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THE ROUGH VERONESE VARIETY

FRANCESCO GALUPPI

Abstract. We study signature tensors of paths from an algebraic geo-
metric viewpoint. The signatures of a given class of paths parametrize a
variety inside the space of tensors, and these signature varieties provide
both new tools to investigate paths and new challenging questions about
their behavior. This paper focuses on signatures of rough paths. Their
signature variety shows surprising analogies with the Veronese variety,
and our aim is to prove that this so-called Rough Veronese is toric. The
same holds for the universal variety. Answering a question of Amendola,
Friz and Sturmfels, we show that the ideal of the universal variety does
not need to be generated by quadrics.

Introduction

A path is a continuous map X : [0, 1]→ Rd. Classically, the components
X1, . . . , Xd of X are assumed to be sufficiently smooth. For every positive
integer k, it is therefore possible to define an order k tensor σ(k)(X), whose
(i1 . . . ik)-th entry is∫ 1

0

∫ tk

0
· · ·
∫ t3

0

∫ t2

0
Ẋi1(t1) · . . . · Ẋik(tk)dt1 . . . dtk.

By convention, we define σ(0)(X) = 1. The sequence

σ(X) = (σ(k)(X) | k ∈ N)

is called the signature of X.
Signatures were first defined in [2], and they enjoy many interesting prop-

erties. For instance, up to a mild equivalence relation, the signature allows
to uniquely recover a piecewise differentiable path (see [3, Theorem 4.1]).

Many physical behaviors and experiments can be modeled by using paths,
and signatures are useful tools to encode the information carried by paths
into a compact form. In [1], the authors consider signature tensors from an
algebraic geometry perspective. If we fix a certain class of paths and the
order k of the tensors, then the k-th signature σ(k) is a polynomial map
into (Rd)⊗k. Its image variety parametrizes the closure of the set of all
k-th signatures of paths of the chosen class. The study of this map, this
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variety and its geometric properties can be interesting for many reasons.
For instance, in applied problems one sometimes has a signature, coming
from empirical data, and wants to know if there is a path of a certain kind
(say, piecewise linear) having that given signature. Knowing whether the
map is injective, or at least finitely many to one, tells us if there are chances
to solve this inverse problem. Another issue is the study of singularities.
What does it mean, for a path, to have a signature which is a singular point
in the image variety?

In [1] we find a detailed study of the image varieties of polynomial paths,
piecewise linear paths and also random paths arising from Brownian mo-
tion. These three classes of paths have a common generalization: the class
of rough paths. Rough paths have a number of applications, for instance the
study of controlled ODEs and stochastic PDEs (see [6]), as well as sound
compression (see [10]). While they are not necessarily piecewise differen-
tiable, it is possible to define their signature, and therefore to study their
signature variety. Even at a first glance, such a variety exhibits analogies
with the Veronese variety, and it is therefore named the Rough Veronese
variety in [1, Section 5.4]. The main purpose of this paper is to study its
geometry. We will prove that the Rough Veronese variety is a toric variety,
and we will characterize the monomials parameterizing it.

Notations and preliminaries

The k-th signature of a path X belongs to (Rd)⊗k, but we need a space
to store the whole signature σ(X). In this Section we define such a space,
which has a rich algebraic structure. We will recall the features we need,
but we do not attempt to any extent to describe all its properties. Every
definition and result of this section can be found in [12].

Definition 1. The tensor algebra over Rd is the graded R-vector space

T ((Rd)) = R× Rd × (Rd)⊗2 × . . .

of formal power series in the non-commuting variables x1, . . . , xd. It is an R-
algebra with respect to the tensor product, and we denote by pk : T ((Rd))→
(Rd)⊗k the projection. The algebraic dual of T ((Rd)) is the graded R-algebra

T (Rd) = R〈x1, . . . , xd〉

of polynomials in the non-commuting variables x1, . . . , xd. It is the unique
free algebra over x1, . . . , xd.

Notation 2. Given an element T ∈ T ((Rd)), we denote by Ti1...ik the
(i1 . . . ik)-th entry of the order k element of T . For y ∈ R, we denote
Ty((Rd)) = {T ∈ T ((Rd)) | T1 = y}.

Moreover, it will often be convenient to identify a degree k monomial
xi1 · . . . · xik with the word w = i1 . . . ik in the alphabet {1, . . . ,d}. The
number k is called the length of w and it is denoted by |w|. The degree 0
monomial corresponds to the empty word e. We will write letters in bold
in order to distinguish the number 1 from the letter 1 = x1. In this way,
the product of two words v and w is simply the word obtained by writing
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v followed by w, and it is called the concatenation product. The natural
duality pairing

〈−,−〉 : T ((Rd))× T (Rd)→ R
is given by 〈T, i1 . . . ik〉 = Ti1...ik , extended by linearity.

Besides the concatenation of words, there is another product on T (Rd).
It will play a very important role in this paper.

Definition 3. The shuffle product of two words v and w is the sum of all
order-preserving interleavings of them. It is denoted by v � w. A more
precise, recursive definition can be found in [12, Section 1.4]. Again, the
shuffle product can be extended by linearity to T (Rd). We will sometimes
use the notation

v�n = v� . . .� v︸ ︷︷ ︸
n times

.

Despite its apparently complicated definition, the shuffle product enjoys
good properties. For instance, the space (T (Rd),�, e) is a commutative
algebra. Moreover, shuffle behaves nicely with respect to the signatures.

Lemma 4 (Shuffle identity). If X : [0, 1]→ Rd is a piecewise C1 path, then

〈σ(X), v〉 · 〈σ(X), w〉 = 〈σ(X), v� w〉

for all words v, w ∈ T (Rd).

The shuffle identity is proved in [12, Proof of Corollary 3.5], for a more
general class of paths.

Up to now we see that signatures do not fill the whole tensor space
T ((Rd)), but rather they live in the subset of elements with constant term
1 and satisfying the shuffle identity. This is one of the many possible moti-
vations for the next definition.

Definition 5. We will denote

G(Rd) = {T ∈ T1((Rd)) | 〈T, v〉·〈T,w〉 = 〈T, v�w〉 for all words v, w ∈ T (Rd)}.

The object we have just defined is worth a few remarks. It not only
contains the signatures of all piecewise C1 paths, but it is also a group with
respect to the tensor product. This is why its elements are sometimes called
group-like elements in the literature. G(Rd) is not linear, but it is closely
related to a linear space.

Definition 6. On T ((Rd)) there is a bracketing [T, S] = TS−ST . Then we
can define Lie(Rd) to be the free Lie algebra generated by x1, . . . , xd, that
is, the smallest linear subspace of T ((Rd)) that contains x1, . . . , xd and is
closed with respect to the bracketing.

This Lie algebra and G(Rd) are linked by two maps.

Definition 7. Define exp : T0((Rd))→ T1((Rd)) by the formal power series

exp(T ) =
∞∑
n=0

T⊗n

n!
.
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Not surprisingly, exp has a two-sided inverse log : T1((Rd)) → T0((Rd))
defined by

log(S) =

∞∑
n=1

(−1)n+1

n
(S − 1)n.

The two maps restrict to a bijection between Lie(Rd) and G(Rd). For our
purposes, we need to point out that all the definitions we recalled have a
truncated version. Namely, one can fix m ∈ N and consider

Tm(Rd) =
m⊕
k=0

(Rd)⊗k,

where tensors of order greater than n are set to zero. Inside Tm(Rd) there
are Gm(Rd) and Liem(Rd). The maps exp and log are defined in the same

way. In order to avoid confusion, we will write exp(m) to denote the map
Tm0 ((Rd))→ Tm1 ((Rd)).

We need a last definition before we move to our Rough Veronese variety.

Definition 8. A non-empty word w is a Lyndon word if, whenever we write
w = pq as the concatenation of two nonempty words, we have w < q in the
lexicographic order. We denote by Wd,m the set of Lyndon words of length
at most m in the alphabet {1, . . . ,d}.

There exists a unique pair (p, q) of nonempty words such that w = pq
and q is minimal with respect to lexicographic order. The bracketing of w
is [p, q] = pq − qp.

We care about Lyndon words because Liem(Rd) has a basis consisting
of all bracketings of Lyndon words of length at most m. Recall that the
Möbius function µ : N→ N sends a natural number t to

µ(t) =


0 if t is divisible by the square of a prime,

1 if t is the product of an even number of distinct primes,

−1 if t is the product of an odd number of distinct primes.

Then the number of length l Lyndon words in the alphabet {1, . . . ,d},
denoted by µl,d, is

µl,d =
∑
t|l

µ(t)

l
d

l
t ,

and therefore, as a vector space, Liem(Rd) has dimension

dim Liem(Rd) =
m∑
l=1

∑
t|l

µ(t)

l
d

l
t .

Signatures of rough paths

In this section we introduce the main character of our paper. The way
we want to think about rough paths is as a generalization of piecewise dif-
ferentiable paths. The main reference for rough paths is [7].

Consider a piecewise differentiable path X and let t ∈ [0, 1]. In the
definition of k-th signature we can replace indefinite integrals with definite



THE ROUGH VERONESE VARIETY 5

ones. This is the same as restricting X to the sub-interval [0, t], hence we

will denote this as σ(k)(X|[0,t]). As an example,

σ(1)(X|[0,t])i =

∫ t

0
Ẋi(λ)dλ = Xi(t)−Xi(0).

For every k, we notice that σ(k)(X|[0,t]), as a function of t, is a path [0, 1]→
(Rd)⊗k. If we look at the full signature σ(X|[0,t]), we get a path [0, 1] →
G(Rd). Moreover, this G(Rd)-valued path satisfies a Hölder-like inequality.
We will use the symbol f(t) > g(t) to indicate that there is a constant c
such that f(t) ≤ c · g(t) for every t.

Lemma 9. Let X : [0, 1] → Rd be a piecewise differentiable path and let
k ∈ N. If s, t ∈ [0, 1], then∣∣∣σ(k)(X|[0,t])− σ(k)(X|[0,s])∣∣∣ > |t− s|k. (1)

Proof. Let S = σ(k)(X|[0,t]) − σ(k)(X|[0,s]). Since k is fixed, in order to
conclude it is enough to bound every entry of S. By definition

|Si1...ik | =
∣∣∣∣∫ t

s

∫ tk

s
· · ·
∫ t3

s

∫ t2

s
Ẋi1(t1) · . . . · Ẋik(tk)dt1 . . . dtk

∣∣∣∣
≤
∫ t

s

∫ tk

s
· · ·
∫ t3

s

∫ t2

s

∣∣∣Ẋi1(t1) · . . . · Ẋik(tk)
∣∣∣ dt1 . . . dtk

≤ sup
t1∈[0,1]

|Ẋi1(t1)| · . . . · sup
tk∈[0,1]

|Ẋik(tk)|
∫ t

s

∫ tk

s
· · ·
∫ t3

s

∫ t2

s
dt1 . . . dtk

= sup
t1∈[0,1]

|Ẋi1(t1)| · . . . · sup
tk∈[0,1]

|Ẋik(tk)| ·
|t− s|k

k!
.

Since X is piecewise differentiable, all the suprema are finite. �

So we see that a piecewise differentiable path X : [0, 1] → Rd induces
a path σ(X|[0,–]) : [0, 1] → G(Rd) satisfying inequality (1). If we want a
rough path to be a generalization of a piecewise differentiable path, we can
define it in a similar flavor, also allowing different exponents. Recall that
pk : T ((Rd))→ (Rd)⊗k is the projection.

Definition 10. A rough path of order m is a path X : [0, 1] → Gm(Rd)
such that |pk(X(s)−1 ⊗X(t))| > |t − s|

k
m for every k ∈ 1, . . . ,m and every

s, t ∈ [0, 1]. The inverse in taken in the group Gm(Rd).

Following [1, Section 5.4], we will focus on a special subclass of rough
paths of order m, indexed by elements of L ∈ Liem(Rd).

Definition 11. For L ∈ Liem(Rd), consider the path XL : [0, 1]→ Gm(Rd)
sending t to exp(m)(tL). By [7, Exercise 9.17], this is indeed an order m
rough path, and we define its signature σ(XL) = exp(L) ∈ G(Rd).

The relation between the signature defined by iterated integrals and the
signature of a rough path is also pointed out in [7, Exercise 9.17].

We want to study the set parameterizing the k-th signatures of XL, when
L ranges over Liem(Rd). Such set is the image of pk◦exp. A priori, this is just
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a semialgebraic subset of (Rd)⊗k, that is, it is described by a finite number of
polynomial equations and inequalities. Semialgebraic sets are usually hard
to handle. In order to make our analysis simpler, we will follow a common
approach in applied algebraic geometry and take the Zariski closure of this
set, which means that we only look at the equations without considering the
inequalities. Furthermore, from a geometric viewpoint it is convenient to
work over an algebraically closed field, so we look at the variety that these
equations define in (Cd)⊗k, instead of (Rd)⊗k. Finally, we want to work up
to scalar multiples, so we pass to the projectivization and hence we deal
with a projective variety.

Definition 12. The Rough Veronese variety Rd,k,m is the closure of the
image of the composition

fd,k,m : Liem(Rd) exp−−→ G(Rd) pk−→ (Rd)⊗k → (Rd)⊗k ⊗ C = (Cd)⊗k � Pd
k−1.

First of all observe that, being the image of a morphism, Rd,k,m is irre-
ducible. There are several reasons to compare Rd,k,m to a Veronese variety.

Since Lie1(Rd) = Rd, an element L ∈ Lie1(Rd) is just a vector and there-
fore, up to a multiplicative constant, pk(exp(L)) = L⊗k can be viewed as
the Veronese embedding of Rd into Symk Rd ⊂ (Rd)⊗k. In other words,
Rd,k,1 = Vd−1,k. Moreover, Vd,k is toric, defined by all degree k monomials
in d+ 1 variables. We will see that Rd,k,m is toric as well, and it is defined
by monomials of weighted degree k, for a suitable choice of weights imposed
by the structure of Liem(Rd). Unlike Vd−1,k, however, in general Rd,k,m fails
to be smooth.

The inclusions Liei(Rd) ⊂ Liei+1(Rd) show that the Rough Veronese vari-
eties are nested. On the other hand, this chain stabilizes. Indeed, when we
apply pk and project onto the order k summand, we do not see anything of
order greater than k. So Rd,k,k+i = Rd,k,k for every i ∈ N. Being the image

of Gk(Rd) under pk, Rd,k,k contains all the k-th signatures of piecewise C1

paths. For this reason, in [1, Section 4.3] it is called universal variety and
denoted by Ud,k. Summarizing, there is a chain of strict inclusions

Vd−1,k = Rd,k,1 ⊂ Rd,k,2 ⊂ . . . ⊂ Rd,k,k = Rd,k,k+1 = . . . = Ud,k.

It is not restrictive to assume d ≥ 2 and m ≤ k. The first thing we want
to do is to determine dimRd,k,m.

Proposition 13. If m ≤ k, then the map fd,k,m : Liem(Rd) → Pdk−1 is

generically k to 1. In particular, dimRd,k,m = dim(P(Liem(Rd))).

This was already noted in [1, Remark 6.5]. We now want to understand
the geometry of Rd,k,m, and we start by looking at the simplest example.

Example 14. Consider d = k = m = 2. We want to write down f2,2,2. The
Lyndon words of length at most 2 in the alphabet {1,2} are 1, 2 and 12,
hence dim Lie2(R2) = 3. An element of Lie2(R2) can therefore be written
as x11 + x22 + a(12− 21). If we look at it in tensor terms, we see a vector
x = (x1, x2) as order 1 summand, and a 2×2 matrix A as order 2 summand.



THE ROUGH VERONESE VARIETY 7

Being a multiple of (12− 21), A is skew-symmetric. Then

p2(exp(x+A)) = p2

(
1 + x+A+

(x+A)2

2
+ . . .

)
= p2

(
1 + x+A+

x2 + xA+Ax+A2

2
+ . . .

)
= A+

x2

2
=

(
0 a
−a 0

)
+

1

2

(
x21 x1x2
x1x2 x22

)
.

In coordinates, the map f2,2,2 : R3 → P3 is

(x1, x2, a) 7→

[
x21
2

x1x2
2 + a

x1x2
2 − a x22

2

]
.

Up to a linear change of coordinates, it becomes

(x1, x2, a) 7→
[
x21 x1x2
a x22

]
.

We can make several important remarks. First of all, the map is now defined
by monomials, and so R2,2,2 is a toric variety. It is a cone over the Veronese
variety V1,2 and it spans the whole P3. Its ideal is generated by a quadric
polynomial. Finally, it can be seen as the embedding

P(1, 1, 2) ↪→ P3

of a weighted projective plane, defined by all monomials of (weighted) degree
2.

Our main goal is to generalize these remarks to all values of d, k,m.

Rd,k,m as a toric variety

Roughly speaking, a variety is toric if it is the image of a monomial map.
A toric variety not only has nice properties - for instance, it is irreducible,
rational and its ideal is generated by binomials - but it can be associated to
a polytope that completely encodes its geometry. This makes toric varieties
accessible from a theoretical, combinatorial and computational viewpoint.
A good reference on toric varieties is [4]. This section is devoted to prove
that the Rough Veronese is indeed toric and to provide an explicit way to
make computations on it.

If we write an element L ∈ Liem(Rd) as the sum L = L1 + . . . + Lm of
terms of order 1, . . . ,m, then pk(exp(L)) ∈ (Rd)⊗k is a linear combination
of all possible ways to get an order k tensor by multiplying L1, . . . , Lm. If

we consider coordinates Ti1...ik on Pdk−1, we can rephrase this observation
by saying that every coordinate Ti1...ik of fd,k,m is a linear combination of
weighted degree k monomials. The weight of a variable corresponding to a
length i Lyndon word is i. We can define

gd,k,m : Liem(Rd)→ Pd
k−1

by using all such weighted monomials. By our observation, there is a linear
change of coordinates sending the image of gd,k,m to the image of fd,k,m. We
want to prove that such change of coordinates is invertible, that is, every
weighted monomial can be obtained as a linear combination of the entries of
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fd,k,m, and we also want to do that as explicitly as possible. This section is
based on [5, Section 3] and [8, Section IV]. Let us start with two definitions.

Definition 15. Let v be a word. If v = e is the empty word, set Se = e.
Otherwise, we define Sv in the following recursive way.

(1) If v is Lyndon, write v = l·w, where l is a letter, and define Sv = l·Sw.

(2) Otherwise, write v = wi11 · . . . · w
ik
k as concatenation of decreasing

Lyndon words. This can be done uniquely by [12, Section 7.4]. De-
fine

Sv =
S�i1w1

� . . .� S�ikwk

i1! . . . ik!
.

The next ingredient we need is the following.

Definition 16. Define a linear map ψ : T (Rd)→ T (Rd) that acts on a word
v by

v 7→
∞∑
n=1

(−1)n+1

n

∑
u1,...,un
nonempty

words

〈v, u1 · . . . · un〉u1 � . . .� un.

In [8], the map ψ is called π′1, while it appears in [5] as π>1 . Observe
that only finitely many terms of the sum are non-zero. Indeed, an element
in T (Rd) is the linear combination of finitely many words, and if v is a
word then there are only finitely many ways to write it as a concatenation
u1, . . . , un. Moreover, if v is a word of length l and v = u1, . . . , un, then
u1 � . . .� un is a sum of length l words. This means that ψ preserves the
grading of T (Rd).

The following result about the exponential map will be of great help.
Recall that Wd,m is the set of Lyndon words of length at most m in the
alphabet with d letters.

Lemma 17. Let {Pw | w ∈ Wd,m} be the basis of Liem(Rd) indexed by the
Lyndon words and let w1, . . . , wr ∈Wd,m. Then〈

exp

 ∑
w∈Wd,m

αwPw

 , ψ(Sw1)� . . .� ψ(Swr)

〉
= αw1 · . . . · αwr .

Proof. By [5, Section 3], for every i ∈ {1, . . . , r} we have〈
exp

 ∑
w∈Wd,m

αwPw

 , ψ(Swi)

〉
= αwi .

See also [8, Theorem 1]. Now thesis follows by Lemma 4. �

Clearly every entry of fd,k,m is a linear combination of monomials. Lemma
17 shows that the converse holds. Every monomial can be obtained as linear
combination of entries of fd,k,m. In other words, we can use the map ψ to
build the linear forms we needed to pass from fd,k,m to gd,k,m, allowing us
to identify them. Let us summarize the conclusion.
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Proposition 18. For every w ∈ Wd,m, define a variable xw and assign it
the weight |w|. Then, up to a linear change of coordinates, fd,k,m is defined
by all monomials of weighed degree k in the variables {xw | w ∈ Wd,m}.
More explicitly, if we set

J = {(w1, . . . , wr) | r ∈ N, wi ∈Wd,m and |w1|+ . . .+ |wr| = k},
then Rd,k,m is isomorphic to the image of

(xw)w∈Wd,m
7→ [xw1 · . . . · xwr ](w1,...,wr)∈J .

In particular, it is a toric variety.

Notice that the map defined in Proposition 18 is a nondegenerate embed-

ding in a possibly proper linear subspace of Pdk−1. We will discuss the linear
span of Rd,k,m in Lemma 22.

For the purpose of practical applications, we want to explicitly describe a

linear change of coordinates in Pdk−1 that makesRd,k,m toric. If m < k, then

every element of L ∈ Liem+1(Rd) can be written uniquely as L = (L1, L2),
where L1 ∈ Liem(Rd). In this case, fd,k,m(L1) = fd,k,m+1(L1, 0). This means
that every change of coordinates that makes fd,k,m+1 a monomial map also
makes fd,k,m monomial. Therefore we can assume m = k, because the
change of coordinates that will make Rd,k,k toric will also work on Rd,k,m
for every m ≤ k.

In the notation of Proposition 18, the change of coordinates in Pdk−1 is

T 7→ [〈T, ψ(Sw1)� . . .� ψ(Swr)〉](w1,...,wr)∈J . (2)

This is indeed well defined because, as we will show in Proposition 23, J has
exactly dk elements when m = k.

Example 19. Let us consider U2,4 = R2,4,4. The Lyndon words are

W2,4 = {1,2,12,112,122,1112,1122,1222}.
By using Definition 15, we get Sw = w for every w ∈ W2,4. The first 5
entries of the change of variables (2) are then

〈T, ψ(Si)� ψ(Sj)� ψ(Sk)� ψ(Sl)〉 = 〈T, ψ(i)� ψ(j)� ψ(k)� ψ(l)〉
= 〈T, i� j� k� l〉

=
∑
σ

Tσ(i)σ(j)σ(k)σ(l),

where 1 ≤ i ≤ j ≤ k ≤ l ≤ 2 and σ ranges among the permutations of
{i, j, k, l}. The next 3 entries are

〈T, ψ(S12)� ψ(S1)� ψ(S1)〉 = 〈T, ψ(12)� ψ(1)� ψ(1)〉

= 〈T, 1

2
(12− 21)� 1� 1〉

= 〈T, 3 · 1112 + 1121− 1211− 3 · 2111〉
= 3T1112 + T1121 − T1211 − 3T2111

and, in a similar way,

〈T, ψ(S12)� ψ(S1)� ψ(S2)〉 = 2T1122 + T1212 − T2121 − 2T2211,

〈T, ψ(S12)� ψ(S2)� ψ(S2)〉 = 3T1222 + T2122 − T2212 − 3T2221.



10 FRANCESCO GALUPPI

We go on with

〈T, ψ(S112)� ψ(S1)〉 = 〈T, ψ(112)� ψ(1)〉

= 〈T, 1

6
(112− 2 · 121 + 211)� 1〉

= 〈T, 1

2
(1112− 1121− 1211 + 2111)〉

=
1

2
(T1112 − T1121 − T1211 + T2111)

and, in a similar way,

〈T, ψ(S112)� ψ(S2)〉 =
1

3
(T1122 + T2112 + T2211)−

1

6
(T1212 + T2121 + 4T2211),

〈T, ψ(S122)� ψ(S1)〉 =
1

3
(T1122 + T1221 + T2211)−

1

6
(T1212 + T2121 + 4T2112),

〈T, ψ(S122)� ψ(S2)〉 =
1

2
(T1222 − T2122 − T2212 + T2221).

The next entry is

〈T, ψ(S12)� ψ(S12)〉 = 〈T, ψ(12)� ψ(12)〉

= 〈T, 1

2
(12− 21)�

1

2
(12− 21)〉

= 〈T,1122 + 2211− 2112− 1221 +
1

2
(1212− 2121)〉

= T1122 − T1221 − T2112 + T2211.

Finally we consider length 4 Lyndon words.

〈T, ψ(S1112)〉 = 〈T, ψ(1112)〉 = 〈T, 1

6
(1211− 1121)〉 =

1

6
(T1211 − T1121)

and, in the same way,

〈T, ψ(S1122)〉 =
1

6
(T1122 − T1212 + T2121 − T2211),

〈T, ψ(S1222)〉 =
1

6
(T2212 − T2122).
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Compare our computations to the ones in [8, Section IV]. Our change of
coordinates in P15 sends T to

24T1111
6(T1112 + T1121 + T1211 + T2111)

4(T1122 + T1212 + T1221 + T2211 + T2112 + T2121)
6(T1222 + T2122 + T2212 + T2221)

24T2222
3T1112 + T1121 − T1211 − 3T2111
2T1122 + T1212 − T2121 − 2T2211
3T1222 + T2122 − T2212 − 3T2221
1
2(T1112 − T1121 − T1211 + T2111)

1
3(T1122 + T2112 + T2211)− 1

6(T1212 + T2121 + 4T1221)
1
3(T1122 + T1221 + T2211)− 1

6(T1212 + T2121 + 4T2112)
1
2(T1222 − T2122 − T2212 + T2221)
T1122 − T1221 − T2112 + T2211

1
6(T1211 − T1121)

1
6(T1122 − T1212 + T2121 − T2211)

1
6(T2212 − T2122)



.

Example 20. Let us consider U3,3 = R3,3,3. Then

W3,3 = {1,2,3,12,13,23,112,113,122,133,223,233,123,132}.

By using Definition 15, we get Sw = w for every w ∈ W3,3 \ {132}, while
S132 = 123 + 132. The first 10 entries of the change of variables (2) are
then

〈T, ψ(Si)� ψ(Sj)� ψ(Sk)〉 = 〈T, ψ(i)� ψ(j)� ψ(k)〉
= 〈T, i� j� k〉
= 〈T,kij + ikj + ijk + kji + jki + jik〉
= Tkij + Tikj + Tijk + Tkji + Tjki + Tjik,

for 1 ≤ i ≤ j ≤ k ≤ 3. Then we have 9 more entries of the form

〈T, ψ(Si)� ψ(Sjk)〉 = 〈T, ψ(i)� ψ(jk)〉

= 〈T, i� 1

2
(jk− kj)〉

= 〈T, 1

2
(ijk + jik + jki− ikj− kij− kji)〉

=
1

2
(Tijk + Tjik + Tjki − Tikj − Tkij − Tkji),

for i ∈ {1, 2, 3} and 1 ≤ j < k ≤ 3. Finally, the length 3 Lyndon words give
the last 8 entries as

〈T, ψ(S132)〉 = 〈T, ψ(123 + 132)〉
= 〈T, ψ(123) + ψ(132)〉

= 〈T, 1

6
(123 + 132− 2 · 213 + 231− 2 · 312 + 321)〉

=
1

6
(T123 + T132 + T231 + T321)−

1

3
(T213 + T312)
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and

〈T, ψ(Sijk)〉 = 〈T, ψ(ijk)〉

= 〈T, 1

6
(2 · ijk + 2 · kji− kij− ikj− jki− jik)〉

=
1

3
(Tijk + Tkji)−

1

6
(Tkij + Tikj + Tjki + Tjik),

for ijk ∈ {112,113,122,133,223,233,123}. It is interesting to point out
that some of these linear forms are used in [11, Section 5] in order to recover
the path of a given signature.

Remark 21. The universal variety contains many interesting subvarieties
besides Rd,k,m. Examples include the signature variety Ld,k,m of piecewise
linear paths with m steps and its subvariety Aν,k of axis-parallel paths,
both studied in [1]. The change of coordinates given by Lemma 17 proves
that Rd,k,m and therefore Ud,k are toric, but it does not necessarily work as
nicely with other subvarieties. For instance, a computation with the software
Macaulay2 ([9]) shows that, after our change of coordinates, the ideals of
both L2,3,2 and A1212,3 are not generated by binomials and therefore they
are not toric.

Further geometric properties

In this section we will generalize the remarks we made for Example 14.
While R2,2,2 ⊂ P3 is nondegenerate, for other values of d, k,m the Rough
Veronese may be contained in a smaller linear subspace, as we already ob-
served in Proposition 18.

Proposition 22. The affine dimension of the linear span of Rd,k,m ⊂ Pdk−1
is ∑

λ`k,λ1≤m

(
m∏
i=1

(
µi,d + ]{j | λj = i} − 1

µi,d − 1

))
.

This number equals the coefficient of tk of the expansion of the generating
function

m∏
i=1

1

(1− ti)µi,d
.

Proof. As in Proposition 18, we define a variable xw for every w ∈ Wd,m

and we assign it the weight |w|. Given a weighted degree k monomial ϕ ∈
C[xw | w ∈ Wd,m], we can write it in reverse lexicographic order as a string
of possibly repeated variables. Define a partition λ of k by

λj = i⇔ the j-th entry of the string is xw for some |w| = i.

Now ϕ is the product of monomials ϕ = ϕ1 · . . . ·ϕm, where ϕi is a monomial
in C[xw | |w| = i]. The degree of ϕi is the number of times i appears as an

entry of λ. Hence, for every ϕi there are
(µi,d+]{j|λj=i}−1

µi,d−1
)

choices. For the

generating function, see [13, Section 1.8]. �

Nonetheless, the universal variety Ud,k = Rd,k,k is indeed nondegenerate
for every k.
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Proposition 23. Under our assumption k ≥ m, the Rough Veronese Rd,k,m ⊂
Pdk−1 is nondegenerate if and only if m = k.

Proof. Because of the chain of strict inclusions Rd,k,m ( Rd,k,m+1, it is
enough to show that Rd,k,k is nondegenerate.

Thanks to Proposition 18, we only have to prove that there are dk distinct
monomials of weighted degree k. Corollary 22 may be difficult to apply, so
instead we want to define a bijection between these monomials and the set
of length k words in the alphabet with d letters. Since our variables are
indexed by Lyndon words, we can think of a monomial as a product of
Lyndon words such that the sum of the lengths is k. Observe that the
monomial remains the same if we permute the variables, i.e. the Lyndon
words. In order to avoid redundancy, we can fix an order. Now we only
have to prove that, after fixing an order among Lyndon words, every length
k word in the alphabet with d letters can be written uniquely as an ordered
product of Lyndon words whose lengths sum to k. This is a well-known fact,
and a proof can be found for instance in [12, Section 7.4]. �

The next result shows another feature of rough paths. Not only does the
universal variety Ud,k coincide with the last Rough Veronese Rd,k,k, but its
structure is already determined by the second to last one, Rd,k,k−1.
Proposition 24. The universal variety Ud,k = Rd,k,k is a cone over Rd,k,k−1
with vertex Pµk,d−1. The preimage of the vertex is the vector subspace of
Liek(Rd) defined by the vanishing of the first k − 1 entries.

Proof. Let V be the vector subspace of Liek(Rd) defined by the vanishing
of the first k − 1 entries. Thanks to Proposition 18, we already know that
Rd,k,k is defined by the degree k weighted monomials. Exactly µk,d of them
are {xw | w ∈Wd,m and |w| = k}. In other words, the map pk ◦exp restricts
to the identity on V . It follows that

pk(exp(Liek(Rd))) = pk(exp(Liek−1(Rd)))× V
is a cylinder. When we pass to the projectivization, we get a cone with base
Rd,k,k−1 and vertex P(pk(exp(V ))) ∼= P(V ). �

Remark 25. It is interesting to try to classify the paths whose signatures
lie in the vertex of the universal variety. Equivalently, we wonder what
it means for a rough path to have zeroes in the first k − 1 entries. It is
straightforward to check that for a piecewise differentiable path X, the first
signature

σ(1)(X) = X(1)−X(0)

is just the vector joining the endpoint of X to its starting point. The second
signature also has a geometric interpretation: if we take the projection of
X onto the i, j plane, the signed area of the region bounded by X and the

segment between X(0) and X(1) is σ
(2)
ij (X). For instance, if X is a loop then

σ(1)(X) = 0 but σ(2)(X) may be nonzero. However, if we allow not only
piecewise differentiable paths, but also rough paths, we find more interesting
examples. There are rough paths X such that p1(X(t)) = p1(X(0)) for every
t, but with a nonzero second entry. One example of these pure area paths is
[6, Exercise 2.17], where it is built as a limit of smaller and smaller loops.
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In the same fashion, we can think of the vanishing of the first two signa-
tures as a loop with some symmetry that make the signed area zero, such
as two circles in R2 meeting at a point. Then again, there are more exotic
examples of rough paths with the same property. However, the geometric
meaning of the third and higher order signatures is not yet clear, as it is an
open research area.

We now turn our attention to the ideal of Rd,k,m. In [11, Section 4], it is
proved that the ideal of Rd,3,3 is generated by the 2× 2 minors of a suitable
Henkel matrix, in particular by quadrics. In many other examples this ideal
is generated in degree 2. However, this is not true in general, not even if
k = m. The following counterexample, suggested by Micha lek, answers a
question posed in [1, Section 4.3].

Proposition 26. For 14 ≤ m ≤ k = 20, the ideal of the Rough Veronese
variety Rd,20,m is not generated by quadrics.

Proof. Let N be the number of weighted degree k monomials. By Proposi-
tion 18, up to change of coordinatesRd,20,m is the image of a map Liem(Rd)→
PN−1. The coordinates T of the target space are indexed by the N weighted
monomials. For every i ∈ {1, . . . ,m}, let x(i) be one of the variables of
weight i. Let I be the ideal of Rd,20,m and define

t1 = Tx(1)x(9)x(10) , t2 = Tx(5)x(7)x(8) ,

t3 = Tx(2)x(4)x(14) , t4 = Tx(1)x(5)x(14) ,

t5 = Tx(4)x(7)x(9) , t6 = Tx(2)x(8)x(10) .

Then f = t1t2t3 − t4t5t6 is a degree 3 element of I. Let us show that f is
not generated by quadrics. Let q1, . . . , qr be the degree two generators of I.
Since Rd,20,m is toric, they are binomials and so we can write qi = gi − hi,
where each gi and each hi is a degree 2 monomial. Assume by contradiction
that f can be algebraically generated by q1, . . . , qr. Then there exist linear
monomials l1, . . . , lr such that, up to order, f is a sum of nonzero polynomials
f = l1(g1 − h1) + · · · + lt(gr − hr). It follows that each term in the sum is
a multiple of some gi. For instance, there is a degree 2 monomial dividing
t1t2t3. The only three possibilities are t1t2, t1t3 and t2t3. Suppose then that
gi = t1t2. Since gi − hi ∈ I, the product of the two monomials indexing
the variables of hi equals t1t2. But it is easy to see that 1 + 9 + 10 and
5 + 7 + 8 are the only ways to obtain 20 by sums of non-repeated elements
of {1, 5, 7, 8, 9, 10}. Hence gi − hi = 0, a contradiction. �

Among the features of R2,2,2 we pointed out in Example 14, there is one
we still have to check. We saw that R2,2,2 is the embedding of P(1, 1, 2)
given by its weighted quadrics. If we define the sequence of weights

s = ( 1, . . . , 1︸ ︷︷ ︸
µ1,d times

, 2, . . . , 2︸ ︷︷ ︸
µ2,d times

, . . . ,m, . . . ,m︸ ︷︷ ︸
µm,d times

),

by Proposition 18 fd,k,m always gives a rational map P(s) 99K Pdk−1, that
we will still call in the same way by abuse of notation. However, fd,k,m does
not need to be an embedding. Actually, it does not even need to be defined
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everywhere. For instance, f2,3,2 : P(1, 1, 2) 99K P7 is defined by

[x1, x2, a] 7→


x31 x21x2
x1x

2
2 x32

x1a x2a
0 0

 ,

so [0, 0, 1] is a base point. This is a general behavior.

Proposition 27. The map fd,k,m : P(s) 99K Pdk−1 is base point free if and
only if every entry of w divides k.

Proof. Assume that k is a multiple of every entry of s. Then for every
variable xw, there is a power of xw appearing among the monomials of
weighted degree k. Therefore the only way for all weighted monomials to
vanish is setting all variables to zero. This means there are no base points.

On the other hand, assume that k is not a multiple of one of the entries of
s, say i, and consider a variable x(i) of weight i. Since i - k, no power of x(i)

appears among the monomials defining fd,k,m. Then [0, . . . , 0, 1, 0 . . . , 0] ∈
P(s), with a 1 in the entry corresponding to x(i), is a base point for fd,k,m. �

Table of invariants

We collect some of the geometric invariants of Rd,k,m, obtained with the
software Macaulay2. We compute the dimension of the linear span, the
dimension of Rd,k,m and its degree. Despite Proposition 26, all the ideals
in the examples we present are generated by quadrics. In the last column
“gen” we record the number of generators.
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d k m span dim deg gen

2 2 2 3 2 2 1

3 2 2 8 5 4 6
4 2 2 15 9 8 20
5 2 2 24 14 16 50
6 2 2 35 20 32 105

2 3 2 5 2 4 6

3 3 2 18 5 24 81
4 3 2 43 9 200 486
5 3 2 84 14 2221 1920

2 4 2 8 2 8 27

3 4 2 38 5 128 528

2 5 2 11 2 12 43

3 5 2 68 5 368 1806

2 6 2 15 2 18 87

2 3 3 7 4 4 6

3 3 3 26 13 24 81
4 3 3 63 29 200 486

2 4 3 12 4 12 33

3 4 3 62 13 672 954

2 4 4 15 7 12 33

2 5 4 25 7 40 150

2 5 5 31 13 40 150

2 6 5 54 13 336 694
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