
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

How rough path lifts affect expected

return and volatility: a rough model

under transaction cost

(revised version: May 2023)

by

Hoang Duc Luu and Jürgen Jost

Preprint no.: 101 2019





How rough path lifts affect expected return and volatility:

a rough model under transaction cost

Luu Hoang Duc ∗, Jürgen Jost †

Abstract

We develop a general mathematical framework, based on rough path theory, that can incor-
porate the empirically observed nonlinear mean-variance relation of the logarithmic return in a
systematic manner. This model offers the possibility of an additional noise hidden in the rough
path lift, hence supporting the idea of mixture of a Gaussian noise that is close to a standard
Brownian motion and another source of long memory noise (a fractional Brownian motion for
instance), that can account for the multi-scaling phenomenon in financial data. The no-arbitrage
principle is then satisfied under the assumption of transaction costs as long as the driving noise
is a sticky process. We also discuss the potential risk of model uncertainty where the ambiguity
comes from the rough path lifts, as well as the problem of cooperation. Our models are supported
by empirical evidence from financial data and in particular, can explain some stylized fact (a
parabolic lower bound of a mean-variance relation) that has not been explained before.

Keywords: stock price, expected return, volatility, noise, rough path theory, rough path lifts,
rough differential equations, no-arbitrage, risk.

1 Introduction

It is well-known that the original Samuelson stock model [44],

dSt = µStdt+ σStdBt, (1.1)

for a stock price St at time t with growth factor µ, volatility σ and a stochastic integral in the sense
of Itô with respect to a standard Brownian motion Bt, does not reproduce certain rather universal
features of empirical stock price data (the so-called stylized facts); hence many modifications have
been suggested ever since. First, the Hull & White model [28] suggests that the growth factor and
the volatility should be time-dependent and stochastic, leading to a model of the form

dSt = µtStdt+ σtStdBt, (1.2)

where µ : [0, T ] → R is assumed to be Lebesgue integrable and deterministic for simplicity, and σt
satisfies a stochastic differential equation

d log σt = k(θ − log σt)dt+ γdWt (1.3)
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with parameters k, θ, γ and another Brownian motionWt, with an instantaneous correlation dBtdWt =
ρdt with a parameter ρ ∈ [0, 1] between the two different Brownian motions. The Heston model
[26] proposes that σt =

√
νt where νt follows a Cox-Ingersoll-Ross equation

dνt = k
[
θ − νt

]
dt+ λ

√
νtdWt. (1.4)

Here k, θ, λ > 0 are parameters, and the two Brownian motions again possess an instantaneous
correlation dBtdWt = ρdt with ρ ∈ [0, 1].

Still, the stock model (1.2) does not account for certain memory effects in logSt. This seems
to require a more radical solution than simply making the coefficients time dependent, but keeping
standard Brownian motion as the underlying stochastic process. This issue was raised already very
early in [32], which suggested that the standard Brownian motion in (1.2) should be generalized to
self similar processes, including fractional Brownian motions BH , i.e., a family of centered Gaussian
processes BH = {BH(t)}, t ∈ R or R+ with continuous sample paths and covariance function

RH(s, t) = 1
2(t2H + s2H − |t− s|2H), ∀t, s ∈ R.

In [11], ordinary Brownian motion is replaced by fractional Brownian motion in the model (1.3) for
the variance σt, resulting in

d log σt = k(θ − log σt)dt+ γdBH
t . (1.5)

In order to obtain a process with long memory, a Hurst exponent H > 1
2 is needed. Recent

empirical studies [4], [21] however showed that if we assume the model (1.5), the log-volatility
behaves essentially as a fractional Brownian motion with Hurst exponent H of order 0.1 at any
reasonable time scale, and thus, we do not have a long memory process. (As we shall see below,
however, when the empirical data are fit to other models, larger Hurst exponents emerge. Thus,
this is a feature of the model and not of the data). This observation motivates a study in [5], in
which the authors suggest a more general dynamic model of the form

dSt
St

= f(Zt)(ρdWt +
√

1− ρ2dW ′t)

Zt = z +

∫ t

0
K(s, t)v(Zs)ds+

∫ t

0
K(s, t)u(Zs)dWs,

(1.6)

where K is a kernel, W,W ′ are independent Brownian motions and f, u, v are sufficiently smooth
functions.

Another important stylized fact is the multi-scaling phenomenon in financial data, and in par-
ticular that the generalized Hurst exponent varies depending on the time scale (see e.g. [3], [15],
[2], [7], [8]). The multi-scaling issue can be explained either by considering a random time change
of the Brownian noise Bt through the time change process It, i.e. Xt = BIt for all t ≥ 0 (see [2]);
or by assuming that the noise Xt has the form

Xh(t) =

b t
h
c∑

k=1

eωh(k)
(
BH

(k+1)h −B
H
kh

)
(1.7)

for some Hurst exponent H ≥ 1
2 , ωh(·) ∼ N (0, λ2 log(Lh )) with the intermittency parameter λ and

the autocorrelation length L, and the time scale h such that the ωh(k) are correlated up to the
distance L, i.e.

Cov(ωh(k1), ωh(k2)) = λ2ρh(|k1 − k2|), ρh(|k1 − k2|) =

{
L

(|k1−k2|+1)h for |k1 − k2| ≤ L
h − 1

1 otherwise
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(see [3] and [8]).
Studies in [15] and [7] (see also our computations in Subsection 4.1) reveal that the log return

of stock indices (for instance Nasdaq, Dow Jones, SP500) or various exchange rates has the Hurst
exponents ranging from 0.45 to 0.7 in some period. This leaves it open whether or not the noise
should have long memory, and why the Hurst exponents often look smaller than 1

2 for data quoted
on timescales of minutes to hours but increase to values significantly larger than 1

2 for daily to
monthly quoted data. It is generally agreed, however, that the Hurst exponent for the log return
of the stock price is always bigger than 1

3 .
Of course, one can introduce models with many parameters, in order to match the empirical data.

Our approach is different, because we want to develop a general mathematical framework within
which the observed phenomena find a conceptual explanation. In fact, the basic and robust relation
that emerges from our numerical investigation of a wide range of stocks and other indices is that
when we plot the daily mean-variance relation of the logarithmic return, we find a parabola shaped
curve as a lower envelope. In particular, the relation is not linear, as basic models suggest, and the
nonlinearity exhibits a clear structure. This asks for a systematic explanation. The mathematical
theory we shall draw upon for that purpose is rough path theory [31], [20], [19], a well-established
and very powerful mathematical approach to stochastic processes. The theory can handle rather
general driving noises in a systematic manner. The key idea consists in directly incorporating
higher order information about the noise to define certain integrals in an algebraic manner. While
we are not the first to apply rough path theory to model financial data, we should nevertheless
take this opportunity to point out some conceptual aspects. First, the theory provides a unified
and elegant treatment for all kinds of driving noises, whose effects can then be compared in an
efficient manner. A rough path can be defined solely on the basis of simple algebraic relations that
are naturally satisfied by all kinds of stochastic integrals. While the traditional stochastic view is
based on unpredictability or uncertainty, the rough path approach emphasizes the control of a path
by some underlying noise and its properties. Secondly, the noise naturally needs to operate only
along the considered or observed path, and no assumption about noise along unobserved paths is
required. The pathwise approach is therefore very well compatible with data oriented methods.

Thus, we propose a new model using rough path theory, which covers all well-known cases and
phenomena. That is, we do not interpret the stochastic system in (1.2) in the sense of Itô, but
attempt to solve in the pathwise sense the general form

dSt = µtStdt+ σtStdXt

for a certain Gaussian noise X, where the second integral
∫
σSdX is understood as a rough integral

as defined by Gubinelli [24]. In that framework, the information from a realization x of X is not
enough and additional information of a rough path lift x = (x, [ω, dx], [x, dx]) is required, where ω is
a realization of another independent source of Gaussian noise W on which the volatility σ depends,
and [ω, dx], [x, dx] are the corresponding Levy areas satisfying Chen’s relation. Our rough path
approach therefore needs more information than just a driving noise X and its truncated signature
(X, [X, dX]) as often seen in the literature on rough path theory. As proved in Theorem 2.5, the
equation can be solved to have an explicit pathwise solution

logSt(·) = logSτ (·) +

∫ t

τ
µudu−

1

2

∫ t

τ
σ2
u(·)d[X]u(·) +

∫ t

τ
σu(·)dXu(·),

where
∫
σ2d[X] is a pathwise Young integral with respect to the bracket process [X] defined in [19]

and
∫
σdX is a pathwise rough integral defined in the Gubinelli sense with respect to the rough

path lift X = (X, [W,dX], [X, dX]). The advantage of the model is that, while the price process
S itself is controlled in the pathwise sense by X and its realizations, σ is naturally driven in the
pathwise sense by both X and W , thus its driving noises are correlated with the noise X of the
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price process S as suggested by the Hull & White model, and moreover its regularity can be as low
as that of W , which is captured by empirical evidence in [4, 21] (recall that we mentioned above
that a Hurst exponent can be as low as .1). For a class of such functions σ we refer to Remark 2.6.
And in particular, without additional effort of detecting signatures of higher orders, this will allow
us to go below the Hölder exponent 1/3 that naturally appears in rough path theory.

The no-arbitrage principle has been viewed as the fundamental requirement for a model to
satisfy the efficient market hypothesis (EMH). For models based on standard Brownian motion like
(1.1), (1.2) or (1.6), this is usually not a problem. When the stochastic noise in the asset price
model comes from fractional Brownian motions or in general Gaussian processes which display the
long rang dependence observed in empirical data, it has however been shown, e.g. in [43] or in
[9] that the model allows for arbitrage. But the model in [34] which uses the Skorohod-Wick-Itô
integral shows that the existence of arbitrage can be avoided. Another solution to this arbitrage
problem comes from [10], [30], [33, Chapter 5, pp. 305-306] which assumes that the noise is the
mixture of a standard Brownian noise B and a fractional Brownian motion BH for H ∈ (1

2 , 1).
Subsequently, the no simple arbitrage statement was proved in [6] for the wider class exp{Zt+σBt}
of geometric mixed noise, where (B,F) is a standard Brownian motion and Z is an F-adapted
process independent of B, although there might still exist arbitrage in the weak form if one does
not specify assumptions on available trading strategies.

In contrast to that approach, in this paper, we follow [22], [23] and assume transaction costs (see
also the related works [13] and the references therein in the context of fractional price processes).
The reason is that a sufficient condition for no-arbitrage only requires the log-price logSt to be a
sticky process. Also, it turns out that the class of sticky processes is very large, since it contains
strong Markov processes or any stochastic process with conditional full support (CFS). The stickiness
has also been studied later in [42] for a larger class of stochastic processes. The CFS criterion was
extended in [37] for a class of mixed noise Zt +Xt, where Z is an arbitrary continuous process, and
X is a process independent of Z that has CFS. This class includes also mixed forms of mutually
independent standard Brownian motions and fractional Brownian motions. In particular, in Section
3 we show in Theorem 3.1 that, in the presence of transaction costs, the condition on CFS of two
independent processes X, [X] leads to the CFS of the logarithm price process logSt when the
(stochastic) volatility has a positive lower bound. Consequently, the process St is arbitrage-free.

The above model also shows that there is a freedom to first allow [X] to vary in a stochastic
way and then use X, [X] to define the Levy area [X, dX] through Chen’s relation, thus leading to a
mixture of noises. We thus proceed in Section 4 to explain empirical data within our framework. The
multi-scaling phenomenon can be explained by a rough model in Subsection 4.1, where the Hurst
exponent is computed from the linear regression method between the logarithms of the variance
and the duration. Moreover, our empirical analysis in Subsection 4.2 finds that there is a nonlinear
mean-variance relation, which could not be explained by using the classical model (1.1) or (1.2)
but naturally follows in the framework of the rough model with such an additional noise [X]. It is
important to note that the model works under the assumption on the stochasticity of the bracket
path [X], which turns out to match very well with Peng’s theory of G-Brownian motion B̂ [38], which
has uncertainty in its quadratic variation process 〈B̂〉 (see Example 2.2). Also, it suggests to make
a connection to related work [14] on the pricing of contingent claims under volatility uncertainty.

Finally, we show in Section 5 by a simple example that the well-known negative effect of the
variance on the expected log-return can indeed come from the stochastic process [X]. Namely, the
appearance of the additional noise [X] does increase the variance of the log-return. We therefore raise
the problem of the model risk, in which the volatility increases from stock model ambiguity, and the
uncertainty comes from the rough path lifts. At the end, we also consider the cooperation problem
in ergodicity economics [40] for the rough model, and discuss the fact that different stochastic
formulations might result in different conclusions on cooperation effects. In particular, in one setting,
we can show that cooperation can mitigate the effects of volatility and is therefore beneficial.
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2 Rough model of stock prices

2.1 Rough path theory

This section presents a brief introduction to rough path theory for Hölder continuous paths. For a
compact time interval [a, b] ⊂ R, define ∆2([a, b]) := {(s, t) : a ≤ s ≤ t ≤ b}. Let C([a, b],R) denote
the space of all continuous paths y : [a, b] → R equipped with the sup-norm ‖ · ‖∞,[a,b] given by
‖y‖∞,[a,b] = supt∈[a,b] ‖yt‖, where ‖ · ‖ is simply the absolute value.1 We write ys,t := yt − ys. For
0 < α < 1, we denote by Cα([a, b],R) the space of Hölder continuous functions with exponent α on
[a, b] equipped with the norm

‖y‖α,[a,b] := ‖ya‖+ |||y|||α,[a,b] = ‖ya‖+ sup
s<t∈[a,b]

‖ys,t‖
(t− s)α

,

Similar to [31], [24] and [19], a path x ∈ Cα([a, b],R) can be lifted to a tuple x = (x, [ω, dx], [x, dx]) ∈
Cα([a, b],R) ⊕ Cα+β([a, b]2,R ⊗ R) ⊕ C2α([a, b]2,R ⊗ R) with respect to an additional path ω ∈
Cβ([a, b],R) with 0 < α, β ≤ 1

2 , where

[ω, dx] ∈ Cα+β([a, b]2,R⊗ R) :=
{

Ξ·,· ∈ C([a, b]2,R⊗ R) : sup
s,t∈[a,b], s 6=t

‖Ξs,t‖
|t− s|α+β

<∞
}
,

[x, dx] ∈ C2α([a, b]2,R⊗ R) :=
{

Ξ′·,· ∈ C([a, b]2,R⊗ R) : sup
s,t∈[a,b], s 6=t

‖Ξ′s,t‖
|t− s|2α

<∞
}
,

(2.1)

are called Levy areas if they satisfy Chen’s relation

δ[ω, dx]s,u,t = [ω, dx]s,t − [ω, dx]s,u − [ω, dx]u,t = ωs,uxu,t,

δ[x, dx]s,u,t = [x, dx]s,t − [x, dx]s,u − [x, dx]u,t = xs,uxu,t, ∀a ≤ s ≤ u ≤ t ≤ b.
(2.2)

We shall call x a rough path lift. The set Cα,β([a, b],R ⊕ (R ⊗ R) ⊕ (R ⊗ R)) ⊂ Cα([a, b],R) ⊕
Cα+β([a, b]2,R⊗ R)⊕ C2α([a, b]2,R⊗ R) of all rough path lifts x on [a, b] is then a closed set (but
not a linear space), equipped with the rough path semi-norm

|||x|||α,β,[a,b] := |||x|||α,[a,b] + |||[ω, dx]|||
1
2

α+β,[a,b]2
+ |||[x, dx]|||

1
2

2α,[a,b]2
<∞, where (2.3)

|||[ω, dx]|||α+β,[a,b]2 := sup
s,t∈[a,b];s 6=t

‖[ω, dx]s,t‖
|t− s|α+β

, |||[x, dx]|||2α,[a,b]2 := sup
s,t∈[a,b];s 6=t

‖[x, dx]s,t‖
|t− s|2α

.

In the absence of such an ω, this simply reduces to the traditional rough path x = (x, [x, dx]) as in
[31].

Remark 2.1 One can view [ω, dx] as postulating the value of the quantity∫ t

s
ωs,rdxr := [ω, dx]s,t, (2.4)

where the right hand side is taken as a definition for the left hand side, so that
∫
ωdx is written only

symbolically. For a non-trivial example, consider two independent centered Gaussian processes W
and X satisfying

E|Ws,t|2p ≤ CW |t− s|2pH , E|Xs,t|2q ≤ CW |t− s|2qH
′
, ∀0 ≤ s ≤ t ≤ T (2.5)

1The theory can be extended to vector-valued paths in C([a, b],Rd) without undue difficulties, but for our purposes
the scalar-valued case suffices.

5



where 0 < H,H ′ < 1 < p, q such that pH, qH ′ > 1 and H + H ′ > 1
2 . Then one can follows [19,

Chapter 10] to prove that, given the condition on the regularity of the incremental covariances

RX

(
s t
s′ t′

)
:= EXs,tXs′,t′ , RW

(
s t
s′ t′

)
:= EWs,tWs′,t′ , ∀s < t, s′ < t′

such that for all a ≤ s ≤ t ≤ b

|||RX |||p−var,[s,t]2 =

(
sup

P(s,t),P ′(s,t)

∣∣∣∣RX (s t
s′ t′

)∣∣∣∣p
) 1

p

≤MX |t− s|2H ,

|||RW |||q−var,[s,t]2 =

(
sup

P(s,t),P ′(s,t)

∣∣∣∣RW (s t
s′ t′

)∣∣∣∣q
) 1

q

≤MW |t− s|2H
′
,

where the suprema are taken over finite partitions P,P ′ of [s, t], it is possible to define the stochastic
integral

[W,dX]s,t =

∫ t

s
Ws,udXu := lim

|P(s,t)|→0

∑
ti∈P(s,t)

Ws,tiXti,ti+1 (2.6)

as the L2-limit of the Stieltjes integrals on finite partitions P(s, t) = {s = t0 < t1 < · · · < tn = t}
of [s, t] with |P(s, t)| := max

[u,v]∈P(s,t)
|v − u|. Moreover,

E

(∫ t

s
Ws,udXu

)2

≤ CH,H′ |||RX |||p−var,[s,t]2 |||RW |||q−var,[s,t]2 ≤ CH,H′,X,W |t− s|
2(H+H′)

holds. As a result, for any α ∈ (0, H), β ∈ (0, H ′) such that α + β > 1
2 and pα, qβ > 1, there

exists a version of W,X and [W,dX] such that a.s. all realizations ω ∈ Cβ, x ∈ Cα, [ω, dx] ∈ Cα+β

respectively. Moreover, [ω, dx] satisfies the Chen relation (2.2).

Below, let us review some specific examples for [x, dx].

Example 2.2 1. When x is a realization of a local martingale X, for instance Xt =
∫ t

0 asdBs, we
define the stochastic integral

∫
ydX as the integral w.r.t. the local martingale X [18, Section

2.5]. We can then apply the Itô formula [18, Section 2.8, p.64]

f(Xt)− f(Xs) =

∫ t

s
f ′(Xu)dXu +

1

2

∫ t

s
f ′′(Xu)d〈X〉u

for any function f ∈ C2, where 〈X〉t is the quadratic variance process, to compute explicitly

[X, dX]s,t =

∫ t

s
Xs,udXu =

1

2
X2
s,t −

1

2

(
〈X〉t − 〈X〉s

)
.

In particular if Xt =
∫ t

0 asdBs, then 〈X〉t =
∫ t

0 a
2
udu. Hence, in the pathwise sense, it is easy

to check that [X, dX] satisfies Chen’s relation (2.2) a.s.

2. When X = BH is a fractional Brownian motion which is not a semi-martingale [43], we
cannot apply the classical Itô calculus, but define the stochastic integral

∫
yδBH in the sense

of Skorohod-Wick-Itô by using the Wick product as in [34, Chapter 5]. Then by using the
Wick-Itô formula [34] for the Skorohod-Wick-Itô integral

f(BH
t )− f(BH

s ) =

∫ t

s
Hu2H−1f ′′(BH

u )du+

∫ t

s
f ′(BH

u )δBH
u (2.7)
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for any function f ∈ C2, we can compute explicitly

[BH , dBH ]s,t :=

∫ t

s
BH
s,uδB

H
u =

1

2
(BH

s,t)
2 − 1

2

(
t2H − s2H

)
.

In general, the signatures [X, dX] can also be defined for a scalar centered Gaussian process of
the form Xt =

∫ t
0 K(t, s)dBs where B is a standard Brownian motion, and K(t, s) is a square

integrable kernel. In particular, using the Itô-type formula

f(Xt)− f(Xs) =

∫ t

s
f ′(Xu)δXu +

1

2

∫ t

s
f ′′(Xu)dRu (2.8)

for a function f ∈ C2, where Ru = E(Xu)2 =
∫ u

0 K
2(u, s)ds and the stochastic integral

∫
δX

can be computed as the limit of Riemann sums defined w.r.t. the Wick product [1]. Thus,
[X, dX]s,t :=

∫ t
s Xs,uδXu can be computed explicitly, which satisfies Chen’s relation (2.2) a.s.

3. When X = B̂ is a G-Brownian motion together with its quadratic variation process 〈B̂〉 in

a sublinear expectation space (Ω,H, Ê) with B̂1
d
= N({0} × [σ2, σ2]) [38], then one can prove

(see e.g. [39, Proposition 3.2]) that

‖B̂s,t‖LqG ≤ Cq,σ|t− s|
1
2 , ‖[B̂, dB̂]s,t‖

L
q
2
G

≤ Cq,σ|t− s|, ∀q > 2,

where [B̂, dB̂]s,t =
∫ t
s B̂s,udB̂u. As a result, one has the G-sublinear expectation version of

the Kolmogorov criterion [39, Theorem 3.1] that for all ν ∈ [0, 1
2 −

1
q ), (B̂, [B̂, dB̂]) has a

continuous modification and there exists Kν ∈ LqG,Kν ∈ L
q
2
G such that for any s, t ∈ [0, T ] one

has inequalities
|B̂s,t| ≤ Kα|t− s|ν , |[B̂, dB̂]s,t| ≤ Kν |t− s|2ν .

In particular choosing q > 6 and ν ∈ (1
3 ,

1
2 −

1
q ), one can then compute explicitly

[B̂, dB̂]s,t =
1

2
(B̂2

s,t − 〈B̂〉s,t).

The definition is such that in general [ω, dx] 6= [x, dω]. We also define {ω, x} by

{ω, x}s,t = ωs,txs,t − [ω, dx]s,t − [x, dω]s,t, ∀a ≤ s ≤ t ≤ b. (2.9)

Then it is easy to check that {ω, x} ∈ Cα+β with

{ω, x}s,t = {ω, x}s,u + {ω, x}u,t, ∀a ≤ s ≤ u ≤ t ≤ b,

so one can redefine {ω, x}s,t = {ω, x}a,t − {ω, x}a,s, where {ω, x}a,· ∈ Cα+β([a, b],R) is a Hölder
continuous path. In Remark 2.1, the integrals

∫
WdX and

∫
XdW are well-defined as in (2.6) for

two independent centered Gaussian processes and moreover satisfy∫ t

s
Ws,udXu +

∫ t

s
Xs,udWu = Ws,tXs,t

hence {W,X} ≡ 0 a.s.
In particular, for ω ≡ x, {x, x} coincides with the bracket path in [19]

[x]s,t := x2
s,t − 2[x, dx]s,t, ∀s ≤ t. (2.10)

which satisfies Chen’s relation (2.2), hence [x]s,t = [x]a,t − [x]a,s where [x]a,· ∈ C2α([a, b],R) is a
Hölder continuous path. It is important to note that, using (2.10) one can use x and [x] as inputs
to define (uniquely) [x, dx]s,t = 1

2(x2
s,t − [x]s,t).
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Remark 2.3 In Example 2.2, we can compute [X] explicitly as follows

[X]s,t :=



t− s if Xt = Bt

〈X〉t − 〈X〉s if Xt is a local martiangle∫ t
0 K(t, u)2du−

∫ s
0 K(s, u)2du if Xt =

∫ t
0 K(t, s)dBs

0 if X· ∈ Cν , ν > 1
2

〈B̂〉t − 〈B̂〉s if Xt = B̂t

. (2.11)

We observe that [X] is non-random for the four first cases in (2.11). But the fifth case is special
since [X] = 〈B̂〉 is truly stochastic, and even of mean-uncertainty. In fact, 〈B̂〉 has stationary
increments and is independent of B̂ with

Ê[〈B̂〉t − 〈B̂〉s] = σ2(t− s) ≥ −Ê[−
(
〈B̂〉t − 〈B̂〉s

)
] = σ2(t− s), ∀t ≥ s, (2.12)

where σ2 := −Ê[−B̂2
1 ] ≤ Ê[B̂2

1 ] =: σ2, and Ê is the sub-linear expectation, see [38].

2.2 Rough integrals

For y ∈ Cβ([a, b],R) and x ∈ Cν([a, b],R) with β+ ν > 1, the Young integral
∫ b
a ytdxt can be defined

as ∫ b

a
ysdxs := lim

|Π[a,b]|→0

∑
[u,v]∈Π[a,b]

yuxu,v, (2.13)

where the limit is taken over all finite partitions Π[a, b] of [a, b] (see [47, p. 264–265]). This integral
satisfies the additivity property by construction, as well as the so-called Young-Loeve estimate [20,
Theorem 6.8, p. 116]∥∥∥∫ t

s
yudxu − ysxs,t

∥∥∥ ≤ Kβ,ν |t− s|β+ν |||y|||β,[s,t] |||x|||ν,[s,t] , (2.14)

for all [s, t] ⊂ [a, b], where Kβ,ν := (1− 21−β−ν)−1.
Next, we introduce the construction of rough integrals in case 0 < β,α < 1

2 such that

3α > β + 2α > 1. (2.15)

Following [24], a path y ∈ Cβ([a, b],R) is said to be controlled by (ω, x)T ∈ Cβ([a, b],R)⊗Cα([a, b],R)
if there exists a tube (∂ωy, ∂xy,R

y) with a path ∂ωy ∈ Cα([a, b],L(R,R)), ∂xy ∈ Cβ([a, b],L(R,R))
and a remainder Ry ∈ Cα+β([a, b]2,R) such that

ys,t = (∂ωy)sωs,t + (∂xy)sxs,t +Rys,t, ∀a ≤ s ≤ t ≤ b. (2.16)

∂ωy, ∂xy are called the Gubinelli (partial) derivatives of y with respect to ω, x respectively, which
are uniquely defined as long as ω, x are truly rough [19, Proposition 6.4], i.e. ω ∈ Cβ([a, b],R) \
C2β([a, b],R) and x ∈ Cα([a, b],R) \ C2α([a, b],R).

Example 2.4 Consider yt = g(xt)ωt on [a, b] with g ∈ C2(R), then it is easy to check that

ys,t = ωs(g(xt)− g(xs)) + g(xs)ωs,t + (g(xt)− g(xs))ωs,t

= ωsg
′(xs)xs,t + g(xs)ωs,t +O(|xs,t||ωs,t|) +O(|xs,t|2)

= ωsg
′(xs)xs,t + g(xs)ωs,t +O(|t− s|α+β),

where g(x·), g
′(x·) ∈ Cα([a, b],R) and ω·g

′(x·) ∈ Cβ([a, b],R). Hence y = g(x)ω is controlled by
(ω, x)T in the sense of (2.16). This example shows that there is flexibility in the regularity of
Gubinelli partial derivatives of y, as long as (2.15) is satisfied.
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Denote by Dα,β([a, b]) the space of all the tuple (y, ∂ωy, ∂xy) controlled by (ω, x)T, then Dα,β([a, b])
is a Banach space equipped with the norm

‖(y, ∂ωy, ∂xy)‖α,β,[a,b] := ‖ya‖+ ‖(∂ωy)a‖+ |||(y, ∂ωy, ∂xy)|||α,β,[a,b] ,
|||(y, ∂ωy, ∂xy)|||α,β,[a,b] := |||∂ωy|||α,[a,b] + |||∂xy|||β,[a,b] + |||Ry|||α+β,[a,b]2 .

For a rough path lift x = (x, [ω, dx], [x, dx]) and any controlled rough path (y, ∂ωy, ∂xy) ∈ Dα,β([a, b]),
one can easily check from Chen’s relation (2.2) that Fs,t := ysxs,t + (∂ωy)s[ω, dx]s,t + (∂xy)s[x, dx]s,t
satisfies

δFs,u,t = −ys,uxu,t − (∂ωy)s,u[ω, dx]u,t + (∂ωy)sωs,uxu,t − (∂xy)s,u[x, dx]u,t + (∂xy)sxs,uxu,t

= −Rys,uxu,t − (∂ωy)s,u[ω, dx]u,t − (∂xy)s,u[x, dx]u,t = O(|t− s|2α+β).

Because of condition (2.15), the integral
∫ t
s yudxu can be defined, thanks to the sewing lemma [24],

[12], for any a ≤ s ≤ t ≤ b as∫ t

s
yudxu =

∫ t

s
yudxu := lim

|P[s,t]|→0

∑
[u,v]∈P[s,t]

(
yuxu,v + (∂ωy)u[ω, dx]u,v + (∂xy)u[x, dx]u,v

)
(2.17)

where the limit is taken over all finite partitions P[s, t] of [s, t] and is thus independent of P. This
rough integral is additive, i.e.

∫ t
s ydx =

∫ τ
s ydx+

∫ t
τ ydx for any s ≤ τ ≤ t. Moreover, there exists a

constant Cα > 1, such that∥∥∥∫ t

s
yudxu − ysxs,t − (∂ωy)s[ω, dx]s,t − (∂xy)s[x, dx]s,t

∥∥∥
≤Cα|t− s|2α+β

(
|||x|||α,[s,t] |||R

y|||α+β,[s,t]2 + |||∂ωy|||α,[s,t] |||[ω, dx]|||α+β,[s,t]2

+ |||∂xy|||β,[s,t] |||[x, dx]|||2α,[s,t]2
)
.

(2.18)

Note that if ∂ωy ≡ 0, then (2.16) implies that y ∈ Cα([a, b],R). In that case if β = α one goes back
to the Gubinelli rough integral

∫
ydx for controlled paths y by the driving rough path x (see [24]).

Obviously, when y is constant, (2.17) reduces to
∫ t
s yudxu = yxs,t. In addition, if x ∈ C1, then the

rough integral (2.17) becomes the ordinary Riemann-Stieltjes integral.

2.3 Time dependent rough models

The second equation in model (1.6) suggests that the volatility is time dependent and controlled
by another source of noise W which might be of low regularity. This leads to the question how to
understand the stochastic integral in the first equation of (1.6) when the Itô calculus may not be
applicable. This motivates us to extend the construction of rough integrals in the Gubinelli sense
in Subsection 2.2. Accordingly, given parameters 1

2 > α > β > 0 which also satisfy (2.15), let us
consider the time dependent model

dSt = µtStdt+ σtStdxt (2.19)

where µ : [0, T ] → R is Lebesgue integrable and σ ∈ Cβ([0, T ],R) is controlled by a realization
(ω, x)T ∈ Cβ([0, T ],R) ⊗ Cα([0, T ],R) in the sense (2.16). Equation (2.19) is understood in the
integral form

St = S0 +

∫ t

0
µuSudu+

∫ t

0
σuSudxu, (2.20)
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where the second integral in (2.20) is well-defined as a rough integral (2.17). Indeed, one should
look for a solution S ∈ Cα([0, T ],R) that is controlled by (ω, x)T in the sense of (2.16) such that
Sτ,t = (∂xS)τxτ,t +RSτ,t for some ∂xS ∈ Cβ([0, T ],R), RS ∈ Cα+β([0, T ],R), ∂ωS ≡ 0. Since α > β,

σtSt − στSτ =
(
στ + (∂ωσ)τωτ,t + (∂xσ)τxτ,t +Rστ,t

)(
Sτ + (∂xS)τxτ,t +RSτ,t

)
− στSτ

= (∂ωσ)τSτωτ,t +
(
στ (∂xS)τ + (∂xσ)τSτ

)
xτ,t +Rστ,t

(
Sτ + (∂xS)τxτ,t +RSτ,t

)
+

+
(
στ + (∂ωσ)τωτ,t + (∂xσ)τxτ,t

)
RSτ,t +

(
(∂ωσ)τωτ,t + (∂xσ)τxτ,t

)
(∂xS)τxτ,t

= (∂ωσ)τSτωτ,t +
(
στ (∂xS)τ + (∂xσ)τSτ

)
xτ,t +RσSτ,t , (2.21)

for some RσS ∈ Cα+β([0, T ]2,R). Hence, σS ∈ Cβ([0, T ],R) is controlled by (ω, x)T in the sense

(2.16). Therefore the rough integral
∫ b
a σSdx is well-defined as∫ b

a
σuSudxu

= lim
|P(a,b)|→0

∑
u,v∈P(a,b)

(
σuSuxu,v + (∂ωσ)uSu[ω, dx]u,v +

(
σu(∂xS)u + (∂xσ)uSu

)
[x, dx]u,v

)
,

(2.22)

and in particular ∂xS = σS ∈ Cβ([0, T ],R). In other words, the rough differential equation (2.19)
or the rough integral equation (2.20) is well-posed. In the following result, we obtain an explicit
solution for equation (1.1) using rough path calculus.

Theorem 2.5 Given 1
2 > α > 1

3 ≥ β > 0 satisfying (2.15), a coefficient path σ ∈ Cβ([0, T ],R)
controlled by (ω, x)T and a driving path x ∈ Cα([0, T ],R), there exists a unique rough solution of
equation (2.19) on [0, T ]. Moreover, the explicit pathwise solution of (2.19) is given by St = eYt

where

Yb = Ya +

∫ b

a
µudu−

1

2

∫ b

a
σ2
ud[x]u +

∫ b

a
σudxu (2.23)

and the path [x] ∈ C2α([0, T ],R) is defined in (2.10).

Proof: The existence and uniqueness part is proved by following similar arguments in [24] or
[17]. For the benefit of the reader, we provide a sketch of the proof in the Appendix. To derive
formula (2.23), observe that zero is the trivial solution of (2.19), hence it follows from the existence
and uniqueness parts that St 6= 0 for all t ≥ τ whenever Sτ 6= 0. That implies St > 0 for all t ≥ τ
whenever Sτ > 0. Note that ∂xS = σS while ∂ωS = 0. Now applying the Taylor expansion for the
function Yt = logSt, we obtain from the fact S, Y ∈ Cα([0, T ]) that

logSt = logSτ +
1

Sτ
Sτ,t −

1

2S2
τ

S2
τ,t +O(|t− τ |3α), (2.24)

for 0 < t− τ < h on [0, T ], where 0 < h� 1 is small enough. The discretized scheme for equation
(2.19) using (2.18) and (2.22) yields

Sτ,t = µτSτ (t− τ) + στSτxτ,t + (∂ωσ)τSτ [ω, dx]τ,t

+
(
στ (∂xS)τ + (∂xσ)τSτ

)
[x, dx]τ,t +O(|t− τ |2α+β)

= µτSτ (t− τ) + στSτxτ,t + (∂ωσ)τSτ [ω, dx]τ,t

+
(
σ2
τSτ + (∂xσ)τSτ

)
[x, dx]τ,t +O(|t− τ |2α+β), (2.25)
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for all |t− τ | < h on [0, T ]. Combining (2.24) and (2.25), and using the fact that x ∈ Cα, [ω, dx] ∈
Cα+β, [x, dx] ∈ C2α, we obtain

Yτ,t = µτ (t− τ) + στxτ,t + (∂ωσ)τ [ω, dx]τ,t +
(
σ2
τ + (∂xσ)τ

)
[x, dx]τ,t +O(|t− τ |2α+β)

−1

2

(
µτ (t− τ) + στxτ,t + (∂ωσ)τ [ω, dx]τ,t +

(
σ2
τ + (∂xσ)τ

)
[x, dx]τ,t +O(|t− τ |2α+β)

)2

+O(|t− τ |3α)

= µτ (t− τ) + στxτ,t + (∂ωσ)τ [ω, dx]τ,t + (∂xσ)τ [x, dx]τ,t

−σ2
τ

(1

2
x2
τ,t − [x, dx]τ,t

)
+O(|t− τ |2α+β)

= µτ (t− τ) + στxτ,t + (∂ωσ)τ [ω, dx]τ,t + (∂xσ)τ [x, dx]τ,t −
1

2
σ2
τ [x]τ,t +O(|t− τ |2α+β)

for all |t−τ | < h on [0, T ]. Note that µτ (t−τ), στxτ,t+(∂ωσ)τ [ω, dx]τ,t+(∂xσ)τ [x, dx]τ,t and σ2
τ [x]τ,t

are respectively the discrete approximation of the integrals
∫ t
τ µudu,

∫ t
τ σudxu and

∫ t
τ σ

2
ud[x]u. Hence

using (2.18) and (2.14), one finally obtains

Yτ,t =

∫ t

τ
µudu+

∫ t

τ
σudxu −

1

2

∫ t

τ
σ2
ud[x]u +O(|t− τ |2α+β) (2.26)

for all |t − τ | < h on [0, T ]. Next for any 0 ≤ a < b ≤ T , we discretize the interval [a, b] into
sub-intervals of length h = b−a

N with end points a = t0 < t1 < . . . < tN = b for N large enough.
Then by using (2.26) and the additivity of the integrals, we obtain

Ya,b =
N−1∑
i=0

yti,ti+1

=

N−1∑
i=0

(∫ ti+1

ti

µudu+

∫ ti+1

ti

σudxu −
1

2

∫ ti+1

ti

σ2
ud[x]u +O(h2α+β)

)
=

∫ b

a
µudu+

∫ b

a
σudxu −

1

2

∫ b

a
σ2
ud[x]u + (b− a)O(h2α+β−1). (2.27)

Letting h→ 0 in (2.27) and using the fact that 2α+ β > 1, one derives (2.23).

Remark 2.6 (i) Let us describe the solution formula (2.23). The first integral is of classical Rie-
mann type, the second is of Young type for σ2 ∈ Cβ with respect to the path [x] ∈ C2α because of
(2.15). The third one is a rough integral (2.17) for σ controlled by (ω, x)T.

(ii) It is important to note that the stochastic process σ can be chosen as σ = g(X)W for X,W
in Remark 2.1, so that it satisfies Example 2.4. In particular, its β-Hölder continuity can be chosen
as small as possible provided that (2.15) is satisfied. This should capture the empirical evidence in
[4, 21] in which β < H ′ < 0.1. The same conclusion holds if W has the form W = h(W ′) where
X,W ′ are independent Gaussian processes satisfying Remark 2.1 and h ∈ C2(R) such that h and
its derivative h′ are bounded. In that case, one can formally write the equation for σ as

dσt = g′(Xt)h(W ′t)dXt + g(Xt)h
′(W ′t)dW

′
t . (2.28)

Equation (2.28) shows that there is a possible explanation for the fact that there is a correlation
between the noise (X, [W,dX], [X, dX]) that drives the log-price process Y and the noise (X,W ′)
that drives σ, as suggested in the Hull & White model [28]. For example, a choice of g(X) = eρX

and h(W ′) = e
√

1−ρ2W ′

e
√

1−ρ2W ′+1
for ρ ∈ (0, 1) will rewrite (2.28) in the form

dσ = σ(ρdX +

√
1− ρ2

e
√

1−ρ2W ′ + 1
dW ′),
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which has a correlated noise to X and implies further that the log-volatility log σ has its very low
regularity from W ′.

Due to (2.10), y is determined once we know the information on x, [x] and [ω, dx]. In particular,
when σ constant, (2.23) reduces to

yb = ya +

∫ b

a
µudu−

1

2
σ2[x]a,b + σxa,b.

Example 2.7 Below we review several special cases.

• When X = B a standard Brownian motion B, then Example 2.2(1) shows that [B]a,b(·) = b−a
a.s. and we go back to solving the classical model (1.2) using Itô calculus, so that the log-price
has the form

Ys,t =

∫ t

s

(
µu −

σ2
u

2

)
du+

∫ t

s
σudBu. (2.29)

• Also, if X = BH is a fractional Brownian motion for H ∈ (0, 1), we go back to the model
dSt = µStdt + σStδB

H
t with the Skorohod-Wick-Itô integral

∫
yδBH proposed in [34] as

discussed in Example 2.2(2), hence [BH ]a,b(·) := (b2H −a2H) a.s. and the solution is obtained
explicitly from [35] as

Ys,t = µ(t− s)− σ2

2
(t2H − s2H) + σBH

s,t; (2.30)

• When X = B̂ is the G-Brownian motion with respect to the sublinear expectation Ê, then it
follows from [38] that [B̂] = 〈B̂〉 and one can solve the stochastic differential equation

St = S0 +

∫ t

0
µSudu+

∫ t

0
σSudB̂u (2.31)

explicitly as

Ys,t = µ(t− s) + σB̂s,t −
1

2
σ2
(
〈B̂〉t − 〈B̂〉s

)
. (2.32)

3 No arbitrage under transaction costs

3.1 Rough models in stochastic settings

Motivated by the G-Brownian motions in Remark 2.3 and Example 2.7, we propose additional
hypotheses in this section. The first one deals with stochastic processes X, [X],W of which x, [x], ω
are realizations respectively.

Hypothesis A X, [X],W are mutually independent stochastic processes with stationary incre-
ments on a probability space (Ω,F , (Ft)t∈[0,T ],P) that are Ft-adapted, such that [X] ∈ C2ν([0, T ],R)

a.s. and that X,W are centered Gaussian satisfying condition (2.5) in Remark 2.1 for 1
2 > ν >

α > 1
3 ≥ β in (2.15), thus [W,dX] is well-defined. In addition, [X, dX]s,t = 1

2

(
X2
s,t − [X]s,t

)
for all

s, t ∈ [0, T ] a.s.
It is easy to check that X in Example 2.2 satisfies Hypothesis A. In this situation, for a stochastic

process σ satisfying the conditions in Remark 2.6, the logarithm price process Yt := logSt can be
written explicitly in the pathwise sense as

Yt(·) = Ys(·) +

∫ t

s
µudu−

1

2

∫ t

s
σu(·)2d[X]u(·) +

∫ t

s
σu(·)dXu(·), ∀s, t ∈ [0, T ]. (3.1)
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To handle the no arbitrage problem, as in [22] we consider a realistic assumption on transaction
costs. Namely, consider the model with a riskless asset price process At and a risky asset price
process (St)t∈[0,T ] on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), where the filtration Ft satisfies
the usual assumptions of right continuity and saturatedness and St is a continuous path, strictly
positive almost surely, adapted and quasi-left continuous w.r.t. Ft. An investor trades in the risky
asset according to the strategy (θt)t∈[0,T ], which represents the number of shares held at time t, and
each unit traded in the risky asset generates a transaction cost of κ > 0 units, which is charged to the
riskless asset account. Consider a simple strategy θ which requires a finite number of transactions
at stopping times (τi)

n
i=1, then θ =

∑n
i=1 θi1]τi−1,τi] for some random variables (θi)

n
i=1, where θi is

Fτi - measurable, and θ0 = 0 conventionally. The liquidation value of a portfolio with zero initial
capital is

Vt(θ) =
n∑
i=1

θi(Sτi∧t − Sτi−1∧t)− κ
∑
τi≤t

Sτi |θi − θi−1| − κSt|θt|. (3.2)

This discrete model is then proved to converge to the continuous model

Vt(θ) = 〈θ, S〉t − κ
∫

[0,t]
Sud‖θ‖u − κSt|θt|, (3.3)

where ‖θ‖t is the total variation of θ on [0, t] and 〈θ, S〉t is a certain type of pathwise integral.
According to [22], a strategy θ is admissible if Vt(θ) ≥ −M a.s. for some M > 0 and for all
t > 0. It is called an arbitrage opportunity on [0, T ] if it is admissible with VT (θ) ≥ 0 a.s. and
P(VT (θ) > 0) > 0. A market is arbitrage free on [0, T ] if, for all admissible strategies θ, VT (θ) ≥ 0
a.s. only if VT (θ) = 0 a.s. The market is arbitrage free with transaction costs κ if St satisfies the
condition that for all stopping times τ such that P(τ < T ) > 0, we have

P
(

sup
t∈[τ,T ]

∣∣∣Sτ
St
− 1
∣∣∣ < κ, τ < T

)
> 0. (3.4)

Condition (3.4) is satisfied when the asset logarithm price process Yt is sticky w.r.t. the filtration
Ft, i.e., for all ε, T > 0 and all stopping times τ such that P(τ < T ) > 0, one has

P( sup
t∈[τ,T ]

|Yτ − Yt| < ε, τ < T ) > 0. (3.5)

According to [22], any strong Markov process (i.e., for every finite Fτ -stopping time τ under the
conditional law P(·|Xτ = y), the process (Xτ+t)t≥0 is independent of Fτ and has the law Py) is
sticky. Another sticky class consists of adapted stochastic processes w.r.t. a filtration (Ft)t∈[0,T ]

that have conditional full support (CFS), i.e.

∀t ∈ [0, T ), (P-a.s.) : supp
(

law
[
(Xu)u∈[t,T ]|Ft

]
(·)
)

= CXt(·)([t, T ],R) (3.6)

where Cη([t, T ],R) is the space of continuous functions f ∈ C([t, T ],R) taking values in R with
initial value f(t) = η, and we regard law

[
(Xu)u∈[t,T ]|Ft

]
as a regular conditional law (a random

Borel probability measure) on C([t, T ], I) [29, pp. 106-107]. Furthermore, any stochastic process
with CFS is proved in [23, Theorem 1.2] to admit an ε-consistent pricing system for all ε > 0, i.e.
there exists a pair (S̃, P̃ ) where P̃ is an equivalent probability w.r.t. P and S̃ is a P̃ -martingale
(adapted to Ft) such that

1

1 + ε
≤ S̃t
St
≤ 1 + ε, ∀t ∈ [0, T ].

We therefore need another assumption.
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Hypothesis B Either Xt, [X]t are strong Markov processes, or they have CFS in the sense of
(3.6).

One can easily check that all processes in Example 2.7 satisfy Hypothesis B. Our next main
result of this paper is formulated as follows.

Theorem 3.1 Under Hypotheses A, B and the situation of transaction costs κ > 0, assume further
that σ ∈ Cβ([0, T ],R) is controlled by (W,X)T a.s. such that

inf
t∈[0,T ]

|σt| > 0 a.s. (3.7)

Then the logarithm price process Yt in (3.1) is sticky. Consequently, St is arbitrage free under
transaction costs κ on any interval [0, T ].

Proof: In case X, [X] are strong Markov processes, the stickiness follows from [22, Proposition
3.1]. Assume now that X and [X] have CFS, we are going to prove that Y also has CFS. Since
σ is controlled by W a.s. and X, [X],W are mutually independent, it then suffices to prove that:
If X has CFS on [0, T ], then so does the stochastic process −1

2

∫ ·
0 σ

2
ud[X]u +

∫ ·
0 σudXu. Since the

proof is lengthy, we only sketch the ideas here. In any case, the proof will proceed by a repeated
application of Egorov’s theorem [25, Theorem A, p.88]. Due to [37, Lemma 2.1, Theorem 3.3] and
[23, Lemma 4.5], it suffices to prove an equivalent property to the CFS that, for every ε > 0, B ∈
F , t ∈ [0, T ), g ∈ C0([t, T ],R), the following inequality holds

P
(∥∥∥∥−1

2

∫ ·
0
σ2
ud[X]u +

∫ ·
t
σudXu − g

∥∥∥∥
∞,[t,T ]

< ε |Ft
)

(·) > 0 a.s. on B. (3.8)

Since C1
0 ([t, T ],R) is dense in C0([t, T ],R), it is enough to prove (3.8) for g ∈ C1

0 ([t, T ],R). To do
that, one first needs to approximate the Young integral (

∫ τ
t σ

2
ud[X]u)τ∈[t,T ] and the rough integral

(
∫ τ
t σudXu)τ∈[t,T ] respectively by Riemann-Stieltjes integrals (

∫ τ
t σ

2
ud[X]δu)τ∈[t,T ] and (

∫ τ
t σudX

δ
u)τ∈[t,T ],

where

[X]δu := [X]δm +
u− δm

δ
[X]δm,δ(m+1), Xδ

u := Xδm +
u− δm

δ
Xδm,δ(m+1), ∀u ∈ [δm, δ(m+ 1)]

(3.9)
are piecewise linear approximations of [X], X for sufficiently small δ ∈ (0, 1) (see e.g. [20, Prop. 5.5,
Lemma 5.19, Prop. 5.20, Theorem 5.23] for an approximation in the Hölder norms). In this case,
[W,dXδ] and [X, dXδ] are well-defined as Riemann-Stieltjes integrals a.s., thus satisfying Chen’s
relation (2.2). In fact, since W and X are independent Gaussian processes satisfying Remark 2.1,
one can prove that, for any 0 ≤ s ≤ δm ≤ δl ≤ t ≤ T ,

E(Xs,t −Xδ
s,t)

2p ≤ Cp

(
E(Xs,δm −Xδ

s,δm)2p + E(Xδl,t −Xδ
δl,t)

2p
)

≤ Cp

(
E(Xs,δm −

δm− s
δ

Xδm,δ(m+1))
2p + E(Xδl,t −

t− δl
δ

Xδl,δ(l+1))
2p
)

≤ Cp,X

(
(s− δm)2H + (t− δl)2H

)
≤ Cp,Xδ

2H−2ν(t− s)2ν

for a generic constant Cp,X and α < ν < H such that pν > 1. In addition, X−Xδ is also a Gaussian
process which is independent of W . Hence by following similar constructions in [19, Chapter 10]
(see also Remark 2.1), one can proves that the stochastic integral

∫ t
s Ws,ud(X−Xδ)u is well defined

and satisfies

E

(∫ t

s
Ws,ud(X −Xδ)u

)2

≤ CH,H′δ
2H−2ν

∣∣∣∣∣∣RX−Xδ

∣∣∣∣∣∣
p−var,[s,t]2

|||RW |||q−var,[s,t]2

≤ CH,H′,X,W δ
2H−2ν |t− s|2(ν+H′)
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By choosing δ = 1
2r , r ∈ N (so that the approximation is dyadic) and applying the Borel-Catelli

lemma, one follows that for α < ν < H and β < H ′ satisfying (2.15) the following limit holds a.s.

lim
δ= 1

2r
,r→∞

(∣∣∣∣∣∣∣∣∣X −Xδ
∣∣∣∣∣∣∣∣∣
α,[0,T ]

+
∣∣∣∣∣∣∣∣∣[W,dX]− [W,dXδ]

∣∣∣∣∣∣∣∣∣
α+β,[0,T ]2

+
∣∣∣∣∣∣∣∣∣X2
·,· − (Xδ

·,·)
2
∣∣∣∣∣∣∣∣∣

2α,[0,T ]2

)
= 0.

Similarly, one can use [20, Lemma 5.27] to prove that

lim
δ= 1

2r
,r→∞

∣∣∣∣∣∣∣∣∣[X]− [X]δ
∣∣∣∣∣∣∣∣∣

2α,[0,T ]
= 0 a.s.

Now using inequalities (2.14) and (2.18), one obtains

sup
τ∈[t,T ]

∥∥∥∥∫ τ

t

(
σ2
u + (∂xσ)u

)
d[X]u −

∫ τ

t

(
σ2
u + (∂xσ)u

)
d[X]δu

∥∥∥∥
≤

(
T 2α‖σ2 + ∂xσ‖∞,[0,T ] +KαT

2α+β
∣∣∣∣∣∣σ2 + ∂xσ

∣∣∣∣∣∣
β,[0,T ]

) ∣∣∣∣∣∣∣∣∣[X]− [X]δ
∣∣∣∣∣∣∣∣∣

2α,[0,T ]

→ 0 a.s. as δ =
1

2r
→ 0. (3.10)

On the other hand, by assigning

Fu,v := σu(Xu,v −Xδ
u,v) + (∂ωσ)u

(
[W,dX]u,v − [W,dXδ]u,v

)
+(∂xσ)u

(
[X, dX]u,v − [X, dXδ]u,t +

1

2
[X]u,v

)
, (3.11)

it is easy to check, due to Hypothesis A, that

δFs,u,v = −Rσs,u(Xu,v −Xδ
u,v)− (∂ωσ)s,u

(
[W,dX]u,v − [W,dXδ]u,v

)
−(∂xσ)s,u

(
[X, dX]u,v − [X, dXδ]u,v +

1

2
[X]u,v

)
= −Rys,u(Xu,v −Xδ

u,v)− (∂ωσ)s,u

(
[W,dX]u,v − [W,dXδ]u,v

)
−(∂xσ)s,u

(
1

2
(X2

u,v − (Xδ
u,v)

2)− [X −Xδ, dXδ]u,v

)
.

Hence

‖δFs,u,v‖ ≤ |v − s|β+2α
(
|||Rσ|||α+β

∣∣∣∣∣∣∣∣∣X −Xδ
∣∣∣∣∣∣∣∣∣
α

+
∣∣∣∣∣∣∣∣∣[W,dX]− [W,dXδ]

∣∣∣∣∣∣∣∣∣
α+β

+ |||∂xσ|||β
∣∣∣∣∣∣∣∣∣X2
·,· − (Xδ

·,·)
2
∣∣∣∣∣∣∣∣∣

2α
+ |||∂xσ|||β

∣∣∣∣∣∣∣∣∣X −Xδ
∣∣∣∣∣∣∣∣∣
α

∣∣∣∣∣∣∣∣∣Xδ
∣∣∣∣∣∣∣∣∣
α

)
.

We are now in the position to apply the sewing lemma [24], so that by taking the Darboux sum∑
[u,v]∈P(s,t) Fu,v for any finite partition P(s, t) of [s, t] and let |P(s, t)| tends to zero, the right hand

side of (3.11) converges in the pathwise sense, thanks to (2.13), (2.17) and the fact that Xδ ∈ C1,
to ∫ t

s
σudXu −

∫ t

s
σudX

δ
u +

1

2

∫ t

s
(∂xσ)ud[X]u.
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Moreover, one obtains from the sewing lemma that

sup
τ∈[t,T ]

∥∥∥∥∫ τ

t
σudXu −

∫ τ

t
σudX

δ
u +

1

2

∫ τ

t
(∂xσ)ud[X]u

∥∥∥∥
≤

(
Tα‖σ‖∞,[0,T ] + Tα+β‖∂ωσ‖∞,[0,T ] + T 2α‖∂xσ‖∞,[0,T ] + CαT

2α+β |||(σ, ∂ωσ, ∂xσ)|||α,β,[0,T ]

)
×

×
(∣∣∣∣∣∣∣∣∣X −Xδ

∣∣∣∣∣∣∣∣∣
α,[0,T ]

+
∣∣∣∣∣∣∣∣∣[W,dX]− [W,dXδ]

∣∣∣∣∣∣∣∣∣
α+β,[0,T ]2

+
∣∣∣∣∣∣∣∣∣X2
·,· − (Xδ

·,·)
2
∣∣∣∣∣∣∣∣∣

2α,[0,T ]2

+
∣∣∣∣∣∣∣∣∣X −Xδ

∣∣∣∣∣∣∣∣∣
α,[0,T ]

∣∣∣∣∣∣∣∣∣Xδ
∣∣∣∣∣∣∣∣∣
α,[0,T ]

)
→ 0 a.s. as δ → 0 exponentially fast. (3.12)

Hence by Egorov’s theorem, there exists a measurable set B1 ∈ F with P(B1) smaller but very close
to 1 such that the limits in (3.10) and (3.12) are uniform on B1, thus the sum of the left hand sides
of both (3.10) and (3.12) are bounded by ε

4 uniformly on B1 by choosing a sufficiently small δ = 1
2r .

Next, assign Q(σ) = σ2 + ∂xσ. By fixing this small δ = 1
2r , one would like to approximate

σ by a sequence of piecewise constant functions σ(n) such that
∫ T

0 |Q(σu) − Q(σ
(n)
u )|du → 0 and∫ T

0 |σu − σ
(n)
u |du→ 0 as n→∞ almost surely. As a result, as n tends to infinity

sup
τ∈[t,T ]

∥∥∥∥∫ τ

t
(Q(σu)−Q(σ(n)

u ))d[X]δu

∥∥∥∥ ≤ 1

δ1−2α
|||[X]|||2α,[0,T ]

∫ T

0
|Q(σu)−Q(σ(n)

u )|du→ 0;

sup
τ∈[t,T ]

∥∥∥∥∫ τ

t
(σu − σ(n)

u )dXδ
u

∥∥∥∥ ≤ 1

δ1−α |||X|||α,[0,T ]

∫ T

0
|σu − σ(n)

u |du→ 0.

(3.13)

Again by Egorov’s theorem, one can choose a measurable set B2 ∈ F with P(B2) smaller than but
very close to 1, such that the left hand sides of the two inequalities in (3.13) tend to zero uniformly
on B2, thus their sum can be bounded by ε

4 by choosing n ≥ N(ε, B2) big enough. With that fixed

n, assume that the piecewise constant function σ(n) takes values σ
(n)
τi , i = 1, . . . , kn on [t, T ]. Then∥∥∥∥−1

2

∫ τ

t
Q(σ(n)

u )d[X]δu +

∫ τ

t
σ(n)
u dXδ

u − gt,τ
∥∥∥∥

≤
∑

τi≤τ,m∈N

∥∥∥∥∥
∫

[τi,τi+1]∩[δm,δ(m+1)]

(
−1

2
Q(σ(n)

τi )
[X]δm,δ(m+1)

δ
+ σ(n)

τi

Xδm,δ(m+1)

δ
− g′u

)
du

∥∥∥∥∥
≤

∑
τi≤τ,m∈N

∥∥∥∥∥
∫

[τi,τi+1]∩[δm,δ(m+1)]

(
−1

2
Q(σ(n)

τi )
[X]δm,δ(m+1)

δ
+ σ(n)

τi

Xδm,δ(m+1)

δ
−
gδm,δ(m+1)

δ

)
du

∥∥∥∥∥
+(T − t) sup

u,v∈[t,T ],|u−v|≤δ
‖g′u − g′v‖

≤ 2(T − t)
δ

sup
i=1,...,kn

sup
u∈[t,T+δ]

∥∥∥∥−1

2
Q(σ(n)

τi )[X]t,u + σ(n)
τi Xt,u − gu

∥∥∥∥
+(T − t) sup

u,v∈[t,T ],|u−v|≤δ
‖g′u − g′v‖. (3.14)

Observe that the second term on the right hand side of (3.14) tends to zero a.s. as δ = 1
2r → 0,

hence it can be bounded by ε
4 by changing δ = 1

2r to small enough.

Meanwhile due to condition (3.7), for a fixed finite sequence of random variables σ
(n)
τi , i =

1, . . . , kn, we construct for each random variable σ
(n)
τi and a fixed m ∈ N a countable partition

(Ωi
m,j,l)j,l∈N =

(
{ω : σ

(n)
τi ∈ [ j

2m ,
j+1
2m ), Q(σ

(n)
τi ) ∈ [ l

2m ,
l+1
2m )}

)
j,l∈N

. On Ωi
m,j,l∥∥∥∥(σ(n)

τi −
j

2m

)
Xt,u

∥∥∥∥ ≤ 1

2m
sup

0<u<v<T+δ
‖Xu,v‖ → 0 uniformly in j as m→∞
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∥∥∥∥1

2

(
Q(σ(n)

τi )− l

2m

)
[X]t,u

∥∥∥∥ ≤ 1

2

1

2m
sup

0<u<v<T+δ
‖[X]u,v‖ → 0 uniformly in l as m→∞.

Due to Egorov’s theorem, one can choose a set B3 ∈ F with P(B3) smaller than but very close to
1 and m > M(ε) large enough, such that on B3 ∩ Ωi

m,j,l,

sup
u∈[t,T+δ]

∥∥∥∥−1

2

(
Q(σ(n)

τi )− l

2m

)
[X]t,u +

(
σ(n)
τi −

j

2m

)
Xt,u

∥∥∥∥ ≤ εδ

8T
. (3.15)

Since [X] has CFS, so does −1
2 [X] (see [37, Remark 2.1]), hence it follows from the CFS of X

and −1
2 [X] on the interval [t, T + δ] and the fact that X and −1

2 [X] are independent that, for any
set Ωi

m,j,l with positive probability and the function 2m

j
g
2 ,

2m

l
g
2 ∈ C0([t, T + δ],R), one obtains the

following inequality a.s. on Ωi
m,j,l

P

(∥∥∥∥ l

2m
(−1

2
[X])t,· +

j

2m
Xt,· − g

∥∥∥∥
∞,[t,T+δ]

≤ εδ

8T
|Ft

)
(·)

≥ P

({∥∥∥∥ l

2m
(−1

2
[X])t,· −

g

2

∥∥∥∥
∞,[t,T+δ]

≤ εδ

16T

}
∩

{∥∥∥∥ j

2m
Xt,· −

g

2

∥∥∥∥
∞,[t,T+δ]

≤ εδ

16T

}
|Ft

)
(·)

= P

({∥∥∥∥−1

2
[X]t,· −

2m

l

g

2

∥∥∥∥
∞,[t,T+δ]

≤ εδ

16T

2m

l

}
∩

{∥∥∥∥Xt,· −
2m

j

g

2

∥∥∥∥
∞,[t,T+δ]

≤ εδ

16T

2m

j

}
|Ft

)
(·)

= P

({∥∥∥∥−1

2
[X]t,· −

2m

l

g

2

∥∥∥∥
∞,[t,T+δ]

≤ εδ

16T

2m

l

}
|Ft

)
(·)×

×P

({∥∥∥∥Xt,· −
2m

j

g

2

∥∥∥∥
∞,[t,T+δ]

≤ εδ

16T

2m

j

}
|Ft

)
(·) > 0.

By taking the refined partition P = {∩i=1,...,knΩi
m,j,l}j,l∈N, then for every set Ω̃m,j,l ∈ P with

P(Ω̃m,j,l) > 0 one can apply the CFS of X, [X] on Ω̃m,j,l and 2m

j
g
2 ,

2m

j
g
2 ∈ C0([t, T + δ],R) to obtain

P

(∥∥∥∥−1

2

l

2m
[X]t,· +

j

2m
Xt,· − g

∥∥∥∥
∞,[t,T+δ]

≤ εδ

8T
|Ft

)
(·) > 0, a.s. on Ω̃m,j,l. (3.16)

Combining (3.15) and (3.16) and the triangle inequality, one can prove that for any set Ω̃m,j,l ∈ P
with P(Ω̃m,j,l) > 0

P

(
2(T − t)

δ
sup

i=1,...,kn

sup
u∈[t,T+δ]

∥∥∥∥−1

2
Q(σ(n)

τi )[X]t,u + σ(n)
τi Xt,u − gu

∥∥∥∥ ≤ ε

4
|Ft

)
(·) > 0 a.s. on Ω̃m,j,l.

(3.17)
Finally, (3.10), (3.12), (3.13), (3.14), (3.17) and the triangle inequality proves (3.8) for a.s. all
ω ∈ B ∩B1 ∩B2 ∩B3. Since B1, B2, B3 can be chosen arbitrarily close to Ω of full probability, this
proves (3.8) for a.s. all ω ∈ B.

4 Some empirical evidence

Model (3.1) implies that one can not rule out the appearance of an additional source of noise [X]
in the log-price process. In this section, we would like to investigate the empirical facts that can be
explained easily if we assume the stochasticity of [X].
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4.1 Hurst exponents and the multi-scaling phenomenon

Table 1 shows how the Hurst exponents vary w.r.t. different time scales h, for h = 1 corresponding
to daily quotes, by using the rescale range test [R/S] with minimal size of 20 to avoid numerical
errors in estimating the linear regression [15]. As seen in Tables 1,2,3, the Hurst exponents for daily,

1M 5M 15M 30M 1H 4H Daily Weekly Monthly

Sp500 0.5158 0.5103 0.5234 0.5218 0.5201 0.5278 0.5613 0.5816 0.6105

Dow Jones 0.5199 0.5177 0.5301 0.5410 0.5437 0.5534 0.5764 0.5952 0.5990

Nasdaq100 0.5177 0.5193 0.5245 0.5256 0.5324 0.5490 0.5694 0.6069 0.6305

Table 1: Hurst exponents for different time scales using [R/S] analysis. Data source: Dukascopy
Bank SA

1M 5M 15M 30M 1H 4H Daily Weekly Monthly

Sp500 0.4898 0.4911 0.4969 0.4879 0.4838 0.4818 0.5649 0.6006 0.5284

Dow Jones 0.4937 0.4952 0.5021 0.4909 0.4927 0.4951 0.5049 0.5386 0.5015

Nasdaq100 0.4907 0.4964 0.5048 0.4974 0.5031 0.4755 0.5188 0.5651 0.4649

Table 2: Hurst exponents for different time scales using Spectral analysis. Data source: Dukascopy
Bank SA

1M 5M 15M 30M 1H 4H Daily Weekly Monthly

Sp500 0.5202 0.5202 0.5157 0.5197 0.5181 0.5149 0.5549 0.5410 0.5483

Dow Jones 0.5198 0.5208 0.5174 0.5127 0.5161 0.5081 0.5651 0.5734 0.5655

Nasdaq100 0.5271 0.5294 0.5224 0.5185 0.5307 0.5288 0.6112 0.6490 0.6491

Table 3: Hurst exponents for different time scales using Higuchi method. Data source: Dukascopy
Bank SA

weekly and monthly data are significantly bigger than 1
2 . On the other hand, the Hurst exponents

are very close to 0.5 for a time scale h � 1 (minute quotes), implying that the effect of standard
Brownian motion dominates, and thus Xt is essentially Bt which corresponds to H = 1

2 .
Tables 2 and 3 show the results for the same data but for different methods of computing the fractal
dimension, namely using spectral analysis and the Higuchi method [27]. We see that quite often
the spectral method gives Hurst exponents smaller than 1

2 for smaller time-scales. In contrast, the
Higuchi method gives quite stable results which are comparable with the rescale range method in
Table 1.

In addition, our numerical computations, in Table 4 and Figure 1 with data from the stock index
SP500 for different timescales, show a non-linear dependence of the variance on the time duration,

Var Yt,t+τ = σ2τ2H ⇔ log
(

Var Yt,t+τ

)
= 2H log τ + 2 log σ, (4.1)

where 1 > H > 0 for all data of timescales from minute to monthly quotes. Moreover, H seems to
depend increasingly on the time scale h. Relation (4.1) is tested by choosing τ = 2k, k = 0, . . . ,m
where m = log2

N
100 and N is the length of the data. The variance Var Yt,t+τ can be computed
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based on the sequence {Yiτ,(i+1)τ} with length no less than 100 to be able to neglect potential noises
from small data.

1M 5M 15M 30M 1H 4H Daily Weekly Monthly

σ 0.0003 0.0006 0.0010 0.0014 0.0020 0.0036 0.0121 0.0246 0.0417

H 0.4872 0.4841 0.4810 0.4832 0.4798 0.4673 0.5237 0.5663 0.6191

Table 4: Linear regression coefficients of relation (4.1) for SP500, from minute to monthly quotes.
Data source: Dukascopy Bank SA

Figure 1: Linear regression of relation (4.1) for SP500, with time scales: 1 minute, 15 minutes, 4
hours and daily. Data source: Dukascopy Bank SA

It is not clear how this nonlinearity can arise from the time dependent model (1.2) with additional
assumptions on the processes µt and σt. However, we can give a simple explanation for the numerical
results in Table 4 and Figure 1 by using model (2.23) for a constant process σ. Indeed, we can
simply assume that [x] ∈ C2α is a realization of the stochastic process [X]. Then it follows from
(3.1) that

Yt,t+h = µh+ σXt,t+h −
σ2

2
[X]t,t+h, (4.2)
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where X and [X] are independent. As a result,

EYt,t+h = µh− σ2

2
E[X]t,t+h, Var Yt,t+h = σ2Var Xt,t+h +

σ4

4
Var [X]t,t+h. (4.3)

Since X, [X] have stationary increments, assume further that

Var Xt,t+h = EX2
t,t+h = Ch, Var [X]t,t+h = CHh

2H (4.4)

for some H ∈ (1
2 , 1) and constants C,CH . The definition of [X] in (2.10) shows the advantage of

rough path lifts that we have some freedom to use the driving processes X and [X] as an input to
define [X, dX]. Therefore assumption (4.4) will be satisfied if we choose X = B and [X] = BH (so
that one can define the Levy area [X, dX]s,t = 1

2(B2
s,t − BH

s,t) as presented in Section 2). Then it
follows from (4.3) that

log
(

Var Yt,t+h

)
= log

(
Cσ2h+

CH
4
σ4h2H

)
≈

{
log(h) + log(Cσ2) if h� 1

2H log(h) + log(CH4 σ4) if h� 1
. (4.5)

Therefore for different time scales h ranging from 1
1440 for minute quotes to 30 for monthly quotes,

the regression coefficient for the relation between log
(

Var Yt,t+h

)
and log h in (4.5) can increase

from smaller than (but also close to) 1
2 to H for H > 1

2 , as observed in Table 4. We emphasize here
that the Hurst index in Table 4 is in the range (0.46, 0.62) does not rule out the rough model for
H ∈ (1

3 ,
1
2) with the rough path lift x = (x, [x, dx]) (which often requires [x] to have regularity of

C2ν for 2ν > 2
3 > 0.66), because it might happen that the maximal time-scale of monthly data is

not enough to avoid numerical problems of mixture between small and large time scales in (4.5) (we
expect that the yearly data would solve the problem). Another reason is that X and [X] might not
be independent in reality, which makes the equality in (4.3) for the variance an inequality, thereby
a creating numerical error in the approximation (4.5).

4.2 Upper-parabolic mean-variance relation of the logarithmic return

A drawback of model (1.1) is the fact that

EYt,t+h = h
(
µ− σ2

2

)
, Var Yt,t+h = σ2h,

which implies that the variance depends linearly and negatively on the expected return

Var Yt,t+h = 2µh− 2EYt,t+h. (4.6)

This linear relation also occurs in the time dependent model (1.2). Our numerical computations
with empirical data show a different picture. We collect time series {Yj}Nj=1 of 1 minute logarithmic

quotes, so that the time step h is small. Then for any set Y
(h)
k := {Ykm+i}mi=1 of daily period

where k = 0 . . . [Nm ] − 1, we calculate the mean EY
(h)
k = 1

m

∑m
i=1 Ykm+i,km+i+1 and its variance

Var Y
(h)
k = 1

m−1

∑m−1
i=1

(
Ykm+i,km+i+1 − EY

(h)
k

)2
of the 1-minute logarithmic return during that

day. Figures 2 and 3 show that, for all types of financial asset prices from stocks to stock indices,

the set of daily mean-variances (EY
(h)
k ,Var Y

(h)
k ) has a parabola-shaped left envelope, which cannot

be explained by model (4.6).
While it seems complicated to theoretically explain this parabolic relation using a time dependent

Itô model, our rough model under Hypothesis A easily accounts for that. Indeed, consider again
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Figure 2: Upper-parabolic mean-variance relation (4.7) for 1-minute quotes of stock indices. Data:
Dax, Nasdaq100, Nikkei, SP500. Data source: Dukascopy Bank SA

model (4.2) with expectation and variance computed in (4.3). By solving for σ2 in terms of EYt,t+h
and µ in the first equality and inserting it into the second equality we obtain a parabolic relation

Var Yt,t+h = 2
Var Xt,t+h

E[X]t,t+h

(
µh− EYt,t+h

)
+

Var [X]t,t+h
(E[X]t,t+h)2

(
µh− EYt,t+h

)2
. (4.7)

In particular, since σ2 = 2
E[X]t,t+h

(
µh− EYt,t+h

)
≥ 0, it follows that

Var Yt,t+h ≥
Var [X, 2]t,t+h
(E[X]t,t+h)2

(
µh− EYt,t+h

)2
(4.8)

⇔ (EYt,t+h,Var Yt,t+h) lies inside parabola P :=
{

(x, y) ∈ R2 : y =
Var [X]t,t+h
(E[X]t,t+h)2

(µh− x)2
}
,

which explains Figures 2 and 3, because in reality µ might be time dependent. Since [X] has
stationary increments, E[X]t,t+h and Var [X]t,t+h are independent of t, thus the parabola P depends
only on the time step h. The symmetry axis of the parabola P is x0 = µh ≈ 0 since µh ≈ 0 for
small time steps h (due to high frequency data of minute quotes). It is important to note that the
parameters of the parabola P depend only on the noise [X, 2] and are independent of X. Moreover,
in case [X] is non-random, Var [X]t,t+h ≡ 0 so the parabola reduces to the flat line

Var Yt,t+h = 2
Var Xt,t+h

E[X]t,t+h

(
µh− EYt,t+h

)
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Figure 3: Upper-parabolic mean-variance relation (4.7) for 1-minute quotes of several stocks. Data:
Apple, AT&T, Coca-cola, Google. Data source: Dukascopy Bank SA

which includes the special case (4.6) by assigning X := B so that [B]s,t := t− s.

5 Uncertainty from rough path lifts

In this section, we are going to discuss open problems that arise as model risk when dealing with
the possible uncertainty coming from the rough path lifts. As there are many ways of modeling and
interpreting stochastic noises in a model, it might affect the final result and many aspects in the
evaluation process.

5.1 Stochastic stock model ambiguity

The rough model in Section 4 implies that there would be an additional source of noise coming from
[X] that affects the asset price. To show how negative the effect of the rough path signatures on
the expected log-return could be, let us consider again model (4.2) and assign h := 1 for simplicity
and denote by Rt = log St

St−h
= Yt−1,t the log-return. It then follows from (4.2) that

Rt = Yt−1,t = µ− σ2

2
[X]t−1,t + σXt−1,t. (5.1)

Table 5.1 shows the expectation and variance of the log-return in the considered models. Observe
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ERt Var Rt

Itô Model (1.1) µ− 1
2σ

2 σ2

Wick Model (2.30) µ− σ2

2

[
t2H − (t− 1)2H

]
σ2

G-Brownian Model (2.32) µ− σ2

2 E[X]t−1,t σ2Var Xt−1,t + 1
4σ

4Var [X]t−1,t

Table 5: Comparison of expected value and variance among models.

that for model (5.1) we have additional nonlinear terms that are quadratic in σ and which will be
important for our subsequent discussion. Observe from the classical model (1.1) that

ERt = µ− 1

2
VarRt. (5.2)

For the Wick model we get

ERt = µ− 1

2

[
t2H − (t− 1)2H

]
VarRt

which implies that

{
ERt > µ− 1

2VarRt if H < 1
2

ERt ≤ µ− 1
2VarRt if H ≥ 1

2

. (5.3)

In comparison, it follows that for the G-Brownian model

ERt ≤ µ−
1

2
VarRt ⇔

σ2

2
Var Xt−1,t +

1

8
σ4Var [X]t−1,t ≤

σ2

2
E[X]t−1,t

⇔ Var Xt−1,t +
σ2

4
Var [X]t−1,t ≤ E[X]t−1,t. (5.4)

In all three models, the expected return is decreasing when the variance is increasing, which matches
with classical results. The negative effect of the variance on the expected return is however very
different for all three models.
Indeed, the variance of Rt in the classical model (1.1) is different from that of the rough model
(5.1); in fact,

Var
[
RItô
t

]
= Var

[
RWick
t

]
= σ2 ≤ Var

[
RGBM
t

]
. (5.5)

Due to that reason, the information is somehow hidden in the rough path lift, which can increase
the uncertainty of the model and result in a bigger risk.

To see how this leads to a model risk, let us now review the strategy for selling an asset in
the portfolio, which is discussed in [45] and [46]. Assume that the growth rate µ, which depends
mainly on the intrinsic (fundamental) value, is a piecewise constant function, and that the volatility
parameter σ is unknown. According to [46], the criterion of the trading strategy is to sell the asset
when its expected value is negative. When we follow (5.2), this would mean in practice that we sell
when the variance crosses the threshold 2µ

ERt < 0⇔ 2µ < VarRt. (5.6)

When we applied the criterion (5.6) also for the Wick model for H < 1
2 or for the G-Brownian

model with Var Xt−1,t + σ2

4 Var [X]t−1,t > E[X]t−1,t, then because the effect of the variance on the
expected return in (5.3) and (5.4) is less negative, we would sell too early. On the other hand, in
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the case of H ≥ 1
2 in (5.3) for the Wick model or in the case of (5.4) for the G-Brownian model, the

criterion is not optimal, because it underestimates the larger effect of the variance on the expected
return in (5.3) as well as in (5.4), thus we would sell too late. Failure to use the right model can
therefore create a model risk of mis-calculating the expected value, which then affects the trading
strategies.

5.2 Cooperation game via rough path lifts

Following [40, Section 4.1], we consider the cooperation problem in the simplest form. Namely,
consider two individuals who meet at every time step to sum up their total wealth and then to split
the whole in ratio (ρ, 1−ρ) for some ρ ∈ (0, 1), before going back to their business. Each individual
asset grows according to a discrete geometric rough model

∆Sit = Sit

(
µ∆t+ σ∆Xi

t

)
, Sit+∆t = Sit + ∆Sit , i = 1, 2, (5.7)

where Xi are two independent scalar Gaussian processes that belongs to Cν for some ν ∈ (1
3 ,

1
2).

Meanwhile the cooperation model, assigned by S1⊕2, grows according to the average rough model

∆S1⊕2,ρ
t = S1⊕2,ρ

t

(
µ∆t+ σ∆X1⊕2,ρ

t

)
, S1⊕2,ρ

t+∆t = S1⊕2,ρ
t + ∆S1⊕2,ρ

t , i = 1, 2, (5.8)

where X1⊕2,ρ = ρX1 + (1− ρ)X2. The limiting equations for (5.7) and (5.8) are, respectively

dSit = Sit

(
µdt+ σdXi

t

)
;

dS1⊕2,ρ
t = S1⊕2,ρ

t

(
µdt+ σdX1⊕2,ρ

t

)
.

(5.9)

As such, one can solve (5.9) explicitly using the rough model (2.23)

Sib = Sia exp
{
µ(b− a)− σ2

2
[Xi]a,b + σXi

a,b

}
; (5.10)

S1⊕2,ρ
b = S1⊕2,ρ

a exp
{
µ(b− a)− σ2

2
[X1⊕2,ρ]a,b + σX1⊕2,ρ

a,b

}
. (5.11)

To evaluate the effectiveness of the cooperation strategy, we consider the continuous versions of
(5.7) and (5.8) in the rough form to rough paths (Xi, [Xi, dXi]) and (X1⊕2,ρ, [X1⊕2,ρ, dX1⊕2,ρ]),
where ∫ t

s
X1⊕2,ρdX1⊕2,ρ = [X1⊕2,ρ, dX1⊕2,ρ]s,t

= ρ2[X1, dX1]s,t + (1− ρ)2[X2, dX2]s,t + ρ(1− ρ)

(∫ t

s
X1
s,udX

2
u +

∫ t

s
X2
s,udX

1
u

)
(5.12)

and the two integrals on the right hand side of (5.12) are understood as realizations of two stochastic
integrals

∫ t
s X

1
s,udX

2
u and

∫ t
s X

2
s,udX

1
u of two independent Gaussian processes X1, X2, as presented

in Remark 2.1. Since
∫ t
s X

1
s,udX

2
u +

∫ t
s X

2
s,udX

1
u = X1

s,tX
2
s,t, it is easy to show that

[X1⊕2,ρ] = ρ2[X1] + (1− ρ)2[X2]. (5.13)

As a result, even in the case of independent identical Gaussian processes with the same form of
Levy areas [Xi, dXi] so that the [Xi] are the same, the solution (5.11) of the cooperation scheme
would grow at a rate that is different from that of the solution (5.10) of the individual scheme,
because in general

[X1] = [X2] 6=
(
ρ2[X1] + (1− ρ)2[X2]

)
.
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In particular, in the specific scenarios of Remark 2.3, it holds that

[X1]a,b = [X2]a,b ≥
(
ρ2[X1]a,b + (1− ρ)2[X2]a,b

)
=
(
ρ2 + (1− ρ)2

)
[X1]a,b ∀0 ≤ a ≤ b, (5.14)

thus the solution (5.11) of the cooperation scheme would grow at a higher exponential rate than
the solution (5.10) of the individual scheme.

It is important to note that this cooperation game discussed in [40, Section 4.1] is a direct result
of Shannon’s Demon phenomenon [41, p. 201] or Kelly’s fractional betting strategy (see e.g. [36,
Example 11.2.5, p. 254] for a continuous version of the optimal portfolio selection problem). It
works under the assumption that (Xi)i=1,2 are independent Brownian motions and system (5.9) is
solved via Itô calculus (which is the first case of (2.11)). In this situation, the inequality (5.14)
is strict, which indicates that the individuals really benefit from cooperation. In the rough path
setting, cooperation can mitigate the effect of volatility.
However, in general the inequality (5.14) can become an equality, for instance if [Xi, dXi]s,t =∫ t
s X

i
s,u ◦dXi

u where the stochastic integral is understood in the Stratonovich form for two standard

Brownian motions Xi
t , because [Xi] ≡ 0 in this case. It can also happen if [Xi, dXi]s,t =

∫ t
s X

i
s,udX

i
u

where the stochastic integral is understood in the Young sense for two fractional Brownian motion
Xi
t with the same Hurst index H > 1

2 (which is the fourth case of (2.11)). That being said, it might
be premature to claim that cooperation leads to a better result, since the answer depends on how
we model the different stochastic fluctuations and interpret the stochastic system (5.9).
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6 Appendix: proof of Theorem 2.5

Existence. To prove the existence part, we first look for a solution (S, 0, ∂xS) ∈ Dα,β([0, τ ]) that
is controlled by (ω, x)T such that ∂ωS ≡ 0 (and will be neglected) for a small enough τ ∈ (0, 1) that
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will be specified later. Consider the solution mapping

M(S)t := S0 +

∫ t

0
f(u, Su)du+

∫ t

0
σuSudxu, ∀t ∈ [0, τ ].

Since the rough integral and the Riemann integral are both additive, it follows from (2.18) and
(2.22) thatM(S) is controlled by (ω, x)T with (∂xM(S))r = σrSr and (∂ωM(S))r = 0. In addition
a direct computation shows that

|||(M(S), ∂xM(S))|||α,β,[0,τ ]

≤ Cα

(
τ1−2α + |||ω|||β,[0,τ ] + |||x|||α,[0,τ ] + |||[ω, dx]|||α+β,[0,τ ] + |||[x, dx]|||2α,[0,τ ]

)
× (6.1)

×
(
‖(σ, ∂ωσ, ∂xσ)‖α,β,[0,τ ] + ‖µ‖∞,[0,T ]

)(
‖S0‖+ ‖(∂xS)0‖+ |||(S, ∂xS)|||α,β,[0,τ ]

)
,

for some generic constant Cα > 1. Note that M(S)0 = S0, ∂xM(S)0 = σ0S0. Choose τ ∈ (0, 1)
small enough such that

τ1−2α + |||ω|||β,[0,τ ] + |||x|||α,[0,τ ] + |||[ω, dx]|||α+β,[0,τ ] + |||[x, dx]|||2α,[0,τ ]

=
1

2

[
1 + Cα

(
‖(σ, ∂ωσ, ∂xσ)‖α,β,[0,T ] + ‖µ‖∞,[0,T ]

)]−1
,

and consider the subset of the Banach space Dα,β([0, τ ])

Dα,β(S0, σ0S0, τ) :=
{

(S̄, ∂ωS̄, ∂xS̄) ∈ Dα,β([0, τ ]) : ∂ωS̄ ≡ 0, S̄0 = S0, (∂xS̄)0 = σ0S0

and
∣∣∣∣∣∣(S̄, ∂xS̄)

∣∣∣∣∣∣
α,β,[0,τ ]

≤ ‖S0‖+ ‖σ0S0‖
}
,

then Dα,β(S0, σ0S0, τ) is a compact set in a Banach space with respect to the metric

d(S1, S2) =
∣∣∣∣∣∣(S1 − S2, ∂xS

1 − ∂xS2)
∣∣∣∣∣∣
α,β,[0,τ ]

.

It also follows from (6.1) that M : Dα,β(S0, σ0S0, τ) → Dα,β(S0, σ0S0, τ). Moreover, from the
linearity of M w.r.t. S and similar estimates to (6.1), it is easy to check that on Dα,β(S0, σ0S0, τ)∣∣∣∣∣∣(M(S − S̄), ∂xM(S − S̄))

∣∣∣∣∣∣
α,β,[0,τ ]

≤ Cα

(
τ1−2α + |||ω|||β,[0,τ ] + |||x|||α,[0,τ ] + |||[ω, dx]|||α+β,[0,τ ] + |||[x, dx]|||2α,[0,τ ]

)
×

×
(
‖(σ, ∂ωσ, ∂xσ)‖α,β,[0,τ ] + ‖µ‖∞,[0,T ]

) ∣∣∣∣∣∣(S − S̄, ∂x(S − S̄))
∣∣∣∣∣∣
α,β,[0,τ ]

≤ 1

2

∣∣∣∣∣∣(S − S̄, ∂x(S − S̄))
∣∣∣∣∣∣
α,β,[0,τ ]

. (6.2)

Hence M is a contraction mapping on Dα,β(S0, σ0S0, τ) and by the Banach fixed point theorem,
there exists a unique solution on Dα,β(S0, σ0S0, τ).
Uniqueness. Assume that there exist two solutions S and S̄ starting from the same initial values
S0 and σ0S0, then ∂ωS = ∂ωS̄ = 0. By taking the difference (S− S̄) and repeat the same arguments
as above with noting thatM(S − S̄) = S − S̄, ∂xM(S − S̄) = ∂x(S − S̄), we obtain from (6.2) that∣∣∣∣∣∣(S − S̄, ∂x(S − S̄))

∣∣∣∣∣∣
α,β,[0,τ ]

≤ 1

2

∣∣∣∣∣∣(S − S̄, ∂x(S − S̄))
∣∣∣∣∣∣
α,β,[0,τ ]

or S − S̄ ≡ 0 on [0, τ ]. This proves the uniqueness of the solution with given initial values.
Concatenation. Next, for a given interval [0, T ] we construct a sequence of stopping times {τk}k∈N
such that τ0 = 0 and

(τk+1 − τk)1−2α + |||ω|||β,[τk,τk+1] + |||x|||α,[τk,τk+1] + |||[ω, dx]|||α+β,[τk,τk+1] + |||[x, dx]|||2α,[τk,τk+1]

=
1

2

[
1 + Cα

(
‖(σ, ∂ωσ, ∂xσ)‖α,β,[0,T ] + ‖µ‖∞,[0,T ]

)]−1
. (6.3)
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It is easy to check (see e.g. [17]) that τk → ∞ as k → ∞, and there exists a unique solution on
each interval [τk, τk+1]. The unique solution on [0, T ] is then constructed by concatenation. The
conclusion also holds for the backward equation by the same arguments.
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