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We study the distribution of quantum correlations characterized by monogamy relations in multi-
partite systems. By using the Hamming weight of the binary vectors associated with the subsystems,
we establish a class of monogamy inequalities for multiqubit entanglement based on the αth (α ≥ 2)
power of concurrence, and a class of polygamy inequalities for multiqubit entanglement in terms of
the βth (0 ≤ β ≤ 2) power of concurrence and concurrence of assistance. Moveover, we give the
monogamy and polygamy inequalities for general quantum correlations. Application of these results
to quantum correlations like squared convex-roof extended negativity (SCREN), entanglement of
formation and Tsallis-q entanglement gives rise to either tighter inequalities than the existing ones
for some classes of quantum states or less restrictions on the quantum states. Detailed examples are
presented.

PACS numbers:

INTRODUCTION

Due to the essential roles played in quantum commu-
nication and quantum information processing, quantum
entanglement [1–8] has been the subject of many recent
studies in recent years. The study of quantum entan-
glement from various viewpoints has been a very active
area and has led to many impressive results. As one of
the fundamental differences between quantum and clas-
sical correlations, an essential property of entanglement
is that a quantum system entangled with one of other
subsystems limits its entanglement with the remaining
ones. The monogamy relations give rise to the distribu-
tion of entanglement in the multipartite quantum sys-
tems. Moreover, the monogamy property has emerged
as the ingredient in the security analysis of quantum key
distribution [9].

For a tripartite system A, B and C, the usu-
al monogamy of an entanglement measure E implies
that [10] the entanglement between A and BC satisfies
EA|BC ≥ EAB + EAC . However, such monogamy rela-
tions are not always satisfied by all entanglement mea-
sures for all quantum states. In fact, it has been shown
that the squared concurrence C2 [11, 12] and entangle-
ment of formation E2 [13] satisfy the monogamy rela-
tions for multi-qubit states. The monogamy inequali-
ty was further generalized to various entanglement mea-
sures such as continuous-variable entanglement [14–16],
squashed entanglement [10, 17, 18], entanglement nega-
tivity [19–23], Tsallis-q entanglement [24, 25], and Renyi-
entanglement [26–28].

In this paper, we provide a finer characterization of
multiqubit entanglement in terms of concurrence. By us-
ing the Hamming weight of the binary vectors related
to the subsystems, we establish a class of monogamy in-
equalities for multiqubit entanglement based on the αth
power of concurrence for α ≥ 2. For 0 ≤ β ≤ 2, we
establish a class of polygamy inequalities for multiqubit

entanglement in terms of the βth power of concurrence
and concurrence of assistance. We further show that our
class of monogamy and polygamy inequalities hold in a
tighter way than those provided before. Then we give the
monogamy and polygamy inequalities for general quan-
tum correlations, which can applied to SCREN, entangle-
ment of formation and Tsallis-q entanglement, and give
rise to tighter inequalities than the existing ones for some
classes of quantum states, or to monogamy relations with
less constraints on quantum states. Moreover, we take
SCREN as an example and show the advantage of the
general monogamy and polygamy inequalities. We also
show that our monogamy inequalities still valid for the
counterexamples of the tangle-based monogamy inequal-
ity, where at least one local dimension is larger than two.

MONOGAMY RELATIONS FOR
CONCURRENCE BASED ON HAMMING

WEIGHT

We first consider the monogamy inequalities satis-
fied by the concurrence. Let HX denote a discrete
finite-dimensional complex vector space associated with
a quantum subsystem X. For a bipartite pure state
|ψ⟩AB ∈ HA ⊗HB , the concurrence is given by [29–31],
C(|ψ⟩AB) =

√
2 [1− Tr(ρ2A)], where ρA is the reduced

density matrix obtained by tracing over the subsystem
B, ρA = TrB(|ψ⟩AB⟨ψ|). The concurrence for a bipar-
tite mixed state ρAB is defined by the convex roof ex-
tension, C(ρAB) = min{pi,|ψi⟩}

∑
i piC(|ψi⟩), where the

minimum is taken over all possible decompositions of
ρAB =

∑
i

pi|ψi⟩⟨ψi|, with pi ≥ 0 and
∑
i

pi = 1 and

|ψi⟩ ∈ HA ⊗HB .
For a tripartite state |ψ⟩ABC , the concurrence of assis-

tance is defined by [32, 33],

Ca(|ψ⟩ABC) ≡ Ca(ρAB) = max
{pi,|ψi⟩}

∑
i

piC(|ψi⟩),
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where the maximum is taken over all possible decom-
positions of ρAB = TrC(|ψ⟩ABC⟨ψ|) =

∑
i

pi|ψi⟩AB⟨ψi|.

When ρAB = |ψ⟩AB⟨ψ| is a pure state, one has
C(|ψ⟩AB) = Ca(ρAB).
For an N -qubit state ρAB1···BN−1

∈ HA ⊗ HB1 ⊗
· · · ⊗ HBN−1 , the concurrence C(ρA|B1···BN−1

) of the s-
tate ρA|B1···BN−1

, viewed as a bipartite state under the
partition A and B1, B2, · · · , BN−1, satisfies the Coffman-
Kundu-Wootters (CKW) inequality [11, 12],

C2(ρA|B1,B2··· ,BN−1
) ≥

N−1∑
i=1

C2(ρABi), (1)

for α ≥ 2, where ρABi =
TrB1···Bi−1Bi+1···BN−1(ρAB1···BN−1). The dual in-
equality in terms of the concurrence of assistance for
N -qubit states has the form [34],

C2(ρA|B1,B2··· ,BN−1
) ≤

N−1∑
i=1

C2
a(ρABi). (2)

It is further improved that for α ≥ 2 [35],

Cα(ρA|B1,B2··· ,BN−1
) ≥

N−1∑
i=1

Cα(ρABi). (3)

Moreover, for α ≥ 2, if C(ρABi) ≥ C(ρA|Bi+1···BN−1
) for

i = 1, 2, · · · , N − 2, N ≥ 4, then [36],

Cα(ρA|B1B2···BN−1
) ≥ Cα(ρAB1)

+
α

2
Cα(ρAB2) + · · ·+

(α
2

)N−2

Cα(ρABN−1
) (4)

and for all α < 0,

Cα(ρA|B1B2···BN−1
) <

K(Cα(ρAB1) + Cα(ρAB2) + · · ·+ Cα(ρABN−1
)),

where K = 1
N−1 .

Before we present our main results, we first provide
some notations and lemmas. For convenience, we de-
note CABi = C(ρABi) the concurrence of ρABi and
CA|B1,B2··· ,BN−1

= C(ρA|B1···BN−1
).

For any non-negative integer j and its binary expansion

j =
n−1∑
i=0

ji2
i,

with log2 j ≤ n and ji ∈ {0, 1}, for i = 0, 1, · · · , n − 1,
we can always define a unique binary vector j⃗ associated
with j,

j⃗ = (j0, j1, · · · , jn−1). (5)

The Hamming weight wH (⃗j) of j⃗ is defined as the number
of 1′s in {j0, j1, · · · , jn−1} [1].

[Lemma 1]. [37] For any real numbers x and t, 0 ≤
t ≤ 1, x ∈ [1,∞), we have (1 + t)x ≥ 1 + (2x − 1)tx.

[Lemma 2]. [37] For any 2 ⊗ 2 ⊗ 2n−2 mixed state
ρ ∈ HA ⊗HB ⊗HC , if CAB ≥ CAC , we have

CαA|BC ≥ CαAB + (2
α
2 − 1)CαAC , (6)

for all α ≥ 2.
From lemma 2, we have the following theorem, which

states that a class of monogamy inequalities of multiqubit
entanglement can be established using the α-powered
concurrence and the Hamming weight of the binary vec-
tor related with the distribution of subsystems.

[Theorem 1]. For any N + 1-qubit state ρAB0···BN−1

satisfying

CABj ≥ CABj+1 ≥ 0, (7)

for j = 0, 1, · · ·N − 2, we have for α ≥ 2,

CαA|B0B1···BN−1
≥
N−1∑
j=0

(2
α
2 − 1)wH (⃗j)CαABj

, (8)

where j⃗ = (j0, j1, · · · , jN−1) is the vector from the binary
representation of j and wH (⃗j) is the Hamming weight of
j⃗.

[Proof]. Without loss of generality, we can always as-
sume that inequality Eq. (7) holds by relabeling the sub-
systems. From Eq. (1), it is sufficient to show thatN−1∑

j=0

C2
ABj

α
2

≥
N−1∑
j=0

(2
α
2 − 1)wH (⃗j)CαABj

. (9)

We first prove the inequality Eq. (9) for the case that
N is a power of 2, N = 2n, by mathematical induction.
For n = 1 and a three-qubit state ρAB0B1 , we have from
Lemma 2,

CαA|B0B1
≥ CαAB0

+ (2
α
2 − 1)CαAB1

,

which is just the inequality (9) for this case.
Now assume that inequality (9) is true for N = 2n−1,

n ≥ 2. Then for an (N + 1)-qubit state ρAB0···BN−1 , we
have N−1∑

j=0

C2
ABj

α
2

=

2n−1−1∑
j=0

C2
ABj

+

2n−1∑
j=2n−1

C2
ABj

α
2

=

2n−1−1∑
j=0

C2
ABj

α
2
1 +

∑2n−1
j=2n−1 C2

ABj∑2n−1−1
j=0 C2

ABj

α
2

.(10)
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Due to inequality (7), we have

2n−1∑
j=2n−1

C2
ABj

≤
2n−1−1∑
j=0

C2
ABj

. (11)

By using Lemma 1 we haveN−1∑
j=0

C2
ABj

α
2

≥

2n−1−1∑
j=0

C2
ABj

α
2

+ (2
α
2 − 1)

 2n−1∑
j=2n−1

C2
ABj

α
2

.(12)

Here, the induction hypothesis that (9) is true for N =
2n−1 implies that2n−1−1∑

j=0

C2
ABj

α
2

≥
2n−1−1∑
j=0

(2
α
2 − 1)wH (⃗j)CαABj

. (13)

Note that the last summation in inequality (12) is also a
summation of 2n−1 terms from j = 2n−1 to 2n−1. From
(13) we obtain 2n−1∑

j=2n−1

C2
ABj

α
2

≥
2n−1∑
j=2n−1

(2
α
2 − 1)wH (⃗j)−1CαABj

. (14)

From inequality (12), (13) and (14), we have2n−1∑
j=0

C2
ABj

α
2

≥
2n−1∑
j=0

(2
α
2 − 1)wH (⃗j)CαABj

, (15)

which proves the inequality (9).

Now we consider the case of arbitrary positive integer
N . One can always assume that 0 ≤ N ≤ 2n for some n.
Let us consider the following (2n + 1)-qubit state,

ρ′AB0···B2n−1
= ρAB0···BN−1

⊗ δBN ···B2n−1
, (16)

where δBN ···B2n−1
is an arbitrary (2n −N)-qubit state.

As ρ′AB0···B2n−1
is a (2n+1)-qubit state, inequality (15)

leads to

Cα(ρ′A|B0B1···B2n−1
) ≥

2n−1∑
j=0

(2
α
2 − 1)wH (⃗j)Cα(σABj ),(17)

where σABj is the two-qubit reduced density matrix
of ρ′AB0···B2n−1

, j = 0, 1, · · · , 2n − 1. Taking into ac-

count the following obvious facts: C(ρ′A|B0B1···B2n−1
) =

C(ρA|B0B1···BN−1
), C(σABj ) = 0 for j = N, · · · , 2n − 1,

and σABj = ρABj for j = 0, 1, · · · , N − 1, we have

Cα(ρA|B0B1···BN−1
)

= Cα(ρ′A|B0B1···B2n−1
)

≥
2n−1∑
j=0

(2
α
2 − 1)wH (⃗j)Cα(σABj )

=
N−1∑
j=0

(2
α
2 − 1)wH (⃗j)Cα(ρABj ), (18)

which completes the proof. �
[Remark 1]. We establish new monogamy relations in

terms of the Hamming weight for arbitrary N + 1-qubit

states. Since (2
α
2 − 1)wH (⃗j) ≥ 1 for any α ≥ 2, we have

CαA|B0B1···BN−1
≥
N−1∑
j=0

(2
α
2 − 1)wH (⃗j)CαABj

≥
N−1∑
j=0

CαABj
. (19)

Therefore, inequality (8) of Theorem 1 is generally tighter
than the inequality (3). Compared with the inequality
(4), which is only valid for some special states satisfying
the conditions CABi ≥ CA|Bi+1···BN−1

, i = 1, · · · , N − 2,
our inequality (8) is satisfied for any quantum states.

In fact, the inequality (8) can be further improved to
be tighter under some conditions on two-qubit entangle-
ment.

[Theorem 2]. For any multiqubit state ρAB0···BN−1

such that

C2
ABi

≥
N−1∑
j=i+1

C2
ABj

, (20)

for i = 0, 1, · · ·N − 2, we have

CαA|B0B1···BN−1
≥
N−1∑
j=0

(2
α
2 − 1)jCαABj

(21)

for α ≥ 2.
[Proof]. From the inequality (6), we have

CαA|B0B1···BN−1

≥ CαAB0
+ (2

α
2 − 1)

N−1∑
j=1

C2
ABj

α
2

≥ CαAB0
+ (2

α
2 − 1)CαAB1

+ (2
α
2 − 1)2

N−1∑
j=2

C2
ABj

α
2

≥ · · ·
≥ CαAB0

+ (2
α
2 − 1)CαAB1

+ · · ·+ (2
α
2 − 1)N−1CαABN−1

.

�
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For any non-negative integer j and its corresponding
binary vector j⃗ in Eq. (5), the Hamming weight wH (⃗j)
is bounded above by log2 j. Thus, we have

wH (⃗j) ≤ log2 j ≤ j, (22)

which gives rise to

CαA|B0B1···BN−1

≥
N−1∑
j=0

(2
α
2 − 1)jCαABj

≥
N−1∑
j=0

(2
α
2 − 1)wH (⃗j)CαABj

, (23)

for any α ≥ 2. In other words, inequality (21) of Theorem
2 is tighter than the inequality (7) of Theorem 1 for any
α ≥ 2 and any multiqubit state ρA|B0B1···BN−1

satisfying
the condition (20).
Recently, another class of multiqubit monogamy in-

equalities in terms of the αth power of concurrence has
been introduced in [37]: for α ≥ 2 and any multiqubit
state ρA|B0B1···BN−1

,

CαA|B0B1···BN−1
≥
N−1∑
j=0

(2
α
2 − 1)jCαABj

, (24)

if CABi ≥ CA|Bi+1···BN−1
for i = 0, 1, · · · , N −2. Though

inequality (21) is equivalent to inequality (24) for any
multiqubit states, but the constraint (20) in Theorem 2
is less strict than CABi ≥ CA|Bi+1···BN−1

for (24), which
is to show that Theorem 2 applies to more general states
than inequality (24). Moreover, inequality (21) is obvi-
ously better, compared with the result (4) in [36].

TIGHT POLYGAMY CONSTRAINTS OF
MULTIQUBIT ENTANGLEMENT

As a dual property to the inequality (21) of Theorem 2,
we now provide a class of polygamy inequalities of mul-
tiqubit entanglement in terms of concurrence and con-
currence of assistance, and the Hamming weight of the
binary vectors associated with the distribution of subsys-
tems. We first give two lemmas.
[Lemma 3]. For any real numbers x and t, 0 ≤ t ≤ 1,

0 ≤ x ≤ 1, we have (1 + t)x ≤ 1 + (2x − 1)tx.
[Proof]. Let f(x, y) = (1+y)x−yx with 0 ≤ x ≤ 1, y ≥

1. Then ∂f
∂y = x[(1+y)x−1−yx−1] ≤ 0. Therefore, f(x, y)

is an decreasing function of y, i.e., f(x, y) ≤ f(x, 1) =
2x − 1. Set y = 1

t , 0 < t ≤ 1, we obtain (1 + t)x ≤
1 + (2x − 1)tx. When t = 0, the inequality is trivial. �
[Lemma 4]. For any 2 ⊗ 2 ⊗ 2n−2 mixed state ρ ∈

HA ⊗HB ⊗HC , if CAB ≥ CAC , we have

CβA|BC ≤ Cβa AB + (2
β
2 − 1)Cβa AC , (25)

for all 0 ≤ β ≤ 2.

[Proof]. It has been shown that C2
A|BC ≤ C2

aAB+C
2
aAC

for arbitrary 2⊗2⊗2n−2 tripartite state ρABC [34]. Then,
if CaAB ≥ CaAC , we have

CβA|BC ≤ (C2
aAB + C2

aAC)
β
2

= Cβa AB

(
1 +

C2
aAC

C2
aAB

) β
2

≤ Cβa AB

1 + (2
β
2 − 1)

(
C2
aAC

C2
aAB

) β
2


= Cβa AB + (2

β
2 − 1)Cβa AC ,

where the second inequality is due to Lemma 3. Here
without loss of generality, we have assumed that CaAB ≥
CaAC . Moreover, if CaAB = 0, we have CaAB = CaAC =
0. �

[Theorem 3]. For any N + 1-qubit state ρAB0···BN−1

satisfying

CaABj
≥ CaABj+1

≥ 0, (26)

j = 0, 1, · · ·N − 2, we have for 0 ≤ β ≤ 2

CβA|B0B1···BN−1
≤
N−1∑
j=0

(2
β
2 − 1)wH (⃗j)Cβa ABj

. (27)

[Proof]. The monotonicity of the function f(x) = xt

for 0 ≤ t ≤ 1 and the generalized monogamy relation
based on the concurrence of assistance in inequality (2)
imply that

CβA|B0B1···BN−1
≤

N−1∑
j=0

C2
aABj


β
2

. (28)

Therefore, it is sufficient to show that

N−1∑
j=0

C2
aABj


β
2

≤
N−1∑
j=0

(2
β
2 − 1)wH (⃗j)Cβa ABj

. (29)

Similar to the case of Theorem 1, we first prove the in-
equality (29) for the case that N = 2n by induction.
For n = 1 and a three-qubit state ρAB0B1 , we have from
Lemma 4,

(C2
aAB0

+ C2
aAB1

)
β
2 ≤ Cβa AB0

+ (2
β
2 − 1)Cβa AB1

,

which gives rise to inequality (29) for n = 1.

Now we assume that the inequality (29) is true for
N = 2n−1, n ≥ 2. For an (N+1)-qubit state ρAB0···BN−1

,
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we haveN−1∑
j=0

C2
aABj


β
2

=

2n−1−1∑
j=0

C2
aABj


β
2
1 +

∑2n−1
j=2n−1 C2

aABj∑2n−1−1
j=0 C2

aABj


β
2

.(30)

From (26) we have

2n−1∑
j=2n−1

C2
aABj

≤
2n−1−1∑
j=0

C2
aABj

. (31)

Using Lemma 3 we getN−1∑
j=0

C2
aABj


β
2

≤

2n−1−1∑
j=0

C2
aABj


β
2

+(2
β
2 − 1)

 2n−1∑
j=2n−1

C2
aABj


β
2

.(32)

Because each of the summations on the right-hand side
of inequality (32) is a summation of 2n−1 terms, the in-
duction hypothesis assures that2n−1−1∑

j=0

C2
aABj


β
2

≤
2n−1−1∑
j=0

(2
β
2 − 1)wH (⃗j)Cβa ABj

, (33)

and 2n−1∑
j=2n−1

C2
aABj


β
2

≤
2n−1∑
j=2n−1

(2
β
2 − 1)wH (⃗j)−1Cβa ABj

.(34)

From inequality (32) together with inequalities (33) and
(34), we have2n−1∑

j=0

C2
aABj


β
2

≤
2n−1∑
j=0

(2
β
2 − 1)wH (⃗j)Cβa ABj

, (35)

which recovers inequality (29).
Now let us consider an arbitrary positive integer N and

an (N + 1)-qubit state ρAB0···BN−1 . Note that we can
always assume that 0 ≤ N ≤ 2n for some n. Consider
the (2n + 1)-qubit state ρ′AB0···B2n−1

in Eq. (16). From

(28) and (35) we have

Cβ(ρ′A|B0B1···B2n−1
) ≤

2n−1∑
j=0

(2
β
2 − 1)wH (⃗j)Cβa (σABj ),(36)

where σABj is the two-qubit reduced density matrix of
ρ′AB0···B2n−1

, j = 0, 1, · · · , 2n − 1.

Moreover, ρ′A|B0B1···B2n−1
is a product state of

ρAB0···BN−1
and δBN ···B2n−1

, which implies that
Ca(ρ

′
A|B0B1···B2n−1

) = Ca(ρA|B0B1···BN−1
), Ca(σABj ) = 0

for j = N, · · · , 2n − 1, and σABj = ρABj for j =
0, 1, · · · , N − 1. Therefore, from inequality (36) we have

Cβ(ρA|B0B1···BN−1
)

= Cβ(ρ′A|B0B1···B2n−1
)

≤
2n−1∑
j=0

(2
β
2 − 1)wH (⃗j)Cβa (σABj )

=
N−1∑
j=0

(2
β
2 − 1)wH (⃗j)Cβa (ρABj ), (37)

which completes the proof. �
Theorem 3 gives a new class of polygamy relations for

multiqubit states, which includes (2) as a special case:
(27) reduces to (2) when β = 2. Similar to the improve-
ment from the inequality (8) to the inequality (21), we
can analogously improve the polygamy inequality of The-
orem 3 to a tighter inequality under certain condition on
the two-qubit entanglement of assistance.

[Theorem 4]. For any multiqubit state ρAB0···BN−1

conditioned that

C2
aABi

≥
N−1∑
j=i+1

C2
aABj

(38)

for i = 0, 1, · · ·N − 2, we have

CβA|B0B1···BN−1
≤
N−1∑
j=0

(2
β
2 − 1)jCβa ABj

(39)

for 0 ≤ β ≤ 2.
[Proof]. From the inequality (25), we have

CβA|B0B1···BN−1

≤ Cβa AB0
+ (2

β
2 − 1)

N−1∑
j=1

C2
aABj


β
2

≤ Cβa AB0
+ (2

β
2 − 1)Cβa AB1

+ (2
β
2 − 1)2

N−1∑
j=2

C2
aABj


β
2

≤ · · ·
≤ Cβa AB0

+ (2
β
2 − 1)Cβa AB1

+ · · ·+ (2
β
2 − 1)N−1Cβa ABN−1

.

�
From inequality (22), wH (⃗j) ≤ j, we have

CβA|B0B1···BN−1

≤
N−1∑
j=0

(2
β
2 − 1)jCβa ABj

≤
N−1∑
j=0

(2
β
2 − 1)wH (⃗j)Cβa ABj

, (40)
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for any 0 ≤ β ≤ 2. Thus, inequality (39) of Theorem
4 is tighter than the inequality (26) of Theorem 3 for
any 0 ≤ β ≤ 2, and any multiqubit state ρAB0B1···BN−1

satisfying the conditions (38).
Generally, the conditions (38) is not always satisfied.

In general, we have the following conclusion.
[Theorem 5]. For any multiqubit state ρAB0···BN−1

,

if C2
aABi

≥
∑N−1
k=i+1 C

2
aABk

for i = 0, 1, · · · ,m, and

C2
aABj

≤
∑N−1
k=j+1 C

2
aABk

for j = m + 1, · · · , N − 2, ∀
1 ≤ m ≤ N − 3, N ≥ 4, we have

CβA|B0B1···BN−1
≤

Cβa AB0
+ (2

β
2 − 1)Cβa AB1

+ · · ·+ (2
β
2 − 1)mCβa ABm

+(2
β
2 − 1)m+2(Cβa ABm+1

+ · · ·+ Cβa ABN−2
)

+(2
β
2 − 1)m+1Cβa ABN−1

, (41)

for all 0 ≤ β ≤ 2.
[Proof]. From (2) and (25), we have

CβA|B1B2···BN−1

≤ Cβa AB0
+ (2

β
2 − 1)

(
N−1∑
i=1

C2
aABi

) β
2

≤ Cβa AB0
+ (2

β
2 − 1)Cβa AB1

+ (2
β
2 − 1)2

(
N−1∑
i=2

C2
aABi

) β
2

≤ · · ·
≤ Cβa AB0

+ (2
β
2 − 1)Cβa AB1

+ · · ·+ (2
β
2 − 1)mCβa ABm

+ (2
β
2 − 1)m+1

(
N−1∑
i=m+1

C2
aABi

) β
2

. (42)

Similarly, as C2
aABj

≤
∑N−1
k=j+1 C

2
aABk

for j = m +
1, · · · , N − 2, we get

(
N−1∑
i=m+1

C2
aABi

) β
2

≤ (2
β
2 − 1)Cβa ABm+1

+

(
N−1∑
i=m+2

C2
aABi

) β
2

≤ (2
β
2 − 1)(Cβa ABm+1

+ · · ·+ Cβa ABN−2
)

+ Cβa ABN−1
. (43)

Combining (42) and (43), we have Theorem 5. �
Theorem 5 gives another polygamy relation based on

the concurrence of assistance. Compared the inequality
(39) of Theorem 4 with (41) of Theorem 5, (39) is better
than (41), obviously. But, for some classes of states, The-
orem 5 is better than Theorem 3, for that those classes
of states do not satisfy the conditions (38) in Theorem 4.
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FIG. 1: y is the value of C(|W ⟩AB1B2B3). Solid (red) line is
the exact value of C(|W ⟩AB1B2B3), dashed (blue) line is the
upper bound of C(|W ⟩AB1B2B3) in (41), dot-dashed (green)
line is the upper bound in (27) for 0 ≤ β ≤ 2.

Example 1. Let us consider the 4-qubit generlized W -
class states,

|W ⟩AB1B2B3 =
1

2
(|1000⟩+ |0100⟩+ |0010⟩+ |0001⟩).(44)

We have C(|W ⟩A|B1B2B3
) =

√
3
2 , CaABi

= 1
2 , i = 1, 2, 3.

It is easy to see CaABi
do not satisfy the conditions (38)

in Theorem 4. From inequality (27) of Theorem 3, we

have Cβ(|W ⟩A|B1B2B3
) ≤ ((2

β
2 − 1)2 + 2)( 12 )

β . From in-

equality (41) of Theorem 5, we have Cβ(|W ⟩A|B1B2B3
) ≤

(2
β
2 +1 − 1)(12 )

β . One can see that the inequality (41) is
better than (27) for 0 ≤ β ≤ 2; see Fig. 1.

MONOGAMY AND POLYGAMY RELATIONS
FOR GENERAL QUANTUM CORRELATIONS

We have studied the monogamy and polygamy proper-
ties related to concurrence and concurrence of assistance.
Now we consider general measures of quantum correla-
tions. Let Q be an arbitrary measure of quantum corre-
lation for bipartite systems. Q is said to be monogamous
if it satisfies the following inequality for an N -partite
quantum state ρAB1B2,··· ,BN−1

[38],

Q(ρA|B1B2,··· ,BN−1
)

≥ Q(ρAB1) +Q(ρAB2) + · · ·+Q(ρABN−1
), (45)

where ρABi , i = 1, ..., N − 1, are the reduced densi-
ty matrices, Q(ρA|B1B2,··· ,BN−1

) denotes the quantum
correlation Q of the state ρAB1B2,··· ,BN−1

under bipar-
tite partition A|B1B2, · · · , BN−1. For simplicity, we
denote Q(ρABi) by QABi , and Q(ρA|B1B2,··· ,BN−1

) by
QA|B1B2,··· ,BN−1

. One can define the Q-monogamy score
for the N -partite state ρAB1B2,··· ,BN−1

,

δQ = QA|B1B2,··· ,BN−1
−
N−1∑
i=1

QABi . (46)
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Non-negativity of δQ for all quantum states implies the
monogamy of Q. For instance, the square of the concur-
rence has been shown to be monogamous [39, 42] for all
multi-qubit states. However, there are other measures
like entanglement of formation, quantum discord, and
quantum work deficit which are known to be nonmonog-
amous for pure three-qubit states [40, 41].
Given any quantum correlation measure that is non-

monogamic for a multipartite quantum state, it is always
possible to find a monotonically increasing function of the
measure which is monogamous for the same state [43]. It
has been proved that for arbitrary dimensional tripartite
states, there exists γ ∈ R (γ ≥ 1) such that a quantum
correlation measure Q satisfies the following monogamy
relation [43]

Qγ
A|BC ≥ Qγ

AB +Qγ
AC . (47)

In the following, we denote γ the minimal value such
thatQ satisfies the above inequality. Using the inequality
(1 + t)x ≥ 1 + tx for x ≥ 1, 0 ≤ t ≤ 1, it is easy to
generalize the result (47) to the N partite case,

Qγ
A|B0B1,··· ,BN−1

≥
N−1∑
i=0

Qγ
ABi

, (48)

where i = 0, 1, · · · , N − 1. Using the similar method of
Theorem 1, and combining inequality (48) with Lemma
1, we have the following result.
[Theorem 6]. For any N + 1-qubit state ρAB0···BN−1

satisfying

QABj ≥ QABj+1 ≥ 0, (49)

j = 0, 1, · · ·N − 2, we have for α ≥ γ

Qα
A|B0B1···BN−1

≥
N−1∑
j=0

(2
α
γ − 1)wH (⃗j)Qα

ABj
. (50)

Using the similar method of Theorem 2, and combin-
ing inequality (48) with Lemma 2, we have the following
results.
[Theorem 7]. For any multiqubit state ρAB0···BN−1

,
we have

Qα
A|B0B1···BN−1

≥
N−1∑
j=0

(2
α
γ − 1)jQα

ABj
, (51)

if

Qγ
ABi

≥
N−1∑
j=i+1

Qγ
ABj

, (52)

for i = 0, 1, · · ·N − 2, α ≥ γ.
We provide a class of general polygamy inequalities in

terms of powered quantum correlation measure Q and

the Hamming weight of the binary vector related with
the distribution of subsystems. Using the similar method
of Theorem 3, and combining the inequality (48) with
Lemma 3, we have the following result.

[Theorem 8]. For a N + 1-qubit state ρAB0···BN−1

satisfying

QABj ≥ QABj+1 ≥ 0, (53)

j = 0, 1, · · ·N − 2, we have for 0 ≤ β ≤ γ

Qβ
A|B0B1···BN−1

≤
N−1∑
j=0

(2
β
γ − 1)wH (⃗j)Qβ

ABj . (54)

Moreover, using the similar method of Theorem 4, and
combining the inequality (48) with Lemma 4, we have
the following result.

[Theorem 9]. For any multiqubit state ρAB0···BN−1
,

we have for 0 ≤ β ≤ γ

Qβ
A|B0B1···BN−1

≤
N−1∑
j=0

(2
β
γ − 1)jQβ

ABj (55)

if

Qγ
ABi

≥
N−1∑
j=i+1

Qγ
ABj

(56)

for i = 0, 1, · · ·N − 2.
Similarly, corresponding to Theorem 5, from (48) and

Lemma 4 we have the following result.
[Theorem 10]. For any multiqubit state ρAB0···BN−1 ,

if Qγ
ABi

≥
∑N−1
k=i+1 Qγ

A|Bi+1
for i = 0, 1, · · · ,m, and

Qγ
ABj

≤
∑N−1
k=j+1 Qγ

A|Bi+1
for j = m + 1, · · · , N − 2,

∀ 1 ≤ m ≤ N − 3, N ≥ 4, we have

Qβ
A|B0B1···BN−1

≤

Qβ
AB0

+ (2
β
γ − 1)Qβ

AB1
+ · · ·+ (2

β
γ − 1)mQβ

ABm

+(2
β
γ − 1)m+2(Qβ

ABm+1
+ · · ·+Qβ

ABN−2
)

+(2
β
γ − 1)m+1Qβ

ABN−1
, (57)

for all 0 ≤ β ≤ γ.
[Remark 2]. We have presented a universal form of

monogamy and polygamy relations for any quantum cor-
relations. Our general monogamy and polygamy relation-
s can be used to any quantum correlation measures like
SCREN, entanglement of formation and Tsallis-q entan-
glement, and give rise to either tighter monogamy rela-
tions than the existing ones for some classes of quantum
states, or less restricted conditions on states than the
ones for the existing monogamy relations, namely, these
monogamy and polygamy relations apply to more general
quantum states.

In the following, we take SCREN as an example to
show the advantage of our conclusions.
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Given a bipartite state ρAB in HA⊗HB, the negativity
is defined by [44], N(ρAB) = (||ρTA

AB || − 1)/2, where ρTA

AB

is the partially transposed ρAB with respect to the sub-
system A, ||X|| denotes the trace norm of X, i.e ||X|| =
Tr

√
XX†. For the purpose of discussion, we use the fol-

lowing definition of negativity, N(ρAB) = ||ρTA

AB ||−1. For
any bipartite pure state |ψ⟩AB , the negativity N(ρAB) is
given by N(|ψ⟩AB) = 2

∑
i<j

√
λiλj = (Tr

√
ρA)

2 − 1,
where λi are the eigenvalues for the reduced density ma-
trix ρA of |ψ⟩AB. For a mixed state ρAB , the SCREN is
defined by

Nsc(ρAB) = [min
∑
i

piN(|ψi⟩AB)]2, (58)

where the minimum is taken over all possible pure state
decompositions {pi, |ψi⟩AB} of ρAB . Similar to the du-
ality between concurrence and concurrence of assistance,
we also define a dual quantity to SCREN as

Na
sc(ρAB) = [max

∑
i

piN(|ψi⟩AB)]2, (59)

which we refer to as the SCREN of assistance
(SCRENoA), and the maximum is taken over all possi-
ble pure state decompositions {pi, |ψi⟩AB} of ρAB . For
convenience, we denote NscABi

= Nsc(ρABi) the SCREN
of ρABi and NscAB0,B1··· ,BN−1

= Nsc(|ψ⟩AB0···BN−1
).

In [45] it has been shown that

NscA|B0B1···BN−1
≥
N−1∑
j=0

NscABj
, (60)

and

Na
scA|B0B1···BN−1

≤
N−1∑
j=0

Na
scABj

. (61)

It is further improved that for α ≥ 1 [45],

Nα
scA|B0B1···BN−1

≥
N−1∑
j=0

αwH (⃗j)Nα
scABj

, (62)

and for 0 ≤ β ≤ 1,

(Na
scA|B0B1···BN−1

)β ≤
N−1∑
j=0

βwH (⃗j)(Na
scABj

)β , (63)

(Na
scA|B0B1···BN−1

)β ≤
N−1∑
j=0

βj(Na
scABj

)β . (64)

Combining inequality (50) and (60), we obtain a
tighter monogamy relation of SCREN (γ = 1),

Nα
scA|B0B1···BN−1

≥
N−1∑
j=0

(2α − 1)wH (⃗j)Nα
scABj

, (65)
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FIG. 2: y is the value of Nsc(|ψ⟩ABC). Solid (red) line is the
exact value of Nsc(|ψ⟩ABC), dashed (blue) line is the lower
bound of Nsc(|ψ⟩ABC) in (65), dot-dashed (green) line is the
lower bound in [45] for α ≥ 1.

which is better than the result (62) in [45], since

Nα
scA|B0B1···BN−1

≥
∑N−1
j=0 αwH (⃗j)Nα

scABj
, as (2α −

1)wH (⃗j) ≥ αwH (⃗j) for α ≥ 1.

Example 2. Let us consider the 3⊗2⊗2 quantum state
[46],

|ψ⟩ABC =
1√
6
(
√
2|100⟩+

√
2|101⟩+ |200⟩+ |211⟩),(66)

which violates the tangle-based monogamy inequality.
But the inequality (65) still holds. We have NscABC = 4
and NscAB = NscAC = 8

9 . Therefore, the SCERN-
based monogamy inequality (65) is given by Nα

scABC ≥
Nα
scAB + (2α − 1)wH (⃗j)Nα

scAC =
(
8
9

)α
2α, while the

result (62) in [45] is given by Nα
scABC ≥ Nα

scAB +

(α)wH (⃗j)Nα
scAC = (1 + α)

(
8
9

)α
. One can see that our

result is better than that in [45] for α ≥ 1; see Fig. 2.

Similarly, combining the inequalities (54) and (61), we
obtain a tighter polygamy relation of SCRENoA (γ = 1),

(Na
scA|B0B1···BN−1

)β ≤
N−1∑
j=0

(2β − 1)wH (⃗j)(Na
scABj

)β ,(67)

which is better than the result (63) in [45], because

(Na
scA|B0B1···BN−1

)β ≤
∑N−1
j=0 βwH (⃗j)(Na

scABj
)β , as (2β −

1)wH (⃗j) ≤ βwH (⃗j) for 0 ≤ β ≤ 1.

Example 3. Let us consider the 4-qubit generl-
ized W -class states (44). We have Na

scA|B1B2B3
= 3

4 ,

Na
scABi

= 1
4 , i = 1, 2, 3. From our result (67) we have

(Na
scA|B1B2B3

)β ≤ (2β + 1)( 14 )
β . From the result (63) in

[45], one has (Na
scA|B1B2B3

)β ≤ (2+β)(14 )
β . One can see

that our result is better than that in [45] for 0 ≤ β ≤ 1;
see Fig. 3.

Combining the inequalities (55) and (61), we can also
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FIG. 3: y is the value of Na
scA|B1B2B3

. Solid (red) line is the
exact value of Na

scA|B1B2B3
, dashed (blue) line is the upper

bound of Na
scA|B1B2B3

in (67), dot-dashed (green) line is the
upper bound in [45] for 0 ≤ β ≤ 1.

obtain a polygamy relation based on SCRENoA (γ = 1),

(Na
scA|B0B1···BN−1

)β ≤
N−1∑
j=0

(2β − 1)j(Na
scABj

)β , (68)

for all 0 ≤ β ≤ 1. As 2β − 1 ≤ β for 0 ≤ β ≤ 1, the
inequality (68) is better than the result (64) in [45].
Combining inequality (57) and (61), we can get anoth-

er polygamy relation based on SCRENoA (γ = 1),

(Na
scA|B0B1···BN−1

)β ≤

(Na
scAB0

)β + (2
β
2 − 1)(Na

scAB1
)β + · · ·

+(2
β
2 − 1)m((Na

scABm
)β + (2

β
2 − 1)m+2((Na

scABm+1
)β

+ · · ·+ (Na
scABN−2

)β) + (2
β
2 − 1)m+1(Na

scABN−1
)β ,(69)

for all 0 ≤ β ≤ 1.
Inequality (69) gives another polygamy relation based

on SCRENoA. (68) is better than (69) obviously for some
classes of states. However, for some other classes of states
which do not satisfy the constraint (68), (69) is better
than (67).
Example 4. Let us again consider the 4-qubit gener-

lized W -class states (44). We have Na
scA|B1B2B3

= 3
4 ,

Na
scABi

= 1
4 , i = 1, 2, 3. From inequality (67), we

have (Na
scA|B1B2B3

)β ≤
[
2 + (2β − 1)2

]
( 14 )

β . From in-

equality (69), we have (Na
scA|B1B2B3

)β ≤ (2β+1− 1)( 14 )
β .

From the result (64) in [45], one has (Na
scA|B1B2B3

)β ≤
(2 + β2)(14 )

β . One can see that our results are better
than that in [45], and inequality (69) is better than (67)
for 0 ≤ β ≤ 1; see Fig. 4.

CONCLUSION

Entanglement monogamy is a fundamental property
of multipartite entangled states. We have provided a
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FIG. 4: y is the value of Na
scA|B1B2B3

. Solid (red) line is the
exact value of Na

scA|B1B2B3
, dashed (blue) line is the upper

bound of Na
scA|B1B2B3

in (69), dot-dashed (green) line is the
upper bound in (67), dotted (black) line is the upper bound
in [45] for 0 ≤ β ≤ 1.

characterization of multiqubit entanglement constraints
in terms of concurrence. By using the Hamming weight
of the binary vectors related to the individual subsystem-
s, we have established a class of monogamy inequalities
of multiqubit entanglement based on the αth power of
concurrence for α ≥ 2. We have also established a class
of polygamy inequalities of multiqubit entanglement in
terms of the βth power of concurrence and concurrence
of assistance for 0 ≤ β ≤ 2. Moveover, the monogamy
and polygamy inequalities for general quantum corre-
lations have been presented. Applying these results to
the quantum correlations such as SCREN, entanglemen-
t of formation, and Tsallis-q entanglement, one obtains
tighter monogamy relations than the existing ones for
some classes of quantum states, or monogamy relations
with less restrictions on the quantum states. Monogamy
relations characterize the distributions of quantum cor-
relations in multipartite systems. Tighter monogamy re-
lations imply finer characterizations of the quantum cor-
relation distributions. Our approach may also be used to
study further the monogamy and polygamy inequalities
for other high dimensional quantum systems.
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