Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

Adaptive Step Size Control for
Polynomial Homotopy Continuation
Methods

by

Sascha Timme

Preprint no.: 23 2019







arXiv:1902.02968v1 [math.NA] 8 Feb 2019

ADAPTIVE STEP SIZE CONTROL FOR POLYNOMIAL
HOMOTOPY CONTINUATION METHODS

SASCHA TIMME

ABSTRACT. In this paper we develop an adaptive step size control for the numerical
tracking of implicitly defined paths in the context of polynomial homotopy continuation
methods. We focus on the case where the paths are tracked using a predictor-corrector
scheme with only a prescribed maximal number of allowed correction steps. The adaptive
step size control changes the step size based on computational estimates of local geometric
information, in particular a local Lipschitz constant and the local error of the used
predictor method, as well as its order. The developed adaptive step size control is
implemented in the software package HomotopyContinuation.jl and its efficiency over the
currently commonly used adaptive step size control is demonstrated on several examples.

1. INTRODUCTION

Systems of polynomial equations arise in many applications including computer vision
[HS97, SSNO5], chemistry [Mor87], kinematics [WS11] and biology [NTI16]. Homotopy
continuation [SW05] is a method to find all isolated complex zeros of a system F'(x), where
F = (f1,..., fn) and the f; are polynomials in n variables. The idea is to construct a
homotopy H(z,t), H : C* x [0,1] — C™ such that H(x,1) = F(x) is the target system to
be solved, and H(x,0) is a starting system where isolated solutions are known. There is a
well-developed theory on how to construct such homotopies to guarantee, with probability
one, that every isolated solution of F'(x) = 0 is the endpoint in the limit ¢ — 1 of at least
one smooth path x(t), implicitly defined by the conditions

(1.1) H(xz(t),t) =0 forall t € [0,1] and x(0) =z .

Equivalently, each path x(¢) is the solution of the initial value problem given by the
Davidenko differential equation

(1.2) Ho(2(t), )a(t) + Hy(z(t),t) = 0

and the initial value z(0) = zo where H, denotes the partial derivative of H with respect
to the first argument and H; with respect to the second one.

In order to compute a solution path x(t) the problem (1.1) is treated as a sequence of
problems

(13) H(I(tk),tk):(), ]{?:0,1,

with a subdivision 0 =ty < t; < ... <ty = 1 of the interval [0, 1]. Each of the problems
(1.3) is then solved by a correction method, e.g., Newton’s method, under the assumption
that good starting points are provided. For each k the starting point is provided by a

prediction method using the previous (approximate) solutions at tx_y, tx_o,... . Prediction
1
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methods can be derived by discretizing the Davidenko differential equation (1.2). Due to
the combination of a corrector and a predictor this scheme is referred to as the predictor-
corrector method. In the setting of polynomial systems, the homotopies can be designed
such that the paths advance monotonically, that is, there are no turning points.

For good results, the predictor step size must be chosen appropriately. A step size which
is too large may result in a prediction outside the zone of convergence of the corrector,
while a step size, which is too small, means progress is slow and computationally costly.
Although the adaptive control of the step size is crucial for efficient path tracking, the
most commonly employed step size control is rather simple: given an initial step size, the
step size is decreased if a step got rejected and it is increased after a certain number of
consecutive steps got accepted [BHSWOS].

A phenomenon that also may occur during path tracking is path jumping where the
corrector converges to a solution path different to where the predictor started from. While
this is in some situations possible to detect, it is not possible in general. Therefore
the path tracking algorithm should employ a heuristic to minimize the chance of path
jumping. Prevention from path jumping can also be made robust, but unfortunately with
computational cost too high for most applications [BL13].

Organization of the paper. The paper is organized as follows. In Section 2, we review
a standard affine covariant convergence proof of Newton’s method. This leads, in Section
3, to a novel adaptive step size control. In Section 4 we address the fact that the adaptive
step size control from Section 3 is stated in affine space whereas homotopy continuation
methods usually operate in projective space. This new adaptive step size control has been
implemented in the software package HomotopyContinuation.jl [BT18] currently under
active development by Paul Breiding and the author. Several examples are presented in
Section 5 to illustrate the effectiveness of the new adaptive step size control.

2. NEWTON’S METHOD REVISITED

Due to the fundamental importance of Newton’s method as a corrector in the path
tracking algorithm, we recall some of its basic properties. In this section let F' : C* — C™
be a polynomial system consisting of m polynomials in n unknowns with m > n. We
denote by J(z) € C™*" the Jacobian of F' at x € C". We also assume that all considered
Jacobian matrices J(z) have full column rank n. The Newton iterations are

Azk = —J(aM) F(2*
(21) {L‘k+1 :Ik—f—A){L'k( ) , k:071,2,...

where J(2*)" denotes the Moore-Penrose pseudo-inverse of the Jacobian. Note that in the
case m = n the pseudo-inverse is identical with the ordinary matrix inverse. In the case
m > n the iteration (2.1) is also referred to as the Gauf-Newton iteration. We want to
remark that in practice the inverse is not computed explicitly, rather the update Az* is
computed by first factorizing J(«*) and then solving a simpler linear system.

An important property of Newton’s method is that it is invariant under certain affine
transformations. That is, for non-singular matrices A € C™*™, respectively unitary ma-
trices in the case m > n, the transformed system AF(x) results in exactly the same
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Newton iterates given the same start value. This property of Newton’s method is referred
to as affine covariance [Deu74, Deull]. Although this a fundamental property of New-
ton’s method, it only appears in few convergence theorems for local Newton methods.
The first systematic approach towards affine covariance has been started by Deuflhard in
[Deu74] where it is called “affine invariance”. Affine covariant convergence theorems are
desirable in the context of path tracking since they lead to results in terms of iterates
{a*}, correction norms ||Az*|| or error norms ||z* — z*||.

2.1. An affine covariant convergence theorem. We present a generalized proof of
the convergence theorem of Mysovskikh [Mys49] by Deuflhard and Heindl [DH79]. This
result is also referred to as a (refined) Newton-Mysovskikh theorem. The following is a
specialized version of the more general Theorem 4 in [DH79].
Theorem 2.1 (Newton-Mysovskikh). Let F' be defined as above. Assume that there exists
an open convex subset Dy of C*, 2° € Dy, and constants a,w > 0 such that

(1) J(x) has full column rank for all x € Dy,

2) 7@ FEO] = a,

(3) 17" (I (@ + tly — 2)) = J(@))|| < wtlly — || for all z,y € Dy and t € [0,1],

(4) h:=jow <1,

(5) S:={ze€C"||lz— 2% <t*} with t* :== ;2.

Then, the iterates (2.1) are well defined, remain in S and converge to some x* € S with

(2.2) J@) F(x*)=0.

Furthermore, convergence can be estimated according to
1
(2.3) 1A < Swll Az

The condition (2.2) is equivalent to finding a solution z* with minimal Euclidean norm.
In particular, in our context we can assume that F(z*) = 0. Then we can state the
following corollary which is a specialized version of Theorem 4.8 in [Deull].

Corollary 2.2. Under the assumptions of Theorem 2.1 suppose x* satisfies F(z*) = 0.

Let

2
o=2" -2 <= =5.
w

Then the following holds:

(1) For any starting point 2° € S(x*,5), the Newton iterates remain in S(z*,0) and
converge to x* at the estimated rate
1
2"t —2*|| < §WH$’“ —a"|*.

(2) The solution x* is unique in the open ball S(x*,7).
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(3) The following error estimate holds

|Az]

2.4 o — || < )

2.2. A termination criterion. We now want to use the theoretical results from the
convergence analysis in Theorem 2.1 and Corollary 2.2 to construct a termination criterion
for Newton’s method. This follows the approach by Deuflhard in [Deull].

We monitor the contraction condition

|Az*]

2. =
29 Ot = g

in terms of the Newton corrections. From Theorem 2.1 we know that

1
(2.6) O < Ehk

k1 2%||. A desirable criterion to terminate the Newton iteration is

where hy 1= wl|z
lo* —2*| < 7

where 7 is a user provided error tolerance. With (2.6) we get a computationally available
estimate [hy| := 20 < h; and by combining this with the error estimate (2.4), we get
the a-posteriori termination criterion

(2.7)
A drawback of this criterion is that for the computation of O, we also need to know x*+2,
Thus, we now want to derive an a-priori estimate for h,. By multiplying w with both
sides of (2.3) and using the assumption ©;_; < 1 we obtain

[h] < O ilhe1] =207, < hy .
We arrive at the a-prior: termination criterion

1Az

(2.8) B Ll |
1—202_,

As a heuristic against path jumping we only allow N + 1 Newton iteration steps where
N is usually 1 or 2. To be precise, usually the Newton iteration is successfully terminated
if [[AzN|| < 7 and 2Vt is returned. But as we have seen above, this would roughly
measure the accuracy of zV and not of ¥t — the last Newton iteration is primarily used
for assessing the accuracy of the previous iterate. We therefore propose to use instead
a simplified Newton iterate to assess the accuracy of v, that is we reuse the previous
Jacobian to compute the Newton update

Az = J(2" D E () .
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If 2571 is already close to the solution z* then Ax* and Az* will be very similar. Defining
a modified contradiction condition

5 |Az*]
Or_1:=
|
and adopting the a-priori termination criterion (2.8) we arrive at the termination criterion
——N
A
(2.9) IEC .

3. AN ADAPTIVE STEP SiZzE CONTROL

For an efficient path tracking routine it is important to choose the step sizes as large as
possible while minimizing the risk of path jumping. So far, most polynomial homotopy
continuation software, e.g., [BHSW], relies on the following adaptive step size control: if
a step with step size At got rejected, the step is tried again with the reduced step size
At = aAt for some a € (0,1). If there have been M > 0 successes in a row, the step size
is expanded by At = At/a. In [BHSW] the authors choose the parameters a = 1/2 and
M = 5. As already noted at the end of Section 2, in order to decrease the risk that path
jumping occurs Newton’s method is usually restricted to only 2 or 3 iterations.

In the following we derive a new adaptive step size control which improves upon the
existing paradigm by incorporating more local information of the path as well as the
allowed number of Newton iterations and the chosen predictor. This new step size control
can be seen as an adaption of a step size control developed by Deuflhard in his habilitation
thesis [Deu79] and also presented in the book [Deull].

We assume that for all ¢ € [0, 1] the m x n Jacobian H,(x(t),t) has full column rank n.
An adaptive step size control should take the properties of the predictor into account. To
be precise, given some z(t;) € C", a predictor allows us to construct a prediction path
Z(t) which locally approximates xz(t) for ¢ > t;. For example, the tangent #(t) can be
computed by

(3.1) i(t) = —Hy(2(t),t)" Hy(z(t), 1)
and for ¢t > t; the prediction path z(t) = x(tx) + (t — tx)@(tx) is the tangent or Euler

predictor. There are many more possible predictors and we classify them by their order.

Definition 3.1 (Order of a predictor). Let At :=¢ —¢;. A continuation method defined
via the prediction path Z(¢) is said to be of order p if a constant 7, exists such that

(3.2) () = Z(@O)]] < mpAL” .

Example 3.2. Let ¢, = 0 and At = t. For the tangent predictor we obtain
~ . 1 .
l2(t) = 2O = llo(t) — 2(0) = t&()]| =< 5 max |[E(®)]¢*
€[0,1]

Thus, the tangent predictor is of order p = 2. @)
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3.1. Feasible step sizes. The local step sizes Aty := t;,1 — tx have to be chosen such
that the Newton method starting at the predicted value Z(ty,1) achieves within N + 1
iterations an accuracy of 7 towards the solution x (k1) on the solution. That is, given a
desired accuracy 7 the N-th Newton iterate 2%V with 2° = Z(¢,,1) has to satisfy

lo" = a(te)]| < 7

For this we start with a theoretical analysis of feasible step sizes which we then can use
to derive an adaptive step size control. This is the main theoretical result of this article.

Theorem 3.3. Let Z(t) denote a prediction method of order p as defined in (3.2) based
on the previous solution point x(ty). Fiz t* > t; and let D C C™ be an open convexr set
containing T(t) and x(t) for allt € [ty,t* ]. Assume that there ezist a constant w > 0 such
that the Lipschitz-condition

(3.3) | H (v, t)T(Hx(u + s(v —u),t) — Hy(u,t))|| <wsl|lv—ull

holds for all t € [ty,t* |, s € [0,1] and uw,v € D. Then the ordinary Newton method with
starting point T(tgy1) achieves within N + 1 iterations an accuracy of at least T towards
the solution point x(ty11) for all step sizes

(34) Atk S Atmax

where

VN T 1 —1\1
Aty ::mm{< al ) p,t*—tk}

Wilp
and Oy, = min{/Z(r/(1+ £7))2v, 1}.

Proof. By the error estimate (2.4) in Corollary 2.2 of the Newton-Mysovskikh Theorem
2.1 it is sufficient to achieve

jasv)

1= gl|AzN] =

or equivalently
-
3.5 Az <
(3.5 I8s) < o
Using (2.3) we also obtain the estimate
N 1 N-12 W\~ 02N

(3.6) [Aa™]| < swllaa™ P < (5) 1A’

under the assumption «(t)w < 2. Therefore, we achieve the desired accuracy in N steps,
provided that

1
w T 2N
. V=AY <
(3.7) 2” xH_(l—l—%T)




ADAPTIVE STEP SIZE CONTROL FOR POLYNOMIAL HOMOTOPY CONTINUATION METHODS 7

So an upper bound for the first Newton correction ||Az°(t)|| needs to be derived. To
obtain this, we estimate

[AzO()|| = ||Ho(2(t), ) H(Z(t),t)|| = | Ho(Z, 1) (H (T, t) — H(z,1))]]
| HL(R( /H (z + 5(F — 2), )@ — z)ds|

SHf—xW1+§M@—xW

where a detailed proof of the last inequality can be found in [Deu79, Thm. 4].
With the order of a prediction method we are now able to conclude

(3.8) |2 (@] < alt) < npt"(1+ Smt")

By combining (3.7) and (3.8) with the requirement fa(t)w < 1 we arrive at

1

1 N
(39 SAa] < Snt (1 + Swmt?) < min{\/g( T) ) = o

1+ 357

from which follows

wnpt? < \/4dnw +1—1

and thus also the inequality (3.4). O

3.2. A prediction and correction strategy. The analysis of feasible step sizes in The-
orem 3.3 gives us an indication on how to choose the local step sizes Aty = tp11 — tg
such that the Newton iteration starting at the predicted value Z(tx.1) converges to the
solution x(tx41) on the solution path with at most N + 1 iterations. But since we do not
know the theoretical quantities 1, and w we need to replace them with computational
available estimates [w] ~ w and [r,] ~ 7,. Then, we arrive at the maximal feasible step
size estimates

(3.10) [Atpax] = ( v 451\[7’05?[;;]1 _ 1) v A Al pay -

Due to the fact that we only have computational estimates of 7, and w it is possible that
the computed step size is too large. This is [Afmax] > Atmax. Then, it can happen that
the desired accuracy 7 is not achieved within N + 1 iterations and we have to reject the
step tr — ti + Aty and repeat it with a reduced step size At},. Thus, we need a prediction
strategy to compute a new step size Aty after a step got accepted but also a correction
strategy in the case that a step got rejected.

From the convergence analysis of the generalized Newton method we know that

NSO
Tam@] < 31801

Combined with (3.9) and the monotone increasing function

g(r) =Viar+1-1

(3.11) Oo(t) =
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this yields

(3.12) 9(O0(t)) < wnpt” < g(dnw) -

Assume now we have computed m < N + 1 Newton iterations for an actual step size
Aty. Then we can obtain an estimate for w by

[
. :: | Azk=1]12 <
(3.13) ] k:H}%ﬁ_lzuA:ck—lH? ="

and for 1, by (3.12)

9(6o)
] := :
P [w]ALY
We arrive at the step size correction strategy
/p
9(0n [w]))l
3.14 At = <— Aty .
( ) : 9(©0) *

If ©g > 0], this is clearly a step size restriction. But in some cases it still can happen
that the step got rejected although ©¢ < dy .. In this case we simply half the step size,
that is we set At} = %Atk.

In order to derive a prediction strategy we need to derive a-priori estimates w and 7,,.
Since the Newton iteration was successful with a solution Z(t1) we can use the definition
of the order of a predictor to compute an estimate for 7, by

(3.15) [l = ||f(tk+1)A—t§x(tk+1)H

We then arrive at the prediction strategy

9(ON ) 1/p
[w]||Z(trs1) — x(tk+1)||> Aty .

where € (0,1] is an additional scaling factor. Considering that the new step size is
modeled after the maximal feasible step size it proves beneficial to reduce it by the fixed
factor p. In our experience a factor of = 0.9 works well.

Since N is usually quite small, that is N = 1 or N = 2, it is important for the prediction
strategy to not underestimate w and 7, by too much. We therefore want to improve the
estimates by introducing prediction methods. By modeling 7, as a linear function

[Mp)kv1 — [0l

ﬁp(t) = [np]k—i-l +1t At

and assuming Aty = Atg, we arrive at

[ﬁp]k—kl = maX{Z[np]kH - [np]lw [np]k+1} .

Similarly, a simple linear predictor for w can be derived.
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4. PATH TRACKING IN PROJECTIVE SPACE

The numerical path tracking problem (1.1) can be cast into the context of complex
projective space P" = P(C™"!) rather than in Euclidean space C* by homogenizing the
homotopy H with respect to the variables 1, ..., x,. The projective space P" is the set
of all nonzero vectors z,y € C*™! modulo the equivalence relation x = Ay for A # 0.
This has multiple advantages all related to the fact that P" is a compactification of C".
In particular, for a well constructed homotopy in P”, all solution paths only have finite
length [Mor86].

4.1. Affine coordinate patches. There is a choice of selecting a representative for each
point in P"*. We fix representatives by choosing in each step ¢ an affine coordinate patch,
that is we pick a point v; € C**! and impose the additional constraint

<ZL‘ (t)7 Ut> =1

where (-,-) is the usual Euclidean inner product in C"*'. In [Mor86] it is proposed to
perform all computations on one fixed random affine coordinate patch by picking a random
v € C"*! and setting v; = v for all . Then, the tangent vectors i(t) satisfy ((t),v) =0,
i.e., Newton updates are performed in the linear space T, := {z € C"*'| (v, 2) = 0}. The
fixed random affine coordinate patch preserves with probability one the property that all
solution paths have finite length. A disadvantage of this approach is that ill-conditioning
could be introduced artificially. Nonetheless, due to its simplicity this is used in many
implementations.

Another idea is to adaptively change the affine coordinate patch during the path track-
ing. An approach with a particular nice geometric interpretation is referred to as the
orthogonal patch. 1t is defined by setting v, = x(t). Then,

(x(t),z(t)) =1 and (&(t),z(t)) =0.

Here, Newton updates are performed in T}). In fact, T} is the appropriate model for
the tangent space T, P", see [SS93]. If we change the affine coordinate patch not only
at each t, but after each Newton iteration, we arrive at a projective version of Newton’s
method [BC13]. In general the orthogonal patch results in better conditioned paths than
the fixed random affine patch approach [CL12, HR18].

4.2. Adaptive step size control in projective space. The adaptive step size control
from Section 3 is developed for affine space and not projective space. If we work with a
fixed random affine patch, we effectively work on one affine chart of the projective space
and the step size control is directly applicable. If we work with dynamically changing
affine patches, we have to be a little bit more careful. In particular we have to make sure
that the computational estimates for w and 7, obtained on one affine chart are still good
estimates with respect to the new chart. Also there is a choice on how often the affine
chart should be changed. When working with the orthogonal patch, a possible choice is to
change the patch before each Newton step which would resemble the projective Newton’s
method. But this conflicts with the affine Newton-Mysovskikh Theorem 2.1 and it is not
clear that the step size control is still valid. We therefore propose instead to update the
patch only after each accepted step. This still guarantees at each step the applicability
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of Theorem 2.1 and in our experiments the accuracy of the computational estimates for
w and n), is still satisfying.

5. IMPLEMENTATION DETAILS AND COMPUTATION EXPERIMENTS

HomotopyContinuation.jl [BT18] is a software package for solving polynomial system
by homotopy continuation methods currently under active development by Paul Breiding
and the author. HomotopyContinuation.jl is written in the programming language Julia
[BEKS17]. All the examples discussed here were run on an Intel Core i5-7500 3.4 GHz
processor running MacOS 10.14.2 with Julia 1.0.3.

5.1. Predictors. The step size control from Section 3 gives freedom in the choice of
predictor. In [BHS11] it is reported that for the adaptive precision path tracking algorithm
[BHSWO08] (embedded) Runge-Kutta methods of higher order significantly outperform the
tangent predictor. Similarly, HomotopyContinuation.jl used up to version 0.4 the classic
4™_order Runge-Kutta method (RK4 for short). Note that what is referred to as Runge-
Kutta method of order m in the ordinary differential equation literature would be a
predictor of order m + 1 by Definition 3.2. One downside of Runge-Kutta methods is
that they are fairly expensive. The Runge-Kutta methods up to order m < 4 need m
evaluations of the right hand side of (3.1), each involving a computation of the derivatives
and the solution of a linear system. There is also the tradeoff of less steps per path against
the computational cost of each step to be considered.

We also experimented with predictors based on a Taylor or Padé approximation by
computing higher derivatives Z(ty), @ (tx), ... because they can be approximated by few
additional evaluations of the homotopy using the techniques developed in [Mac89]. While
Taylor an Padé approximations perform better than the simple tangent predictor they are
still outperformed by Runge-Kutta methods in our experiments.

At a time step t; almost every predictor method needs the derivative @(tx). An easy
optimization to save some computational resources is as follows: If a step with step size
Aty gets rejected, there is no need to recompute the derivate & (t;) for the next step. Thus,
after a step rejection a prediction costs one evaluation less of the right hand side. After
implementing this caching strategy Heun’s method, a Runge-Kutta method of order 2,
slightly outperforms RK4.

In order to compare the performance of different predictors we pick a range of real-world
polynomial systems of different types, presented in Table 1 [Ver|. The results are depicted
in Figure 5.1.

5.2. Comparison of adaptive step size controls. To demonstrate the effectiveness of
the new adaptive step size control we compare in Table 2 the number of accepted and
rejected steps of the simple step size control introduced at the beginning of Section 3 and
the new adaptive step size control developed in this paper. We see that the number of
accepted steps decrease significantly with only a slight increase in the number of rejected
steps.

In this paper we also introduce two more minor performance improvements for the path
tracking algorithm. A cheaper a-priori termination criterion (2.9) for Newton’s method
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TABLE 1. Overview of the polynomial systems chosen for the comparison.
In the characteristics n is the number of unknowns, D is the Bézout number
of the system and MV is the mixed volume. The system were taken from
the database by Jan Verschelde [Ver].

Polynomial systems Characteristics # Roots
Name Description Ref n D MV C R
cyclic7 The cyclic 7-roots problems [BF91] 7 5024 924 924 56
ipp2 The 6R inverse position problem [MW91] 11 1,024 288 16 0
katsurall A problem of magnetism in physics [Kat90] 12 2,048 2,048 2,048 326
[ ] Euler
I Heun
o 1.0x - I Pade21
c [CIRK4
=
=
]
2 0.75x|
o
[0
@
0.5x -

cyclic(7) ipp2 katsura(11)

FiGURE 1. Comparison of the average runtime for solving three different
system using different predictors where the average is obtained by making
100 runs. The runtime is normalized such that the Euler predictor is 1.0.
Pade21 refers to a (2,1) Padé approximation.

and the idea to cache the tangent vectors & (tx). These improvements are implemented
in HomotopyContinuation.jl version 0.5. We compare the runtime for the polynomial
systems in Table 1 between HomotopyContinuation.jl v0.5 and v0.4.3, the latest release
without these improvements. For reference we also compare these runtimes with Bertini
[BHSW] using only double precision arithmetic. The results are presented in Table 3
and are in accordance with what one expects from the results in Table 2, a slightly
higher performance increase due to the other improvements. Also see [BT18] for another
comparison of homotopy continuation packages for the systems in Table 1.

6. CONCLUSION

In this paper we introduced a new adaptive step size control for path tracking in the
context of homotopy continuation methods. This step size control incorporates informa-
tion about the local geometry of the problem as well as the used predictor method. The
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TABLE 2. Comparison of the average number of steps per path necessary
to track a total degree straight line homotopy from ¢t = 1.0 to the start of
the endgame zone at ¢ = 0.1. The 'old’ columns refer to the simple step size
control introduced at the beginning of Section 3 and 'new’ is the adaptive
step size control developed in this paper. The paths were tracked with a
tolerance of 7 = 10~7, with at most 3 Newton iterations and Heun’s method
as a predictor. The average is obtained by making 100 runs.

Accepted steps Rejected steps Total steps
System old new old new old new new /old
cyclic7 3044 21.14 542  6.89 35.86 28.03 0,78
ipp2 33.84  22.80 5.95  7.69 39.78  30.45 0.77
katsurall 38.69  22.88 6.12  8.33 44.81 31.20 0.69

TABLE 3. Average of the total runtime (including endgame) for solving the
polynomial systems in Table 1. The average is obtained by making 100 runs.
v0.4 and v0.5 refer to HomotopyContinuation.jl version 0.4 and version 0.5.

Runtime in seconds Relative performance
System  v0.4 v0.5 Bertini v0.5 / v0.4 v0.5 / Bertini
cyclic7 250 2.03 2791 0.81 0.07
ipp2 0.67 0.53  5.25 0.79 0.10
katsurall 2.22 1.48 14.08 0.67 0.11

improvement over the previously most commonly used step size control is demonstrated
on a range of polynomial systems.

7. ACKNOWLEDGEMENTS

The author would like to thank Folkmar Bornemann, Paul Breiding, Peter Deuflhard
and Michael Joswig for helpful discussions.

REFERENCES

[BC13) Peter Biirgisser and Felipe Cucker. Condition: The geometry of numerical algorithms, volume
349. Springer Science & Business Media, 2013.

[BEKS17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral Shah. Julia: A fresh approach to
numerical computing. SIAM Review, 59(1):65-98, 2017.

[BF91] Goran Bjorck and Ralf Froberg. A faster way to count the solutions of inhomogeneous systems
of algebraic equations, with applications to cyclic n-roots. Journal of Symbolic Computation,
12(3):329-336, 1991.

[BHS11]  Daniel J. Bates, Jonathan D. Hauenstein, and Andrew J. Sommese. Efficient path tracking
methods. Numerical Algorithms, 58(4):451-459, Dec 2011.



ADAPTIVE STEP SIZE CONTROL FOR POLYNOMIAL HOMOTOPY CONTINUATION METHODS13

[BHSW]

[BHSWOS]

[BL13]

[BT18]

[CL12]

[Deu74]

[DeuT9]
[Deull]

[DHT79]

[HR18]

[HS97]
[Kat90]
[Macs9)]
[Mor86]
[Mor87]
[MW91]
[Mys49]

[NTI16]

[9S93]

[SSN05]

[SW05]

Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler.
Bertini: Software for numerical algebraic geometry. Available at bertini.nd.edu with perma-
nent doi: dx.doi.org/10.7274/R0OH41PBS5.

Daniel J Bates, Jonathan D Hauenstein, Andrew J Sommese, and Charles W Wampler.
Adaptive multiprecision path tracking. SIAM Journal on Numerical Analysis, 46(2):722-746,
2008.

Carlos Beltran and Anton Leykin. Robust certified numerical homotopy tracking. Foundations
of Computational Mathematics, 13(2):253-295, 2013.

Paul Breiding and Sascha Timme. HomotopyContinuation.jl: A Package for Homotopy Con-
tinuation in Julia. In International Congress on Mathematical Software, pages 458-465.
Springer, 2018.

Tianran Chen and Tien-Yien Li. Spherical projective path tracking for homotopy continuation
methods. Communications in Information and Systems, 12(3):195-220, 2012.

Peter Deuflhard. A modified Newton method for the solution of ill-conditioned systems of non-
linear equations with application to multiple shooting. Numerische Mathematik, 22(4):289—
315, 1974.

Peter Deuflhard. A stepsize control for continuation methods and its special application to
multiple shooting techniques. Numerische Mathematik, 33(2):115-146, 1979.

Peter Deuflhard. Newton methods for nonlinear problems: affine invariance and adaptive
algorithms, volume 35. Springer Science & Business Media, 2011.

Peter Deuflhard and Gerhard Heindl. Affine invariant convergence theorems for Newtons
method and extensions to related methods. SIAM Journal on Numerical Analysis, 16(1):1—
10, 1979.

Jonathan D Hauenstein and Margaret H Regan. Adaptive strategies for solving parameterized
systems using homotopy continuation. Applied Mathematics and Computation, 332:19-34,
2018.

Richard I Hartley and Peter Sturm. Triangulation. Computer vision and image understanding,
68(2):146-157, 1997.

Shlgetoshl Katsura. Spin glass problem by the method of integral equation of the effective
field. New Trends in Magnetism, pages 110-121, 1990.

Wolfgang Mackens. Numerical differentiation of implicitly defined space curves. Computing,
41(3):237-260, 1989.

Alexander P Morgan. A transformation to avoid solutions at infinity for polynomial systems.
Applied mathematics and computation, 18(1):77-86, 1986.

Alexander Morgan. Solving Polynominal Systems Using Continuation for Engineering and
Scientific Problems. Prentice-Hall, 1987.

Alexander Morgan and Charles Wampler. Solving the 6R inverse position problem using a
generic-case solution methodology. Mechanism and Machine Theory, 26(1):91-106, 1991.
Ivan Mysovskikh. On the convergence of Newton’s method. Collected works on approximation
analysis of the Leningrad Branch of the Institute, 28:145-147, 1949.

Jatin Narula, Abhinav Tiwari, and Oleg A. Igoshin. Role of autoregulation and relative syn-
thesis of operon partners in alternative sigma factor networks. PLOS Computational Biology,
12(12):1-25, 12 2016.

Michael Shub and Steve Smale. Complexity of Bezout’s theorem I: Geometric aspects. Journal
of the American Mathematical Society, 6(2):459-501, 1993.

Henrik Stewenius, Frederik Schaffalitzky, and David Nister. How hard is 3-view triangulation
really? In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on,
volume 1, pages 686-693. IEEE, 2005.

Andrew J Sommese and Charles W Wampler. The Numerical Solution of Systems of Polyno-
mials Arising in Engineering and Science. WORLD SCIENTIFIC, 2005.



14 SASCHA TIMME

[Ver] Jan Verschelde. The database of polynomial systems. Data retrieved from the database of Jan
Verschelde available at, http://homepages.math.uic.edu/~jan/. Accessed: 2019-01-15.

[WS11] Charles W. Wampler and Andrew J. Sommese. Numerical algebraic geometry and algebraic
kinematics. Acta Numerica, 20:469567, 2011.

SASCHA TIMME, TECHNISCHE UNIVERSITAT BERLIN, INSTITUT FUR MATHEMATIK, STRASSE DES
17. Jun1t 136, 10623 BERLIN, GERMANY

FE-mail address: timme@math.tu-berlin.de


http://homepages.math.uic.edu/~jan/

	1. Introduction
	Organization of the paper

	2. Newton's method revisited
	2.1. An affine covariant convergence theorem
	2.2. A termination criterion

	3. An Adaptive Step Size Control
	3.1. Feasible step sizes
	3.2. A prediction and correction strategy

	4. Path Tracking in Projective Space
	4.1. Affine coordinate patches
	4.2. Adaptive step size control in projective space

	5. Implementation details and computation experiments
	5.1. Predictors
	5.2. Comparison of adaptive step size controls

	6. Conclusion
	7. Acknowledgements
	References

