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Discrete Statistical Models with
Rational Maximum Likelihood Estimator

Eliana Duarte, Orlando Marigliano and Bernd Sturmfels

Abstract

A discrete statistical model is a subset of a probability simplex. Its maximum likelihood
estimator (MLE) is a retraction from that simplex onto the model. We characterize
all models for which this retraction is a rational function. This is a contribution via
real algebraic geometry which rests on results due to Huh and Kapranov on Horn
uniformization. We present an algorithm for constructing models with rational MLE,
and we demonstrate it on a range of instances. Our focus lies on models familiar to
statisticians, like Bayesian networks, decomposable graphical models, and staged trees.

1 Introduction

A discrete statistical model is a subsetM of the open probability simplex ∆n. Each point p in
∆n is a probability distribution on the finite state space {0, 1, . . . , n}, i.e. p = (p0, p1, . . . , pn),
where the pi are positive real numbers that satisfy p0 + p1 + · · ·+ pn = 1. The modelM is
the set of all distributions p ∈ ∆n that are relevant for the particular application of interest.

In data analysis we are given an empirical distribution u = (u0, u1, . . . , un). This is the
point in the simplex ∆n whose ith coordinate ui is the fraction of samples observed to be in
state i. The maximum likelihood estimator (MLE) ofM is a function Φ: ∆n →M that takes
the empirical distribution u to a distribution p̂ = (p̂0, p̂1, . . . , p̂n) that best explains the given
observations. Here “best” is understood in the sense of likelihood inference. This means that
p̂ = Φ(u) is the point inM that maximizes the log-likelihood function p 7→

∑n
i=0 ui · log(pi).

By convention, for any vector u in R
n+1
>0 , we set Φ(u) := Φ(u/|u|) where |u| = u0 + · · ·+ un.

Likelihood inference is consistent. This means that Φ(u) = u for u ∈ M. This fol-
lows from the fact that the log-likelihood function is strictly concave on ∆n and its unique
maximizer is p = u. Therefore, the MLE Φ is a retraction from the simplex onto the model.

This point is fundamental for two fields at the crossroads of mathematics and data sci-
ence. Information Geometry [1] views the MLE as the nearest point map of a Riemannian
metric on ∆n, given by the Kullback-Leibler divergence of probability distributions. Alge-
braic Statistics [5] is concerned with models M whose MLE Φ is an algebraic function of
u. This happens precisely when the constraints that defineM can be expressed in terms of
polynomials in p. In this article we address a question that is fundamental for both fields:
For which modelsM is the MLE Φ a rational function in the empirical distribution u?
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The most basic example where this happens is the independence model for two binary ran-
dom variables (n = 3). Here M is a surface in the tetrahedron ∆3. That surface is a
familiar picture that serves as a point of entry for both Information Geometry and Algebraic

Statistics. Points in M are positive rank one 2 × 2 matrices

[

p0 p1
p2 p3

]

whose entries sum

to one. The data takes the form of a nonnegative integer 2 × 2 matrix u of counts of ob-
served frequencies. Hence |u| = u0+u1+u2+u3 is the sample size, and u/|u| is the empirical
distribution. The MLE p̂ = Φ(u) is evaluated by multiplying the row and column sums of u:

p̂0 =
(u0+u1)(u0+u2)

|u|2
, p̂1 =

(u0+u1)(u1+u3)

|u|2
, p̂2 =

(u2+u3)(u0+u2)

|u|2
, p̂3 =

(u2+u3)(u1+u3)

|u|2
.

These four expressions are rational, homogeneous of degree zero, and their sum is equal to 1.
We refer to [10, Example 2] for a discussion of these formulas from our present perspective.

The independence model belongs to the class of graphical models [14]. Fix an undirected
graph G whose nodes represent random variables with finitely many states. The undirected
graphical model MG is a subset of ∆n, where n+1 is the number of states in the joint
distribution. The graphical modelMG is decomposable if and only if the graph G is chordal.
In this case, each coordinate p̂i of the MLE is an alternating product of linear forms given by
maximal cliques and minimal separators of G. A similar formula exists for directed graphical
models, also known as Bayesian networks. In both cases, the coordinates of the MLE are not
only rational functions, but even alternating products of linear forms in u = (u0, u1, . . . , un).

This is no coincidence. Huh [10] proved that if Φ is a rational function then each of its
coordinates is an alternating product of linear forms, with numerator and denominator of
the same degree. Huh further showed that this alternating product must take a very specific
shape. That shape was discovered by Kapranov [12], who named it the Horn uniformization.
The results by Kapranov and Huh are valid for arbitrary complex algebraic varieties. They
make no reference to a context where the coordinates are real, positive, and add up to 1.

The present paper makes the leap from complex varieties back to statistical models.
Building on the remarkable constructions found by Kapranov and Huh, we here work in
the setting of real algebraic geometry that is required for statistical applications. Our main
result (Theorem 1) characterizes all modelsM in ∆n whose MLE is a rational function. It
is stated in Section 2 and all its ingredients are presented in a self-contained manner.

In Section 3 we examine models with rational MLE that are familiar to statisticians,
such as decomposable graphical models and Bayesian networks. Our focus lies on staged tree
models, a far-reaching generalization of discrete Bayesian networks, as described in the book
by Collazo, Görgen and Smith [3]. We explain how our main result applies to these models.

The proof of Theorem 1 is presented in Section 4. This is the technical heart of our
paper, building on the likelihood geometry of [11, §3]. We also discuss the connection to
toric geometry and geometric modeling that appeared in recent work of Clarke and Cox [2].

In Section 5 we present our algorithm for constructing models with rational MLE, and
we discuss its implementation and some experiments. The input is an integer matrix rep-
resenting a toric variety, and the output is a list of models derived from that matrix. Our
results suggest that only a small fraction of Huh’s varieties in [10] are statistical models.
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2 How to be Rational

LetM be a discrete statistical model in the open simplex ∆n that has a well-defined maxi-
mum likelihood estimator Φ : ∆n →M. We also write Φ : Rn+1

>0 →M for the induced map
u 7→ Φ(u/|u|) on all positive vectors. If the n+ 1 coordinates of Φ are rational functions in
u, then we say thatM has rational MLE. The following is our main result in this paper.

Theorem 1. The following are equivalent for a discrete statistical modelM with MLE Φ:

(1) The modelM has rational MLE.

(2) There exists a Horn pair (H, λ) such thatM is the image of the Horn map ϕ(H,λ).

(3) There exists a discriminantal triple (A,∆,m) such that M is the image under the
monomial map φ(∆,m) of precisely one orthant (9) of the dual toric variety Y ∗

A.

The MLE of the model satisfies the following relation on the open orthant Rn+1
>0 :

Φ = ϕ(H,λ) = φ(∆,m) ◦H. (1)

The goal of this section is to define all the terms seen in parts (2) and (3) of this theorem.

Example 2. We first discuss Theorem 1 for a very simple experiment: Flip a biased coin. If
it shows heads, flip it again. This is a statistical model with n = 2 given by the tree diagram

s0

s1

s0

s1

p0

p1

p2.

The modelM is a curve in the probability triangle ∆2. The tree shows its parametrization

∆1 → ∆2 , (s0, s1) 7→ (s20, s0s1, s1) where s0, s1 > 0 and s0 + s1 = 1.

The implicit representation of the curveM is the quadratic equation p0p2− (p0 + p1)p1 = 0.
Let (u0, u1, u2) be the counts from repeated experiments. A total of 2u0 + 2u1 + u2 coin

tosses were made. We estimate the parameters as the empirical frequency of heads resp. tails:

ŝ0 =
2u0 + u1

2u0 + 2u1 + u2
and ŝ1 =

u1 + u2

2u0 + 2u1 + u2
.

The MLE is the retraction from the triangle ∆2 to the curveM given by the rational formula

Φ(u0, u1, u2) = (ŝ20, ŝ0ŝ1, ŝ1) =

(

(2u0 + u1)
2

(2u0+2u1+u2)2
,
(2u0+u1)(u1+u2)

(2u0 + 2u1 + u2)2
,

u1 + u2

2u0+2u1+u2

)

.
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HenceM has rational MLE. The corresponding Horn pair from part (2) in Theorem 1 has

H =





2 1 0
0 1 1
−2 −2 −1



 and λ = (1, 1,−1).

We next exhibit the discriminantal triple (A,∆,m) in part (3) of Theorem 1. The matrix
A =

(

1 1 1
)

gives a basis of the left kernel of H . The second entry is the polynomial

∆ = x2
3 − x2

1 − x1x2 + x2x3 = (x3 − x1)(x1 + x2 + x3). (2)

The third entry marks the leading term m = x2
3. These data define the monomial map

φ(∆,m) : (x1, x2, x3) 7→

(

x2
1

x2
3

,
x1x2

x2
3

,−
x2

x3

)

.

The toric variety of the matrix A is the point YA = {(1 : 1 : 1)} in P2. Our polynomial
∆ vanishes on the line Y ∗

A = {x1 + x2 + x3 = 0} that is dual to YA. The relevant orthant
is the open line segment Y ∗

A,σ := {(x1 : x2 : x3) ∈ Y ∗
A : x1, x2 > 0 and x3 < 0}. Part (3) in

Theorem 1 says thatM is the image of Y ∗
A,σ under φ(∆,m). The MLE is Φ = φ(∆,m) ◦H .

We now come to the definitions needed for Theorem 1. Let H = (hij) be an m× (n+1)
integer matrix whose columns sum to zero, i.e.

∑m
i=1 hij = 0 for j = 0, . . . , n. We call such a

matrix a Horn matrix. The following alternating products of linear forms have degree zero:

(Hu)hj :=

m
∏

i=1

(

hi0u0 + hi1u1 + · · ·+ hinun

)hij for j = 0, 1, . . . , n.

The Horn matrix H is friendly if there exists a real vector λ = (λ0, λ1, . . . , λn) with λi 6= 0
for all i such that the following identity holds in the rational function field R(u0, u1, . . . , un):

λ0(Hu)h0 + λ1(Hu)h1 + · · ·+ λn(Hu)hn = 1. (3)

If this holds, then we say that (H, λ) is a friendly pair, and we consider the rational function

R
n+1 → R

n+1, u 7→
(

λ0(Hu)h0, λ1(Hu)h1, . . . , λn(Hu)hn
)

. (4)

The friendly pair (H, λ) is called a Horn pair if no row of H is zero or is a multiple of another
row, the function (4) is defined for all positive vectors, and it maps these to positive vectors.
If these conditions hold then we write ϕ(H,λ) : R

n+1
>0 → R

n+1
>0 for the restriction of (4) to the

positive orthant. We call ϕ(H,λ) the Horn map associated to the Horn pair (H, λ).

Remark 3. Let (H, λ) be a friendly pair satisfying the positivity condition for the func-
tion (4). To it we associate a Horn pair (H̃, λ̃) by aggregating its collinear rows by summing
them together, deleting the zero rows of H , and defining λ̃ as in [2, Proposition 6.11]. The
pairs (H, λ) and (H̃, λ̃) define the same rational function (4). Furthermore, every Horn pair
(H̃, λ̃) can be uniquely recovered, up to permutation of its rows, from its Horn map ϕ(H̃,λ̃).
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Example 4. We illustrate the equivalence of (1) and (2) in Theorem 1 for the model de-
scribed in [11, Example 3.11]. Here n = 3 and m = 4 and the Horn matrix equals

H =







−1 −1 −2 −2
1 0 3 2
1 3 0 2
−1 −2 −1 −2






. (5)

This Horn matrix is friendly because the following vector satisfies the identity (3):

λ = (λ0, λ1, λ2, λ3) =

(

2

3
, −

4

27
, −

4

27
,
1

27

)

. (6)

The pair (H, λ) is a Horn pair, with associated Horn map

ϕ(H,λ) : R
4
>0 → R

4
>0 ,









u0

u1

u2

u3









7→















2(u0+3u2+2u3)(u0+3u1+2u3)
3(u0+u1+2u2+2u3)(u0+2u1+u2+2u3)

4(u0+3u2+2u3)3

27(u0+u1+2u2+2u3)2(u0+2u1+u2+2u3)

4(u0+3u1+2u3)3

27(u0+u1+2u2+2u3)(u0+2u1+u2+2u3)2

(u0+3u2+2u3)2(u0+3u1+2u3)2

27(u0+u1+2u2+2u3)2(u0+2u1+u2+2u3)2















. (7)

Indeed, this rational function evidently takes positive vectors to positive vectors. The image
of the map ϕ(H,λ) is a subsetM of the tetrahedron ∆3 = {p ∈ R4

>0 : p0 + p1 + p2 + p3 = 1}.
We regard the subset M as a discrete statistical model on the state space {0, 1, 2, 3}. The
modelM is the rational space curve of degree 4 defined by the two quadratic equations

9p1p2 − 8p0p3 = p20 − 12(p0 + p1 + p2 + p3)p3 = 0.

As in [11, Example 3.11], one verifies that the curveM has rational MLE, namely Φ = ϕ(H,λ).

We next define all the terms that are used in part (3) of Theorem 1. Fix a matrix
A = (aij) ∈ Zr×m of rank r that has the vector (1, . . . , 1) in its row span. The connection to
(2) will be that the rows of A span the left kernel of H . We identify the columns of A with
Laurent monomials in r unknowns t1, . . . , tr. The corresponding monomial map is

γA : (R∗)r → RP
m−1 , (t1, . . . , tr) 7→

( r
∏

i=1

tai1i :
r
∏

i=1

tai2i : · · · :
r
∏

i=1

taimi

)

. (8)

Here R
∗ = R\{0} and RP

m−1 denotes the real projective space of dimension m− 1. Let YA

be the closure of the image of γA. This is the projective toric variety given by the matrix A.
Every point x = (x1 : · · · : xm) in the dual projective space (RPm−1)∨ corresponds to a

hyperplane Hx in RPm−1. The dual variety Y ∗
A to the toric variety YA is the closure of the set

{

x ∈ RP
m−1 | γ−1

A (Hx ∩ YA) is singular
}

.

A general point x in the dual toric variety Y ∗
A corresponds to a hyperplane Hx that is tangent

to the toric variety YA at a point γA(t) with nonzero coordinates. We identify sign vectors

5



σ ∈ {−1,+1}m with orthants in R
m. These map in a 2-to-1 manner to orthants in RP

m−1.
If we intersect them with Y ∗

A , then we get the orthants of the dual toric variety:

Y ∗
A,σ =

{

x ∈ Y ∗
A : σi · xi > 0 for i = 1, 2, . . . , m

}

⊂ RP
m−1. (9)

One of these is the distinguished orthant in Theorem 1, part (3).

Example 5. Fix m = 4, r = 2, and the following matrix with (1, 1, 1, 1) in its row span:

A =

(

3 2 1 0
0 1 2 3

)

. (10)

As in [11, Example 3.9], the toric variety of A is the twisted cubic curve in projective 3-space:

YA =
{

(t31 : t
2
1t2 : t1t

2
2 : t

3
2) ∈ RP3 : t1, t2 ∈ R∗

}

.

The dual toric variety Y ∗
A is a surface in (RP3)∨. Its points x represent planes in RP3 that are

tangent to the curve YA. Such a tangent plane corresponds to a cubic x1t
3+ x2t

2+x3t+ x4

with a double root. Hence, Y ∗
A is the surface of degree 4 in (RP3)∨ defined by the discriminant

∆A = 27x2
1x

2
4 − 18x1x2x3x4 + 4x1x

3
3 + 4x3

2x4 − x2
2x

2
3. (11)

All eight orthants Y ∗
A,σ are non-empty. Representatives x for the orthants are the eight cubics

(t+ 1)2(t+ 3), (t+ 5)2(t− 1), (t− 1)2(t+ 3), (t+ 5)2(t− 8),
(t− 3)2(t+ 1), (t− 1)2(t− 3), (t− 2)2(t+ 3), (t+ 1)2(t− 3).

The underlined cubic is the point x = (1,−1,−8, 12) in Y ∗
A,σ, where σ = (1,−1,−1, 1).

We now present the key definition that is needed for part (3) of Theorem 1. Let ∆ be
a homogeneous polynomial with n + 2 monomials, and let m be one of these monomials. If
we divide ∆ by m, then we obtain a homogeneous Laurent polynomial of degree zero:

1

m
∆ = 1 − λ0x

h10
1 xh20

2 · · ·x
hm0
m − λ1x

h11
1 xh21

2 · · ·x
hm1
m − · · · − λnx

h1n
1 xh2n

2 · · ·xhmn

m .

We write H(∆,m) for the m× (n+ 1) integer matrix with entries hij. Its column vectors are
denoted hj = (h1j , h2j , . . . , hmj) for j = 0, 1, . . . , n. These data define the monomial map

φ(∆,m) : (R∗)m → R
n+1, x 7→

(

λ0x
h0 , λ1x

h1 , . . . , λnx
hn
)

.

Definition 6. A discriminantal triple (A,∆,m) consists of

1. an r ×m integer matrix A of rank r having (1, 1, . . . , 1) in its row span,

2. an A-homogeneous polynomial ∆ that vanishes on the dual toric variety Y ∗
A ,

3. a distinguished term m among those that occur in the polynomial ∆,
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such that H(∆,m) = H̃(∆,m), the sign vector σ := sign(H(∆,m) · u) is the same for all positive
column vectors u ∈ R

n+1
>0 , and it satisfies the condition

λi · σ
hi > 0 for all i = 1, 2, . . . , m. (12)

Remark 7. Let (A,∆,m) be a triple as in Definition 6, 1–3, such that for its associated
Horn matrix H(∆,m) we have that sign(H̃(∆,m) · u) is the same for all positive u and the pair

(H̃(∆,m), λ̃) satisfies (12). As in Remark 3 we associate to (A,∆,m) a discriminantal triple

(Ã, ∆̃, m̃) with Imφ(∆,m) = Imφ(∆̃,m̃).

All definitions are now complete. We next illustrate Definition 6 for our running example.

Example 8. Let A be the 2 × 4 matrix in (10), ∆ = ∆A its discriminant in (11), and
m = 27x2

1x
2
4 the underlined term. Then (A,∆,m) is a discriminantal triple with associated

sign vector σ = (−1,+1,+1,−1). The orthant Y ∗
A,σ was highlighted in Example 5. It is a

semialgebraic surface inside Y ∗
A ⊂ RP3. This surface is mapped into the tetrahedron ∆3 by

φ(∆,m) : (x1, x2, x3, x4) 7→

(

2

3

x2x3

x1x4

,−
4

27

x3
3

x1x
2
4

,−
4

27

x3
2

x2
1x4

,
1

27

x2
2x

2
3

x2
1x

2
4

)

. (13)

The image of this map is a curve in ∆3, namely the modelM in Example 4. We verify (1)
by comparing (7) with (13). The former is obtained from the latter by setting x = Hu.

We close this section with two remarks on Horn matrices, Horn pairs and Horn maps.

3 Staged Trees

We consider contingency tables u = (ui1i2···im) of format r1× r2×· · ·× rm. Following [5, 14],
these represent joint distributions of discrete statistical models with n + 1 = r1r2 · · · rm
states. For any subset C ⊂ {1, . . . , m}, one considers the marginal table uC that is obtained
by summing out all indices not in C. The entries of the marginal table uC are sums of
entries in u. Namely, to obtain the entry uI,C of uC for any state I = (i1, i2, . . . , im), we fix
the indices of the states in C and sum over the indices not in C. For example, if m = 4,
C = {1, 3}, I = (i, j, k, l), then uC is the r1 × r3 matrix with entries

uI,C = ui+k+ =

r2
∑

j=1

r4
∑

l=1

uijkl.

Such linear forms are the basic building blocks for the familiar models with rational MLE.
Consider an undirected graph G with vertex set {1, . . . , m} which is assumed to be

chordal. The associated decomposable graphical modelMG in ∆n has the rational MLE

p̂I =

∏

C uI,C
∏

S uI,S

, (14)

7



where the product in the numerator is over all maximal cliques C of G, and the product in
the denominator is over all separators S in a junction tree for G. See [14, §4.4.1]. In what
follows we regard G as a directed graph, with edge directions given by a perfect elimination
ordering on the vertex set {1, . . . , m}. This turnsMG into a Bayesian network.

More generally, a Bayesian networkMG is given by a directed acyclic graph G. We write
pa(j) for the set of parents of the node j. The modelMG in ∆n has the rational MLE

p̂I =
m
∏

j=1

uI,pa(j)∪{j}

uI,pa(j)

. (15)

If G comes from an undirected chordal graph then (14) arises from (15) by cancellations.

Example 9 (m = 4). We revisit two examples that were discussed on page 36 in [5, §2.1].
The star graph G = [14][24][34] is chordal. The MLE forMG is the map Φ with coordinates

p̂ijkl =
ui++l · u+j+l · u++kl

u++++ · u2
+++l

=
ui+++

u++++
·
u+j+l

u+++l

·
u++kl

u+++l

·
ui++l

ui+++
.

The left expression is (14). The right is (15) for the directed graph 1→ 4, 4→ 2, 4→ 3.
The chain graph G = [12][23][34] is chordal. Its MLE is the map Φ with coordinates

p̂ijkl =
ui++l · u+jk+ · u++kl

u+j++ · u++k+

= ϕ(H,λ)(u)ijkl.

This is the Horn map in Proposition 12, given by the specific pair (H, λ) in Example 11.

The formulas (14) and (15) are familiar to statisticians. Theorem 1 places them into a
larger context. However, some readers may find our approach too algebraic and too general.
Our aim in this section is lay out a useful middle ground: models given by staged trees.

Staged trees were introduced by Smith and Anderson [16] as a generalization of discrete
Bayesian networks. They furnish an intuitive representation of many situations that the
above graphs G cannot capture. In spite of their wide scope, staged tree models are appealing
because of their intuitive formalism for encoding events. We refer to the textbook [3] for an
introduction. In what follows we study parts (1) and (2) in Theorem 1 for staged trees.

To define a staged tree model, we start with a directed rooted tree T having at least two
edges emanating from each non-leaf vertex, a label set S = {si | i ∈ I}, and a labeling
θ : E(T ) → S of the edges of the tree. Each vertex of T has a corresponding floret, which
is the multiset of edge labels emanating from it. The labeled tree T is a staged tree if any
two florets are either equal or disjoint. Two vertices in T are in the same stage if their
corresponding florets are the same. From this point on, F denotes the set of florets of T .

Definition 10. Let J be the set of root-to-leaf paths in the tree T . We set |J | = n + 1.
For i ∈ I and j ∈ J , let µij denote the number of times edge label si appears in the j-th
root-to-leaf path. The staged tree model MT is the image of the parametrization

φT : Θ→ ∆n , (si)i∈I 7→ (pj)j∈J ,

where Θ :=
{

(si)i∈I ∈ (0, 1)|I| :
∑

si∈f
si = 1 for all florets f ∈ F

}

is the parameter space of

MT , and pj =
∏

i∈I s
µij

i is the product of the edge parameters on the j-th root-to-leaf path.

8



In the modelMT , the tree T represents possible sequences of events. The parameter si
associated to an edge vv′ is the transition probability from v to v′. All parameter labels in
a floret sum to 1. The fact that distinct nodes in T can have the same floret of parameter
labels enables staged tree models to encode conditional independence statements [16]. This
property allows us to represent any discrete Bayesian network or decomposable model as a
staged tree model. Our first staged tree was seen in Example 2. Here is another specimen.

Example 11 (n = 15). Consider the decomposable model for binary variables given by the
4-chain G = [12][23][34]. Figure 1 shows a realization of MG as a staged tree model MT .
The leaves of T represent the outcome space {0, 1}4. Nodes with the same color have the
same associated floret. The blank nodes all have different florets. The seven florets of T are

f1={s0, s1}, f2={s2, s3}, f3={s4, s5}, f4={s6, s7}, f5={s8, s9}, f6={s10, s11}, f7={s12, s13}.

T :

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

p0000
p0001
p0010
p0011
p0100
p0101
p0110
p0111
p1000
p1001
p1010
p1011
p1100
p1101
p1110
p1111

H =

s0
s1
f1
s2
s3
f2
s4
s5
f3
s6
s7
f4
s8
s9
f5
s10
s11
f6
s12
s13
f7
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1 1 · · · · · · 1 1 · · · · · ·
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· · · · 1 1 · · · · · · 1 1 · ·
· · · · · · 1 1 · · · · · · 1 1
· · · · − − − − · · · · − − − −
1 · · · 1 · · · 1 · · · 1 · · ·
· 1 · · · 1 · · · 1 · · · 1 · ·
− − · · − − · · − − · · − − · ·
· · 1 · · · 1 · · · 1 · · · 1 ·
· · · 1 · · · 1 · · · 1 · · · 1
· · − − · · − − · · − − · · − −













































































Figure 1: A staged tree T and its Horn matrix H in Proposition 12. Entries − indicate −1.

Next we show that staged tree models have rational MLE, so they satisfy part (1) of
Theorem 1. Our formula for Φ uses the notation for I, J and µij introduced in Definition 10.
This formula is known in the literature on chain event graphs (see e.g. [15]).

Proposition 12. LetMT be a staged tree model, and let u = (uj)j∈J be a vector of counts.
For i ∈ I, let f be the floret containing the label si, and define the estimates

ŝi :=

∑

j µijuj
∑

sℓ∈f

∑

j µℓjuj

and p̂j :=
∏

i∈I

(ŝi)
µij .

The rational function Φ that sends (uj)j∈J to (p̂j)j∈J is the MLE of the modelMT .
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Proof. We prove that the likelihood function L(p, u) has a unique maximum at p = (p̂j)j∈J .
For f ∈ F , we fix the vector of parameters sf = (si)si∈f . Associated with the floret f is the
local likelihood function Lf (sf , u) =

∏

si∈f
sαi

i , where αi =
∑

j µijuj. We have

L(p, u) =
∏

j

p
uj

j =
∏

j

∏

i

s
ujµij

i =
∏

i

sαi

i =
∏

f∈F

Lf (sf , u).

Since the Lf depend on disjoint sets of unknowns, maximizing L is achieved by maximizing
the factors Lf separately. But Lf is the likelihood function of the full model ∆|f |−1, given
the data vector (αi)si∈f . The MLE of that model is given by ŝi = αi/

∑

sℓ∈f
αℓ, where si ∈ f .

We conclude that argmaxsf
(

Lf (sf , u)
)

= (ŝi)si∈f and argmaxp
(

L(p, u)
)

= (p̂j)j∈J .

Remark 13. Here is a method for evaluating the MLE in Proposition 12. Let [v] ⊂ J be
the set of root-to-leaf paths through a fixed node v in the tree T and define u[v] =

∑

j∈[v] uj.

The quotient
u[v′]

u[v]
is the empirical transition probability from v to v′ given arrival at v. To

obtain ŝi we first compute the quotients
u[v′]

u[v]
for all edges vv′ with parameter label si. Then

we aggregate them by adding their numerators and denominators separately. We obtain
si = (

∑

u[v′])/(
∑

u[v]), where both sums range over all edges vv′ with parameter label si.

Proposition 12 yields an explicit description of the Horn pair (H̃, λ̃) associated toMT .

Corollary 14. Fix a staged tree modelMT as above. Let H be the (|I|+ |F |)× |J | matrix
whose rows are indexed by the set I ⊔ F and entries are given by

hij = µij for i ∈ I, and

hfj = −
∑

sℓ∈f

µℓj for f ∈ F.

Define the vector λ ∈ {−1,+1}|J | by λj = (−1)
∑

f hfj . Then (H̃, λ̃) is the Horn pair ofMT ,
using the mapping H 7→ H̃ defined in Remark 3.

Given a staged tree T , we call the matrix H in Corollary 14 the Horn matrix of T .

Remark 15. In Corollary 14, for a floret f ∈ F , let Hf be the submatrix of H with row
indices {i : si ∈ f}∪{f}. Then H is the vertical concatenation of the matrices Hf for f ∈ F .
The matrix H̃ is obtained from H by the row operations described in Remark 3.

Example 16. For the tree T in Example 11, the Horn matrix H ofMT is given in Figure 1.
Its rows indices are (s0, s1, f1, s2, s3, f2, s4, s5, f3, s6, s7, f4, s8, s9, f5, s10, s11, f6, s12, s13, f7).
The vector λ for the friendly Horn matrix H is the vector of ones (1, . . . , 1) ∈ R16. Note that
(H, λ) is not a Horn pair. We can delete the rows s0, s1, f2, f3 of the matrix H by summing
the pairs (s0, f2) and (s1, f3) and deleting zero rows. The result is the Horn pair (H̃, λ̃).

Following [8], two staged trees T and T ′ are called statistically equivalent if there exists
a bijection between the sets of root-to-leaf paths of T and T ′ such that, after applying this
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bijection,MT =MT ′ inside the open simplex ∆n. Any staged tree model may have different
but statisticaly equivalent tree representations. In [8, Theorem 1], the authors show that
statistical equivalence of staged trees can be determined by doing a sequence of operations
on the trees, named swap and resize. One of the advantages of describing a staged tree
model via its Horn pair is that it gives a new criterion to decide whether two staged trees
are statistically equivalent. This is simpler to implement than the criterion formulated in
[8].

Corollary 17. Two staged trees are statistically equivalent if and only if their their Horn
pairs (H̃, λ̃) agree.

One natural operation on a staged tree T is identifying two florets of the same size. This
gives a new tree T ′ and modelMT ′ whose Horn matrix is readily obtained from that of T .

Corollary 18. Let T ′ be a staged tree arising from T by identifying two florets f and f ′,
say by the bijection (−)′ : f → f ′. Then the Horn matrix H ′ of MT ′ arises from the Horn
matrix H ofMT by replacing the blocks Hf and Hf ′ in H by the block H ′

f defined by

h′
ij = hij + hi′j for si ∈ f,

h′
fj = hfj + hf ′j .

Proof. This follows from the definition of the Horn matrices forMT andMT ′.

Example 19. Let T ′ be the tree obtained from T in Example 11 by identifying the florets
f4 and f5. ThenMT ′ is the independence model of two random variables with four states.

Now we turn to part (3) of Theorem 1. We describe the triple (A,∆,m) for a staged
tree model MT giving rise to its discriminantal triple (Ã, ∆̃, m̃) as in Remark 7. The pair
(H, λ) was given in Corollary 14. Let A be any matrix whose rows span the left kernel of H ,
set m = |I| + |J |, and write s for the m-tuple of parameters (si, sf)i∈I,f∈F . From the Horn
matrix in Corollary 14 we see that

∆ = m ·

(

1−
∑

j

(−1)ǫj
∏

i

(

si
sf

)µij

)

,

where f depends on i, m = lcm(
∏

i s
µij

f : f ∈ F ) and ǫj =
∑

i µij . The sign vector σ for
the triple (A,∆,m) is given by σi = +1 for i ∈ I and σf = −1 for f ∈ F . Then Y ∗

A,σ gets
mapped toMT via φ(∆,m). Moreover, the map φT from Definition 10 factors through φ(∆,m).
Indeed, if we define ι : Θ→ Y ∗

A,σ by (si)i∈I 7→ (si,−1)i∈I,f∈F , then φT = φ(∆,m) ◦ ι.
The derivation in the following example is an extension of that in [11, Example 3.13].

Example 20. LetMT be the 4-chain model in Example 11. Its associated discriminant is

∆ = f1f2f3f4f5f6f7 − s0s2s6s10f3f5f7 − s0s2s6s11f3f5f7 − s0s2s7s12f3f5f6 − s0s2s7s13f3f5f6
− s0s3s8s10f3f4f7 − s0s3s8s11f3f4f7 − s0s3s9s12f3f4f6 − s0s3s9s13f3f4f6
− s1s4s6s10f2f5f7 − s1s4s6s11f2f5f7 − s1s4s7s12f2f5f6 − s1s4s7s13f2f5f6
− s1s5s8s10f2f4f7 − s1s5s8s11f2f4f7 − s1s5s9s12f2f4f6 − s1s5s9s13f2f4f6.
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Our notation for the parameters matches the row labels of the Horn matrix H in Figure 1.
This polynomial of degree 7 is irreducible, so it equals the A-discriminant: ∆ = ∆A. The
underlying matrix A has format 13× 21, and we represent it by its associated toric ideal

IA =
〈

s10 − s11 , s1s5f2 − s0s3f3 , s1s4f2 − s0s2f3 , s5s9f4 − s4s7f5 , s3s9f4 − s2s7f5,
s12 − s13, s5s8f4 − s4s6f5, s3s8f4 − s2s6f5, s9s13f6 − s8s11f7, s7s13f6 − s6s11f7,

s0s2s6s11 − f1f2f4f6, s0s2s7s13 − f1f2f4f7, s0s3s8s11 − f1f2f5f6, s0s3s9s13 − f1f2f5f7,
s1s4s6s11 − f1f3f4f6, s1s4s7s13 − f1f3f4f7, s1s5s9s13 − f1f3f5f7, s1s5s8s11 − f1f3f5f6

〉

.

The toric variety YA = V(IA) has dimension 12 and degree 141. It lives in a linear space of
codimension 2 in P20, where it is defined by eight cubics and eight quartics. The dual variety
Y ∗
A = V(∆A) is the above hypersurface of degree seven. We have m = f1f2f3f4f5f6f7, and

σ is the vector in {−1,+1}21 that has entry +1 at the indices corresponding to the si and
entry −1 at the indices corresponding to the fi. To obtain the discriminant ∆̃ associated
to the Horn pair in Example 16, we substitute 1 for s0, s1, f2, f3 in the polynomial ∆ and
change all the minus signs to plus signs. See also the discussion in Remark 3.

It would be interesting to study the combinatorics of the discriminantal triples for staged
tree models. Our computations suggest that, for many such models, the polynomial ∆
is irreducible and is equal to the A-discriminant ∆A of the underlying configuration A.
However, this is not true for all staged trees, as seen in equation (2) of Example 2. We close
this section with a familiar class of models with rational MLE whose associated ∆ factor.

Example 21. The multinomial distribution encodes the experiment of rolling a k-sided die
m times. The associated modelM is the independence model for m identically distributed
random variables on k states. We have n + 1 =

(

k+m−1
m

)

. The Horn matrix H is the
(k+1)×(n+1) matrix whose columns are the vectors (−m, i1, i2, . . . , ik)

T where i1, i2, . . . , ik
are nonnegative integers whose sum equalsm. Here, A = (1 1 1 · · · 1), so the A-discriminant
is the linear form ∆A = x0 + x1 + · · ·+ xk. The following polynomial is a multiple of ∆A:

∆ = (−x0)
m − (x1 + x2 + · · ·+ xk)

m.

This ∆, with its marked term m = (−x0)
m, encodes the MLE for the modelM.

4 Proof of the Main Theorem

In this section we prove Theorem 1. This involves making precise how the objects in the
three parts correspond to each other. Namely, models with rational MLE correspond to
Horn pairs (H, λ), and these correspond to pairs (∆,m) in a discriminantal triple.

For a pair (H, λ) consisting of a Horn matrix H and a coefficient vector λ, we denote by
ϕ the rational map defined in (4). We recall that its i-th coordinate is

ϕi(v) = λi

m
∏

j=1

( n
∑

k=0

hjkvk

)hji

. (16)
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We also define the likelihood function Lu : R
n+1 → R for the image of ϕ:

Lu(v) :=

n
∏

i=0

ϕi(v)
ui. (17)

Here u ∈ Nn+1 is an arbitrary fixed data vector. We start with the following key lemma.

Lemma 22. Let H = (hij) be a Horn matrix, λ a vector satisfying (3), and u ∈ N
n+1. The

vector u is the unique critical point of its own likelihood function Lu, up to scaling.

Proof. We compute the partial derivatives of Lu. For ℓ = 0, . . . , n we find

∂

∂vℓ
Lu(v) =

n
∑

i=0

ui

Lu(v)

ϕi(v)

∂

∂vℓ
ϕi(v)

=
n
∑

i=0

ui

Lu(v)

ϕi(v)

m
∑

j=1

hji

ϕi(v)
∑n

k=0 hjkvk
hjℓ

= Lu(v)

m
∑

j=1

n
∑

i=0

ui hji hjℓ
∑n

k=0 hjkvk
= Lu(v)

m
∑

j=1

hjℓ

∑n

i=0 hjiui
∑n

k=0 hjkvk
.

For v = u, this evaluates to zero, since the sums in the fraction cancel and the ℓ-th column of
H sums to zero. The uniqueness of the critical point up to scaling follows from the fact that
the projective variety given by the image of ϕ has ML-degree one, by [10, Theorem 1].

We use [10] to explain the relation between models with rational MLE and Horn pairs.

Proof of Theorem 1, Equivalence of (1) and (2). Let M be a model with rational MLE Φ.
The Zariski closure of M is a variety of ML-degree one. By [10, Theorem 1], there exists
a Horn matrix H and a coefficient vector λ such that ϕ = Φ. Now, the required sum-to-
one and positivity conditions for ϕ are satisfied because they are satisfied by the MLE Φ.
Indeed, the MLE of any discrete statistical model maps positive vectors u in R

n+1
>0 into the

simplex ∆n. Conversely, we claim that every Horn pair (H, λ) specifies a nonempty modelM
with rational MLE. Indeed, defineM to be the image of ϕ(H,λ). By the defining properties
of the Horn pair, we haveM⊂ ∆n. Lemma 22 shows that ϕ(H,λ) is the MLE ofM.

Next, we relate Horn pairs to discriminantal triples (A,∆,m). The pair (∆,m) is the
data that defines M as an algebraic variety. The matrix A and the derived sign vector σ
are witnesses of special properties of (∆,m). Namely, the polynomial ∆ is A-homogeneous
and vanishes on some dual toric variety, Y ∗

A, whose σ-orthant maps onto the model M via
the map φ(∆,m). The positivity condition of a Horn pair is supposed to translate into the
positivity condition in (12). This translation is a consequence of the following key lemma.

Lemma 23. Let (H, λ) be a friendly pair. If there exists a vector u ∈ Rn+1 such that
ϕ(u) > 0, then we have ϕ(v) > 0 for all v in R

n+1
>0 where it is defined.
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Proof. The function ϕ is homogeneous of degree zero. It suffices to prove each coordinate
of ϕ(v) is a positive real number, for all vectors v with positive integer entries. Indeed,
every positive v in Rn+1 can be approximated by rational vectors, which can be scaled to be
integral. The open subset U = ϕ−1(∆n) of R

n+1 contains u. If U = Rn+1, then we are done.
Else, U has a nonempty boundary ∂U . By continuity, ∂U ⊆ ϕ−1(∂∆n). The likelihood
function Lv for the data vector v vanishes on ∂U .

We claim that Lv has a critical point in U . The closed subset U is homogeneous. After
passing to projective space Pn, it becomes compact. The likelihood function Lv is well defined
on this compact set in Pn, since it is homogeneous of degree zero, and Lv vanishes on the
boundary. Hence the restriction Lv|U is either identically zero or it has a critical point in U .
But, since u ∈ U is a point with Lv(u) 6= 0, the second statement must be true.

Since U is an open subset of Rn+1, a critical point of the restriction Lv|U is also a critical
point of the function Lv itself. By Lemma 22, this critical point must be v. Hence v ∈ U .

Corollary 24. Let (H, λ) be a friendly pair, with H = H̃ as in Remark 3. Fix any positive
vector u in R

n+1
>0 . Then (H, λ) is a Horn pair if and only if λi(Hu)hi > 0 for i = 0, 1 . . . , n.

If this holds then the nonzero entries in each row of H have the same sign. In particular,
the sign vector σ = sign(Hu) is independent of the choice of u.

Proof. The coordinates of Hv are the linear factors of the numerators and denominators of
ϕ(v). We have shown in Lemma 23 that none of these numerators or denominators vanish
on ∆n, and hence the same holds for the coordinates of Hv. This implies that the rows of H
have the desired sign property. The characterization of Horn pairs now follows from (4).

We prove the rest of Theorem 1 by first explaining how to turn (H, λ) into a pair (∆,m)
and then examining how the constraints on Horn pairs and discriminantal triples are related.

Proof of Theorem 1, Equivalence of (2) and (3). Let (H, λ) be a pair consisting of a Horn
matrix and a coefficient vector. We construct a pair (∆,m) consisting of a polynomial ∆
and a monomial m appearing in ∆ as follows. For k = 0, . . . , n+1 let hk denote the columns
of H , and write h+

k resp. h−
k for the positive part resp. the negative part of hk, so that

hk = h+
k − h−

k . In addition, let maxk(h
−
k ) be the entrywise maximum of the h−

k . We define

m = xmaxk(h
−

k
) and ∆ = m ·

(

1−

n
∑

k=0

λkx
hk

)

. (18)

Conversely, from any pair (∆,m) as above, we construct a pair (H, λ) by the equation on
the right hand side. This specifies H = (hk)k and λ = (λk)k uniquely. We next proceed with
comparing the defining properties for Horn pairs with those for discriminantal triples.

Claim. If (H, λ) is friendly and if the r columns of an integer matrix A with AH = 0 span
Zr, then ∆ is A-homogeneous and vanishes on the dual toric variety Y ∗

A. Conversely, if ∆
is A-homogeneous and vanishes on Y ∗

A for some integer matrix A, then (H, λ) is friendly.

Proof of Claim. Let (H, λ) be friendly and A a matrix as above. The Laurent polynomial
q := ∆/m from (18) is a rational function on Pm−1 that vanishes on the dual toric variety
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Y ∗
A . To see this, consider the exponentiation map ϕ2 : P

m−1 → R
n+1 that is defined by

ϕ2(x) = λ ∗ xH , where ∗ is the entrywise product. Let f = 1 − (p0 + · · · + pn). We have
q = f ◦ ϕ2. By [10, Theorems 1 and 2], the function ϕ2 maps an open dense subset of Y ∗

A

dominantly to the closureM of the image of ϕ(H,λ). Since f = 0 onM, we have f ◦ ϕ2 = 0
on an open dense subset of Y ∗

A , hence q = 0 on Y ∗
A , so ∆ = 0 there as well.

Conversely, let ∆ be A-homogeneous and vanish on Y ∗
A for some A. We claim that q(x) is

zero for all x = Hu in the image of the linear map H . We may assume m(x) 6= 0. We must
prove that x is in the dual toric variety Y ∗

A , since ∆ vanishes on it. So, let xi =
∑n

j=0 hijuj

for i = 0, . . . n+ 1. We claim that t = (1, . . . , 1) is a singular point of the hypersurface

γ−1
A (Hx ∩ YA) =

{

t ∈ C
r |

m
∑

i=1

xit
ai = 0

}

.

First, the point t lies on that hypersurface since the columns of H sum to zero:

m
∑

i=1

xi =

m
∑

i=1

n
∑

j=0

hijuj =

m
∑

j=0

uj

m
∑

i=1

hij = 0.

For s = 1, . . . , r we have ∂
∂ts

tai = asit
ai−es, with es the s-th canonical basis vector of Zr, and

∂

∂ts

n
∑

i=1

xit
ai =

m
∑

i=1

n
∑

j=0

hijujasit
ai−es =

n
∑

j=0

uj

m
∑

i=1

asihijt
ai−es.

This is zero at t = (1, . . . , 1) because AH = 0. �

Next comes the point where we incorporate positivity. If a friendly pair (H, λ) with
H = H̃ is a Horn pair then the sign vector σ satisfies (12). But conversely, if (A,∆,m) is
a discriminantal triple then (12) holds, and Corollary 24 tells us that (H, λ) is a Horn pair.

To complete the proof, let φ(∆,m)(x) := λ∗xH . We have ϕ(H,λ)(R
n+1
>0 ) = φ(∆,m)(Y

∗
A,σ) by [10,

Theorems 1 and 2], and we have ϕ(H,λ) = φ(∆,m) ◦H by construction.

We proved that every model with rational MLE arises from a toric variety YA. In some
cases, the model is itself a toric variety YC . It is crucial to distinguish the two matrices A
and C. The two toric structures are very different. For instance, every undirected graphical
model is toric [5, Proposition 3.3.3]. The toric varieties YC among staged tree modelsMT

were classified in [4]. The 4-chain model MT = YC is itself a toric variety of dimension 7
in P15. But it arises from a toric variety YA of dimension 12 in P20, as seen in Example 20.

Toric models with rational MLE play an important role in geometric modeling [2, 6].
Given an integer matrix C ∈ Zr×(n+1) and a vector of weights w ∈ R

n+1
>0 , one considers the

scaled projective toric variety YC,w in RPn. This is defined as the closure of the image of

γC,w : (R∗)r → RP
n , (t1, . . . , tr) 7→

(

w1

r
∏

i=1

tci1i , w2

r
∏

i=1

tci2i , . . . , wm

r
∏

i=1

tcimi

)

. (19)
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The set of positive points in this toric variety is a discrete statistical model MC,w in ∆n.
There is a natural homeomorphism from the toric modelMC,w onto the polytope of C. This
is known among geometers as the moment map, and as Birch’s Theorem in Algebraic Statis-
tics. In geometric modeling the pair (C,w) is used to define toric blending functions [13].

It is highly desirable for the toric blending functions to have rational linear precision
[2, 13]. The property is rare and it depends in a subtle way on (C,w). Garcia-Puente and
Sottile [6] established the connection to algebraic statistics. They showed that rational linear
precision holds for (C,w) if and only if the statistical modelMC,w has rational MLE.

Example 25. The most classical blending functions with rational linear precision live on the
triangle {x ∈ R3

>0 : x1+x2+x3 = 1}. They are the Bernstein basis polynomials of degree m:

m!

i!j!(m− i− j)!
xi
1x

j
2x

m−i−j
3 for i, j ≥ 0, i+ j ≤ m. (20)

Here C is the 3×
(

m+1
2

)

matrix whose columns are the vectors (i, j,m− i− j). The weights
are w(i,j) =

m!
i!j!(m−i−j)!

. The associated toric model MC,w is the multinomial family, where

(20) is the probability of observing i times 1, j times 2 and m − i − j times 3 in m trials.
This model is seen in Example 21 and it has rational MLE. Again, notice the distinction

between the two toric varieties. Here, YA is a point in Pm, whereas YC is a surface in P(
m
2 )−1.

Clarke and Cox [2] raise the problem of characterizing all pairs (C,w) with rational
linear precision. This was solved by Duarte and Görgen [4] for pairs arising from staged
trees. While the problem remains open in general, our theory in this paper offers new tools.
We may ask for a characterization of discriminantal triples whose models are toric.

5 Constructing Models with Rational MLE

Part (3) in Theorem 1 allows us to construct models with rational MLE starting from a
matrix A that defines a projective toric variety YA. In most cases, the dual variety Y ∗

A is
a hypersurface, and we can compute its defining polynomial ∆A, the discriminant [7]. The
polynomial ∆ in a discriminantal triple can be any homogeneous multiple of ∆A, but we
just take ∆ = ∆A in Algorithm 1. For all terms m in ∆A, we check whether (A,∆A,m) is a
discriminantal triple and, if so, we identify σ. We implemented this algorithm in Macaulay2.

Lines 1 and 18 of Algorithm 1 are computations that rely on Gröbner bases. The exe-
cution of Line 18 can be very slow. It may be omitted if one is satisfied with obtaining the
parametric description and MLE Φ(ℓ) of the modelMℓ. For the check in Line 17, one does
not need to compute Φi(v) numerically. Instead, one can just examine the signs and parities
of the entries of H .

Example 26 (r = 2, m = 4). For distinct positive integers α, β, γ with gcd(α, β, γ) = 1, let

Aα,β,γ =

(

1 1 1 1
0 α β γ

)

.
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Algorithm 1: From toric varieties to statistical models

Input : An integer matrix A of size r ×m with (1, . . . , 1) in its row span
Output: An integer n and a collection of statistical modelsM(ℓ) = (Φ(ℓ), I(ℓ)),

where Φ(ℓ) : Rn+1 → Rn+1 is a rational MLE forM(ℓ), and
I(ℓ) ⊆ R[p0, . . . , pn] is the defining prime ideal ofM(ℓ).

1 Compute the A-discriminant ∆A ∈ Z[x1, . . . , xm];
2 n← #terms(∆A)− 2;
3 models← {};
4 for 0 ≤ ℓ ≤ n do
5 m← terms(∆A)ℓ;
6 q ← 1−∆A/m;
7 for 0 ≤ i ≤ n do
8 λi ← coefficients(q)i;
9 hi ← exponent vectors(q)i;

10 Φ
(ℓ)
i ← (u 7→ λi

∏m
j=1(

∑n
k=0 hjkuk)

hji);

11 end
12 H ← (hi)i;

13 if sign(H̃) is not well-defined then
14 discard this instance and continue loop;
15 end
16 Choose any positive vector v in R

n+1
>0 ;

17 if Φ
(ℓ)
i (v) > 0 for i = 0, 1, . . . , n then

18 Compute the ideal I(ℓ) of the image of Φ(ℓ);

19 models← models ∪ {(Φ(ℓ), I(ℓ))};

20 end

21 end
22 return models;

We ran Algorithm 1 for all 613 such matrices with 0 < α < β < γ ≤ 17. Line 1 computes the
discriminant ∆A of the univariate polynomial f(t) = x1 + x2t

α + x3t
β + x4t

γ. The number
n + 2 of terms of these discriminants equals 7927/613 = 12.93 on average. Thus a total of
7927 candidate triples (A,∆A,m) were tested in Lines 12 to 21. Precisely 123 of these were
found to be discriminantal triples. This is a fraction of 1.55 %. In other words, only 1.55 %
of the resulting complex varieties permitted by [10] are actually statistical models.

Here is a typical model that was discovered. Take α = 1, β = 4, γ = 7. The discriminant

∆A = 729x4
2x

6
3 − 6912x3

1x
7
3 − 8748x5

2x
4
3x4 + 84672x3

1x2x
5
3x4 + 34992x6

2x
2
3x

2
4

−351918x3
1x

2
2x

3
3x

2
4 − 46656x7

2x
3
4 + 518616x3

1x
3
2x3x

3
4 − 823543x6

1x
4
4

has 9 terms, so n = 7. The special term m is underlined. The associated model is a curve of
degree ten in ∆7. Its prime ideal I(ℓ) is generated by 18 quadrics. Among them are 15 bino-
mials that define a toric surface of degree six: 49p1p2−48p0p3, 3p0p4−p

2
2, . . . , 361p3p7−128p

2
5.
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Inside that surface, our curve is cut out by three other quadrics, like 26068p22 + 73728p0p5
+703836p0p6 + 234612p2p6 + 78204p4p6 + 612864p0p7 + 212268p2p7 + 78204p4p7 − 8379p27.

Example 27 (r = 3, m = 6). For any positive integers α, β, γ, ε, we consider the matrix

A =





0 α β 0 γ ε

0 0 0 1 1 1
1 1 1 1 1 1



 .

The discriminant ∆A is the resultant of two trinomials x1+x2t
α+x3t

β and x4+x5t
γ +x6t

ε

in one variable t. We ran Algorithm 1 for all 138 such matrices with 0 < α < β ≤ 17, 0 <
γ < ε ≤ 17, gcd(α, β) = gcd(γ, ε) = 1. The number n + 2 of terms of these discriminants
equals 2665/138 = 19.31 on average. Thus a total of 2665 candidate triples (A,∆A,m) were
tested in Line 13. Precisely 93 of these are discriminantal triples. This is a fraction of 3.49 %.

We now shift gears by looking at polynomials ∆ that are multiples of the A-discriminant.

Example 28 (r = 1, m = 4). We saw in Examples 2 and 21 that interesting models can arise
from the matrix A = (1 1 · · · 1) whose toric variety is just one point. Any homogeneous
multiple ∆ of the linear form ∆A = x1 + x2 + · · · + xm can be used as input in Line 1 of
Algorithm 1. Here, taking ∆ = ∆A results in the model given by the full simplex ∆m−2.

Let m = 4 and abbreviate xa = xa1
1 xa2

2 xa3
3 xa4

4 and |a| = a1+a2+a3+a4 for a ∈ N
4. We

conducted experiments with two families of multiples. The first uses binomial multipliers:

∆ = (xa + xb)∆A or (xa − xb)∆A, where |a| = |b| ∈ {1, 2, . . . , 8} and gcd(xa, xb) = 1.

This gives 1028 polynomials ∆. The numbers of polynomials of degree 2, 3, 4, 6, 7, 8, 9, 10 is
6, 21, 46, 81, 126, 181, 246, 321. For the second family we use the trinomial multiples

∆ = (xa+xb+xc)∆A or (xa+xb−xc)∆A, where |a|=|b|=|c|∈{1, 2, 3} and gcd(xa, xb, xc) = 1.

Each list contains 4 quadrics, 104 cubics and 684 quartics. We report our findings in a table:

Family Pairs (∆,m) Horn pairs Percentage
(xa − xb)∆A 8212 12 0.15%
(xa + xb)∆A 8218 0 0%

(xa + xb − xc)∆A 8678 8 0.01%
(xa + xb + xc)∆A 8968 0 0%

All 12 Horn pairs in the first family represent the same model, up to a permutation of
coordinates. All are coming from the six quadrics of the family. The model is the surface in

∆4 defined by the 2 × 2 minors of the matrix

(

p0 p1 p2
p0+p1+p2 p3 p4

)

. This is a staged tree

model similar to Example 2, but now with three choices at each blue node instead of two.

In our construction of models with rational MLE, we start with families where r and m
are fixed. However, as the entries of the matrix A go up, the number n+1 of states increases.
This suggests the possibility of listing all models for fixed small values of n. Is this list finite?

18



Problem. Suppose that n is fixed. Are there only finitely many models with rational MLE
in the simplex ∆n? Can we find absolute bounds, depending only on n, for the dimension,
degree and number of ideal generators of the associated varieties in Pn?

Algorithm 1 is a tool for studying these questions experimentally. At present, however,
we do not have any clear answers, even for n = 3, where the models are curves in a triangle.
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