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FAMILIES OF BLOWUPS OF THE REAL AFFINE PLANE:
CLASSIFICATION, ISOTOPIES AND VISUALIZATIONS

MARKUS BRODMANN AND PETER SCHENZEL

Abstract. We classify embedded blowups of the real affine plane up to oriented iso-
morphy. We show that two blowups in the same isomorphism class are isotopic, using a
matrix deformation argument similar to an idea given in [14]. This answers two questions
which were motivated by the interactive visualizations of such blowups (see [11], [12],
[13]).

1. Introduction and Survey

Motivating Background: The Visualization Project for Blowups of the Real
Affine Plane. The present paper is motivated by several investigations on the visual-
ization of blowups of the real affine plane (see [1],[2],[3],[9],[8],[10]) in particular by the
interactive visualizations suggested by the second named author and Ch. Stussak [11].
Our investigation is driven by the following two problems

(1.0) (a) Deformation Problem: “Can one connect two arbitrary oriented isomorphic
embedded blowups of the real affine plane by a continuous family within their
isomorphism class?”

(b) Classification Problem: “Is there a simple criterion to detect whether two
regular embedded blowups of the affine plane are oriented isomorphic?”

We shall see, that both of these problems find an affirmative answer. At first view, this
is a result of theoretical nature – but it also is of considerable practical meaning: Namely,
once having tested that two embedded blowups B and C of the real affine plane are
oriented isomorphic, one can use the animated visualization procedure of [11] to “produce
a sequence of pictures which shows a deformation of the two blowups B to C within their
common isomorphism class.” Moreover, our answer to the classification problem gives an
easy way to detect whether two regular embedded blowups are oriented isomorphic.
We shall provide a few simple examples of this. Let us also note, that all illustrations in
the present paper base on the visualization RealSurf as developed by C. Stussak (see
[12]).

Blowups of the Real affine Plane. We now start to set the precise setting in which
we shall work. So, let Z ⊂ R2 be a finite set and let U ⊂ R2 be an open bounded and
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2 BRODMANN AND SCHENZEL

star-shaped set with closure U such that Z ⊂ U – for example an open disk containing
Z. We fix a pair of two-variate real polynomials

(1.1) f := (f0, f1) ∈ R[x,y]2 such that ZU(f) := {p ∈ U | f0(p) = f1(p) = 0} = Z.

Then, the embedded blowup BlU(f) of U with respect to the pair f is defined as the
closure (with respect to the topology induced by the Zariski topology on the ambient
complex algebraic variety A2

C × P1
C) of the graph of the map

(1.2) εU,f : U \ Z −→ P1, given by p 7→ [f(p)] = (f0(p) : f1(p))

in U × P1. More precisely, our blowup is the pair consisting of

(1.3) (a) the set BlU(f) := {
(
p, [f(p)])

)
| p ∈ U \ Z} (where • denotes the operation of

taking real Zariski closure) and
(b) the canonical projection map πU,f : BlU(f) −→ U, given by

(p, (x0 : x1)) 7→ p, for all (p, (x0 : x1)) ∈ BlU(f) ⊂ U × P1.

(1.4) The set Z is called the center of the blowup BlU(f), whereas

(a) the graph Bl◦U(f) := Graph
(
εU,f
)

= {(p, [f(p)]) | p ∈ U \ Z} of εU,f is called
the open kernel of our blowup, and

(b) the set π−1U,f (Z) ⊆
(
Z×P1

)
– hence the set of boundary points of Bl◦U(f) with

respect to the complex Zariski topology – is called the exceptional locus of
this blowup.

Observe the following fact:

(1.5) The blowup BlU(f) is the disjoint union of its open kernel and its exceptional set,
more precisely:
(a) BlU(f) = Bl◦U(f)∪̇π−1U,f (Z).

(b) The restriction πU,f �: Bl◦U(f)
∼=−→ U \Z of the canonical projection map πU,f

of (1.3)(b) to the open kernel is an isomorphism, whose inverse is given by
p 7→

(
p, εU,f (p)

)
, for all p ∈ U \ Z.

Thus, if Z 6= ∅, the blowup B = BlU(f) is obtained by replacing each point p ∈ Z by

the so called exceptional fiber π−1U,f (p) ⊂ {p}×P1 of πU,f (or of B) above p – inserted to U

instead of p in a way controlled by the two polynomials f0, f1 ∈ R[x,y]. The accumulation
points of the open kernel B◦ in the exceptional fiber π−1U,f (p) are called limit points of B

above p. We denote the set of these limit points by Lp(B). The open kernel B◦ is pasted
to the exceptional fiber π−1U,f (p) along the set Lp(B). In Section 2 we shall have a closer

look at the sets Lp(B) ⊂ π−1Uf (p).

In the degenerate case Z = ∅ we have BlU(f) = Bl◦U(f)

Our basic aim is to study the class of blowups

(1.6) BlU(Z) := {BlU(f) | f ∈ R[x,y]2 with ZU(f) = Z}.
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We obviously focus on the non-degenerate case in which Z 6= ∅. If we write BlU(f) ∈
BlU(Z), we tacitly mean that f ∈ R[x,y]2 satisfies the condition ZU(f) = Z.

A Glance to Algebraic Geometry. Blowups are one of the basic tools in Algebraic
Geometry. Therefore we now relate the previous setting to the Algebraic Geometric
context. If (X,OX) is a locally Noetherian scheme and J ⊆ OX is a coherent sheaf of
ideals, then the blowup of X with respect to J is defined as the projective X scheme

(1.7) BlX(J ) := Proj(
⊕

n≥0 J ntn)
πX,J−→ X

induced by the sheaf of Rees Algebras
⊕

n≥0 J ntn ⊂ OX [t] associated to J (see [5],
Chapter II, Section 7).
Blowups are of great significance in Algebraic Geometry mainly by two of their basic
properties: The first is the resolving effect on singularities which allows “to blow away
singular points” and hence gives rise to one of the most powerful tools of Algebraic Ge-
ometry: The Resolution of Singularities (see [6]). Below we shall illustrate this resolving
effect by means of a simple example.
The second basic property says, that blowups of quasi-projective varieties are nothing
else than proper birational morphisms (see [5], Chapter II, Theorem 7.17). This turns
blowups into an indispensable tool of Birational Algebraic Geometry.
We now formulate a restricted notion of embedded blowup of scheme, sufficiently general
to cover our embedded blowups of the real affine plane. Namely, If we are in the par-
ticular situation that J =

∑s
i=0 fiOX is generated by a finite family of global sections

f = (f0, . . . , fs) ∈ J (X)s+1, then, the surjective homomorphism of sheaves ofOX-algebras

OX [z0, . . . zs] �
⊕
n≥0

J ntn,
(
zi 7→ fit, i = 0, . . . , s

)
gives rise to a closed immersion

(1.8) ef : BlX(J ) −→ PsX = X × PsZ such that πX,J = πX ◦ ef , where πX : PsX −→ X is
the canonical projection.

We call

(1.9) BlX(f) := ef
(
BlX(J )

)
⊂ PsX

the embedded blowup of X with respect to the family f.

To relate this general algebraic geometric concept to our original setting, we let X
be the complex affine plane Spec(C[x,y]) = A2

C, fix a pair (f0, f1) = f ∈ R[x,y]2 ⊂
C[x,y]2 = OX(X)2 as in (1.1) and set J = f0OX + f1OX . Then, the closed immersion

ef : BlX(J ) = BlA2
C
(J ) −→ P1

X = A2 × P1
C

of (1.8) is R-rational and it holds

(1.10) BlU(f) = BlX(f)R ∩
(
U × P1

R
)
.
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So, the embedded blowup BlU(f) defined in (1.3) is nothing else than the real trace
of that part of the embedded blowup BlX(f) which lies over the open set U under the

canonical projection πA2
C

: A2
C × P1

C � A2
C.

The Visualization Procedure. We now aim to present a visualization procedure for
the embedded blowup BlU(f) with respect to a pair f of two-variate polynomials which
satisfies the requirement (1.1), as defined in (1.3)(a). We use the method originally
suggested in [1] and [2] – but in the slightly modified form used in [11]. Let ρ, r ∈ R with
0 < ρ < r and consider

(1.11) (a) the open disk D := {(x, y) ∈ R2 | x2 + y2 < ρ} ⊂ R2, with U ⊆ D and

(b) the open solid torus T := {(u, v, w) ∈ R3 | u2 +
(
r −
√
v2 + w2

)2
< ρ2} ⊂ R3

together with the diffeomorphism

(1.12) ι : D× P1
∼=−→ T, given by(

(x, y), (x0 : x1)
)
7→
(
x, (r − y)

x20 − x21
x20 + x21

, (r − y)
2x0x1
x20 + x21

)
, for all (x, y) ∈ U, (x0 : x1) ∈ P1.

We convene

(1.13) The blowup B = BlU(f) is visualized by its diffeomorphic image

ι
(
BlU(f)

)
= ι
(
Bl◦U(f)

)
∪̇ ι

(
π−1U,f (Z)

)
⊂ T, so that we have:

(a) ι
(
Bl◦U(f)

)
= {
(
x, (r− y)f0(x,y)

2−f1(x,y)2
f0(x,y)2+f1(x,y)2

, (r− y) 2f0(x,y)f1(x,y)
f0(x,y)2+f1(x,y)2

| (x, y) ∈ U \Z}.
(b) ι

(
π−1U,f (Z)

)
⊆ ι(Z × P1) =

⋃̇
p∈Z ι({p} × P1).

(c) If p = (x, y) ∈ Z, then ι({p} × P1) ⊂ T is the circle of radius r − y given by:

ι({p} × P1) = {
(
x, (r − y)

x20 − x21
x20 + x21

, (r − y)
2x0x1
x20 + x21

)
| (x0, x1) ∈ R2 \ {(0, 0)}}

= {
(
x, (r − y)cos(β), (r − y)sin(β) | −π ≤ β ≤ π}.

Observe that ι
(
Bl◦U(f)

)
⊂ T is a surface without boundary and that ι(Z×P1) is a finite

union of circles ι({p}×P1) ⊂ T parallel to the central circle of T, centered at the rotation
axis of T. Moreover, for each point p ∈ Z, the set of limit points and the exceptional fiber
of B over p are visualized respectively by the two subsets ι

(
Lp(B)

)
⊆ ι
(
π−1U,f (p)

)
of the

circle ι(
{
p} × P1

)
. The sets Lp(B) are of particular interest for the shape of the blowup

B. Therefore, in some of our illustrations, their images ι
(
Lp(B)

)
are colored in bold black

and they usually appear (as arcs on) the circle ι(
{
p} × P1

)
.

The Technique of Visualization. For visualizations the parametric presentation given
in (1.12) is used by Brandenberg (see [1]) and also by Brodmann and Prager (see [2] and
[10]) for a very few examples. The difficulty of the parametrization for further examples
is its instability in the neighborhood of Z (see also Prager in [10] for a further discussion).
The new idea of Stussak (see [13] and [11]) was to derive the implicit equation of the
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parametrized surface (based on the work of [2]) and to use the program RealSurf (see
[12]) for its visualization.

As already announced previously, all single pictures and sequences of pictures illustrat-
ing deformations of blowups we present in this paper are build by the program RealSurf
developed by C. Stussak (see [12]). RealSurf is a graphic GPU-program for the visu-
alization of algebraic surfaces. It allows an interactive view of algebraic surfaces in A3 in
real time.

In his PhD dissertation (see [13]) C. Stussak studied exact rasterization of algebraic
curves and surfaces for the visualization on a personal computer with GPU-programming.
As an application of his technique he and the second author studied interactive visualiza-
tions of blowups of the real affine plane (see [13] and [11]). These interactive visualizations
are based on RealSurf with several adaptations for the particular situation of our con-
crete examples (see [11] for the technical details). The modified program allows continuous
parameter changes by mouse action. With the help of these modifications we produced
the pictures of the present paper. We are grateful to Christian Stussak for making the
adaption of RealSurf available to us.
The pictures were produced on a PC with graphic cards nVidia GT 525 Windows 7.

A Few Preliminary Examples. To present two basic examples of blowups, we choose
ρ = 2, r = 4, Z = {(0, 0)}, U = D = {(x, y) ∈ R2 | x2 + y2 < 4}. Then, under our
visualization process, and for the choice f0 = x, f1 = y the blowup BlU(f) appears as

a Möbius Strip (see Figure 1 (a)), whereas for the choice f0 = x2, f1 = y2 the blowup
BlU(f) appears as a Double Whitney Umbrella (see Figure 1 (b)). The essential difference
between these two blowups, which shows also in their visualizations, will be explained
later: the first one is regular, whereas the second one is not.

(a)
(b)

Figure 1. (a) Möbius Strip (b) Double Whitney Umbrella
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Figure 2. Blowing up the Lemniscate and Toroidal Embedding

We now present another example which illustrates the resolving effect of blowing up.
We chose ρ, r, Z, U = D, f0, f1 as in the first of the above examples. and consider the
lemniscate, hence the plane quartic X := {(x, y) ∈ R2 | x2 − y2 − 1

2
x4 = 0} ⊂ U, which

has a nodal singularity at the origin 0 := (0, 0). Finally we consider the so called strict
transform or toroidal embedding

X̃ := π−1U,f (X) ∩ Bl◦U(f) = π−1U,f (X \ Z)

of X, which is a non-singular curve contained in our embedded blowup BlU(f) – and hence
appears as a smooth simple closed curve on a Möbius strip – as illustrated in Figure 2.

Isomorphisms of Blowups. A (relative oriented) automorphism (we omit the wording
in brackets from now on) of U × P1 is a map

(1.14) (a) ϕ = ϕM : U × P1
R −→ U × P1

R given by (p, [v]) 7→ (p, [vM(p)]) for all p ∈ U
and all v ∈ R2 \ {0}, where

(b) M ∈ R[x,y]2×2 with det
(
M(p)

)
> 0 for all p ∈ U.

It is indeed justified to call these maps automorphisms. Namely: If M ∈ R[x,y]2×2

with det
(
M(p)

)
> 0 for all p ∈ U, its inverse M−1 ∈ R(x,y)2×2 may be written in

the form M−1 = 1
detM

N with N ∈ R[x,y]2×2 and det
(
N(p)

)
> 0 for all p ∈ U. It

is immediate, that the map ϕN is inverse to ϕM . Observe that an automorphism of
U × P1 (in the above sense) leaves fix the fiber {p} × P1 ∼= P1 of the canonical projection
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π : U×P1 −→ U over each point p ∈ U and acts as a Möbius-Transformation on this fiber.

We say that two embedded blowups B,C ∈ BlU(Z) are (relative oriented embedded)
isomorphic (we omit the wording in brackets from now on) – and write B ∼= C – if there
is an automorphism ϕ of U × P1 such that C = ϕ(B). This means in particular:

(1.15) If B = BlU(f), C ∈ BlU(Z) then B ∼= C if and only if C = BlU(fM) for some

M ∈ R[x,y])2×2 with det
(
M(p)

)
> 0 for all p ∈ U.

Regular Embedded Blowups. We say that the pair f = (f0, f1) ∈ R[x,y]2 is regular
with respect to Z on U if the following requirements are satisfied:

(1.16) (a) ZU(f) = Z.
(b) The Jacobian

∂f :=

∂f0
∂x

∂f1
∂x

∂f0
∂y

∂f1
∂y

 ∈ R[x,y]2×2

of the pair f is of rank 2 in all points p ∈ Z.
If the pair f ∈ R[x,y]2 is regular with respect to Z on U, we call BlU(f) a regular

embedded blowup of the set U along Z – and we aim to study the sub-class of BlU(Z)

(1.17) BlregU (Z) := {BlU(f) | f ∈ R[x,y]2 is regular with respect to Z on U}
consisting of all these regular blowups for fixed Z and U. From now on, if we write

BlU(f) ∈ BlregU (Z), we tacitly mean that f ∈ R[x,y]2 is regular with respect to Z on U.
Clearly, in the degenerate case Z = ∅ the blowup BlU(f) is regular, so that we have
BlU(∅) = BlregU (∅).

If B = BlU(f) ∈ BlregU (Z), there is a map

(1.18) sgnB : Z −→ {±1} given by p 7→ sgn
(
det(∂f(p))

)
for all p ∈ Z

(which depends indeed only on B, see Definition and Remark 4.3, called the sign
distribution of B.
If B ∈ BlregU (Z) with #Z = n ∈ N, we call B a regular (embedded) n-point blowup.
We shall present examples of such n-point blowups and families of such for n = 1 (see
Example 2.1), for n = 2 (see Examples 6.2 (B) and (C)), for n = 3 (see Examples 6.2 (A)
and (B)) and for n = 4 ( see Example 2.2).

In the framework of regular blowups we will give an affirmative answer to the Classifi-
cation Problem (1.0)(b) by proving (see Theorem 4.8):

(1.19) Classification Theorem : If B,C ∈ BlregU (Z), then B ∼= C if and only if sgnB =
sgnC .

Isotopies of Blowups. Now, we turn to the Deformation Problem (1.0)(a). Gener-
ally, one obtains families of embedded blowups of the real plane, if the coefficients of the
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defining polynomials f0, f1 vary. On application of the previously described visualiza-
tion procedure, this leads to appealing “movies” showing the deformation of a blowup.
Motivated by this, we aim to study families of the form:

(1.20)
(
B(t) = BlU(f (t))

)
t∈[0,1] ∈ BlZ(U)[0,1], given by a pair of polynomials (f̃0, f̃1) ∈

R[x,y, t]2, such that for all t ∈ [0, 1] the pair f (t) :=
(
f̃0(x,y, t), f̃1(x,y, t)

)
∈

R[x,y]2 satisfies the the condition ZU(f (t)) = Z of (1.1).

We are interested in such families for which the embedded blowups B(t) ∈ BlZ(U) are
all isomorphic. It therefore is natural to study classes

(
B(t)

)
t∈[0,1] of embedded blowups

which come from an isotopy of U × P1-automorphisms, hence from a family:

(1.21)
(
ϕ(t) = ϕM(t)

)
t∈[0,1], given by a (2× 2)-matrix M̃ ∈ R[x,y, t]2×2, such that for all

t ∈ [0, 1] the matrix M (t) := M̃(x,y, t) ∈ R[x,y])2×2 satisfies det
(
M(p)

)
> 0 for

all p ∈ U.
In this situation, the family of (1.20) takes the form (see (1.15)):

(1.22)
(
B(t) = ϕ(t)(B) = BlU(fM (t))

)
t∈[0,1], for B = BlU(f) ∈ BlU(Z).

In this context we will give an affirmative answer to the Deformation Problem (1.0)(a)
by proving (see Theorem 5.9):

(1.23) Deformation Theorem : Let B,C ∈ BlU(Z) with B ∼= C. Then, B and C are
connected by an isotopy of U × P1-automorphisms. More precisely, there is an
isotopy

(
ϕ(t) = ϕM(t)

)
t∈[0,1] as in (1.21) such that ϕ(0)(B) = B and ϕ(1)(B) = C.

Deformation of Matrices. In view of (1.18) the Deformation Theorem (1.23) for
blowups follows immediately from the following deformation result for matrices, (see
Proposition 5.4 and Remark 5.6):

(1.24) Polynomial Deformations of Matrices : Let M ∈ R[x,y]2×2 with det
(
M(p)

)
> 0

for all p ∈ U. Then M is connected to the unit matrix 12×2 ∈ R2×2 by a polynomial
family of (2× 2)-matrices with positive determinants on U . More precisely:

There is a (2 × 2)-matrix M̃ ∈ R[x,y, t]2×2, such that with M (t) := M̃(x,y, t)
for all t ∈ R we have
(a) det

(
M (t)(p)

)
> 0 for all t ∈ [0, 1] and all p ∈ U.

(b) M (0) = 12×2 and M (1) = M.

We shall approach this deformation result in a more general context, which is appro-
priate for the study of blowups in the framework of Real Analytic Geometry, too. (See
Proposition 5.2).

2. First Examples of Families of Blowups

Examples and their Visualizations. We shall conclude our paper with a few exam-
ples of families of embedded blowups and their visualizations. Already now, we present
three examples, which give a first flavor of the subject and illuminate some typical fea-
tures. Again, as in the examples visualized by Figure 1, we chose ρ = 2, r = 4 and
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U = D = {(x, y) ∈ R2 | x2 + y2 < 4}.

Example 2.1. In our first example, we consider the most simple regular blowup of the real
affine plane, namely the ”regular one-point blowup” B := BlU(x,y), whose visualization
shows up as a Möbius strip (see Figure 1(a)). We deform this blowup by means of the
family of polynomial matrices(
M (t) :=

(
1− t t

2
− t

2
1 + t

))
t∈[0,1] with det(M (t)) = 1− 3

4
t2 > 0 for all t ∈]− 2

3

√
3,

2

3

√
3[.

This leads us to the family of regular embedded of blowups
(
B(t)

)
t∈[0,1] with

B(t) := BlU
(
(x,y)M (t)

)
= BlU(f

(t)
0 = (1− t)x− t

2
y, f

(t)
1 =

t

2
x + (1 + t)y

)
∈ BlregU

(
{0}
)

and

Z = ZU
(
f (t) := (f

(t)
0 , f

(t)
1 )
)

= {(0, 0)} for all t ∈]− 2

3

√
3,

2

3

√
3[.

In view of Figure 1(a) we expect that the visualization
(
ι(B(t))

)
t∈[0,1] of this family presents

itself as a deformation of a Möbius strip. In Figure 3 we present this deformation for the
values t = 0, t = 0.4 and t = 1. We also allow ourselves to leave the range 0 ≤ t ≤ 1 and
consider the three values t = 1.15, t = 1.2 and t = 1.4, which come close or lie beyond the
critical value t = 2

3

√
3 = 1.15470 . . . .

These choices illustrate the following fact: If t takes its critical values ±2
3

√
3, the two

linear forms f
(t)
0 and f

(t)
1 are linearly dependent and hence do not define a blowup in our

sense. If t /∈ [−2
3

√
3, 2

3

√
3] the blowup B(t) shows up again as a Möbius strip, but with

reverse orientation.

Example 2.2. As a second example, we consider a family of ”regular four-point blowups”
of the real affine plane, which is indeed a modification of the example shown in Figure
9 of [11]. To this end, we chose a ∈ [0, 1] and consider the two pairs of polynomials
f := (f0, f1) and g := (g0, g1) ∈ R[x,y]2 given by

f0 = x2 − 1

2
y2 − 1

2
, f1 = −1

2
x2 + y2 − 1

2
and

g0 = x2 + (a− 1

2
)y2 − a− 1

2
, g1 = (a− 1

2
)x2 + y2 − a− 1

2
.

Then det(∂f) = 3xy and det(∂g) = 4(1 − (a − 1
2
)2)xy. Taking x-resultants, we get

Resx(g0, g1) = (((a− 1
2
)2 − 1)(1− y2))2. As (a− 1

2
)2 − 1 < 0 for a ∈ [0, 1] it follows that

Z = ZU(f) = ZU(g) = {±1,±1}.
This shows that f and g are regular pairs with respect to Z on U, so thatB := BlU(f), C :=
BlU(g) ∈ BlregU (Z) and sgnB = sgnC . Moreover

g = fM with M =

(
1 + 2

3
a 4

3
a

4
3
a 1 + 2

3
a

)
.
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B(0) B(0.4) B(1.0)

B(1.15) B(1.2) B(1.4)

Figure 3. Deformation of a Möbius Strip

so that M ∈ R[x,y]2×2 with det
(
M(p)

)
> 0 for all p ∈ U. Setting

M̃ :=

(
1 + 2

3
at 4

3
at

4
3
at 1 + 2

3
at

)
∈ R[x,y, t]2 and M (t) :=

(
1 + 2

3
at 4

3
at

4
3
at 1 + 2

3
at

)
for all t ∈ R

we get det(M (t)) = (1 + 2
3
at)2 − 16

9
(at)2 > 0 and hence det(M (t)) > 0 for all t ∈ [0, 1].

Moreover M (0) = 12×2 and M (1) = M. So,
(
M (t)

)
t∈[0,1] is a family which connects 12×2

and M. Correspondingly
(
ϕ(t) := ϕM(t)

)
t∈[0,1] is an isotopy and(

B(t) = ϕ(t)(B) = BlU(fM (t))
)
t∈[0,1]

is a family of regular blowups B(t) ∈ BlregU (Z) with B(0) = B and B(1) = C.

We now choose a = 1. Then looking at the conics f
(t)
0 = 0 and f

(t)
1 = 0 defined by the

two polynomials

f
(t)
0 , f

(t)
1 ∈ R[x,y] with f (t) := (f

(t)
0 , f

(t)
1 ) = fM (t) for all t ∈ [0, 1]

we have the following situation: Two hyperbolas (t = 0) are deformed to two ellipses
(t = 1) via a degeneration to a pair of lines (t = 1

2
). A rough visualization of this family

presents itself as shown in Figure 4.
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B(0) B(0.25) B(0.5)

B(0.75) B(1)

Figure 4. Deformation of a Regular Four-Point Blowup

Example 2.3. Up to now, we have considered two families of regular blowups of the real
affine plane. Now, we aim to consider a family of blowups, which is obtained by deforming
the singular blowup B := BlU(x2,y2), whose visualization shows up as a Double Whitney
Umbrella (see Figure 1(b)). To this end, we fix the matrix

M̃ = M̃(x,y, t) :=

(
1− t 1

2
t

−1
2
t 1 + t

)
∈ R[x,y, t]2×2 with det(M̃) = 1− 3

4
t2.

For all t ∈ R we set

M (t) := M̃(x,y, t) =

(
1− t 1

2
t

−1
2
t 1 + t

)
∈ R[x,y]2×2, so that det(M (t)) = 1− 3

4
t2.

Clearly, det(M (t)) > 0 whenever |t| < 2
3

√
3, so that

(
ϕM(t) = ϕ(t)

)
t∈[0, 2

3

√
3[

is an isotopy of

U × P1-automorphisms. Thus for any blowup B = BlU(f) ∈ BlU(Z) we get a family(
B(t) := BlU(fM (t))

)
t∈]− 2

3

√
3, 2

3

√
3[

with B(t) ∈ BlU(Z) and B(t) ∼= B for all t ∈]− 2

3

√
3,

2

3

√
3[.
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With f0 = x2, f1 = y2 and f (t) := fM (t) we then have

Z := ZU(f (t)) = {0} for all t 6= ±2

3

√
3.

In Figure 5, the blowups B(t) are visualized by their images ι
(
B(t)

)
⊂ R3 for t =

0, 0.5, 1, 1.1, 1.25, 4. Remember that B = B(0) is the so-called Double Whitney
Umbrella.

Note that while passing from t = 1.1 to t = 1.25 (hence by passing through the critical
value t = 2

3

√
3) the embedded isomorphism type of B(t) swaps. Observe also, that the

exceptional fiber π
(−1)
U,f (t))

(0) = {0}×P1 of B(t) over 0 is visualized by the same circle for all

t 6= ±2
3

√
3 and that the corresponding set of limit points L0(B

(t)) is visualized by an arc
on this circle (compare Example 3.9 (B)). For t = 0 this arc is a half circle, whereas the
length of this arc converges to 0 if t→ ±2

3

√
3 - hence if the degenerate case is approached.

Near to the degeneration value t = 2
3

√
3 we enlarged the scale of our visualization in order

to improve the picture of the details. For that reason the coloring appears larger for the
last three values of t.

B(0) B(0.5) B(1)

B(1.1) B(1.25) B(4)

Figure 5. Deformation of a Double Whitney Umbrella
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3. Exceptional Fibers and Limit Points

Exceptional Fibers. In this section, we will have a closer look at the exceptional set
(1.4)(b) of a blowup. We keep the previous notations and hypotheses.

Definition 3.1. Let f = (f0, f1) ∈ R[x,y]2 be a pair which satisfies the requirement (1.1)
of the introduction. A point p ∈ Z is called superfluous with respect to f, if there are
polynomials g0, g1, h ∈ R[x,y] with f = hg and g(p) 6= 0. Observe, that in this situation
we may assume that h is a greatest common divisor of f0 and f1.

Lemma and Definition 3.2. Let B = BlU(f) ∈ BlU(Z) and let p ∈ Z. Then π−1U,f (p) is

called the exceptional fiber of B over p and it holds

(a) π−1U,f (p) = {p} × P1 if p is not a superfluous point with respect to f.

(b) π−1U,f (p) = {
(
p, (g0(p) : g1(p))

)
}, if p is a superfluous point with respect to f and

g0, g1 ∈ R[x,y] are as in Definition 3.1.

Proof. The homogeneous coordinate ring of A2
C × P1

C takes the form C[x,y, t0, t1] with
deg(x) = deg(y) = 0 and deg(t0) = deg(t1) = 1. Let g0, g0, h ∈ R[x,y] with f0 = hg0
and f1 = hg1, where h is a greatest common divisor of f0 and f1 in R[x,y] – and hence
in C[x,y]. For all q ∈ U it holds

(
f1(q)g0(q) − f0(q)g1(q)

)
h(q) = 0. Clearly, there is an

open neighborhood W ⊂ U of p, such that h(q) 6= 0 for all q ∈ W \ {p}. It follows that
f1(q)g0(q) − f0(q)g1(q) = 0 for all q ∈ R2. This means, that the Zariski closure B of the
open kernel B◦ := Bl◦U(f) in A2

C × P1
C is contained in the irreducible surface S ⊂ A2

C × P1
C

defined by the equation t1g0−t1g1 = 0. As the image of B◦ under the canonical projection
A2

C × P1
C −→ A2

C covers the set U \ Z, we have dim(B) ≥ 2 and it follows that B = S.
This implies that

π−1U,f (p) =
(
{p}×P1

)
∩ B̃ =

(
{p}×P1

)
∩S = {p}×{(t0 : t1) ∈ P1 | t1g0(p)− t0g1(p) = 0}.

As p is superfluous with respect to f if and only if g(p) 6= 0, we get our claim. �

As an immediate application we get the following result, which justifies to speak of
“superfluous points.”

Proposition 3.3. Let B = BlU(f) ∈ BlU(Z) and let S be the set of superfluous points
p ∈ Z with respect f. Then

(a) B ∈ BlU(Z \ S).
(b) If S = ∅, then π−1U,f (Z) = Z × P1.

Remark 3.4. Proposition 3.3 recommends to consider only blowups B = BlU(f) ∈
BlU(Z) without superfluous points with respect to f. All our examples will satisfy this

requirement, as we shall consider only pairs f = (f0, f1) ∈ R[x,y]2 whose greatest common
divisor has no zero in Z. In this situation we may always write (see (1.5)(a))

BlU(f) = Bl◦U(f) ∪̇ (Z × P1).
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Limit Points. Let B = BlU(f) ∈ BlU(Z) and let B◦ be the open kernel of B. In

some sense, it is more natural to consider instead of B the closure B◦ of the open kernel
with respect of the standard topology. As the standard topology is finer than the Zariski
topology, this leads to the problem to determine the points in the exceptional set of B
which are accumulation points of B◦, hence to determine the set Lp(B) of limit points
of B above each p ∈ Z. We have mentioned these sets of limit points already in the
introduction (see (1.13)). We now will have a closer look at them.

Definition and Remark 3.5. (A) Let f = (f0, f1) ∈ R[x,y]2 be a pair which satisfies
the requirement (1.1) of the introduction and consider the blowup B = BlU(f) ∈ BlU(Z),
its open kernel B◦ = Bl◦U(f) and fix a point p ∈ Z. A point

q = (p, s) ∈ π−1U,f (p) ∈ {p} × P1

is called a limit point of B above p, if it is a point of accumulation of B◦. As in the
introduction, we write Lp(f) or Lp(B) for the set of these points, hence:

Lp(B) := {(p, s) | ∃
(
pn
)
n∈N ⊂ U \ Z with limn→∞pn = p, limn→∞

(
f0(pn) : f1(pn)) = s}.

(B) Observe that the closure of B◦ with respect to the standard topology can be written
in the form

B◦ = B◦ ∪̇
⋃
p∈Z

Lp(B).

In the sequel, we restrict ourselves to treat a particular case, which is sufficient to
understand our examples.

Notation 3.6. (A) Let f ∈ R[x,y] and let p = (x, y) ∈ R. For each i ∈ N0 we consider
the i-th term in the Taylor expansion

f [i,p] = f [i,p](x,y) :=
i∑

j=0

∂if

∂xj∂yi−j
(x, y)(x− x)j(y − y)i−j

of f around p and the multiplicity

multp(f) := min{m ∈ N0 | f [m,p] 6= 0}

of f in p.

(B) Let % ∈ Q(w) be a real rational function. We write Im(%) for the closure of the set
%
(
R \ Pole(%)

)
in R ∪ {±∞} where Pole(%) denotes the set of poles of %.

Proposition 3.7. Let f = (f0, f1) ∈ R[x,y]2 be as in (1.1) of the introduction and
consider the blowup B = BlU(f) ∈ BlU(Z). Let p = (x, y) ∈ Z, and assume that

multp(f0) = multp(f1) =: m and that f
[m,p]
0 and f

[m,p]
1 have no common linear factor.
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Consider the rational function %(w) :=
f
[m,p]
0 (1+x,w+y)

f
[m,p]
1 (1+x,w+y)

∈ Q(w). Then

Lp(B) = {p} × {
( 1√

1 + τ 2
:

τ√
1 + τ 2

)
| τ ∈ Im(%)} =

= {p} × {
(
cos(α) : sin(α)

)
| −π

2
< α ≤ π

2
and tan(α) ∈ Im(%)}.

In particular, Lp(B) is a closed segment of the projective line {p} × P1, visualized under
the map ι of (1.12) by the closed arc

ι
(
Lp(B)

)
= {
(
x, (r − y)cos(β), (r − y)sin(β) | −π ≤ β ≤ π and tan(

β

2
) ∈ Im(%)}

on the circle

ι({p} × P1) = {(x, (r − y)cos(β), (r − y)sin(β) | −π ≤ β ≤ π}.

Proof. We may assume that p = 0 := (0, 0) so that f
[i,0]
0 , f

[i,0]
1 ∈ R[x,y]i for all i ∈ N.

It suffices to prove the first equality (see also (1.13) (c)). We set

S := {
( 1√

1 + τ 2
:

τ√
1 + τ 2

)
| τ ∈ Im(%)}.

It remains to show that L0(B) = {0} × S. Let C := {(u, v) ∈ R2 | u2 + v2 = 1}. As f
[m,0]
0

and f
[m,0]
1 have no common linear factor it holds

{
(
f
[m,1]
0 (q) : f

[m,0]
1 (q)

)
| q ∈ C} = S.

Let s ∈ P1 with (0, s) ∈ L0(B) and let
(
pn
)
n∈N be a sequence in U \Z with limn→∞pn = 0

and limn→∞
(
f0(pn) : f1(pn)

)
= s. For all n ∈ N we may write pn = rnqn with rn ∈ R>0

and qn ∈ C. Clearly limn→∞rn = 0. As C is compact, we may replace
(
pn
)
n∈N by an

appropriate subsequence and hence assume that limn→∞qn = q for some q ∈ C. Keep in
mind, that for all n ∈ N we have (

f0(pn) : f1(pn)
)

=

=
(
f
[m,0]
0 (qn) + rn

∑
i>m0

ri−m−1n f
[i,0]
0 (qn) : f

[m,0]
1 (qn) + rn

∑
i>m1

ri−m−1n f
[i,0]
1 (qn)

)
.

This yields that s =
(
f
[m,0]
0 (q) : f

[m,0]
1 (q)

)
∈ S and hence proves that Lp(B) ⊆ {p} × S.

The converse inclusion is immediate. �

Remark 3.8. If multp(f0) 6= multp(f1), or if multp(f0) = multp(f1) =: m and f
[m,p]
0 and

f
[m,p]
1 have a common linear factor, the set Lp(B) may behave more complicated. But in

the present paper, we shall not consider such examples.

Example 3.9. (A) Keep the notations and hypotheses of Proposition 3.7. It holds:

If rank(∂f)(p) = 2, then Lp(B) = π−1U,f (p) = {p} × P1.
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Indeed, if rank(∂f)(p) = 2 we have multp(f0) = multp(f1) = 1 and f
[1,p]
0 and f

[1,p]
1 have no

common linear factor and hence the rational function %(w) :=
f
[m,p]
0 (1+x,w+y)

f
[m,p]
1 (1+x,w+y)

is fractional

linear, so that Im(%) = R ∪ {±∞} and hence {
(

1√
1+τ2

: τ√
1+τ2

)
| τ ∈ Im(%)} = P1.

(B) We consider the blowup of Example 2.3 visualized in Figure 5 as a deformed double
Whitney Umbrella:

B(t) = BlU
(
f
(t)
0 = (1−t)x2− t

2
y2, f

(t)
1 =

t

2
x2+(1+t)y2

)
∈ BlU

(
{0}
)

with t ∈ R\{±2

3

√
3}

and the corresponding rational function

%(w) :=
f
[m,0]
0 (1,w)

f
[m,0]
1 (1,w)

=
2(1− t)− tw2

t+ (2 + 2t)w2
∈ Q(w).

In this case on use of Proposition 3.7 and Proposition 3.3 we obtain that

ι
(
Lp(B)

)
= {
(
0, rcos(β), rsin(β) | −π ≤ β ≤ π and tan(

β

2
) ∈ Im(%)}

is a closed arc of variable length λ(t) ≤ π
2

on the circle

ι
(
π−1U,f (0)

)
= ι
(
0× P1

)
= {
(
0, rcos(β), rsin(β) | −π ≤ β ≤ π}

with limt→± 2
3

√
3 λ(t) = 0.

4. Structure and Classification of Regular Embedded Blowups

Structure of Regular Embedded Blowups. We begin this section with the following
structure result for regular blowups.

Proposition 4.1. Let B ∈ BlregU (Z). Then

(a) For all p ∈ Z the set of limit points of B above p coincides with the exceptional
fiber of B above p, hence

Lp(B) = π−1U,f (p) = {p} × P1 and B = B◦∪̇(Z × P1).

(b) B is a smooth real algebraic hyper-surface in U × P1.

Proof. Statement (a) is clear by Example 3.9 (A). To prove statement (b), let f =

(f0, f1) ∈ R[x,y]2 be a regular pair on U with respect to Z, such that B = BlU(f)
and consider the polynomial

h := vf0(x,y)− uf1(x,y) ∈ R[x,y,u,v].

If (x, y) ∈ U \ Z and (u : v) ∈ P1 it holds h(x, y, u, v) = 0 if and only if
(
(x, y), (u : v)

)
∈

B◦. By statement (a) it follows that

{((x, y), (u : v)) ∈ U × P1 | h(x, y, u, v) = 0} = B.
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It remains to show, that(∂h
∂x

(x, y, u, v),
∂h

∂y
(x, y, u, v),

∂h

∂u
(x, y, u, v),

∂h

∂v
(x, y, u, v)

)
6= 0,

whenever
(
(x, y), (u : v)

)
∈ B. As ∂h

∂u
= −f1 and ∂h

∂v
= f0, this is clear if p := (x, y) /∈ Z.

If p ∈ U, we have rank
(
(∂f)(p)

)
= 2 and (u, v) 6= (0, 0) shows that(∂h

∂x
(x, y, u, v),

∂h

∂y
(x, y, u, v)

)
=
(
v
∂f0
∂x

(p)− u∂f1
∂x

(p), v
∂f0
∂y

(p)− u∂f1
∂y

(p)
)
6= 0.

�

Reduced and Strongly Regular Pairs and Application to Sign Distributions.
The remaining part of this section is devoted to the Isomorphy Criterion mentioned in
(1.19) and hence to the solution of the Classification Problem (1.0)(b) for regular embed-
ded blowups. We first will introduce two special types of regular pairs of polynomials and
relate these to the sign distribution map which was mentioned already in (1.16).

Lemma and Definition 4.2. Let B ∈ BlregU (Z). Then, there is a regular pair f =

(f0, f1) ∈ R[x,y]2, with respect to Z on U, unique up to multiplication with a non-zero
constant – and called a reduced regular pair for B – such that

(a) f0 and f1 have no common divisor.
(b) BlU(f) = B.

(c) If g = (g0, g1) ∈ R[x,y]2 is a regular pair with respect to Z on U with B = BlU(g),
then there is a unique polynomial h ∈ R[x,y] such that g = hf. Moreover, in this
situation
(1) h(p) 6= 0 for all p ∈ U.
(2) sgn

(
det(∂g(p))

)
= sgn

(
det(∂f(p))

)
for all p ∈ Z.

Proof. We write B = BlU(g) where g ∈ R[x,y]2 is a regular pair with respect to Z on U .

Let h ∈ R[x,y] be a greatest common divisor of g0 and g1 and let f = (f0, f1) ∈ R[x,y]2

be such that gi = hfi for i = 0, 1. The Leibniz product rule for derivatives gives

(@) ∂g = ∂(hf) = h∂f +

f0 ∂h∂x f1
∂h
∂x

f0
∂h
∂y

f1
∂h
∂y

 .

Our immediate aim is to show that h(p) 6= 0 for all p ∈ U. If we assume to the contrary
that h(p) = 0 for some p ∈ U, by g = hf, it would follow that p ∈ Z. But then by (@) the
matrix ∂g(p) would be of rank 1, which contradicts the fact that g is regular with respect
to Z on U.
Now, another use of (@) gives that f is a regular pair with respect to Z on U. Moreover,

it follows that the two maps εU,f and εU,g of (1.2) from U \ Z to P1 coincide, so that

Bl◦U(f) = Bl◦U(g) (see (1.5)(a)), and hence (see (1.6)(a)) BlU(f) = BlU(g) = B. Clearly f0
and f1 have no common divisor. Finally, a further use of (@) shows that sgn

(
det(∂g(p))

)
=

sgn
(
det(∂f(p))

)
for all p ∈ Z, and this completes our proof. �
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Definition and Remark 4.3. Let B ∈ BlregU (Z) and let p ∈ Z. We write B = BlU(g),

where g ∈ R[x,y]2 is a regular pair with respect to Z on U. Then, by Lemma 4.2 (c) it

is immediate, that sgn
(
det(∂g(p))

)
depends only on the blowup B and not on the chosen

defining pair g. This allows to define a map (see (1.16)

sgnB : Z −→ {±1} given by p 7→ sgn
(
det(∂f(p))

)
for all p ∈ Z.

We call this map the sign distribution of B.

Definition and Remark 4.4. (A) Let Z = {pi = (xi, yi) | i = 1, 2, . . . , n} ⊂ U, (pi 6= pj
for all i 6= j). A pair f = (f0, f1) ∈ R[x,y]2 is called strongly regular with respect to Z (on
U), if it satisfies the following equivalent requirements:

(i) C[x,y]f0 + C[x,y]f1 =
⋂n
i=1

(
C[x,y](x− xi) + C[x,y](y − yi)

)
.

(ii) C[x,y]f0 + C[x,y]f1 = IA2(Z) := {f ∈ C[x,y] | f(Z) = 0}.
(B) Assume that f ∈ R[x,y]2 is a strongly regular pair with respect to Z. Then, it is

easy to see:

(a) f is a regular pair with respect to Z on U in the sense of (1.14).
(b) f is a reduced regular pair for B := BlU(f) in the sense of Lemma and Defini-

tion 4.2.
(c) R[x,y]f0 + R[x,y]f1 = IR2(Z) := {g ∈ R[x,y] | g(Z) = 0}.

Lemma 4.5. Let n > 0, let Z := {p1, p2, . . . , pn} a set of pairwise different points with
pi := (xi, yi) ∈ U for i = 1, 2, . . . , n. Let χ : Z −→ R \ {0} be a map. Then, there is a
strongly regular pair f = (f0, f1) ∈ R[x,y]2 with respect to Z such that det

(
∂f(p)

)
= χ(p)

for all p ∈ Z.

Proof. After a linear change of coordinates, we may assume that xi 6= xj for all i, j ∈
{1, 2, . . . , n} with i 6= j. We set

f0 =:
n∏
i=1

(x− xi) ∈ R[x] and f1 = h(x)
(
y − g(x)

)
,

where g(x), h(x) ∈ R[x] are the uniquely determined polynomials of degree ≤ n−1 which
respectively satisfy

g(xi) = yi and h(xi) =
χ(pi)∏

j 6=i(xi − xj)
for all i = 1, 2, . . . , n.

Observe also, that

∂f0
∂x

(pi) =
∏
j 6=i

(xi − xj) and
∂f1
∂y

(pi) = h(xi) for all i = 1, 2, . . . , n.
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Now, for all i = 1, 2, . . . , n we obtain:

det
(
∂f(pi)

)
= det

∂f0
∂x

(pi)
∂f1
∂x

(pi)

∂f0
∂y

(pi)
∂f1
∂y

(pi)

 =

= det

∏j 6=i(xi − xj)
∂
(
h(x)(y−g(x))

)
∂x

(pi)

0 h(xi)

 = χ(pi).

Therefore det
(
∂f(pi)

)
= χ(pi) for all i = 1, 2, . . . , n.

It is immediate to see, that Z = {p1, p2, . . . , pn} is precisely the set of common zeros of the
two polynomials f0, f1 ∈ C[x,y] in C2. As det

(
∂f(pi)

)
= χ(pi) 6= 0 for all i ∈ {1, 2 . . . , n}

it follows, that C[x,y]f0 + C[x,y]f1 is the vanishing ideal IA2
C
(Z) of Z in C[x,y]. So f is

strongly regular with respect to Z on U. �

The Classification Result. Now we will establish the Isomorphy Criterion we are
heading for in this section, and hence solve the Classification Problem mentioned under
(1.0) (b). We first shall prove two auxiliary results.

Lemma 4.6. Let f = (f0, f1), g = (g0, g1) ∈ R[x,y]2 be two pairs such that ZU(f) =

ZU(g) = Z. Let N ∈ R[x,y]2×2 such that g = fN. Moreover, for each γ ∈ R[x,y] we set

Nγ := N + γ

(
g1f1 −g0f1
−g1f0 g0f0

)
.

Then, it holds

(a) Nγ(p) = N(p) for all p ∈ Z.
(b) g = fNγ.

(c) det(Nγ) = det(N) + γ
(
g20 + g21

)
.

(d) If det
(
N(p)

)
> 0 for all p ∈ Z, then, there is some b ∈ R>0 such that det

(
Nγ(p)

)
>

0 for all p ∈ U and all γ ∈ R[x,y] with inf{γ(p) | p ∈ U} > b.

Proof. Statements (a) and (b) are immediate. To prove statement (c) we write

N =

(
N11 N21

N12 N22

)
On use of the column bi-linearity of the determinant and as

det

(
f1 N21

−f0 N22

)
= g1 and det

(
N11 −f1
N12 f0

)
= g0,
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we get indeed

det(Nγ) = det
(
N + γ

(
g1f1 −g0f1
−g1f0 g0f0

))
= det

(
N11 + γg1f1 N21 − γg0f1
N12 − γg1f0 N22 + γg0f0

)
=

= det

(
N11 N21

N12 N22

)
+ det

(
γg1f1 N21

−γg1f0 N22

)
+

+ det

(
N11 −γg0f1
N12 γg0f0

)
+ det

(
γg1f1 −γg0f1
−γg1f0 γg0f0

)
=

= det(N) + γg1det

(
f1 N21

−f0 N22

)
+ γg0det

(
N11 −f1
N12 f0

)
+ 0 =

= det(N) + γg21 + γg20 = det(N) + γ
(
g20 + g21

)
.

It remains to show statement (d). So, assume that det
(
N(p)

)
> 0 for all p ∈ Z. We have

to show that there is some constant b ∈ R>0 such that det
(
Nγ(p)

)
> 0 for all p ∈ U and

all constants γ > b. As det
(
N(p)) > 0 for all p ∈ Z, there is some open set W ⊂ U such

that Z ⊂ W and det
(
N(p)) > 0 for all p ∈ W. It follows by statement (a) and (c) that

det
(
Nγ(p)) > 0 for all p ∈ W and all γ > 0.

As U is bounded and ZR2(g) does not contain any points of the boundary of U it follows

that there is some c > 0 such that g0(p)
2 + g1(p)

2 > c for all p ∈ U \W. As U is bounded,
there is some C > 0 such that det

(
N(p)

)
≥ −C for all p ∈ U . If γ > b := C

c
it follows

that

det
(
Nγ(p)

)
≥ det

(
N(p)

)
+B

(
g0(p)

2 + g1(p)
2
)
> 0 for all p ∈ U \W,

and hence det
(
Nγ(p)

)
> 0 for all p ∈ U. �

Lemma 4.7. Let f = (f0, f1), g = (g0, g1) ∈ R[x,y]2 be two pairs of polynomials such that
f is strongly regular with respect Z and g is regular with respect to Z on U and consider
the two blowups B := BlU(f), C := BlU(g) ∈ BlregU (Z). Then, the following statements
are equivalent:

(i) sgnC = sgnB.
(ii) There is a matrix M ∈ R[x,y]2×2 such that det

(
M(p)

)
> for all p ∈ U and

g = fM.

Proof. : (ii) ⇒ (i): This is immediate.
(i) ⇒ (ii): Assume that statement (i) holds. As g0, g1 ∈ IR2(Z), it follows by Definition
and Remark 4.4(B)(c), that there is a matrix

N =

(
N11 N21

N12 N22

)
=

(
N•1
N•2

)
∈ R[x,y]2×2 with g = fN.

By our assumption we have sgn
(
det(∂g(p))

)
= sgnC(p) = sgnB(p) = sgn

(
det(∂f(p))

)
for

all p ∈ Z. Moreover, by the Leibniz product rule for derivatives we have

(@@) ∂g = ∂(fN) = ∂f ·N + f0 · ∂N•1 + f1 · ∂N•2.
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As f(Z) = 0 it follows that det(∂g(p)) = det(∂f(p)) ·det
(
N(p)

)
and hence det

(
N(p)

)
> 0

for all p ∈ Z. Now, by Lemma 4.6 (c), there is some γ ∈ R>0 such that the matrix
M := Nγ ∈ R[x,y]2×2 satisfies det

(
M(p)

)
> 0 for all p ∈ U. Moreover, Lemma 4.6 (b)

yields that g = fM. �

Now, we are ready to formulate and to prove the main result of this section.

Theorem 4.8. (Classification of Regular Embedded Blowups)

(a) For each function σ : Z −→ {+1,−1} there is a regular embedded blowup B ∈
BlregU (Z) such that sgnB = σ.

(b) Let B,C ∈ BlregU (Z). Then B ∼= C if and only if sgnB = sgnC .
(c) There are precisely 2#Z isomorphism types of regular embedded blowups of U along

Z.

Proof. (a): By Lemme 4.5 there is a strongly regular pair f ∈ R[x,y]2 with respect to Z

such that det
(
∂f(p)

)
= σ(p) for all p ∈ Z. It suffices to chose B = BlU(f).

(b): We may write B = BlU(g), where g ∈ R[x,y] is a regular pair of polynomials with
respect to Z on U.
Assume first that B and C are oriented embedded isomorphic, more precisely, that
C = ϕ(B) for some automorphism ϕM : U × P1 −→ U × P1 with M ∈ R[x,y]2×2

and det
(
M(p)

)
> 0 for all p ∈ U. Then we may write C = BlU(gM). By the product rule

for derivatives (see (@@), Proof of Lemma 4.7), as g(Z) = 0 and as det(M(p)) > 0 for all
p ∈ U, we now obtain

sgnC(p) = sgn
(
det[∂(gM)(p)]

)
= sgn

(
det[(∂g)(p)M(p)]

)
=

= sgn
(
det[∂g(p)]det[M(p)]

)
= sgn

(
det[∂g(p)]

)
=

= sgnB(p) for all p ∈ Z.
It follows that indeed sgnC = sgnB.
Assume conversely, that sgnC = sgnB. By Lemma 4.5 there is a strongly regular pair f ∈
R[x,y]2 with respect to Z on U such that det

(
∂f(p)

)
= sgnB(p) = sgnC(p) for all p ∈ Z.

By Lemma 4.7 there is a matrix M ∈ R[x,y]2×2 such that det
(
M(p)

)
> 0 for all p ∈ U

and g = fM. But this means, that D := BlU(f) ∼= B. Similarly we see, that D ∼= C. So
B and C are embedded isomorphic.

(c): This is clear by statements (a) and (b). �

Remark 4.9. (A) The classification result Theorem 4.8 has been shown in the Master
thesis [8], but remained unpublished yet.

(B) It should be observed, that Theorem 4.8 applies also in the degenerate case Z = ∅.
It says that for each B ∈ BlregU (∅) it holds B ∼= BlU(1), with 1 := (1, 1) ∈ R[x,y]2.

5. Deformation of Matrices and Isotopies of Embedded Blowups

Analytic Matrix Deformations. In this section, we approach the deformation Problem
(1.0)(a) mentioned in the introduction We shall prove the Deformation Result (1.23). As
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already mentioned in the introduction, this means that we have to prove the result on
polynomial deformations of matrices mentioned in (1.24). We first prove a result on real
analytic deformation of matrices.

Notation and Remark 5.1. (A) Let Cω(U) denote the ring of real analytic functions
on U . We chose a matrix

M = (M•1 M•2) =

(
M11 M12

M21 M22

)
∈ Cω(U)2×2 with det

(
M(p)

)
> 0 for all p ∈ U,

where

M•1 :=

(
M11

M21

)
and M•2 :=

(
M12

M22

)
denote the column vectors of M. We fix a point p0 in U. As U is path-wise simply con-
nected, there are uniquely determined continuous functions αM , βM ∈ C(U) such that (see
[7])

0 ≤ αM(p0), βM(p0) ≤ 2π

and

M•1(p) = ‖M•1(p)‖
(

cos(αM(p))
sin(αM(p))

)
, M•2(p) = ‖M•2(p)‖

(
cos(βM(p))
sin(βM(p))

)
, for all p ∈ U.

Observe, that in particular we have

det
(
M(p)

)
= ‖M•1(p)‖ · ‖M•2(p)‖ · sin

(
βM(p)− αM(p)

)
6= 0 for all p ∈ U.

Now, by continuity it follows that

(a) 0 < βM(p)− αM(p) < π for all p ∈ U.
For all p, q ∈ U and each smooth path σ : [0, 1] −→ U with σ(0) = p and σ(1) = q we

have

αM(q)− αM(p) =

∫ 1

0

M•1
‖M•1‖

(
σ(t)

)
∧ d

dt

[ M•1
‖M•1‖

(
σ(t)

)]
dt,

βM(q)− βM(p) =

∫ 1

0

M•2
‖M•2‖

(
σ(t)

)
∧ d

dt

[ M•2
‖M•2‖

(
σ(t)

)]
dt.

This allows to conclude:

(b) αM , βM ∈ Cω(U).

(B) Keep the notations and hypotheses of part (A). For each t ∈ [0, 1] and each p ∈ U
we set

M
(t)
11 (p) :=

[
(1− t) + t‖M•1‖

]
· cos

(
tαM(p)

)
,

M
(t)
21 (p) :=

[
(1− t) + t‖M•1‖

]
· sin

(
tαM(p)

)
,

M
(t)
12 (p) :=

[
(1− t) + t‖M•2‖

]
· cos

(
(1− t)π

2
+ tβM(p)

)
,

M
(t)
22 (p) :=

[
(1− t) + t‖M•2‖

]
· sin

(
(1− t)π

2
+ tβM(p)

)
,
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and consider the matrices

M (t) :=

(
M

(t)
11 M

(t)
12

M
(t)
21 M

(t)
22

)
∈ C(U)2×2,

(
t ∈ [0, 1]

)
.

For all t ∈ [0, 1] and all p ∈ U we obtain:

det
(
M (t)(p)

)
=

=
[
(1− t) + t‖M•1(p)‖

]
·
[
(1− t) + t‖M•2(p)‖

]
· sin

(
(1− t)π

2
+ t[βM(p)− αM(p)]

)
.

Moreover 0 < βM(p)− αM(p) < π (see statement (a) of Part (A)) implies

0 < (1− t)π
2

+ t[βM(p)− αM(p)] < (1− t)π
2

+ tπ =
π

2
+ t

π

2
≤ π.

So, in view of statement (b) of part (A) we can say:

(a) M (t) ∈ Cω(U)2×2 and det
(
M (t)(p)

)
> 0 for all t ∈ [0, 1] and all p ∈ U.

Now, we solve our deformation problem for matrices with analytic entries.

Proposition 5.2. Let M ∈ Cω(U)2×2 such that det
(
M(p)

)
> 0 for all p ∈ U. Then

the family
(
M (t)

)
0≤t≤1 of Notation and Remark 5.1 is an analytic family of matrices in

Cω(U)2×2, with positive determinant on U, which connects the unit matrix 12×2 with the
matrix M. More precisely

(a) M (t) ∈ Cω(U)2×2 and det
(
M (t)(p)

)
> 0 for all t ∈ [0, 1] and all p ∈ U.

(b) M (0) = 12×2 and M (1) = M.

(c) The map M̃ : U × [0, 1] −→ R2×2, given by (p, t) 7→ M (t)(p), is continuous and
analytic on the open set U×]0, 1[.

Proof. (a): This is immediate by Notation and Remark 5.1 (B)(a).
(b): This is obvious by the definition of the Matrices M (t).

(c): This follows easily from the definition of the functions p 7→ M
(t)
ij (p) (see Notation

and Remark 5.1 (B)) and statement (b) of Notation and Remark 5.1 (A). �

Polynomial and Rational Matrix Deformations. We now attack the case of poly-
nomial or rational matrix deformations. We begin with the following auxiliary result.

Lemma 5.3. Let K ⊂ R2 be a non-empty compact set. Let P,Q ∈ R[x,y] be two
polynomials and let F : K×[0, 1] −→ R be a continuous function such that F (p, 0) = P (p)

and F (p, 1) = Q(p) for all p ∈ K. Let ε > 0. Then, there is a polynomial P̃ ∈ R[x,y, t]
such that

(a) |F (p, t)− P̃ (p, t)| < ε for all p ∈ K and all t ∈ [0, 1].

(b) P (p) = P̃ (p, 0) and Q(p) = P̃ (p, 1) for all p ∈ K.

Proof. By the Theorem of Stone-Weierstrass (see [4] (7.4.1)) there is a polynomial P ∈
R[x,y, t] such that

|F (p, t)− P (p, t)| < ε

2
for all p ∈ K and all t ∈ [0, 1].
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Now, set

P̃ (x,y, t) := P (x,y, t) + (1− t)
(
P (x,y)− P (x,y, 0)

)
+ t
(
Q(x,y)− P (x,y, 1)

)
.

It is easy to see that P̃ has the requested properties. �

Proposition 5.4. Let M,N ∈ R[x,y]2×2 such that det
(
M(p)

)
> 0 and det

(
N(p)

)
> 0

for all p ∈ U. Then, the matrix N is connected on U to M by a polynomial family of
polynomial 2× 2-matrices with positive determinant on U. More precisely:
There is a matrix

P̃ =

(
P̃11 P̃12

P̃21 P̃22

)
∈ R[x,y, t]2×2

such that with P (t)(x,y) := P̃ (x,y, t) for all t ∈ R we have:

(a) P (0)(p) = N(p) for all p ∈ U.
(b) P (1)(p) = M(p) for all p ∈ U.
(c) det

(
P (t)(p)

)
> 0 for all p ∈ U and all t ∈ [0, 1].

Proof. Observe that the closed set

S := {p ∈ R2 | det
(
(M(p)

)
≤ 0 or det

(
N(p)

)
≤ 0}

is disjoint to U. We thus find a bounded open star-shaped set W such that U ⊂ W and
W ∩S = ∅. Now, clearly M,N ∈ R[x,y]2×2 with det

(
M(p)

)
, det

(
N(p)

)
> 0 for all p ∈ W.

According to Proposition 5.2 we have two continuous maps

M̃ =

(
M̃11 M̃12

M̃21 M̃22

)
: W × [0, 1] −→ R2×2 with det

(
M̃(p, t)

)
> 0, for all (p, t) ∈ W × [0, 1],

Ñ =

(
Ñ11 Ñ12

Ñ21 Ñ22

)
: W × [0, 1] −→ R2×2 with det

(
Ñ(p, t)

)
> 0, for all (p, t) ∈ W × [0, 1],

such that

M̃(p, 0) = 12×2, and M̃(p, 1) = M(p), for all p ∈ W,

Ñ(p, 0) = 12×2, and Ñ(p, 1) = N(p), for all p ∈ W.
Now, for all i, j ∈ {1, 2} we consider the continuous functions

F̃ij : W × [0, 1] −→ R F̃i,j(p, t) :=

{
Ñij(p, 1− 2t) if t ∈ [0, 1

2
]

M̃ij(p, 2t− 1) if t ∈ [1
2
, 1]

and the matrix

F̃ :=

(
F̃11 F̃12

F̃21 F̃22

)
∈ C(W × [0, 1])2×2.

Then F̃ (p, 0) = N(p), F̃ (p, 1) = M(p) and det
(
F̃ (p, t)

)
> 0 for all p ∈ W and all t ∈ [0, 1].

As U ⊂ W is compact, there are c, δ > 0 such that for all i, j ∈ {1, 2}, all p ∈ U and all
t ∈ [0, 1] it holds

−c ≤ F̃ij(p, t) ≤ c and det
(
F̃ (p, t)

)
> δ.
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As the map det : R4 −→ R is uniformly continuous on any compact subset of R4 we find
some ε > 0 such that:

(1) |det
(
F̃ (p, t)

)
− det

(
m11 m12

m21 m22

)
| < δ

2
for all p ∈ U , all t ∈ [0, 1] and all mij ∈ R

with |mij − F̃ij(p, t)| < ε (i, j ∈ {1, 2}).
Now, we apply Lemma 5.3 to the four continuous functions F̃ij : U × [0, 1] −→ R and

obtain four polynomials P̃ij ∈ R[x,y, t], such that for all i, j ∈ {1, 2} we have:

(2) |F̃ij(p, t)− P̃ij(p, t)| < ε for all p ∈ U and all t ∈ [0, 1],

(3) Nij(p) = F̃ij(p, 0) = P̃ij(p, 0) for all p ∈ U and

(4) Mij(p) = F̃ij(p, 1) = P̃ij(p, 1) for all p ∈ U.
We set

P̃ :=

(
P̃11 P̃12

P̃21 P̃22

)
.

Then, the above statements (1) and (2) yield that

|det
(
F̃ (p, t)

)
− det

(
P̃ (p, t)

)
| < δ

2
for all p ∈ U and all t ∈ [0, 1],

so that

det
(
P (t)(p)

)
= det

(
P̃ (p, t)

)
>
δ

2
> 0 for all p ∈ U and all t ∈ [0, 1].

By the above statements (3) and (4) we obtain

P (0)(p) = P̃ (p, 0) = N(p) and P (1)(p) = P̃ (p, 1) = M(p) for all p ∈ U.

Altogether, this proves our claim. �

Remark 5.5. As an immediate consequence we now get the result announced in the
introduction under (1.24).

Remark 5.6. As early as 2002, the first named author did ask for the existence of a
connecting family (M (t))t∈[0,1] as in Proposition 5.4 – but only continuous, not polynomial
– at the occasion of a talk he gave at the IIT Bombay. A few weeks after this, A.R. Shastri
[14] suggested a proof for the existence of a piecewise linear connecting family (M (t))t∈[0,1].
The authors are grateful to him for his hint. Clearly, instead of Proposition 5.2 one also
could use Shastri’s result to prove Proposition 5.4.

As an easy consequence of the above proposition we now get:

Corollary 5.7. Let M =

(
M11 M12

M21 M22

)
∈ R(x,y)2×2 be such that none of its entries

Mij, (i, j ∈ {1, 2}) has a pole in U, and such that det
(
M(p)

)
> 0 for all p ∈ U.

Then, the unit matrix 12×2 is connected over U to M by a rational family of 2×2-matrices
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which are defined and of positive determinant on U . More precisely:
There is a matrix

Q̃ =

(
Q̃11 Q̃12

Q̃21 Q̃22

)
∈ R(x,y, t)2×2

such that no Q̃ij has a pole on U and such that, with Q(t)(x,y) := Q̃(x,y, t), ( for all t ∈
R) :

(a) Q(0) = 12×2.
(b) Q(1)(p) = M(p) or all p ∈ U.
(c) det

(
Q(t)(p)

)
> 0 for all p ∈ U and all t ∈ [0, 1].

Proof. The closed set

P :=
⋃

1≤i,j≤2)

Pole(Mij) ∪ {p ∈ R2 | det
(
(M(p)

)
≤ 0}

is disjoint to U. We thus find a bounded open star-shaped set W such that U ⊂ W
and W ∩ P = ∅. So, none of the four entries Mij of M has a pole in W and moreover
det
(
M(p)

)
> 0 for all p ∈ W. As W is path-wise connected and by taking common

denominators we find

H ∈ R[x,y]2×2 and G ∈ R[x,y] with G(p) > 0 and M(p) =
H(p)

G(p)
for all p ∈ W.

In particular we have det
(
G(p)12×2) > 0 and det

(
H(p)

)
> 0 for all p ∈ W, hence for all

p ∈ U. By Proposition 5.4 there is a matrix P̃ ∈ R[x,y, t]2×2 such that

(1) P̃ (p, 0) = G(p)12×2 for all p ∈ U ;

(2) P̃ (p, 1) = H(p) for all p ∈ U ;

(3) det
(
P̃ (p, t)

)
> 0 for all p ∈ U and all t ∈ [0, 1].

Now, with Q̃ := P̃
G

we get our claim. �

Matrix Deformations Linear in Time. A particular simple case occurs if one can

deform the unit matrix 12×2 to the matrix M of Corollary 5.7 by a family
(
Q̃(t)

)
t∈[0,1]

which is linear t. The following Remark is devoted to this situation.

Remark 5.8. Let M(x,y) = M =

(
M11 M12

M21 M22

)
∈ R(x,y)2×2 be such that none of its

entries Mij, (i, j ∈ {1, 2}) has a pole in U and such that det
(
M(p)

)
> 0 for all p ∈ U.

Then the unit matrix 12×2 can be deformed to M = M (1) by a family(
M (t) = M (t)(x,y) := M̃(x,y, t)

)
t∈[0,1]

which is linear in t if and only if the matrix

M̃ = M̃(x,y, t) := tM(x,y) + (1− t)12×2 ∈ Q(x,y, t)2×2
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satisfies det
(
M(x, y)(t)

)
= det

(
M̃(x, y, t)

)
> 0 for all p = (x, y) ∈ U, and for all t ∈ [0, 1],

hence if and only if(
det(M(p))− tr(M(p)) + 1

)
t2 +

(
tr(M(p))− 2

)
t+ 1 > 0, for all p ∈ U and all t ∈ [0, 1].

This holds in particular, if the occurring quadratic polynomial in t has no real zero, hence
if its discriminant D(p) satisfies

D(p) = tr
(
M(p)

)2 − 4det
(
M(p)

)
< 0 for all p ∈ U.

Isotopies of Embedded Blowups. As an application of Proposition 5.4 we now prove
the result on the deformation of regular embedded blowups by means of isotopies men-
tioned in (1.23).

Theorem 5.9. Let B,C ∈ BlU(Z) be such that B ∼= C. Then, B and C are connected
by an isotopy of U × P1-automorphisms. More precisely, there is a matrix

M̃ =

(
M̃11 M̃12

M̃21 M̃22

)
∈ R[x,y, t]2×2

such that with M (t)(x,y) := M̃(x,y, t)
(

for all t ∈ R) it holds

(a) det
(
M (t)

)
> 0 for all p ∈ U (and hence ϕ(t) := ϕM(t) is an automorphism of

U × P1) for all t ∈ [0, 1].
(b) ϕ(0)(B) = B and ϕ(1)(B) = C.

Proof. Let f ∈ R[x,y]2 be such that ZU(f) = Z. As B ∼= C we find some matrix N ∈
R[x,y]2×2 with det

(
N(p)

)
> 0 for all p ∈ U and such that, with (g0, g1) = g := fN, it

holds C = BlU(g) (see (1.15)). Now, we chose γ ∈ R>0 and consider the matrix

M := Nγ = N + γ

(
g1f1 −g0f1
−g1f0 g0f0

)
of Lemma 4.6. Then, by statements (b), (c) and (d) of that Lemma and as g0 and g1
have no common zero on the boundary of U, it follows that for γ large enough we have
det
(
M(p)) > 0 for all p ∈ U and g = fM.

But now Proposition 5.4 yields that there is a matrix M̃ ∈ R[x,y, t]2×2 such that, with

M (t)(x,y) := M̃(x,y, t), it holds

(1) M (0)(p) = 12×2 for all p ∈ U ;
(2) M (1)(p) = M(p) for all p ∈ U ;
(3) det

(
M (t)(p)

)
> 0 for all p ∈ U and all t ∈ [0, 1].

In particular we get the stated existence of the matrix M̃ = R[x,y, t]2×2 and hence also
statement (a).
As ϕ(0)(B) = ϕM(0)(B) = ϕ12×2(B) = idU×P1(B) = B and C = BlU(fM) = BlU(fM (1)) =

ϕM(1)

(
BlU(f)

)
= ϕM(1)(B) = ϕ(1)(B) we get statement (b).

�
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6. Further Examples of Families of Blowups

Two Families of Regular Two-point Blowups. Already in Example 2.1 and Ex-
ample 2.2 we have presented deformations of regular blowups by means of a particularly
simple matrix deformation. We begin the present section with slightly more involved
matrix deformations and we shall illustrate their effect on two non-isomorphic regular
embedded two-point blowups. We fix our settings as in the examples given in the intro-
duction and in Section 2 by choosing ρ = 2, r = 4, U = {(x, y) ∈ R2 | x2 + y2 < 4}.

Example 6.1. (A) We fix a polynomial a = a(x,y) ∈ R[x,y] and consider the matrix

M̃ = M̃(x,y, t) :=

(
1− a(x,y)t a(x,y)t
−a(x,y)t 1 + a(x,y)t

)
∈ R[x,y, t]2×2 with det(M̃) = 1

and the matrices

M (t) = M (t)(x,y) := M̃(x,y, t) ∈ R[x,y]2×2 with det(M (t)) = 1 for all t ∈ R.

So, for any regular blowup B = BlU(f) = BlU(f0, f1) ∈ BlregU (Z) we get an isotopic family(
B(t) = BlU(fM (t))

)
t∈[0,1] such that for all t ∈ [0, 1] it holds:

B(t) = BlU
(
f0 − t · a(x,y)(f0 + f1), f1 + t · a(x,y)(f0 + f1)

)
∈ BlregU (Z) and B(t) ∼= B.

We thus get a family
(
B(t)

)
t∈[0,1] of isotopic blowups B(t) ∈ BlregU (Z), which connects

B = B(0) with

C := B(1) = BlU(fM (1)) = BlU
(
f0 − a(x,y)(f0 + f1), f1 + a(x,y)(f0 + f1)

)
.

As announced, we aim to illustrate the situation by means of two regular two-point
blowups, which are of essentially different embedded isomorphism type, a situation which
can indeed only occur for regular blowups with respect to more than one point. More
precisely, we shall blow up U with respect to two different pairs f of regular polynomials
which both satisfy ZU(f) = {(±1, 0)}, but such that sgnf is non-constant in the first case

and constant in the second case.
(B) We keep the general settings of part (A), set a(x,y) := xy and consider the

regular two-point blowup B := BlU(f) of U with respect to Z := {(±1, 0)} given by

f0 := x2 + y2 − 1 and f1 := y. We then have sgnB
(
(±1, 0)

)
= ±1, so that the sign

distribution sgnB = sgnf is non-constant. The visualization of the resulting family of

two-point blowups B(t) ∼= B(0) = B is presented in Figure 6 for t = 0, 0.5, 1.
(C) We now chose a(x,y) := y and consider the the regular two-point blowup B :=

BlU(f) of U with respect to Z := {(±1, 0)} given by f0 := x2 − 1 and f1 := xy. This

time, it holds sgnB
(
(±1, 0)

)
= 1, so that the sign distribution sgnB = sgnf is constant.

This means, that we get a two-point blowup whose embedded isomorphism type differs
essentially from the isomorphism type of the blowup of part (B). The visualization of
the resulting family of two-point blowups B(t) ∼= B(0) = B is presented in Figure 7 for
t = 0, 0.5, 1.



FAMILIES OF BLOWUPS OF THE REAL AFFINE PLANE 29

B(0) = B B(0.5) B(1) = C

Figure 6. Deformation of a Regular Two-Point Blowup with Non-
Constant Sign Distribution

B(0) B(0.5) B(1) = C

Figure 7. Deformation of a Regular Two-Point Blowup with Constant
Sign Distribution

Two Families of Regular Three-point Blowups. Up to now, we have seen examples
of families of regular n-point blowups for n = 1, 2 and n = 4 (see Figure 3, Figures 6
and 7 and Figure 4 respectively). We now aim to present two families of regular 3-point
blowups. As above we chose ρ = 2, r = 4, U = {(x, y) ∈ R2 | x2 + y2 < 4} for our
visualization.

Example 6.2. (A) We consider the following example of [9] given by:

B := BlU(f), with f0 :=
1

2
(x− 1) + y2 and f1 := (x +

1

2
)y.

We have

Z = ZU(f) = {p1, p2, p3} with p1 = (−1

2
,

√
3

2
), p2 = (−1

2
,−
√

3

2
), p3 = (1, 0)
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and hence the set Z is an equilateral triangle centered at the origin 0 ∈ R2. Moreover, it
holds

det
(
∂f
)
(p1) = det

(
∂f
)
(p2) = −3

2
and det

(
∂f
)
(p3) =

3

2
.

So B is a regular three-point blowup. The sign distribution and hence the embedded
isomorphism type of B is given by

sgnB(pi) =

{
−1, for i = 1, 2

1, for i = 3.

So, in this case we have a regular three-point blowup with non-constant sign distribution
Inspired by Remark 5.8 we consider the matrix

M (1) = M = M(x,y) :=

(
x −2
3 y

)
with tr

(
M(p)

)2 − 4det
(
M(p)

)
< 0 for all p ∈ U.

Then according to the quoted remark(
B(t) := BlU(fM (t))

)
t∈[0,1] with M (t) =

(
tx + (1− t) −2t

3t ty + (1− t)

)
is an isotopic family of regular three-point blowups which non-constant sign distribution,
whose visualization is presented in Figure 8 for t = 0, 0.33, 0.5, 1.

(B) We now aim to present a family of regular three-point blowups with constant sign
distribution. We chose

Z = {p1 = (x1, y1) = (−1

2
,

√
3

2
), p2 = (x2, y2) = (−1

2
,−
√

3

2
), p3 = (x3, y3) = (1, 0)}

as in part (A). Our first aim is to find a strongly regular pair f = (f0, f1) ∈ R[x,y]2 with

respect to Z on U (see Definition 4.4) such that det
(
∂f
)
(pi) = 1 for i = 1, 2, 3. We do

this according to the procedure suggested in the proof of Lemma 4.5, but with the rôles
of x, y and of f0, f1 exchanged respectively. We thus set

f1 =
3∏
i=1

(y − yi) = y3 − 3

4
y = y(y2 − 3

4
) and f0 = h(y)

(
x− g(y)

)
with

deg(h), deg(g) ≤ 2, and g(yi) = xi, h(yi) =
1∏

j 6=i(yi − yj)
for i = 1, 2, 3.

So

g(y) = −2y2 + 1 and h(y) =
4

3
(2y2 − 1), thus

f0 =
4

3
(2y2 − 1)(x + 2y2 − 1) =

4

3
(4y4 + 2y2x− 4y2 − x + 1).

Now B := BlU(f) is a regular three-point blowup with constant sign distribution sgnB(pi) =
1 for i = 1, 2, 3.
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B(0) = B B(0.33)

B(0.5) B(1)

Figure 8. Deformation of a Regular Three-Point Blowup with Non-
Constant Sign Distribution

Our present example illustrates at this point, that the method suggested in the proof
of Lemma 4.5 tends to furnish pairs of polynomials which may be simplified without
changing the sign distribution (and hence the isomorphism type) in BlregU (Z). Namely, by
setting

h0 :=
3

4
f0 − 4yf1 = 2xy2 − y2 − x + 1 and h1 := 4f1 = 4y3 − 3y

we get indeed ZR2(h) = {p1, p2, p3} and det(∂h) = 3(2y2−1)(4y2−1) so that det
(
∂h(pi)

)
>

0 and hence sgnh(pi) = sgnf (pi) = 1 for i = 1, 2, 3.

For a better visualization of the blowup BlU(h) we modify it slightly by interchanging
the two indeterminates x, y and the two polynomials h0 and h1 and by multiplying the
first of them by 1

3
. So, we shall consider the blowup B = BlU(g) with g = (g0, g1),

g0 = x(x2 − 3

4
) and g1 = 2x2y − x2 − y + 1

under the deformation given by the family of matrices M (t) of part (A). This time, for
the sake of virtual simplicity, we present with our method of visualization only the single
blowup B(t) = BlU(gM (t)) for t = 0.5 and the two affine charts of the blowup B(0) given
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Figure 9. Deformation of a Regular Three-Point Blowup with Constant
Sign Distribution for t = 0.5

1. Chart 2. Chart

Figure 10. Two Charts of a Regular Three-Point Blowup with Constant
Sign Distribution

respectively by g1(x,y)− zg0(x,y) = 0 and g0(x,y)− zg1(x,y) = 0. The two charts were
visualized by means of Mathematica.
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1. Brandenberg, M.: Aufblasungen affiner Varietäten (in German). Diploma Thesis, Institut für
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