2
i )(2u2

j −u4
j −2u2

3 +u4
3 −2(1+u2

3)t
2
3 + t4

3 +(u2
j −u2

3 + t2
3 )

2)(2cosα2
2 −1)

2(1+u2
i )(u

2
j −u2

3)−2(1−u2
i )t

2
3

< 0

or


cos2 α2 =

(u2
3 −u2

j + t2
3 +u2

j(u
2
j −u2

3 + t2
3 ))

(u2
j −u2

3 + t2
3 )

2 −
|t3||u2

i (u
2
j −u2

3 + t2
3 )+u2

j −u2
3 − t2

3 |
(u2

j −u2
3 + t2

3 )
2

√√√√ u2
3 −u2

j +u2
j(u

2
j −u2

3 + t2
3 )

(u2
j −u2

3)(u
2
i (u

2
j −u2

3 + t2
3 )− t2

3 )
> 0

(−1+u2
i )(2u2

j −u4
j −2u2

3 +u4
3 −2(1+u2

3)t
2
3 + t4

3 +(u2
j −u2

3 + t2
3 )

2)(2cosα2
2 −1)

2(1+u2
i )(u

2
j −u2

3)−2(1−u2
i )t

2
3

< 0

If ρX satisfies conditions 1a1) or 1a2) or 1a3), we have for α1 = π
2 , β1 = (i−1)π

2 and β2 = ( j−1)π
2 , Ω = 0 does not have

solutions.
If both 1a1),1a2) and 1a3) are not satisfied, then
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1b) for the i and j which satisfy u2
j > u2

3 and [(u2
i (u

2
j −u2

3 + t2
3 )− t2

3 )(u
2
j −u2

3)][u
2
j(u

2
j −u2

3 + t2
3 )−u2

j +u2
3]> 0 we have


cos2 α2 =

(u2
3 −u2

j + t2
3 +u2

j(u
2
j −u2

3 + t2
3 ))

(u2
j −u2

3 + t2
3 )

2 +
|t3||u2
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2
j −u2

3 + t2
3 )+u2

j −u2
3 − t2

3 |
(u2

j −u2
3 + t2

3 )
2

√√√√ u2
3 −u2

j +u2
j(u

2
j −u2

3 + t2
3 )

(u2
j −u2

3)(u
2
i (u

2
j −u2

3 + t2
3 )− t2

3 )
= 1

(−1+u2
i )(2u2

j −u4
j −2u2

3 +u4
3 −2(1+u2

3)t
2
3 + t4

3 +(u2
j −u2

3 + t2
3 )

2)

2(1+u2
i )(u

2
j −u2

3)−2(1−u2
i )t

2
3

> 0.

or


cos2 α2 =

(u2
3 −u2

j + t2
3 +u2

j(u
2
j −u2

3 + t2
3 ))

(u2
j −u2

3 + t2
3 )

2 −
|t3||u2

i (u
2
j −u2

3 + t2
3 )+u2

j −u2
3 − t2

3 |
(u2

j −u2
3 + t2

3 )
2

√√√√ u2
3 −u2

j +u2
j(u

2
j −u2

3 + t2
3 )

(u2
j −u2

3)(u
2
i (u

2
j −u2

3 + t2
3 )− t2

3 )
= 0

(−1+u2
i )(2u2

j −u4
j −2u2

3 +u4
3 −2(1+u2

3)t
2
3 + t4

3 − (u2
j −u2

3 + t2
3 )

2)

2(1+u2
i )(u

2
j −u2

3)−2(1−u2
i )t

2
3

> 0.

i.e. for α1 =
π
2 , β1 =

(i−1)π
2 and β2 =

( j−1)π
2 , Ω = 0 has the solution α2 =

mπ
2 (m = 0 or 1).

1c) for the i and j which satisfy u2
j > u2

3 and [(u2
i (u

2
j −u2

3 + t2
3 )− t2

3 )(u
2
j −u2

3)][u
2
j(u

2
j −u2

3 + t2
3 )−u2

j +u2
3]> 0, we have

cos2 α2 =
(u2

3 −u2
j + t2

3 +u2
j(u

2
j −u2

3 + t2
3 ))

(u2
j −u2

3 + t2
3 )

2 +
|t3||u2

i (u
2
j −u2

3 + t2
3 )+u2

j −u2
3 − t2

3 |
(u2

j −u2
3 + t2

3 )
2

√√√√ u2
3 −u2

j +u2
j(u

2
j −u2

3 + t2
3 )

(u2
j −u2

3)(u
2
i (u

2
j −u2

3 + t2
3 )− t2

3 )
< 1

(−1+u2
i )(2u2

j −u4
j −2u2

3 +u4
3 −2(1+u2

3)t
2
3 + t4

3 +(u2
j −u2

3 + t2
3 )

2(2cos2 α2 −1))

2(1+u2
i )(u

2
j −u2

3)−2(1−u2
i )t

2
3

> 0

or
cos2 α2 =

(u2
3 −u2

j + t2
3 +u2

j(u
2
j −u2

3 + t2
3 ))

(u2
j −u2

3 + t2
3 )

2 −
|t3||u2

i (u
2
j −u2

3 + t2
3 )+u2

j −u2
3 − t2

3 |
(u2

j −u2
3 + t2

3 )
2

√√√√ u2
3 −u2

j +u2
j(u

2
j −u2

3 + t2
3 )

(u2
j −u2

3)(u
2
i (u

2
j −u2

3 + t2
3 )− t2

3 )
> 0

(−1+u2
i )(2u2

j −u4
j −2u2

3 +u4
3 −2(1+u2

3)t
2
3 + t4

3 +(u2
j −u2

3 + t2
3 )

2(2cos2 α2 −1))

2(1+u2
i )(u

2
j −u2

3)−2(1−u2
i )t

2
3

> 0.

i.e. for some i and j, Ω = 0 has the solutions α2 = α0
2 ̸= mπ

2 (m = 1,2), but we require that α1 =
π
2 , β1 =

(i−1)π
2 , β2 =

( j−1)π
2 ,

α2 = α0
2 are not the maximum points of S1.

For condition (II): when α1 = 0, β2 =
( j−1)π

2 ( j = 1,2), Ω = 0 is actually the equation of cosα2.

Let r1 =
√
((1+ t3)2 −u2

3)((1− t3)2 −u2
3), r2 = u2

3 + t2
3 +(u2

3 − t2
3 )

2 +u2
j(−1−u2

3 + t2
3 ), we can prove that the following

conditions are equivalent to (II).
2a1){

u2
j < u2

3 or (u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 ))(r

2
2 − r2

1(u
2
j −u2

3 + t2
3 ))< 0, j = 1

u2
j < u2

3 or (u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 ))(r

2
2 − r2

1(u
2
j −u2

3 + t2
3 ))< 0, j = 2

If the conditions in 2a1) are not satisfied, i.e.
2a2) u2

j > u2
3 and (u2

3 +u2
j(u

2
j −1−u2

3 + t2
3 ))(r

2
2 − r2

1(u
2
j −u2

3 + t2
3 ))> 0, j = 1 or j = 2 or j = 1,2, but

u2
3 + t2

3 +u2
j(u

2
j −1−u2

3 + t2
3 )

(u2
j −u2

3 + t2
3 )

2 +
2|r2t3|

(u2
j −u2

3 + t2
3 )

2

√√√√u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

r2
2 − r2

1(u
2
j −u2

3 + t2
3 )

> 1

u2
3 + t2

3 +u2
j(u

2
j −1−u2

3 + t2
3 )

(u2
j −u2

3 + t2
3 )

2 +
2|r2t3|

(u2
j −u2

3 + t2
3 )

2

√√√√u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

r2
2 − r2

1(u
2
j −u2

3 + t2
3 )

< 0

12/14



If the conditions in 2a1) and 2a2) are not satisfied, i.e.
2a3) u2

j > u2
3 and (u2

3 +u2
j(u

2
j −1−u2

3 + t2
3 ))(r

2
2 − r2

1(u
2
j −u2

3 + t2
3 ))> 0, j = 1 or j = 2 or j = 1,2, but

cos2 α2 =
u2

3 + t2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

(u2
j −u2

3 + t2
3 )

2 +
2|r2t3|

(u2
j −u2

3 + t2
3 )

2

√√√√u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

r2
2 − r2

1(u
2
j −u2

3 + t2
3 )

6 1

(1−u2
j)(u

2
j −u2

3)− (1+u2
j)t

2
3 +(u2

j −u2
3 + t2

3 )
2 cosα2

2

u2
3 + t2

3 +(u2
3 − t2

3 )
2 +u2

j(−1−u2
3 + t2

3 )
< 0

or 
cos2 α2 =

u2
3 + t2

3 +u2
j(u

2
j −1−u2

3 + t2
3 )

(u2
j −u2

3 + t2
3 )

2 − 2|r2t3|
(u2

j −u2
3 + t2

3 )
2

√√√√u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

r2
2 − r2

1(u
2
j −u2

3 + t2
3 )

> 0

(1−u2
j)(u

2
j −u2

3)− (1+u2
j)t

2
3 +(u2

j −u2
3 + t2

3 )
2 cosα2

2

u2
3 + t2

3 +(u2
3 − t2

3 )
2 +u2

j(−1−u2
3 + t2

3 )
< 0

If ρX satisfies conditions in 2a1) or 2a2) or 2a3), we have for α1 = 0, β2 =
( j−1)π

2 , Ω = 0 does not have solutions.
If both 2a1), 2a2) and 2a3) are not satisfied, i.e.
2b) u2

j > u2
3 and (u2

3 +u2
j(u

2
j −1−u2

3 + t2
3 ))(r

2
2 − r2

1(u
2
j −u2

3 + t2
3 ))> 0, j = 1 or j = 2 or j = 1,2, but

cos2 α2 =
u2

3 + t2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

(u2
j −u2

3 + t2
3 )

2 +
2|r2t3|

(u2
j −u2

3 + t2
3 )

2

√√√√u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

r2
2 − r2

1(u
2
j −u2

3 + t2
3 )

= 1

(1−u2
j)(u

2
j −u2

3)− (1+u2
j)t

2
3 +(u2

j −u2
3 + t2

3 )
2

u2
3 + t2

3 +(u2
3 − t2

3 )
2 +u2

j(−1−u2
3 + t2

3 )
> 0

or 
cos2 α2 =

u2
3 + t2

3 +u2
j(u

2
j −1−u2

3 + t2
3 )

(u2
j −u2

3 + t2
3 )

2 − 2|r2t3|
(u2

j −u2
3 + t2

3 )
2

√√√√u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

r2
2 − r2

1(u
2
j −u2

3 + t2
3 )

= 0

(1−u2
j)(u

2
j −u2

3)− (1+u2
j)t

2
3

u2
3 + t2

3 +(u2
3 − t2

3 )
2 +u2

j(−1−u2
3 + t2

3 )
> 0

i.e. for α1 = 0, β2 =
( j−1)π

2 , Ω = 0 only has the solution α2 =
mπ
2 (m = 0,1).

2c) u2
j > u2

3 and (u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 ))(r

2
2 − r2

1(u
2
j −u2

3 + t2
3 ))> 0, j = 1 or j = 2 or j = 1,2, but

cos2 α2 =
u2

3 + t2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

(u2
j −u2

3 + t2
3 )

2 +
2|r2t3|

(u2
j −u2

3 + t2
3 )

2

√√√√u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

r2
2 − r2

1(u
2
j −u2

3 + t2
3 )

< 1

(1−u2
j)(u

2
j −u2

3)− (1+u2
j)t

2
3 +(u2

j −u2
3 + t2

3 )
2 cosα2

2

u2
3 + t2

3 +(u2
3 − t2

3 )
2 +u2

j(−1−u2
3 + t2

3 )
> 0

or 
cos2 α2 =

u2
3 + t2

3 +u2
j(u

2
j −1−u2

3 + t2
3 )

(u2
j −u2

3 + t2
3 )

2 − 2|r2t3|
(u2

j −u2
3 + t2

3 )
2

√√√√u2
3 +u2

j(u
2
j −1−u2

3 + t2
3 )

r2
2 − r2

1(u
2
j −u2

3 + t2
3 )

> 0

(1−u2
j)(u

2
j −u2

3)− (1+u2
j)t

2
3 +(u2

j −u2
3 + t2

3 )
2 cosα2

2

u2
3 + t2

3 +(u2
3 − t2

3 )
2 +u2

j(−1−u2
3 + t2

3 )
> 0

i.e. for α1 = 0, β2 =
( j−1)π

2 , Ω = 0 has the solution α2 = α1
2 ̸= mπ

2 , but we require that α1 = 0, β2 =
( j−1)π

2 and α2 = α1
2 are

not the maximum of S1.
For condition (III): If t4

3 ̸= (u2
1 − u2

3)(u
2
2 − u2

3), when β1 = kπ
2 , β2 = kπ

2 , ∆ and Ω can not be 0 simultaneously, then (13)
does not have solutions.

13/14



4.3 Proof of Corollaries
Proof of Corollary 1: For the states ρzero, the positivity of density matrix gives the conditions (a3−b3)

2+(c1+c2)
2 6 (1−c3)

2

and (a3 +b3)
2 +(c1 − c2)

2 6 (1+ c3)
2.

Case I: The maximal value of ∆1 = u2
1 +u2

2 −1
From the condition (a3 − b3)

2 +(c1 + c2)
2 6 (1− c3)

2 and (a3 + b3)
2 +(c1 − c2)

2 6 (1+ c3)
2, we have that c2

1 + c2
2 6

1+ c2
3 − a2

3 − b2
3. Hence, u2

1 + u2
2 − 1 6 c2

3−a2
3

1−b2
3
.

c2
3−a2

3
1−b2

3
gets the maximum value for small a2

3 and large b2
3. Due to (a3 − b3)

2 +

(c1 +c2)
2 6 (1−c3)

2 and (a3 +b3)
2 +(c1 −c2)

2 6 (1+c3)
2, we get |a3 −b3|6 1−c3 and |a3 +b3|6 1+c3. When a3 = 0,

b3 attains its maximum value, min{1− c3,1+ c3}. Therefore,

c2
3 −a2

3

1−b2
3
6 c2

3
1−min{(1− c3)2,(1+ c3)2}

6 |c3|.

Actually when c3 > 0, if b3 →−1 and a3−b3 = 1−c3, we have u2
1+u2

2−1→ c3. When c3 < 0, if b3 → 1 and a3+b3 = 1+c3,
we have u2

1 +u2
2 −1 → |c3|.

Case II: The maximal value of ∆2 =
1
2 [u

2
1(u

2
3 − t2

3 )+u2
1 +u2

3 + t2
3 −1− (1−u2

1)
√

((1− t3)2 −u2
3)((1+ t3)2 −u2

3)]

For any given a3,b3 and c3, ∆2 increases with |c1|. The maximum value of c1 is attained when (a3 −b3)
2 +(c1 + c2)

2 =
(1− c3)

2 and (a3 + b3)
2 +(c1 − c2)

2 = (1+ c3)
2. We only need to consider the parameters a3,b3,c1,c2 and c3 which sat-

isfy (a3 − b3)
2 + (c1 + c2)

2 = (1− c3)
2 and (a3 + b3)

2 + (c1 − c2)
2 = (1+ c3)

2. Let Γ1 =
√
(1− c3)2 − (a3 −b3)2, Γ2 =√

(1+ c3)2 − (a3 +b3)2. We assume c1 > c2, and c1 > 0, then c2 6 Γ1
2 . Set c2 =

Γ1
2 −x, c1 =

Γ1
2 +x, for 0 6 x 6 Γ2

2 . We have
that ∆2 is an increasing function of x. Hence

∆2 6
c2

3 −a2
3

2(1−b2
3)

1−b2
3 + c2

3 −a2
3 +Γ1Γ2

1−b2
3

.

Γ1Γ2/(1−b2
3) attain the maximum value when c3 > 0 (6 0) and a3b3 > 0 (6 0). By the optimization method, one can

find c2
3−a2

3
2(1−b2

3)

1−b2
3+c2

3−a2
3+Γ1Γ2

1−b2
3

attain the maximum value when 1+ c3 = |a3 + b3| or 1− c3 = |a3 − b3|. So we have when b3

approaches to −1 and a3 −b3 = 1− c3, or b3 → 1 and a3 +b3 = 1+ c3, we have the maxima of ∆2 = |c3|.
We have the steerability S 6 |c3| when b3 → −1 and a3 − b3 = 1− c3, or b3 → 1 and a3 + b3 = 1+ c3. Then either

c1 =−c2 =±
√
(1+b3)(c3 −b3) or c1 = c2 =±

√
(1−b3)(b3 − c3), and S 6 N

2 . This completes the proof.
Proof of Corollary 2: Due to the positivity of density matrix ρX , a3,b3 and ci (i = 1,2,3) satisfy the conditions |a3+b3|6√
(1+ c3)2 − (c1 − c2)2 and |a3 −b3|6

√
(1− c3)2 − (c1 + c2)2. Let

Ω ={|a3 +b3|6
√
(1+ c3)2 − (c1 − c2)2,

|a3 −b3|6
√
(1− c3)2 − (c1 + c2)2}

The minimum of max
αi,βi

S1 is attained at the interior points or the boundary of Ω for given CHSH value N:

(1) For the interior points of Ω, when t3 = 0, u3 = c3, and b3 = 0, we have the minimal steerability S = N2

4 −1.
(2) For the boundary of Ω, the minimal value of S is attained at the extreme points of ∆2 or ∆3, or the points solving the

equation ∆2 = ∆1, ∆3 = ∆1, or ∆2 = ∆3. By numerical simulations, we find that when N > 2, the lower bound is very close to
N2

4 −1 but smaller than N2

4 −1.

4.4 Matlab program for computing steerability of general two-qubit states
opts=optimoptions(@fmincon,’Algorithm’,’interior

−point’);
problem=createOptimProblem(opt);
gs=GlobalSearch;
[x,f]=run(gs,problem).
Here
opt=’fmincon’,’objective’,... @(x)(−S(x1,x2,x3,x4)), ‘x′0,x

∗, ‘lb′, lb∗, ‘ub′,un∗, ‘options’,opts
with x1 = α1,x2 = β1,x3 = α2,x4 = β2, x∗ = [0,0,0,0], lb∗ = [0,0,0,0], and ub∗ = [π,2π,π,2π].
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