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Abstract

Clustering and sampling are key methods for the study of relational data. Learning
efficient representations of such data relies on the identification of major geometric
and topological features and therefore a characterization of its coarse geometry.
Here, we introduce an efficient sampling method for identifying crucial structural
features using a discrete notion of Ricci curvature. The introduced approach
gives rise to a complexity reduction tools that allows for reducing large relational
structures (e.g., networks) to a concise core structure on which to focus further,
computationally expensive analysis and hypothesis testing.

1 Introduction

The identification of major geometric properties in relational data is key to efficient methods represen-
tation learning. Different notions of coarse geometry have been considered for analyzing structural
features of relational data, mostly in the context of higher order (mesoscale) network structures and
community detection [15, 8]. Informally, coarse geometry denotes the study of the geometric (or
sometimes topological) properties, without considering fine-grained, small-scale features [9, 16, 10].
In network representations of relational data, this concept is closely related to the notion of a network
backbone, that captures essential structural properties, such as clusters or communities and the
”long-range" connections between distinct network regions. Another, well-studied application of
coarse geometry is sampling: A "good" sample is representative of the crucial features of the full
data set, i.e. it resembles its core structure and coarse geometric features. In the present paper, we
connect these ideas to a curvature-based analysis of relational data. We will see below, that high
curvature can be linked to high structural importance. It is then a natural idea to sample the nodes or
edges with high curvature to identify the coarse geometry of the network. In fact, similar clustering
approaches based on the combinatorial version of Gaussian curvature (clustering coefficient), have
been successfully implemented in many data science applications (see [18] and references therein).
One can extend the idea of curvature-based sampling to other notions of metric curvatures, such as
Ricci curvature. The choice of Ricci curvature over other notions is grounded in the understanding
that relational data is determined not by its members, but by the relations between them, suggesting
an edge-based approach. Discrete Ricci curvature is defined as a function on the network’s edges,
allowing us to introduce the concept of edge-based sampling, as opposed to the mainly node-based
approaches studied so far. Here, we will use Forman-Ricci curvature [7, 21, 22, 19], a simple and
scalable discrete Ricci curvature that allows for incorporating given features of both nodes and edges
as geometric information by defining suitable weights.

2 Theory

2.1 Complex Networks as Metric Measure Spaces

A natural idea for representing networks is to incorporate the node and edge weights into one
expressive metric, thus rendering any weighted network into a metric space, whose geometric
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properties can then be investigated with classical tools. A comprehensive approach was recently
proposed in [6], the so-called degree path metric:

Definition 2.1 (Path degree metric) Let (G,wv, we) be a weighted graph, where wv denote the
node weights, and we the edge weights. Then the function ρ : V (G)× V (G)→ [0,∞), defined on
the nodes V (G) of G,

ρ(x, y) = inf
π={xi}

n∑
i=1

(max{d(xi−1), d(xi)})−1/2 , d(x) =
1

wv(x)

∑
y∼x

we(x, y) ; (2.1)

represents a metric on G. Here, the infimum is taken over all paths π = x = x0x1 . . . xn = y, and d
denotes the weighted degree.

This (global) metric allows for a notion of sampling with respect to the intrinsic geometry of graph,
generalizing combinatorial notions such as the clustering coefficient.

Many of the geometric characteristics analyzed in continuous spaces have analogs in discrete regimes.
Associations between these analogs can be used to derive discrete notions of curvature [3], notably
the Olliver-Ricci curvature [13, 14] and the Forman-Ricci (short: FR) curvature [21, 22]. FR
curvature was found to be especially useful for network analysis since its intuitive notion allows
for efficient computation (∼ O(|V (G)|+ |E(G)|)) that scales to large networks sizes. In its most
general form, FR curvature is defined on CW cell complexes. Network representations of relational
data G = {V (G), E(G)} form regular, 1-dimensional cell complexes, in which case the following
curvature function can be defined [21]:

RicF (e) = w(e)

w(v1)

w(e)
+

w(v2)

w(e)
−

∑
ev1∼e
ev2∼e

[
w(v1)√

w(e)w(ev1)
+

w(v2)√
w(e)w(ev2)

]
The function is defined on each edge e = (v1, v2) ∈ E(G) of the network, connecting vertices
v1, v2 ∈ V (G); w denotes the weights of edges and vertices.

2.2 Ricci Curvature-based Sampling

The key idea of curvature-based sampling is to choose sampling points whose metric density is
inversely proportional to curvature (see Alg. 1(ii)). Most approaches in the literature are based on
extrinsic curvature [18] thus requiring to find an isometric embedding in Rn, a problem that is highly
nontrivial for abstract (data) manifolds. Therefore, it is desirable to find a sampling method based on
intrinsic curvature notions, such as Ricci curvature.

Such approaches are motivated by the close connection between volume growth rates and Ricci
curvature [11]. While a detailed discussion of the underlying mathematical arguments is beyond the
scope of this short paper, let us give the basic idea: The construction is based on so-called ε-nets (see
Appendix A.2), that define efficient packings on manifolds. In this framework, the close connection
between volume growth rates of the ε-balls and Ricci curvature can be studied explicitly. When
generalizing to metric measure spaces, volumes are replaced by more general measures and the
classical Ricci curvature by the generalized Rici curvature developed by Lott-Villani-Sturm [11, 20].
Observe that the graphs (ε-nets) rendered in the construction are coarsely equivalent (isometric)
to the original metric measure space (see [17], Thm. 5.6, 5.11 and corollaries). Importantly, the
obtained graph representation encodes the essential topology (homotopy) of the sampled space. The
coarse reconstruction of the space is independent of the specific geometry of the manifold and the
measure: It depends only on bounds on dimension, volume, curvature, and diameter. Motivated by
these approaches, we will introduce a sampling method for networks, based on a discrete notion of
Ricci curvature, to detect the coarse geometry.

A cornerstone of representation learning is the embedding, with low distortion, of a given data set into
a model space with respect to its relational structure. Classic examples are Euclidean embeddings,
where the ambient space is usually Rn, for some n large enough. More recently, embeddings of
networks into hyperbolic space Hd have been studied [12, 5]. Here, we ask, whether one can construct
a coarse embedding of a weighted graph, viewed as a metric measure space. By a coarse embedding
of a metric space (X, d) into another, we mean a map i : X → Y , such that there exist increasing,
unbounded functions η1, η2 : R→ R, such that η1(d(x1, x2)) ≤ d(i(x1), i(x2)) ≤ η2(d(x1, x2)) ,
for any x1, x2 ∈ X . Recall the following:
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Definition 2.2 Given a set X , a kernel is a symmetric function k : X × X → R, i.e. k(x, y) =
k(y, x), for any x, y ∈ X . A kernel k is said to have

1. positive type, if the matrix Km = {k(xi, xj)}mi,j=1 is positive semidefinite for all m ∈ N;

2. negative type, if the matrix Km = {k(xi, xj)}mi,j=1 is negative semidefinite for all m ∈ N.

The curvature operator RicF (see, e.g., [3]) is symmetric in the nodes u, v of an edge e = (u, v),
i.e., defines a kernel kF . Recall, that for positive semidefinite operators (such as Laplacians), the
corresponding kernels are also positive semidefinite. By a direct application of classical results
(see, e.g. [16], Thm. 11.15a), there exists a map ϕ : X → H, where H is a real Hilbert space,
such that k(x, y) = 〈ϕ(x), ϕ(y)〉, for all x, y ∈ X . However, Forman-Ricci curvature is generally
everywhere non-positive. In fact, RicF (e = (u, v)) is not negative only if both u, v have at most
degree 2 (i.e., only in n-cycles and in small degenerate structures). Therefore, we can assume that
for non-degenerate graphs RicF (e) < 0 everywhere. Thus, a mapping into a real Hilbert space, as
for the Laplacians, is not possible. Instead, we relate the kernel kF to a (positive) notion by setting
k∗F = e−kF 1 and map to a Hilbert space as described above. Therefore, the existence of a coarse
embedding of a graph into a (real) Hilbert space follows from (i) e−kF being a positive kernel and (ii)
the edges {e = (u, v) | k(e) < k < 0} with curvature bounded above generating the coarse structure
of the network.

3 Methods

Algorithm 1 Curvature-based sampling
1: Input: G = {V,E,wv, we}; (i) k, (ii) r
2: for u, v ∈ V, u ∼ v do
3: kF (u, v)← RicF (e = (u, v))
4: end for
5: (i) S ← {e = (u, v) | k(e) < k < 0}
6: (ii) k∗F ← e−kF , k̂∗F ← reconstruct(kernelPCA(k∗F ), r); S ← {e = (u, v) | k̂∗F (e) 6= 0}
7: Output: G′ = {V

∣∣
S
, E
∣∣
S
, wv

∣∣
S
, we

∣∣
S
}

The characterization of substructures, such as motifs or communities, has been a cornerstone of
network analysis since its early days [8]. More recently, higher-order structures, such as the notion
of the network backbone, have gained major interest [4]. The key idea is the reduction of a system
to its most essential elements and the relations between them. In the case of large-scale networks,
the backbone comes with the promise of complexity reduction that could make complex structures
accessible to computational tools that are otherwise too costly. We consider the following (informal)
notion:

Definition 3.1 (Network backbone) We denote the backbone of a network G = {V,E} as a sub-
network G′ = {V ′, E′} (V ′ ⊆ V , E′ ⊆ E) that captures structurally important nodes (hubs) and
edges (bridges). A node is typically termed hub if it has a high degree and a high betweenness
centrality. Bridges denote edges that govern the mesoscale structure of G, for instance by forming
long-range connections between communities. The backbone G′ is structure-preserving, i.e., its
structural features (e.g., node degree distribution, community structure) are representative of G.

We propose the identification of the network backbone through curvature-based sampling: Approach
Alg. 1(i) is based on the fact that high absolute curvature is strongly related to the structural importance
of an edge. A combinatorial reasoning behind this observation is apparent from the rewritten curvature

function: RicF (e) = w(v1) + w(v2)−
∑

ev1∼e
ev2∼e

[
w(v1)

√
w(e)
w(ev1 )

+ w(v2)
√

w(e)
w(ev2 )

]
. We see that

high absolute curvature results from high node degrees in vertices v1 and v2 and from the edge weight
w(e) being large compared to those of parallel edges (w(ev1), w(ev2)). Since high-degree nodes
(hubs) form the centers of the major network communities, the edges that form strong connections
between them bridge the corresponding communities [2] – forming the network backbone. As

1In fact, for every t > 0, the kernel k∗,t
F (x, y) = e−tkF (x,y) is of positive type (see [16], Prop. 11.12.)
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discussed in the theory section, we can sample those crucial structural features by computing Forman-
Ricci curvature across the network and selecting the edges with the highest absolute curvature.
This allows us to empirically determine the network backbone in a computationally efficient way.
Approach Alg. 1(ii) implements the kernel-based approach discussed in section 2, i.e., choosing
sampling points whose metric density is inverse proportional to curvature.

4 Experiments

Figure 1: A: Network backbone (marked red) for Les Miserables identifies major storyline. B: Influence of
backbone threshold for sampling Zachary’s Karate Club. C: Backbone sampling in large networks. All data sets
can be found in ICON [1].

We perform curvature-based sampling on a weighted network of character co-occurrences in Victor
Hugo’s Les Miserables. The backbone with threshold 5% (i.e., sampling bound k is chosen such
that it is larger than 5% of the curvature values) is marked in red (Fig 4A). The sampling identifies
relationships between Valjean and other major characters that are central to Valjean’s storyline, as
well as a second cluster of revolutionaries around Gavroche. Both clusters merge ("bridge") when
setting the backbone threshold to 11%. This indicates that we can identify major relations in the
data and high-level structural information by sampling for edges with high absolute curvature. In
a second experiment, we compare the known community structure of Zachary’s karate club with
the sampled backbone (Fig. 4B, shown in red). We observe, that keeping the top 30% edges highest
absolute curvature, covers the major structural features: The instructor (node 1) and the president
(node 34), as well as their neighborhoods, are in the backbone, forming the two known clusters. Note
that the sampled backbone also includes the bridges between the two clusters (i.e., the joint neighbors
of 1 and 34). In a third experiment (Fig. 4C) we identify the backbone in two larger data sets (yeast
transcriptome (top) and bible wordnet (bottom) demonstrating a potential application of the method
as complexity reduction tool.

5 Discussion

We introduced a curvature-based sampling method for identifying structurally important structural
features in relational data. We sample a "backbone" with respect to Forman-Ricci curvature, an
efficiently computable discrete notion of Ricci curvature on networks. The identification of this core
structure is of great importance for the structural analysis of large networks: It allows us to reduce
large networks to its core structure on which computationally expensive network hypothesis testing
and further network analysis become feasible. Ongoing work includes a statistical analysis of the
preservation of coarse geometric features under curvature-based sampling and a comparison with
related sampling methods (sampling accuracy, computational efficiency) on large-scale real-world
and synthetic relational data.
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A Mathematical Context

A.1 Motivation for path degree metric

This path degree metric introduced in the main text has the benefit of being both efficiently computable
(and therefore scalable) and expressive: It is closely related to the random walk on a graph, given by
the jump from a vertex x to an adjacent vertex (i.e. neighbor) vertex y, with probability

p = we(x, y)

∑
y′∼x

we(x, y
′)

−1 .
Since, in addition, the probability of not leaving x at the time t is e−d(x), it follows that the larger
the degree, the faster the random walk departs from x. In addition, from the definition of ρ(x, y) it
follows that the larger the degree of x or y, the closer the two vertices are to each other, i.e., the faster
the jump along an edge, the shorter the edge is. Note that, given that the degrees of x and y might
be unequal, the jumping time from x to y is not necessarily symmetric, instead, ρ prefers the larger
degree with faster jumping time.

A.2 Efficient packings on manifolds

Consider the following notion of efficient packings:

Definition A.1 Let p1, . . . , pn0 be points ∈Mn, satisfying the following conditions:

1. The set {p1, . . . , pn0
} is an ε-net on Mn, i.e. the balls βn(pk, ε), k = 1, . . . , n0 cover Mn;

2. The balls (in the intrinsic metric of Mn) βn(pk, ε/2) are pairwise disjoint.

Then the set {p1, . . . , pn0
} is called a minimal ε-net and the packing with the balls βn(pk, ε/2),

k = 1, . . . , n0, is called an efficient packing. The set {(k, l) | k, l = 1, . . . , n0 and βn(pk, ε) ∩
βn(pl, ε) 6= ∅} is called the intersection pattern of the minimal ε-net (of the efficient packing).

This notion encodes the close connection between volume growth rates in manifolds and Ricci
curvature. It is, therefore, only natural to seek the generalization of this construction to metric
measure manifolds, where volumes are replaced by more general measures, and instead of the
classical Ricci curvature one employs the generalized Rici curvature developed by Lott-Villani [11]
and Sturm [20]. Such an extension of the classical case construction to the metric measure spaces
context does, indeed exists [17]. More precisely, one gas the following theorem:

Theorem A.2 Let (Mn
1 , d1, ν1), (M

n
2 , d2, ν2), νi = e−VidVol, Vi ∈ C2(R), i = 1, 2 be smooth,

compact metric measure spaces satisfying CD(K,N) for some K ∈ R and 1 < N <∞, and such
that diamMn

i < D, VolMn
i < v, i = 1, 2 and, moreover, having the same lower bound k on their

sectional curvatures. Then there exists ε = ε(N,K, k,D, v) such that, if Mn
1 ,M

n
2 have minimal

packings with identical intersection patterns, they are homotopy equivalent.

Here CD(K,N) denotes the generalized Ricci curvature of Lott, Villani, and Sturm.
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