
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

The h-polynomial of the order polytope

of the zig-zag poset

by

Jane Ivy Coons and Seth Sullivant

Preprint no.: 10 2019





ar
X

iv
:1

90
1.

07
44

3v
1 

 [
m

at
h.

C
O

] 
 2

2 
Ja

n 
20

19

THE h∗-POLYNOMIAL OF THE ORDER POLYTOPE

OF THE ZIG-ZAG POSET

JANE IVY COONS AND SETH SULLIVANT

Abstract. We describe a family of shellings for the canonical
triangulation of the order polytope of the zig-zag poset. This gives
a combinatorial interpretation for the coefficients in the numerator
of the generating functions for OEIS A050446 in terms of the swap
statistic on alternating permutations.

1. Introduction and Preliminaries

The zig-zag poset Zn on ground set {z1, . . . , zn} is the poset with
exactly the cover relations z1 < z2 > z3 < z4 > . . . . That is, this
partial order satisfies z2i−1 < z2i and z2i > z2i+1 for all i between 1
and ⌊n−1

2
⌋. The order polytope of Zn, denoted O(Zn) is the set of all

n-tuples (x1, . . . , xn) ∈ Rn that satisfy 0 ≤ xi ≤ 1 for all i and xi ≤ xj
whenever zi < zj in Zn. We aim to understand the Ehrhart series of
O(Zn).
The Ehrhart function of a polytope P , denoted iP (m) is the function

that counts the number of lattice points in the m-th dilate of P for any
positive integer m. That is,

iP (m) = #(Zn ∩mP )

where mP = {mv | v ∈ P}. The Ehrhart series of P is the formal
power series

EhrP (t) =

∞
∑

m=0

iP (m)tm.

The Ehrhart series of a polytope with integer vertices is a rational
function of the form

EhrP (t) =
h∗P (t)

(1− t)d+1

where d is the dimension of P . The numerator polynomial in this
rational expression is called the h∗-polynomial of P .
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Our goal in this paper is to understand the h∗-polynomials of the
O(Zn). For n = 1, 2, 3, 4, 5, 6, these have the following form

1, 1, 1 + t, 1 + 3t+ t2, 1 + 7t+ 7t2 + t3, 1 + 14t+ 31t2 + 14t3 + t4

and appear in the Online Encyclopedia of Integer Sequences with refer-
ence number A205497 [4]. We began studying this problem because the
Ehrhart polynomial of O(Zn) is equal to that of the CFN-MC polytope
of any rooted binary tree on n+1 leaves [3]. Therefore, it is also equal
to the Hilbert series of the toric ideal of phylogenetic invariants of the
CFN-MC model on such a tree.
To understand the h∗ polynomial of O(Zn), we will interpret its coef-

ficients in terms of a permutation statistic on alternating permutations.
An alternating permutation on n letters is a permutation a1a2 . . . an
such that a1 < a2 > a3 < a4 > . . . . Notice that alternating permuta-
tions coincide with bijective labelings of Zn with the numbers 1, . . . , n
that agree with the partial order on Zn. We define the swap permu-
tation statistic on an alternating permutation σ to be the number of
integers i such that σ−1(i) < σ−1(i+ 1) and swapping i and i+ 1 in σ
yields another alternating permutation. In other words, i to the left of
i+1 and there is at least one other character between them. The goal of
this paper is to prove the following theorem relating the h∗-polynomial
of O(Zn) and the swap statistic.

Theorem 1.1. The numerator of the Ehrhart series of O(Zn) is

h∗O(Zn)(t) =
∑

σ

tswap(σ)

where this sum ranges over all alternating permutations of length n.

In Section 2, we provide further background information on zig-zag
posets and their order polytopes. We relate these to the theory of
alternating permutations. Then we discuss the necessary background
on Ehrhart theory. In Section 3, we prove our main result, Theorem
1.1, by giving a shelling of the canonical triangulation of the order
polytope of the zig-zag poset. In Section 4, we give an alternate proof
of Theorem 1.1 by counting chains in the lattice of order ideals of the
zig-zag poset. This proof makes use of the theory of Jordan-Hölder sets
of general posets developed in Chapter 3 of [7].

2. Preliminaries

The zig-zag poset Zn on ground set {z1, . . . , zn} is the poset with
the cover relations z2i−1 < z2i and z2i > z2i+1 for 1 ≤ i ≤ ⌊n−1

2
⌋.

Linear extensions of the zig-zag poset are in bijection with alternating
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permutations of length n; that is, permutations a1 . . . an for which the
ai’s satisfy a2i−1 < a2i and a2i > a2i+1 for 1 ≤ i ≤ ⌊n−1

2
⌋.

The number of alternating permutations of length n is the nth Euler

zig-zag number En. The sequence of Euler zig-zag numbers starting
with E0 begins 1, 1, 1, 2, 5, 16, 61, 272, . . . . This sequence can be found
in the Online Encyclopedia of Integer Sequences with identification
number A000111 [4]. The exponential generating function for the Euler
zig-zag numbers satisfies

∑

n≥0

En

xn

n!
= tanx+ sec x.

Furthermore, the Euler zig-zag numbers satisfy the recurrence

2En+1 =

n
∑

k=0

(

n

k

)

EkEn−k

for n ≥ 1 with initial values E0 = E1 = 1. A thorough background
on the combinatorics of alternating permutations can be found in [6].
The following new permutation statistic on alternating permutations
is central to our results.

Definition 2.1. Let σ be an alternating permutation. The permu-
tation statistic swap(σ) is the number of i < n such that σ−1(i) <
σ−1(i + 1) − 1. Equivalently, this is the number of i < n such that
i is to the left of i + 1 and swapping i and i + 1 in σ yields another
alternating permutation. The swap-set Swap(σ) is the set of all i < n
for which we can perform this operation. We say that σ swaps to τ if
τ can be obtained from σ by performing this operation a single time.

For example, the alternating permutation 15342 has swap(15342) =
1 and Swap(15342) = {1}. Hence, 15342 swaps to 25341 and to no
other alternating permutation.
To every finite poset on n elements one can associate a polytope

in Rn by viewing the cover relations on the poset as inequalities on
Euclidean space.

Definition 2.2. The order polytope O(P ) of any poset P on ground
set p1, . . . , pn is the set of all v ∈ Rn that satisfy 0 ≤ vi ≤ 1 for all i
and vi ≤ vj if pi < pj is a cover relation in P .

Order polytopes for arbitrary posets have been the object of consid-
erable study, and are discussed in detail in [5]. In the case of O(Zn),



4 JANE IVY COONS AND SETH SULLIVANT

the facet defining inequalities are those of the form

−vi ≤ 0 for i ≤ n odd

vi ≤ 1 for i ≤ n even

vi − vi+1 ≤ 0 for i ≤ n− 1 odd, and

−vi + vi+1 ≤ 0 for i ≤ n− 1 even.

Note that the inequalities of the form −vi ≤ 0 for i even and vi ≤ 1 for
i odd are redundant. The order polytope of Zn is also the convex hull
of all (v1, . . . , vn) ∈ {0, 1}n that correspond to labelings of Zn that are
weakly consistent with the partial order on {p1, . . . , pn}.
In [5], Stanley gives the following canonical unimodular triangulation

of the order polytope of any poset P on ground set {p1, . . . , pn}. Let
σ : P → [n] be a linear extension of P . Denote by ei the ith standard
basis vector in Rn. The simplex ∆σ is the convex hull of vσ

0 , . . . ,v
σ
n

where vσ
0 is the all 1’s vector and vσ

i = vσ
i−1 − eσ−1(i). Letting σ range

over all linear extensions of P yields a unimodular triangulation of
O(P ). Hence, the normalized volume of O(P ) is the number of linear
extensions of P . In particular, this means that the volume of O(Zn) is
the Euler zig-zag number, En.

Example 2.3. Consider the case when n = 4. The zig-zag poset Z4

is pictured in Figure 2.1. The order polytope O(Z4) has facet defining
inequalities

−v1 ≤ 0

−v3 ≤ 0

v1 − v2 ≤ 0

v3 − v4 ≤ 0.

v2 ≤ 1

v4 ≤ 1

−v2 + v3 ≤ 0

The vertices of O(Z4) are the columns of the matrix









0 0 0 1 0 1 0 1
0 1 0 1 1 1 1 1
0 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1









.

The alternating permutations on 4 elements, which correspond to linear
extensions of Z4 are 1324, 1423, 2314, 2413, and 3412. Note that there
are E4 = 5 such alternating permutations, so the normalized volume
of O(Z4) is 5. The simplex in the canonical triangulation of O(Zn)
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z1

z2

z3

z4

Figure 2.1. The zig-zag poset Z4

corresponding to 1324 is

∆1324 = conv









1 0 0 0 0
1 1 1 0 0
1 1 0 0 0
1 1 1 1 0









.

We turn our attention to the study of Ehrhart functions and series
of lattice polytopes. Let P ⊂ Rn be any polytope with integer vertices.
Recall that the Ehrhart function, iP (m), counts the integer points in
dilates of P ; that is,

iP (m) = #(Zn ∩mP ),

where mP = {mv | v ∈ P} denotes the mth dilate of P . The Ehrhart
function is, in fact, a polynomial in m [1, Chapter 3]. We further define
the Ehrhart series of P to be the generating function

EhrP (t) =
∑

m≥0

iP (m)tm.

The Ehrhart series is of the form

EhrP (t) =
h∗P (t)

(1− t)d+1
,

where d is the dimension of P and h∗P (t) is a polynomial in t of degree
at most n. Often we just write h∗(t) when the particular polytope
is clear. The coefficients of h∗(t) have an interpretation in terms of
a shelling of a unimodular triangulation of P , if such a triangulation
exists.

Definition 2.4. Let T be the collection of maximal dimensional sim-
plices in a pure simplicial complex of dimension d with #T = s. An
ordering ∆1,∆2, . . . ,∆s on the simplices in T is a shelling order if for
all 1 < r ≤ s,

r−1
⋃

i=1

(

∆i ∩∆r

)

is a union of facets of ∆r.
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Equivalently, the order ∆1,∆2, . . . ,∆s is a shelling order if and only
if for all r ≤ s and k < r, there exists an i < r such that ∆k ∩ ∆r ⊂
∆i ∩∆r and ∆i ∩∆r is a facet of ∆r. This means that when we build
our simplicial complex by adding facets in the order prescribed by the
shelling order, we add each simplex along its highest dimensional facets.
Keeping track of the number of facets that each simplex is added along
gives the following relationship between shellings of a triangulation of
an integer polytope and the Ehrhart series of the polytope, which is
proved in [1, Chapter 3].

Theorem 2.5. Let P be an integer polytope. Let ∆1, . . . ,∆s be a uni-

modular triangulation of P using no new vertices. Denote by h∗j the

coefficient of tj in the h∗ polynomial of P . If ∆1, . . . ,∆s is a shelling

order, then h∗j is the number of ∆i that are added along j of their facets
in this shelling. Equivalently,

h∗(t) =

s
∑

i=1

tai ,

where ai = #{k < i | ∆k ∩∆i is a facet of ∆i}.

Example 2.6. Consider the order polytope O(Z4) with its canonical
triangulation by alternating permutations

∆3412,∆2413,∆2314,∆1423,∆1324.

This particular ordering of the facets in the canonical triangulation is a
special case of the shelling order that will be established and proved in
the next section. The fact that this is a shelling order can be checked
directly in this example, for instance:

∆2314 ∩ (∆3412 ∪∆2413) = conv









1 1 0 0
1 1 1 0
1 0 0 0
1 1 1 0









which is a facet of ∆2314. Since the intersection consists of a single facet,
it will contribute a 1 to the coefficient of t in h∗

O(Z4))
(t) = 1 + 3t+ t2.

3. Shelling the Canonical Triangulation of the Order

Polytope

In this section we describe a family of shelling orders on the sim-
plices of the canonical triangulation of O(Zn). Let σ be an alternating
permutation. We will denote by vert(σ) the set of all vertices of the
simplex ∆σ. Note that this is the set of all 0/1 vectors v of length n
that have vi ≤ vj whenever σ(i) < σ(j).
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Proposition 3.1. The simplices ∆σ and ∆τ are joined along a facet

if and only if σ swaps to τ or τ swaps to σ.

Proof. Simplices ∆σ and ∆τ are joined along a facet if and only if
vert(σ) and vert(τ) differ by a single element. Since every simplex in the
canonical triangulation ofO(Zn) has exactly one vertex with the sum of
its components equal to i for 0 ≤ i ≤ n and the all 0’s and all 1’s vector
are in every simplex in this triangulation, this occurs if and only if there
exists an i with 1 ≤ i ≤ n−1 such that vert(σ)−{vσ

i } = vert(τ)−{vτ
i }.

By definition of each vσ
j and vτ

j , this occurs if and only if σ−1(j) =

τ−1(j) for all j 6= i, i + 1 and eσ−1(i) + eσ−1(i+1) = eτ−1(i) + eτ−1(i+1).
This is true if and only if swapping the positions of i and i + 1 in σ
yields τ , as needed. �

Denote by inv(σ) the number of inversions of a permutation σ; that
is, inv(σ) is the number of pairs i < j such that σ(i) > σ(j). We
similarly define a non-inversion to be a pair i < j with σ(i) < σ(j).
We call an inversion or non-inversion (i, j) relevant if i < j − 1; that
is, if it is not required by the structure of an alternating permutation.
Note that performing a swap on an alternating permutation always
decreases its inversion number by exactly one. Theorem 1.1 follows as
a corollary of Proposition 3.1 and the following theorem.

Theorem 3.2. Let σ1, . . . , σEn
be an order on the alternating permu-

tations such that

• if i < j then inv(σi) ≥ inv(σj) and
• if σj swaps to σi then i < j.

Then the order ∆σ1 , . . . ,∆σEn on the simplices of the canonical trian-

gulation of O(Zn) is a shelling order.

For any alternating permutation σ, define the exclusion set of σ,
excl(σ) to be the set of all vσ

k ∈ vert(σ) such that k is a swap in σ. In
other words,

excl(σ) = {v | v ∈ ∆σ −∆τ for some τ such that σ swaps to τ}.

Proposition 3.1 implies that in order to prove Theorem 3.2, it suffices
to check that if inv(σ) ≤ inv(τ), then excl(σ) 6⊂ vert(τ). This fact will
follow from the next two propositions.

Proposition 3.3. An alternating permutation σ maximizes inversion

number over all alternating permutations τ with excl(σ) ⊂ excl(τ).

Proof. Consider a vertex vσ
k ∈ vert(σ). Note that we may read all

of the non-inversions (i, j) with σ(i) ≤ k < σ(j) from vσ
k since these

correspond to pairs of positions in vσ
k with a 0 in the first position and
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a 1 in the second. That is to say, we have vσ
k (i) = 0, vσ

k (j) = 1, and
i < j.
We claim that every relevant non-inversion of σ can be read from

an element of excl(σ) in this way. To prove this, it suffices to show
that if (i, j) is a relevant non-inversion of σ, then there exists a k with
σ(i) ≤ k < σ(j) such that k is a swap in σ. We will prove this by
induction on σ(j)− σ(i).
If σ(j) − σ(i) = 1, then since (i, j) is a relevant non-inversion, σ(i)

is a swap in σ.
Let σ(j) − σ(i) > 1. Consider the position of σ(i) + 1 in σ. If

σ−1(σ(i)+1) < j−1, then (σ−1(σ(i)+1), j) is a relevant non-inversion,
and we are done by induction. If σ−1(σ(i)+1) > j, then σ(i) is a swap
in σ. If σ−1(σ(i)+1) = j−1, then note that i < σ−1(σ(i)+1)−1 since
otherwise, σ(i), σ(i)+1, σ(j) would be an adjacent increasing sequence
in σ, which would contradict that σ is alternating. So σ(i) is a swap
in σ.
Therefore, there exists a swap k in σ with σ(i) ≤ k < σ(j), and

the relevant non-inversion (i, j) can be read from vσ
k in the manner

described above. Therefore, all relevant non-inversions in σ can be
found as a non-adjacent 0 − 1 pair in a vertex in excl(σ). In partic-
ular, we can count the number of relevant non-inversions in σ from
the vertices in excl(σ). Furthermore, if excl(σ) ⊂ vert(τ), then all
non-inversions in σ must also be non-inversions in τ , though τ can
contain more non-inversions as well. So σ minimizes the number of
non-inversions, and therefore maximizes the number of inversions, over
all τ with excl(σ) ⊂ vert(τ). �

Proposition 3.4. Let S ⊂ vert(O(Zn)) be contained in vert(σ) for

some alternating σ. Then there exists a unique alternating σ̂ that max-

imizes inversion number over all alternating permutations whose vertex

set contains S.

Proof. Let S = {s0, s1, . . . , sr} ordered by decreasing coordinate sum.
We can assume that S contains both the all zeroes and all ones vec-
tors since those vectors belong to the simplex ∆σ for any alternating
permutation σ. Since S ⊂ vert(σ) for some alternating σ, if si(j) = 0,
then sk(j) = 0 for all k > i. For i = 1, . . . , r, let mi be the number
of positions in si that are equal to zero, and let ni = mi −mi−1 (with
n1 = m1).
Let τ be any alternating permutation such that S ⊆ vert(T ). The

0-pattern of each si partitions the entries of all τ with S ⊂ vert(τ) as
follows: For 1 ≤ k ≤ r, the nk positions j such that sk(j) = 0 and
sk−1(j) = 1 are the positions of τ such that τ(j) ∈ {mk−1+1, . . . , mk}.
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The positions of inversions and non-inversions across these groups
are fixed for all τ with S ⊂ vert(τ). We can build an alternating per-
mutation σ̂ that maximizes the inversions within each group as follows.
For 1 ≤ k ≤ r, let jk1 , . . . , j

k
nk

be the positions of σ̂ that must take val-
ues in {mk−1 + 1, . . . , mk}, as described above. We place these values
in reverse; i.e. map jkl to mk − l+1. The permutation obtained in this
way need not be alternating, so we switch adjacent positions that need
to contain non-descents in order to make the permutation alternat-
ing. Note that we never need to make such a switch between groups,
since the partition given by S respects the structure of an alternating
permutation.
This permutation is unique because within the kth group, arranging

the values in this way is equivalent to finding the permutation on nk el-
ements with some fixed non-descent positions that maximizes inversion
number. To obtain this permutation, we begin with the permutation
(mk, mk − 1 . . .mk−1 + 1) and switch all the positions that must be
non-descents. The alternating structure of the original permutation
implies that none of these non-descent positions can be adjacent, so
these transpositions commute and give a unique permutation. �

Example 3.5. Let n = 7 and let

S =





















































1
1
1
1
1
1
1



















,



















0
1
0
1
1
1
0



















,



















0
1
0
0
0
0
0



















,



















0
0
0
0
0
0
0





















































We will construct σ̂, the alternating permutation that maximizes inver-
sion number overall alternating permuations whose vertex set contains
S. The second and third vertices in S are the only one that gives infor-
mation about the position of each character; we will denote them w1

and w2, respectively. Since w1 has 0’s in exactly the first, third and
seventh positions, we know that 1, 2 and 3 are in these positions. We
insert them into these positions in decreasing order, so that σ̂ has the
form

3 2 1.

The zeros added in w2 are in the fourth, fifth and sixth positions.
Placing them in decreasing order yields the permutation

3 2 6 5 4 1.
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However, this permutation cannot be alternating, since there must be
an ascent from position 5 to position 6. To create this ascent, we switch
the entries in these positions, yielding a permutation of the form

3 2 6 4 5 1.

Finally, the only character missing is 7, which must go in the re-
maining space. This gives the permutation

σ̂ = 3 7 2 6 4 5 1.

Proof of Theorem 3.2. It suffices to show that for any alternating per-
mutations σ and τ , if inv(τ) ≥ inv(σ) then excl(σ) 6⊂ vert(τ). If
inv(τ) > inv(σ), then since σ maximizes inversion number over all
alternating permutations that contain the exclusion set of σ by Propo-
sition 3.3, excl(σ) 6⊂ vert(τ). Furthermore, Proposition 3.4 implies
that if inv(τ) = inv(σ), then excl(σ) 6⊂ vert(τ) because σ is the unique
permutation that maximizes inversion number of all alternating per-
mutation that contain its exclusion set. �

Proof of Theorem 1.1. Let ∆σ1 , . . . ,∆σEn be a shelling order as de-
scribed in Theorem 3.2. Then by Proposition 3.1, each ∆σi is added in
the shelling along exactly swap(σi) facets. Therefore, by Theorem 2.5,

h∗O(ZN )(t) =
∑

σ

tswap(σ),

where σ ranges overall alternating permutations of length n. �

4. The Swap Statistic Via Rank Selection

An alternate proof of Theorem 1.1 relies heavily on the concepts
of rank selection and flag f -vectors developed for general posets in
Sections 3.13 and 3.15 of [7]. We will focus our attention to the zig-zag
poset, Zn. Denote by J(Zn) the distributive lattice of order ideals in
Zn ordered by inclusion. Let S = {s1, . . . , sk} ⊂ [0, n], where [0, n] =
{0, . . . , n}. We always assume that s1 < s2 < . . . < sk. Denote by
αn(S) the number of chains of order ideals I1 ( · · · ( Ik in J(Zn) such
that #Ij = sj for all j. Define

βn(S) =
∑

T⊂S

(−1)#(S−T )αn(T ).

By the Principle of Inclusion-Exclusion, or equivalently, via Möbius
inversion on the Boolean lattice,

αn(S) =
∑

T⊂S

βn(S).
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In Section 3.13 of [7], the function αn : 2[0,n] → Z is called the flag

f-vector of Zn and βn : 2[0,n] → Z is called the flag h-vector of Zn.
For any poset P of size n, let ω : P → [n] be an order-preserving
bijection that assigns a label to each element of P . Then for any linear
extension σ : P → [n], we may define a permutation of the labels by
ω(σ−1(1)), . . . , ω(σ−1(n)). The Jordan-Hölder set L(P, ω) is the set of
all permutations obtained in this way. The following result for arbitrary
finite posets can be found in chapter 3.13 of [7].

Theorem 4.1 ([7], Theorem 3.13.1). Let S ⊂ [n − 1]. Then βn(S) is

equal to the number of permutations τ ∈ L(P, ω) with descent set S.

Recall that the Ehrhart polynomial of O(Zn) evaluated atm is equal
to the order polynomial of Zn evaluated atm+1 [5]. It follows from this
fact and from Theorem 3.15.8 in [7] that the h∗-polynomial of O(Zn)
is

(1) h∗O(Zn)(t) =
∑

S⊂[n−1]

βn(S)t
#S.

So, Theorem 1.1 will follow from Equation 1 and the following the-
orem, which is analogous to Theorem 3.13.1 in [7].

Theorem 4.2. Let S ⊂ [n − 1]. Then βn(S) is the number of alter-

nating permutations ω with Swap(ω) = S.

To prove this theorem, for every S = {s1, . . . , sn} ⊂ [n − 1], we
will find define a function φS that maps chains of order ideals of sizes
s1, . . . , sk to alternating permutations whose swap set is contained in S.
Let I1, . . . , Ik be a chain of order ideals in J(Zn) with sizes #Ij = sj.
Let wi be the vertex of O(Zn) that satisfies

wi(j) =

{

0 if j ∈ Ii

1 if j 6∈ Ii.

Define φS(I1, . . . , Ik) to be the unique alternating permutation that
maximizes inversion number over all alternating permutations whose
vertex set contains {w1, . . . ,wk}. This map is well-defined by Propo-
sition 3.4.
Let ψS be the map that sends an alternating permutation ω with

Swap(ω) ⊂ S to the chain of order ideals (I1, . . . , Ik) where each
Ij = {ω−1(1), . . . , ω−1(sj)}. Since every alternating permutation ω is
a linear extension of Zn, each Ij obtained in this way is an order ideal.
They form a chain by construction, so the map ψS is well-defined. We
will show that ψS is the inverse of φS in the proof of Theorem 4.2.
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a

b

c

d

e

f

g

Figure 4.1. The zig-zag poset Z7

Example 4.3. Consider the zig-zag poset on seven elements Z7 pic-
tured in Figure 4.1. Let S = {3, 6}, and let I1 = {a, c, g} and I2 =
{a, c, d, e, f, g} be the given order ideals of sizes 3 and 6 respectively.
Then the vectors w1 and w2 are

w1 =



















0
1
0
1
1
1
0



















and w2 =



















0
1
0
0
0
0
0



















.

Notice that these are the same vectors w1 and w2 as in Example
3.5. So the unique alternating permutation φS(I1, I2) that maximizes
inversion number over all alternating permutations whose vertex set
contains {w1,w2} is the same permutation as in Example 3.5,

φS(I1, I2) = 3 7 2 6 4 5 1.

Note that Swap(3726451) = {3} ⊂ {3, 6} = S.
We will recover our original order ideals I1 and I2 by finding ψS(ω).

For clarity, we will treat ω as a map from {a, . . . , g} to {1, . . . , 7}. The
first order ideal of ψS(ω) consists of the inverse images of 1, 2, and 3 in
ω. That is,

I1 = {ω−1(1), ω−1(2), ω−1(3)} = {a, c, g}.

The second order ideal of ψS(ω) consists of the inverse images of 1
through 6 in ω. So we obtain

I2 = {ω−1(1), . . . , ω−1(6)} = {a, c, d, e, f, g}.

Note that this is, in fact, the chain of order ideals with which we began.

Proof of Theorem 4.2. Let S = {s1, . . . , sk} ⊂ [n − 1]. We will show
that αn(S) is the number of alternating permutations whose swap set
is contained in S by showing that the map φS described above is a
bijection.
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Let I1, . . . , Ik be a chain of order ideals in J(Zn) with sizes #Ij = sj.
It is clear from the definitions of φS and ψS that

ψS(φS(I1, . . . , Ik)) = (I1, . . . , Ik).

Since φS is injective, it suffices to show that ψS is also injective. We
will show that φS(I1, . . . , Ik) is the only alternating permutation that
maps to (I1, . . . , Ik) under ψS . Since ω = φS(I1, . . . , Ik) is the unique
alternating permuation that maximizes inversion number over all alter-
nating permutations with {w1, . . . ,wk} in their vertex sets, any other
alternating permutation σ that maps to (I1, . . . , Ik) under ψS must
have fewer inversions than ω.
Let σ be such a permutation. Since each inversion between the sets

I1, Zn − Ik and Ij − Ij−1 for all 1 < j ≤ k are fixed, the additional
non-inversion must be contained in one of these sets. Without loss of
generality, let this be R = Ij − Ij−1. Denote by σ|R the restriction
of σ to the domain R. Let (σ−1(a), σ−1(b)) be the non-inversion of
σ|R that is not required by the alternating structure. Then note that
σ−1(a) + 1 < σ−1(b). We claim that σ|R must have at least one swap
position. To prove this, we will induct on b− a in a similar manner as
in the proof of Proposition 3.3. If b − a = 1, then a is a swap in σ|R
since σ−1(a) + 1 < σ−1(b).
Suppose b − a > 1. Consider the position of a + 1. If σ−1(a + 1) <

σ−1(a), then (σ−1(a + 1), σ−1(b)) is a non-inversion of σ|R that is not
required by the alternating structure. Since b− (a+1) < b− a, we are
done by induction. If σ−1(a + 1) > σ−1(b), then a can be swapped in
σ|R.
Consider the case where σ−1(a) < σ−1(a + 1) < σ−1(b). If σ−1(a) +

1 6= σ−1(a+1), then a can be swapped in σ|R. Otherwise, if σ−1(a)+1 =
σ−1(a+1), it cannot be the case that σ−1(a+1)+1 = σ−1(b) due to the
alternating structure of σ. So (σ−1(a+1), σ−1(b)) is a non-inversion of
σ|R that is not required by the alternating structure and we are done
by induction. So σ must have a swap position that is not equal to
s1, . . . , sk.
Therefore, ω is the only alternating permutation that can map to

(I1, . . . , Ik) under ψS, and ψS is the inverse map of φS. So αn(S) is
equal to the number of alternating permutations whose swap set is
contained in S. By the Principle of Inclusion-Exclusion, βn(S) is the
number of alternating permutations whose swap set is equal to S. �

Theorem 1.1 follows as a corollary of Theorem 4.2.



14 JANE IVY COONS AND SETH SULLIVANT

Proof of Theorem 1.1. Equation 1 states that

h∗O(Zn)(t) =
∑

S⊂[n−1]

βn(S)t
#S.

Theorem 4.2 tells us that βn(S) is the number of alternating permu-
tations with swap set S. So the sum

∑

#S=k βn(S) is the number of

alternating permutations σ with swap(σ) = k. So

h∗O(Zn)(t) =
∑

σ

tswap(σ),

as needed. �

5. Combinatorial Properties of Swap Numbers

Let sn(k) denote the number of alternating permutations on n let-
ters such that have exactly k swaps. We call these numbers the swap

numbers. Theorem 1.1 shows that the h∗-polynomial of O(Zn) is

n−1
∑

k=0

sn(k)t
k.

We are interested in interrogating these numbers. For example, it
would be interesting to find an explicit formula for sn(k), though we
have not been able to do this yet.
One straightforward property that becomes apparent looking at ex-

amples is that sn(n−1) = 0. This is clear because it is not possible that
every k ∈ [n−1] is a swap. Indeed, otherwise k is to the left of k+1 for
all k ∈ [n− 1] which implies that σ is the identity permutation, which
is not alternating. Furthermore, sn(n− 2) = 1, since the unique alter-
nating permutation with this many swaps is the one with 1, 2, . . . , ⌈n

2
⌉

in order in the odd numbered positions and ⌈n
2
⌉ + 1, . . . , n in order in

the even numbered positions. Similarly, sn(0) = 1, because there is a
unique alternating permutation with no swaps. It is the permutation
(n− 1, n, n− 3, n− 2, n− 5, n− 4, . . .).
Another property that is apparent from examples is summarized in

the following:

Theorem 5.1. The sequence sn(0), sn(1), . . . , sn(n − 2) is symmetric

and unimodal.

In fact, Theorem 5.1 and all the preceding properties will follow from
the fact that O(Zn) is a Gorenstein polytope of index 3.

Definition 5.2. An integral polytope isGorenstein if there is a positive
integer m such that mP contains exactly one lattice point v in its
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relative interior, and for each facet-defining inequality aTx ≤ b, we
have that b− aTv = 1. The integer m is called the index of P .

The following relevant theorem concerning the h∗ polynomials of
Gorenstein polytopes with unimodular triangulations appears in [2].

Theorem 5.3. Suppose that P is a Gorenstein polytope of dimension d
and index m. Then h∗P (t) is a polynomial of degree d−m+1, whose co-
efficients form a symmetric sequence. Furthermore, the constant term

of h∗P (t) is 1. If, in addition, P has a regular unimodular triangulation,

then the coefficient sequence is unimodal.

Proof of Theorem 5.1. It suffices to show that O(Zn) is a Gorenstein
polytope of index three with a regular unimodular triangulation. The
canonical triangulation of O(Zn) is a regular unimodular triangulation.
To see that it satisfies the Gorenstein property with respect to m = 3,
note that the defining inequalities for 3O(Zn) are that vi ≥ 0 for i
odd, vi ≤ 3 for i even, v2i−1 ≤ v2i and v2i+1 ≤ v2i. The unique interior
lattice point of 3O(Zn) is the point v where vi = 1 for i odd, and vi = 2
for i even. Finally, this point has lattice distance 1 from each of the
facet-defining inequalities. Hence O(Zn) is a Gorenstein polytope of
index three with a regular unimodular triangulation and Theorem 5.3
can be applied to deduce that the coefficient sequence is symmetric and
unimodal. �

While general principles provide a proof of the symmetry and uni-
modality of the sequence sn(0), sn(1), . . . , sn(n − 2), it would be in-
teresting to find explicit combinatorial arguments that would produce
these results. In particular, we let An,k denote the set of alternat-
ing permutations on n letters with exactly k swaps, then it would be
interesting to solve the following problems.

Problem 5.4. (1) Find a bijection between An,k and An,n−k−2.
(2) For each 0 ≤ k ≤ ⌊(n − 4)/2⌋ find an injective map from An,k

to An,k+1.
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