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IMPLICITIZATION OF TENSOR PRODUCT SURFACES VIA VIRTUAL
PROJECTIVE RESOLUTIONS

ELIANA DUARTE, ALEXANDRA SECELEANU

Abstract. We derive the implicit equations for certain parametric surfaces in three-dimensional
projective space termed tensor product surfaces. Our method computes the implicit equation
for such a surface based on the knowledge of the syzygies of the base point locus of the
parametrization by means of constructing an explicit virtual projective resolution.

1. Introduction
The residual resultant of a system of polynomial equations is a polynomial on the coef-

ficients of the system that vanishes if and only if the system has a solution outside the zero
set of another prescribed system of polynomial equations. Residual resultants for projective
space were introduced in [BEM01] and further developed in [Bus01] for the case of P2. In
this article we consider residual resultants over P1

k × P
1
k .

For projective space, the computation of the residual resultant relies on producing a free
resolution of an ideal having the same vanishing locus as the residual (colon) ideal of the two
systems of polynomial equations. In this article we formulate a similar approach to compute
a residual resultant over P1

k×P
1
k where we replace the free resolution of the residual ideal with

a virtual resolution. This allows the derivation of the residual resultant from smaller, more
manageable complexes than the more standard free resolutions. Besides being shorter than
their free resolution counterparts, virtual resolutions also exhibit a closer relationship with
Castelnuovo–Mumford regularity than minimal free resolutions. We exploit this relationship
and present Algorithm 4.14 to compute residual resultants over P1

k × P
1
k .

Our motivation to study residual resultants over P1
k × P

1
k comes from implicitization in

geometric modeling. In this context, a tensor product surface is the closure of the image Λ of
a rational map λ : P1

k × P
1
k d P

3
k defined by four bihomogeneous polynomials p0, p1, p2, p3 ∈

k
[
P1

k × P
1
k

]
= k[s, t, u, v] as

λ([s : t], [u : v]) = [p0(s, t, u, v) : p1(s, t, u, v) : p2(s, t, u, v) : p3(s, t, u, v)].

The base points of λ are the common zeros of the polynomials p0, p1, p2, p3. The implicitiza-
tion problem for tensor product surfaces consists on finding the equation whose vanishing de-
fines the surface Λ in P3. This problem has its origins in the seminal papers [SC95, CGZ00]
and has been considered further in [KSZ92, D’A02, Bot11].
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Three methods can be used to solve the implicitization problem for tensor product sur-
faces: Gröbner bases, resultants, and Rees algebras. Gröbner basis methods are least satis-
factory since they tend to be computationally intensive. Thus, it is primarily the latter two
techniques which are used. Since classical resultants fail in the presence of base points, fol-
lowing the work of Busé [Bus01], we propose the use of residual resultants over P1

k × P
1
k to

solve the implicitization problem for tensor product surfaces in this case. We present this
approach in Algorithm 5.5.

The structure of this paper is as follows: in section 2 we give the necessary background
on residual resultants, with special attention to the case of biprojective space. In section 4
we derive effective methods to compute the residual resultant based on a virtual projective
resolution for certain ideals of minors. In section 5 we show how this theory can be applied
to the implicitization problem for tensor product surfaces. Finally, section 6 contains many
worked out examples that illustrate our results.

Throughout the paper N denotes the set of nonnegative integers.

2. A residual resultant for P1
k × P

1
k

In this section we give an overview of the theory and construction for a residual resul-
tant over a biprojective space. We follow closely the exposition in [BEM01] and [Bus01]
adapting the statements for the case of the variety Q = P1

k × P
1
k .

Algebraically, classical resultant computations can be phrased as follows: given commu-
tative rings A = k[x0, . . . , xm] = k[Pm

k ] and C = k[Ci j : 0 ≤ i ≤ n, 1 ≤ j ≤ dimk(Adi)],
where the latter is viewed as a ring of indeterminate coefficients, form the polynomial ring
T = C[x0, . . . , xm] = C ⊗k A and define a set of homogeneous polynomials F0, . . . , Fm ∈ T

Fi(Ci j, x0, . . . , xn) =
∑

m j∈Adi

Ci jm j.

One is interested in finding a generator for the principal ideal I = (F0, . . . , Fm) ∩ C, which
is called the resultant of F0, . . . Fm. The resultant is a unique (up to scaling by constants)
irreducible polynomial in C [GKZ08, Chapter 12]. For a point c = (ci j) ∈ Pk(C1) define the
evaluation map at c to be the A-module homomorphism ec : T → A, ec(Ci j) = ci j induced by
the analogous k-linear map C → k(c). The zero locus of the ideal I

V(I) = {c ∈ Pk(C1) : V (ec(F0), . . . , ec(Fm)) , ∅}

consists of the coefficients c = (ci j) for which the equations ec(F0), . . . , ec(Fm) have common
solutions in Pm

k .
We proceed to describe a modified version of this classical resultant termed the residual

resultant. If A is the coordinate ring of a variety Q and C,T are as above, consider two sets
of homogeneous polynomials g0, . . . , gn ∈ A and F0, . . . Fm ∈ (g0, . . . , gn)T . The residual
resultant is a generator for the principal ideal I = (F : G) ∩ C, where F = (F0, . . . , Fm) and
G = (g0, . . . , gn). The zero locus of this ideal

V(I) = {c ∈ Pk(C1) : V (ec(F0), . . . , ec(Fm)) \ V (g0, . . . , gn) , ∅}

consists of the coefficients ci j for which the equations ec(F0), . . . , ec(Fm) have common solu-
tions outside the common zero locus of g0, . . . gn in Q.
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We now rephrase the problem in the language of algebraic geometry. The classical resul-
tant is interpreted in this language in [Jou91, Jou95] and [GKZ08, Propositions 3.1 and 3.3].
Following the exposition in [BEM01], let Q be a an irreducible projective variety of dimen-
sion dim(Q) = m over the algebraically closed field k. Consider m + 1 invertible sheaves
L0, . . . ,Lm on Q and let Vi = H0(Q,Li) be the vector space spanned by the global sections
of the sheaf Li. Poposition 2.1 sets up the residual resultant as a polynomial that captures
the condition for a set of global sections f0, . . . , fm ( fi ∈ Vi) to vanish on the variety Q. This
resultant is a polynomial in the coefficients of each fi with respect to the basis of the vector
space Vi.

More precisely, given a set of polynomials Fi =
∑

b j∈Bi
Ci jb j ∈ T expressed in terms of

fixed bases Bi for each vector space Vi, their resultant is a polynomial ResV0,...,Vm ∈ C. For
any c ∈ Pk(C1), if fi = ec(Fi), then ResV0,...,Vm( f0, . . . , fm) denotes the polynomial

ResV0,...,Vm( f0, . . . , fm) = ec
(
ResV0,...,Vm

)
.

From this point onward, we use the notation F0, . . . , Fm for elements of T and f0, . . . , fm for
specializations fi = ec(Fi) at some c ∈ Pk(C1).

Proposition 2.1 ([BEM01, Proposition 1]). Suppose that each Vi generates the sheaf Li

on Q and that Vi is very ample on a nonempty open subset U of Q. Then there exists an

irreducible polynomial on
m∏

i=0
Vi, denoted by ResV0,...,Vm and called the (V0, . . . ,Vm)-resultant,

which satisfies

ResV0,...,Vm( f0, . . . , fm) = 0 ⇐⇒ ∃ x ∈ X : f0(x) = · · · = fm(x) = 0.

Moreover, ResV0,...,Vs is homogeneous in the coefficients of each fi, and of degree
∫

Q

∏
j,i c1(L j).

We will follow the aforementioned result to define a residual resultant for Q = P1
k × P

1
k .

This follows readily using the methods of [BEM01], but it is important for our purposes to
establish the notation in terms of sheaves on P1

k ×P
1
k instead of Pn

k . For this reason we include
a discussion of the setup below.

From this point on let R = k[s, t, u, v] denote the bigraded coordinate ring of P1
k×P

1
k over an

algebraically closed field k, with deg(s) = deg(t) = (1, 0) and deg(u) = deg(v) = (0, 1). Let
R(a,b) denote the set of elements in R of bidegree (a, b). Recall that the smallest geometrically
irrelevant ideal of P1

k×P
1
k is B = (s, t)∩ (u, v). This yields a family of geometrically irrelevant

ideals for P1
k × P

1
k , i.e. B = {p ∈ Spec(R) : B ⊆ p}.

Definition 2.2. The B-saturation of an ideal I ⊂ R is the ideal Isat =
⋃∞

i=0 I : Bi, where
I : Bi = { f ∈ R : f Bi ∈ I}. The geometric importance of the B-saturation stems from
the fact that for bihomogeneous ideals I ⊆ R, the following varieties agree V(I) = V(Isat).
Analogously one defines the B-saturation of an R-module M to be Msat = H0

(
M̃,P1

k × P
1
k

)
.

Let Q = P1
k × P

1
k = Proj(R) and consider a bihomogeneous ideal G = (g1, . . . , gn) ⊆ R

where deg g j = (k j, l j). Let G be the coherent sheaf of ideals associated to G. Consider
pairs of nonnegative integers (ai, bi), 0 ≤ i ≤ 2, such that (ai, bi) ≥ (k j, l j) entrywise for
all i, j, which yield the sheaves G (ai, bi) = G ⊗OQ OQ(ai, bi) for 0 ≤ i ≤ 2. The vector
space Vi = H0(Q,G (ai, bi)) is the set of polynomials of degree (ai, bi) which belong to the
saturation of the ideal G. We denote by π : Q̃ → Q the blow-up of Q along the sheaf of
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ideals G . The inverse image of the sheaf G̃ = π−1G · OQ is an invertible sheaf on Q̃. The
sheaf G̃ ⊗ π∗(OQ(ai, bi)) is denoted by G̃ (ai, bi).

Proposition 2.4 establishes the existence of a residual resultant polynomial, which cuts out
the locus of those polynomials f0, f1, f2 ∈ V0 × V1 × V2 for which the common vanishing of
f0, f1, f2 contains a point not in V(G). It also gives an algebraic criterion for this geometric
condition, namely that the saturations of the two ideals G = (g1, . . . , gn) and F = ( f0, f1, f2)
with respect to B are distinct. In order to establish this fact we need the following definition.

Definition 2.3. An ideal I ⊆ R is said to be locally a complete intersection if Ip can be
generated by a regular sequence for every prime ideal p ∈ Spec(R) \B.

Proposition 2.4 ([BEM01, Proposition 3]). Let G = (g1, . . . , gn) ⊆ R be a codimension two
locally complete intersection ideal, with deg(g j) = (k j, l j). Choose bihomogeneous polyno-
mials fi ∈ Vi = G (ai, bi) for i = 0, 1, 2 such that F = ( f0, f1, f2) and the following condition
holds

(ai, bi) ≥ (k j1 + 1, l j1) for some j1 and (ai, bi) ≥ (k j2 , l j2 + 1) for some j2.

Then there exists a polynomial in C =
∏2

i=0 k [Vi], denoted ResG ,{(ai,bi)}2i=0
which satisfies

ResG ,{(ai,bi)}2i=0
( f0, f1, f2) = 0 ⇔ ∃ x ∈ Q̃ : π∗( f0)(x) = π∗( f1)(x) = π∗( f2)(x) = 0 (1)

⇔ ∃ y ∈ P1
k × P

1
k such that y ∈ V(F) \ V(G) (2)

⇔ Fsat , Gsat. (3)

Proof. Let i ∈ {0, 1, 2} and consider the vector space of global sections Vi = H0(Q,G (ai, bi)).
The sections s ∈ Vi generate the invertible sheaf G (ai, bi) on an open subset of Q, namely
Q \ Z. Following [Har77, Ch.II.7.17.3] we blow-up P1

k × P
1
k at the subscheme defined by G .

Then G̃ (ai, bi) is globally generated by the pullbacks π∗(s) for s ∈ H0(Q,G (ai, bi)). Thus for
all i ∈ {0, 1, 2}, if we let Ṽi be the vector subspace generated by the pullbacks π∗(s), s ∈ Vi

then Ṽi generates G̃ (ai, bi) on Q̃.
Next we show that each G̃ (ai, bi) is very ample on an open subset U of Q̃. Suppose

(ai, bi) satisfies the inequality conditions in the statement of the proposition. Let S k be the
subvariety of Q̃ defined by the vanishing of π∗(g jk) and let Uk = Q̃ \ S k for k = 1, 2. Set
U = U1 ∩ U2. We show that the map Γi : U → P(Ṽi), x 7→ {π∗( f ) | f ∈ Vi, π

∗( f )(x) = 0} is
an embedding. Since a point in P1

k ×P
1
k is a pair (p1, p2) where pi are points in the i-th factor,

there is a form L1 of bidegree (1, 0) or L2 of bidegree (0, 1) that vanishes at the given point
but not at another point (q1, q2) ∈ P1

k × P
1
k according to whether p1 , q1 or p2 , q2. We say

that such a form separates (p1, p2), (q1, q2). In the former case there is a global section in Ṽi

which is a multiple of L1g j1 and which separates π∗(p1, p2) and π∗(q1, q2) in U. Analogously,
if (p1, p2), (q1, q2) are separated by a form of bidegree (0, 1), there is a global section in Ṽi

which is a multiple of L2g j2 and which separates π∗(p1, p2) and π∗(q1, q2) in U. A proof that
the differential condition for very ampleness holds follows in a similar fashion to [BEM01,
Proposition 3] by the use of the appropriate separating form in each case. We conclude that
each G̃ (ai, bi) is very ample on the non-empty open subset U.

The first equivalence of the conclusion follows by applying Proposition 2.1 to the invert-
ible sheaves G̃ (ai, bi) on Q̃. For (2) ⇒ (1) notice that if y < V(G) and f0(y) = f1(y) =
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f2(y) = 0 then, for the unique x ∈ Q̃ such that π(x) = y, we have π∗( f0)(x) = π∗( f1)(x) =

π∗( f2)(x) = 0. The equivalence (2) ⇔ (3) follows from the identities V(F) = V(Fsat) and
V(G) = V(Gsat). It remains to show that (3) ⇒ (1), equivalently, if π∗( f0), π∗( f1), π∗( f2) do
not vanish simultaneously on Q̃ then Fsat = Gsat. Since G is locally a complete intersection,
the sheaf G /G 2 is locally free of rank 2. Hence, setting F to be the ideal sheaf correspond-
ing to F, one sees that the inclusion F ↪→ G is a surjection locally at p ∈ X. Thus F = G
and hence Fsat = Gsat holds true. �

Remark 2.5. By the assumption on the codimension of G, the ideal sheaf G in Proposition
2.4 defines a zero dimensional scheme. Proposition 2.4 applies when G defines a reduced set
of points in P1

k×P
1
k , since such an ideal is locally a complete intersection by [CFG+16, Lemma

4.1]. However, not all ideals G that fit the hypotheses of Proposition 2.4 define reduced sets
of points in P1

k × P
1
k . For example G = 〈s2t2, u2v2〉 is a (global) complete intersection, hence

this ideal is also locally a complete intersection, which is not reduced.

Suppose that the ideal sheaf G defines a zero dimensional scheme Z composed of p points
P1, . . . , Pp. We denote by ei the the multiplicity of the point Pi in Z. We have

ei = dimk(OZ,Pi), where OZ = OP1
k×P

1
k
/G ,

and hence
∑p

i=1 ei = dimk H0(Z,OZ).

Remark 2.6. One important aspect to recall from the proof of Proposition 2.1 [BEM01,
Proposition 1] is that the incidence variety defined by

W̃ =

(x, f0, . . . , fm) ∈ Q̃ ×
m∏

i=0

P(Vi) : f0(x) = . . . = fm(x) = 0

 ⊆ Q̃ ×
m∏

i=0

P(Vi)

has codimension m + 1. In the context of Proposition 2.4, m = dim Q̃ = 2 because Q̃ is the
blowup of P1

k × P
1
k at the scheme Z defined by G . Therefore the incidence variety W̃ in this

case is contained in Q̃ ×
∏2

i=0 P(Vi) and it is of codimension 3. Let E denote the exceptional
locus of the blow-up of P1

k × P
1
k at Z. Then Q̃ \ E is isomorphic to Q \ Z. The open set

U =

(x, f0, f1, f2) ∈ Q̃ \ E ×
2∏

i=0

P(Vi) : π∗( f0)(x) = π∗( f1)(x) = π∗( f2)(x) = 0


is dense in W̃ and isomorphic to

W =

(x, f0, f1, f2) ∈ (Q \ Z) ×
2∏

i=0

P(Vi) : f0(x) = f1(x) = f2(x) = 0


thus W is of codimension three in (Q \ Z) ×

∏2
i=0 P(Vi).

In the next proposition we compute the degree of the residual resultant in the coefficients
of each polynomial fi. A general formula for this degree is given in Proposition 2.1 [BEM01,
Proposition 1] and the case for P2 is treated in [Bus01]. We will now deduce this degree for
the residual resultant in P1

k × P
1
k; the proof follows the same lines as for P2, except that the

computation of the intersection product is now performed on the blow-up of P1
k × P

1
k at Z.
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Proposition 2.7. The polynomial ResG ,{(ai,bi)}2i=0
is multihomogeneous in the coefficients of

each Vi, of degree Ni for i = 0, 1, 2 with

N0 = a1b2 + b1a2 −

p∑
i=1

ei , N1 = a0b2 + b0a2 −

p∑
i=1

ei , and N2 = a0b1 + b0a1 −

p∑
i=1

ei.

Proof. We compute the integer N0, the computation of N1,N2 is carried out in a similar
fashion. Fix i = 0. By Propositions 2.1, N0 equals∫

Q̃
c1(G̃(a1,b1))c1(G̃(a2,b2))

where c1(F ) denotes the first Chern class of the sheaf F over Q̃ and
∫

Q̃
denotes the degree

map on Q̃. Denote by H = π∗(h) and L = π∗(l) the pullbacks of generic hyperplanes in
P1

k × P
1
k that generate the divisor class group Cl(P1

k × P
1
k) � Z2. Each Ei, i = 1, . . . , p denotes

the exceptional divisor of the blow-up π above each point Pi defined by G , and Ered
i the

reduced scheme of Ei. Following [Ful84], c1(G̃(ai,bi)) = aiH + biL−
∑p

i=1 Ei. Since Ei · E j = 0
if i , j, H · Ei = L · Ei = 0 and L2 = H2 = 0, we obtain∫

Q̃
c1(G̃(a1,b1))c1(G̃(a2,b2)) =

∫
Q̃

(a1H + b1L −
p∑

i=1

Ei)(a2H + b2L −
p∑

i=1

Ei)

=

∫
Q̃

a1b2H · L + a2b1H · L +

p∑
i=1

E2
i .

Now let f1 (resp. f2) be generic global sections of G (a1, b1) (resp. G (a2, b2)) and let D f1 :=
V( f1) (resp. D f2 := V( f2)) be the divisor corresponding to the vanishing of the section f1

(resp. f2) in P1
k × P

1
k . We have

π∗D f1 = D̃ f1 +

p∑
i=1

Ei = D̃ f1 +

p∑
i=1

miEred
i , and

π∗D f2 = D̃ f2 +

p∑
i=1

Ei = D̃ f2 +

p∑
i=1

niEred
i .

Where D̃ f1 (resp. D̃ f2) is the strict transform of D f1 (resp. D f2) and where mi (resp. ni) is the
multiplicity of f1 (resp. f2) at the point Pi [Ful84, Section 4.3]. Now D̃ f1 · D̃ f2 = 0 and since
G is a local complete intersection, for each poin Pi ∈ Z we have mini = ei [Ful84, Section
12.4]. We deduce that

p∑
i=1

E2
i =

p∑
i=1

mini Ered
i

2
=

p∑
i=1

ei Ered
i

2
.

By the projection formulae, we know that
∫

Q̃
H · L = 1 and

∫
Q̃

Ered
i

2
= −1. Therefore

N0 = a1b2 + b1a2 −

p∑
i=1

ei

�
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We shall give a method for the effective computation of the residual resultant on P1
k ×P

1
k in

section 4 after reviewing the notion of virtual complexes on P1
k × P

1
k , which will prove useful

in computing the residual resultants.

3. Virtual resolutions in P1
k × P

1
k and multigraded regularity

Free resolutions have played an important role in the effective computation of resultants.
It is shown in [GKZ08] that the classic projective resultant in Pn can be computed via a
Koszul complex. In a similar manner, [Bus01] and [BEM01] use the Eagon-Northcott and
variants of it to compute residual resultants with respect to locally complete intersection
ideals over P2

k and complete intersection on Pn
k respectively. The Castelnuovo-Mumford

regularity of the ideal resolved by this complex is a crucial ingredient for the computation of
the residual resultant and the ability to explicitly exhibit a free resolution has the advantage
of giving a straightforward way to calculate the regularity. For P1

k × P
1
k , general recipes for

the free resolutions of the analogous ideal are not available, even under the above mentioned
assumptions. We overcome this obstacle by showing that virtual resolutions in P1

k × P
1
k have

the same good properties that free resolutions have for the computation of resultants and
residual resultants in Pn and we give an explicit description for a virtual resolution of certain
determinantal ideals.

Two bigraded rings are of central importance for the purpose of residual implicitization
on P1

k × P
1
k . The first is the coordinate ring R = k[s, t, u, v] of P1

k × P
1
k , equipped with a natural

Z2 grading obtained from viewing Z2 as the Picard group of P1
k × P

1
k . For simplicity, we call

rings graded by Z2 bigraded. For a finitely generated R-module M and a bidegree ν ∈ Z2, the
Hilbert function of M at ν is HM(ν) = dimk Mν.

The second ring of interest is T = R ⊗k C, where C = k[Ci j] is a ring of indeterminate
coefficients as in section 2. Note that T is the coordinate ring of the variety (P1

k×P
1
k)×

∏m
i=0 Vi

and moreover B = BT is the irrelevant ideal for this variety. We equip the ring T with a Z2

grading given by degT (c ⊗ r) = degR(r) for any r ∈ R, c ∈ C. Thus T is a finitely generated
C-algebra with R(0,0) = C. For any bidegree ν ∈ Z2 the bigraded component of T in bidegree
ν, Tν = Rν ⊗k C, is a free C-module minimally generated by a basis of Rν.

3.1. Virtual resolutions in P1
k ×P

1
k . Virtual resolutions for P1

k ×P
1
k , also known as B-torsion

complexes, have been discussed in the literature in [MS04] and [CDS07] among others. Our
interest in these complexes was sparked by [ZES17].

An R-module M is B-torsion if BiM = 0 for some i.

Definition 3.1. A bigraded complex of free R-modules Pi =
⊕

j R(−ai j,−bi j) of the form

F : 0 −→ Pm
ϕm
−→ · · · −→ P1

ϕ1
−→ P0

is called a virtual resolution of a module M if (H0(F))sat � Msat and all the homology modules
Hi(F) with i > 0 are B-torsion. Note that every free resolution is automatically a virtual
resolution.

Virtual resolutions were introduced in [ZES17] where it is pointed out how these reso-
lutions capture the geometry of subvarieties of products of projective spaces in an optimal
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manner. For example, saturated ideals defining finite sets of points in P2 have a Hilbert-
Burch resolution. This is not the case for ideals of sets of points in P1

k × P
1
k , however there is

a virtual version of this theorem for points in biprojective space.

Proposition 3.2 ([ZES17, Corollary 5.2]). Every zero-dimensional subscheme Z of P1
k × P

1
k

has a virtual Hilbert-Burch resolution, i.e., there exists an (m + 1)×m matrix ϕ such that the
complex 0 −→ Rm+1 ϕ

−→ Rm is a resolution for Im(ϕ) and V(Im(ϕ)) = Z.

Corollary 3.3. If G ⊆ R is an ideal defining a not necessarily reduced set of points in P1
k ×P

1
k

there exists an ideal G′ such that Gsat = G′sat, and G′ has a Hilbert-Burch resolution. More-
over G is locally a complete intersection if and only if G′ is locally a complete intersection.

Proof. The first statement is an algebraic reformulation of Proposition 3.2 while the second
follows since Gsat = G′sat implies that Gp = G′p for p ∈ Spec(R) \B. �

Example 3.4. Consider the ideal I = 〈s, u〉 ∩ 〈t, v〉 = 〈st, sv, tu, uv〉 of a set of two points
in P1

k × P
1
k . A free resolution and a virtual resolution of I with G = 〈sv, tu〉 are shown

below. Note how the virtual resolution is much simpler than the free resolution and the ideal
G = 〈sv, tu〉 defines the same variety as I.

0 // R 
v
−u
−t
s


// R4 

−u −v 0 0
s 0 0 −v
0 t −u 0
0 0 s t


// R4 (

st tu sv uv
) // R // I // 0

0 // R (
−sv
tu

)// R2(
tu sv

)// G // 0.

This example is an instance of a more general phenomenon.

Example 3.5. If G defines a set Z of r general points in P1
k × P

1
k , from [ZES17, Example

5.10] it follows that G has a virtual resolution

0 // R(−2,−2p) // R(−1,−p)2 // R if r = 2p and

0 // R(−2,−2p − 1) //
R(−1,−p)
⊕

R(−1,−p − 1)
// R if r = 2p + 1.

In particular, any set of general points in P1
k × P

1
k is virtually a complete intersection. Fur-

ther details on which sets of points in P1
k × P

1
k are virtual complete intersections appear in

[GLLM19].

The notion of virtual resolution can be extended to modules over the ring T , where the
meaning of the word virtual is understood to be with respect to the irrelevant ideal BT . To
see why this is a natural extension we start by defining a T -module M to be BT -torsion if
(BT )iM = 0 for some i ≥ 0. The following lemma shows that this notion is equivalent to the
notion of B-torsion for R-modules.

Lemma 3.6. A T-module M is B-torsion if and only if M is B-torsion as an R-module.
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Proof. Denote by MR the structure of M as an R-module induced by restriction of scalars.
The claim follows from the identity

(
BiM

)
R

= BiMR. �

By analogy with Definition 3.1 we say that a bigraded complex of free T -modules Pi =⊕
j T (−ai j,−bi j) of the form F : 0 −→ Pm −→ · · · −→ P1 −→ P0 is a virtual resolution of a

T -module M if (H0(F))sat � Msat and for i > 0 the homology modules Hi(F) are B-torsion.
In view of Lemma 3.6, F is a virtual resolution of the T -module M if and only if it is a virtual
resolution for the R-module MR.

3.2. Multigraded regularity: strong and weak forms. In this paper we make use of a
notion of (weak) regularity developed in [MS04]. Although this applies to modules over a
polynomial ring graded by a finitely generated abelian group, we are primarily interested in
modules over the rings R and T introduced in the beginning of this section, graded by the
group Pic(P1

k × P
1
k) = Z2 = Zc1 ⊕ Zc2, where c1, c2 are the standard basis vectors. To explain

the notion of bigraded regularity define the sets

Sti =

{(r, s) ∈ Z2 : r + s = −i − 1, r < 0, s < 0} for i > 0,
{(r, s) ∈ Z2 : r + s = −i, r ≥ 0, s ≥ 0} for i ≤ 0.

=

{(−i,−1), (−i + 1,−2), . . . , (−2,−i + 1), (−1,−i)} for i > 0,
{(−i, 0), (−i − 1, 1), ..., (1,−i − 1), (0,−i)} for i ≤ 0.

Definition 3.7. A module M over a bigraded ring is said to be weakly ν-regular with respect
to the irrelevant ideal B of that ring if Hi

B(M)µ = 0 for all i ≥ 0 and µ ∈ Sti +ν + N2. We
denote by reg(M) the set of all elements µ ∈ Z2 such that M is weakly µ-regular and we call
this set the regularity region of M.

As before, the notion of regularity for T -modules and R-modules are closely related.

Lemma 3.8. For a T-module M and a bidegree µ ∈ Z2, M is weakly µ-regular with respect
to B if and only if M is weakly µ-regular as an R-module with respect to B.

Proof. By independence of basis for local cohomology Hi
B(M) � Hi

B(M) as T -modules,
whence Hi

B(M)µ = 0 if and only if Hi
B(M)µ = 0. �

One of the main applications of (multigraded) regularity consists of controlling the growth
of Hilbert functions. Specifically, if M is a µ-regular bigraded module, then the Hilbert
function HM(ν) agrees with a polynomial PM(ν), termed the Hilbert polynomial of M, for all
values ν ∈

(
µ + N2

)
\ µ; see [MS05, Corollary 2.15.]. Furthermore, [MS04, Proposition 6.7]

shows that if I is a B-saturated ideal defining a finite set of points in P1
k × P

1
k , then reg(S/I)

is exactly the set of elements µ ∈ Z2 for which the Hilbert function HS/I(µ) is equal to the
Hilbert polynomial PS/I(µ).

An important observation from [MS04] is that the regularity region of a module M can
be estimated from any virtual projective resolution of M. We give a version of this result
adapted to our setup.
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Proposition 3.9 ([MS04, Theorem 1.5]). Let M be a finitely generated bigraded module. If
0→ P3 → P2 → P1 → P0 → M → 0 is a virtual projective resolution for M then

R =
⋃

σ:[3]→[2]

 ⋂
1≤i≤3

−cσ(1) − · · · − cσ(i) + reg(Pi)

 ⊆ reg(M).

Unlike the case where the grading group is Z, the minimal free resolution of a bigraded
module M does not completely determine its regularity region. This shortcoming is over-
come be introducing a related notion of strong regularity developed in [HW04].

Definition 3.10. A bigraded module M is said to be strongly (a, b)-regular if

Hi
(s,t)(M)(k,k′) = 0, ∀k ≥ a + 1 − i,∀k′

Hi
(u,v)(M)(k,k′) = 0, ∀k′ ≥ b + 1 − i,∀k and

Hi
(s,t,u,v)(M)(k+k′) = 0, ∀k + k′ ≥ a + b + 1 − i.

We denote by regs(M) the set of all pairs (a, b) ∈ Z2 such that M is strongly (a, b)-regular.

It is shown in [HW04, Corollary 4.5] that ν ∈ regs(M) implies ν ∈ reg(M). The advantage
of strong regularity is that it can be read from the minimal free resolution for the module
M, Indeed, [HW04, Theorem 4.10] shows that, if for all i the bigraded shifts in the i-th
homological degree of the minimal free resolution of a module M belong to

DRegi(a, b) = Z2
− + St−i +µ, where Z− = {n ∈ Z : n ≤ 0},

then M is strongly µ-regular and thus also weakly µ-regular.

3.3. Eagon-Northcott complex and bigraded regularity. We follow the notation from the
original paper by Eagon and Northcott [Eag62]. Let R be a noetherian commutative ring and
let

α :
r⊕

i=1

R(−ci,−di)→
q⊕

i=1

R(−ei,− fi)

be a bihomogeneous map where q, r are positive integers with q ≤ r. Let Iq(α) denote the
ideal generated by the maximal minors of any matrix φα representing α with respect to a
choice of bases X1, X2, . . . , Xr for the domain of α and Y1,Y2, . . . ,Yq for the target of α.
Consider the free graded R-modules

K =
∧ r⊕

i=1

R(−ci,−di)

 =
∧

(X1, X2, . . . , Xr)

and

S = Sym

 q⊕
i=1

R(−ei,− fi)

 = Sym(Y1,Y2, . . . ,Yq)

with deg(Xi) = (−ci,−di) and deg(Yi) = (ei, fi) and set Ki =
∧i(X1, X2, . . . , Xr) and S j =

Sym j(Y1,Y2, . . . ,Yq). Let (−e,− f ) =
∑q

i=1 q(−ei,− fi). The k-th row of the matrix φα = (ai j)
determines a Koszul differential ∆k on K given by

∆k(Xi1 ∧ · · · ∧ Xin) =

n∑
p=1

(−1)p+1akip Xi1 ∧ · · · X̂ip · · · ∧ Xin .
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The Eagon-Northcott complex associated to the map α, is the complex given by

0→ Kr ⊗R S r−q → · · · → Kq−i ⊗R S i → Kq+1 ⊗R S 1 → Kq → R(−e,− f )

where the first map
∧q α : Kq →

∧q
(⊕q

i=1 R(−ei,− fi)
)

= R(−e,− f ) maps Xi1 ∧ · · · ∧ Xiq
to the maximal minor ∆i1,...,iq of φα determined by the columns i1, . . . , iq. The rest of the
differentials are specified on the basis elements of Kq−i ⊗R S i as follows

d(Xi1 ∧ · · · ∧ Xiq−i ⊗ Yν1
1 · · · Y

νq
q ) =

∑
j

∆ j(Xi1 ∧ · · · ∧ Xiq−i) ⊗ Yν1
1 · · · Y

ν j−1
j · · · Yνq

q

where ν1 + . . . + νs = i and the sum is over those indices j for which ν j > 0. With the degree
conventions in place this is a complex of free bigraded modules and bidegree (0, 0) maps.
It is convenient to shift the complex above so that the homological degree 0 component is
generated in bidegree (0, 0). Henceforth we refer to the shifted version below as the Eagon-
Northcott complex EN(α):

0→
(
Kr ⊗R S r−q

)
(e, f )→ · · · →

(
Kq+1 ⊗R S 1

)
(e, f )→ Kq(e, f )→ R. (4)

The principal application of the Eagon-Northcott complex is in resolving the ideal of mi-
nors of matrices Iq(φα) when these ideals have maximum possible height, i.e. ht

(
Iq(φα)

)
=

r − q + 1. The following lemmas are important in establishing the exactness and computing
the homology of the Eagon-Northcott complex in our case of interest.

Lemma 3.11. Using the notation of 3.3, suppose r = q + h. Then
(1) if ht(Iq(α)) = h, then EN(α) has Hi(EN(α)) = 0 for i ≥ 2.
(2) if ht(Iq(α)) = h + 1, then EN(α) is a resolution for Iq(α).

Proof. By [Eag62, Theorem 1 Section 5], the homology of the complex EN(α) satisfies

max{i : Hi (EN(α)) , 0} = r − q + 1 − ht(Iq(α)) =

q + h − q + 1 − h = 1 in case (1)
q + h − q + 1 − h − 1 = 0 in case (2).

�

Remark 3.12. Suppose q ≤ r − 1 and consider a restriction

α′ :
r⊕

i=1,i,i0

R(−ci,−di)→
q⊕

i=1

R(−ei,− fi)

of the map α defined above, which gives rise to the module K′ =
∧

(X1, . . . , X̂i0 , . . . , Xr).
Since K′ is naturally a submodule of K, it follows from (4) that EN(α′) is a subcomplex of
EN(α). In particular, if the degrees of the generators of the free module EN(α)i belong to
DRegi(a, b) then so do the the degrees of the generators of the free module EN(α′)i implying
that regs(Iq(φα)) ⊆ regs(Iq(φ′α)). In a similar fashion, if R,R′ are the weak regularity regions
of R/Iq(α) and R/Iq(α′) specified by Proposition 3.9, then R ⊆ R′.

Example 3.13. We illustrate by showing the Eagon-Northcott complex when G is a complete
intersection. Assume q = 2, r = 4 and (ei, fi) = (ki, li) while (c1, d1) = (k1 + k2, l1 + l2)
and (ci, di) = (a, b) for 2 ≤ i ≤ 4. The bigraded shifts in the Eagon-Northcott complex
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are illustrated below, based on the degrees of the standard bases of the free modules in the
complex (4), where (e, f ) = (k1 + k2, l1 + l2):

0 //

R(−3a + 2k1,−3b + 2l1)
⊕

R(−3a + 2k2,−3b + 2l2)
⊕

R(−3a + k1 + k2,−3b + l1 + l2)

//

R(−2a + k1,−2b + l1)3

⊕
R(−2a + k2,−2b + l2)3

⊕
R(−3a + 2k1 + k2,−3b + 2l1 + l2)

⊕
R(−3a + k1 + 2k2,−3b + l1 + 2l2)

//

// R(−a,−b)3

⊕
R(−2a + k1 + k2,−2b + l1 + l2)3

// R.

The following result generalizes Example 3.13.

Proposition 3.14. Let α :
⊕n−1

i=1 R(−ci,−di)⊕R(−a,−b)3 →
⊕n

j=1 R(−e j,− f j) be a bidegree
preserving map and set (c, d) =

∑n−1
i=1 (ci, di) and (e, f ) =

∑n
j=1(e j, f j). Then the degrees of

the minimal generators for the free R-modules in the complex EN(α), listed by homological
degree, are as follows

degree shifts
0 (0,0)
1 (a + c − e, b + d − f ), (2a + c − e − ci, 2b + d − f − di)

(3a + c − e − ci − c j, 3b + d − f − di − d j), i , j
2 (2a + c − e − e j, 2b + d − f − f j), (3a + c − e − ci − e j, 2b + d − f − di − f j)
3 (3a + c − e − ei − e j, 3b + d − f − fi − f j)

In particular, if a ≥ e j for some 1 ≤ j ≤ n and b ≥ f j for some 1 ≤ j ≤ n and EN(α) is
a virtual resolution for a module R/Iq(φα)) then the bigraded regularity of R/Iq(φα)) can be
estimated by

R(α) =

(
3a + c − e − min

1≤i≤ j≤n
(ei + e j), 3b + d − f − min

1≤i≤ j≤n
( fi + f j)

)
+St−3 +N2 ⊆ reg

(
R/Iq(φα))

)
.

Proof. The shifts listed in the table follow from the graded structure of the complex (4).
Denoting by Pi the free module in the i-th homological degree in EN(α) we claim that

reg(Pi+1) ⊆ reg(Pi) + (1, 1) for 0 ≤ i ≤ 4. Using the fact that for any two modules U,V
reg(U ⊕ V) = reg(U) ∩ reg(V) ([MS04, Lemma 7.1]) one can easily compute the regularity

of a graded free R-module
⊕q

i=1 R(−mi,−ni) =

(
max
1≤i≤q

mi,max
1≤i≤q

ni

)
+ N2. Thus, to establish

the claim it is sufficient to show that the maximum of the first components of the degrees
listed in row i of the table above is strictly smaller than the maximum of the first components
of the degrees listed in row i + 1 of the table and the analogous statement for the second
components. For i = 0 this is clear, so we assume i > 0. Notice that a ≥ e j for some
1 ≤ j ≤ n and b ≥ f j for some 1 ≤ j ≤ n ensures that each component of the degrees listed
in row i of the table above is strictly smaller than some component of the degrees listed in
row i + 1, which establishes the claim.
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In particular, reg(Pi+1) ⊆ reg(Pi) + (1, 1) implies that

−cσ(1) − · · · − cσ(i) + reg(Pi) ⊆ −cσ(1) − · · · − cσ(i) − cσ(i+1) + reg(Pi+1) for 0 ≤ i ≤ 2.

The statement of Proposition 3.9 can now be simplified to say⋃
σ:[3]→[2]

(
−cσ(1) − cσ(2) − cσ(3) + reg(P3)

)
⊆ reg(M), i.e. reg(P3) + St−3 ⊆ reg(M).

Using the explicit formula for the regularity of a free module deduced above yields the
desired estimate(

3a + c − e − min
1≤i≤ j≤n

(ei + e j), 3b + d − f − min
1≤i≤ j≤n

( fi + f j)
)

+ St−3 +N2 ⊆ reg
(
R/Iq(φα))

)
.

�

Remark 3.15. All the results of this section continue to hold verbatim for T -modules. In
particular, if α :

⊕n−1
i=1 T (−ci,−di)⊕T (−a,−b)3 →

⊕n
j=1 T (−e j,− f j) is a bidegree preserving

map, (c, d) =
∑n−1

i=1 (ci, di) and (e, f ) =
∑n

j=1(e j, f j), then the region R(α) of Proposition 3.14
is contained in the regularity region of Iq(T/Iq(φα)), provided that the Eagon-Northcott com-
plex is a virtual projective resolution for this module.

Note that the region R(α) only depends on the numerical information regarding the de-
grees in which the domain and target of the map α are generated and not on the rule defining
α. In particular applying an evaluation map to the source and target of α induces an R-linear
map ec(α) :

⊕n−1
i=1 R(−ci,−di)⊕R(−a,−b)3 →

⊕n
j=1 R(−e j,− f j) such that R(eC(α)) = R(α).

4. Effective computation of the residual resultant
4.1. Virtual resolutions for effective computations. Let G ⊆ R be a bihomogeneous ideal.
For 0 ≤ i ≤ m, let (ai, bi) ∈ N2 and set C = k[Cα

i j : 0 ≤ i ≤ m, 1 ≤ j ≤ n] where for each
pair i, j, the index α enumerates the elements mα of a monomial basis of R(ai−k j,bi−l j). Define
H ji =

∑
α Cα

i jmα, Fi =
∑n

j=1 H jig j, so H ji ∈ T(ai−k j,bi−l j) and Fi ∈ T(ai,bi). This can be written
concisely as[

F0 · · · Fm

]
=

[
g1 . . . gn

]
Ψ, where Ψ = [H ji]1≤ j≤n,0≤i≤m ∈Mn×m(T ). (5)

Lastly, set F = (F0, . . . , Fm) and notice that the previous equation gives the containment
F ⊆ G. We study the algebraic counterpart of the residual resultant developed in Section
2. As mentioned previously, we denote by h ji and ψ the images of H ji and Ψ under any
evaluation homomorphism ec : T → R.

We aim to express the residual resultant for the pair of ideals F,G in terms of the minimal
free resolution for the residual ideal I = F :T G. In turn, we will approximate this resolution
by a virtual projective resolution based on the structure matrix Ψ defined above as well as
the syzygy matrix ϕ for G. The syzygy matrix for G is determined up to change of basis by
a minimal presentation R`

ϕ
−→ Rn → G → 0. We start with a lemma that relates the ideal

F :T G to the ideal of maximal minors of the matrix ϕ ⊕ Ψ ∈Mn×(`+m)(T ).
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Lemma 4.1. Let F = (F0, . . . , Fm) ⊆ G = (g1, . . . , gn) be homogeneous ideals in T with the
sets of generators of the two ideals related by[

F0 · · · Fm

]
=

[
g1 . . . gn

]
Ψ.

Let ϕ denote the n × ` matrix of syzygies of G. Then the following hold
(1) In(ϕ ⊕ Ψ) ⊆ Ann(coker(ϕ ⊕ Ψ)) = F :T G.
(2) if ht(F :T G) = m − n + ` + 2, then equality holds in the above containment.

Proof. Computing ranks along the exact sequence R`
ϕ
−→ Rn → R → R/G → 0 gives

` ≥ n− 1, thus `+ m ≥ n, hence In(ϕ⊕Ψ) is the ideal of maximal minors of ϕ⊕Ψ. Note that
ϕ ⊕ Ψ appears in the following bigraded presentation for G/F:

m+`+1⊕
i=0

T (−ei,−di)
ϕ⊕Ψ
−→

n⊕
i=1

T (−ki,−li)→ G/F→ 0.

A theorem of Buchsbaum-Eisenbud [BE77] on Fitting ideals, applied to the presentation
above, gives the containment below, with equality instead of the rightmost containment when
ht (In(ϕ ⊕ Ψ)) = m − n + ` + 2:

Ann (coker(ϕ ⊕ Ψ))n
⊆ In(ϕ ⊕ Ψ) ⊆ Ann (coker(ϕ ⊕ Ψ)) . (6)

Combining the containment above and the identity

Ann (coker(ϕ ⊕ Ψ)) = Ann(G/F) = (F :T G)

gives the first statement of the lemma. Furthermore, if ht(F :T G) = m − n + ` + 2, the
containment (6) and the generalized principal ideal theorem (see [Eis95, Exercise 10.9])
ht (In(ϕ ⊕ Ψ)) ≤ m − n + ` + 2 , yield ht (In(ϕ ⊕ Ψ)) = m − n + ` + 2, which gives the second
statement of the lemma. �

Note that the identity In(ϕ ⊕ Ψ) = F :T G can hold even if the hypothesis of statement (2)
above is not met, as illustrated in Example 6.2.

Corollary 4.2. The statement of the lemma holds over the ring R whenever F0, . . . , Fm and
Ψ are specialized via evaluation to R.

We exploit the close relation between In(ϕ ⊕ Ψ) and F :T G established in Lemma 4.1 to
obtain a virtual resolution of F :T G. First, due to Proposition 3.2 we may assume that G is
an ideal with a Hilbert-Burch resolution provided the degrees of the generators of F are high
enough. The exact meaning of this reduction is made precise in the following proposition.

Lemma 4.3. Suppose that G defines a zero-dimensional subscheme of P1
k × P

1
k and F is an

arbitrary ideal of T . Then there exists an ideal G′ of R that has the following properties:
(1) V(G) = V(G′),
(2) G′ has a Hilbert-Burch resolution,
(3) ResG ,{(ai,bi)}2i=0

= ResG ′,{(ai,bi)}2i=0
for (ai, bi) satisfying the condition in Proposition 2.4,

(4) (F : G)sat = (F : G′)sat where saturation is taken with respect to the ideal B of T ,
(5) a complex F of free T modules is a virtual projective resolution for F : G if and only

if F is a virtual projective resolution for F : G′ as well.
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Moreover, if the reduced subscheme of P1
k × P

1
k defined by G consists of r general points and

F ⊆ G is an ideal of T such that the generators of F have bidegrees lying in the interior of
the region S shown in Figure 4.3 then F ⊆ G′.

S =

r

r − 1

r − 2

rr − 1r − 2

Figure 1. Region S referred to in Lemma 4.3

Proof. Let G′ be the ideal given by Corollary 3.3, which establishes that it satisfies properties
(1) and (2) listed above. Note that property (1) is equivalent to Gsat = G′sat and therefore
G = G ′, which yields property (3) tautologically.

For (4), consider p ∈ Spec(T ). If B * p (equivalently B * p) then the equality Gsat = G′sat

implies that Gp = G′p and therefore we have (F : G)p = Fp : Gp = Fp : G′p = (F : G′)p, which
is equivalent to (F : G)sat = (F : G′)sat. For (5), recall that F is a virtual resolution of F : G if
and only if (H0(F))sat = (F : G)sat = (F : G′)sat and Hi(F) is B-torsion for i > 0.

When the reduced locus of G consists of r general points then G′ can be taken to have
one of the two types of resolutions presented in Example 3.5 or those obtained from the
ones presented by interchanging the two coordinates of each bidegree. By Proposition 3.9
the region S is contained in the union of the regularity regions of the two possible cyclic
modules R/G′ afforded by the value of r. Note that S is also contained in the regularity
region of R/G because the resolutions in Example 3.5 are virtual projective resolutions for
R/G. Because Gν = Gsat

ν = G′sat
ν = G′ν for any ν = µ + (i, j) with µ ∈ S and i, j ∈ N with

i+ j > 0 (denote this by ν ∈ S 0) we have that F ⊆
⋃

ν∈S 0 Gν implies F ⊆
⋃

ν∈S 0 G′ν ⊆ G′. �

The existence of a Hilbert-Burch resolution for G is a key ingredient in our results and
from this point on we assume that G satisfies this property. We further assume that m = 2
since this is the setup for a residual resultant over P1

k × P
1
k . Under these conditions ϕ ∈

Mn×(n−1)(T ) and the matrix ϕ ⊕ Ψ in Lemma 4.1 is a n × (n + 2) matrix.

Proposition 4.4. Assume that G ⊆ R has a Hilbert-Burch resolution, F = (F0, F1, F2), and
suppose that for every p ∈ Spec(R) \B with ht(p) = 2 there is an equality Fp = Gp. Then
the Eagon-Northcott complex EN(ϕ ⊕ Ψ) is a virtual resolution for the module T/In(ϕ ⊕ ψ).

Proof. Throughout this proof, let Min(I) denote the set of minimal primes of an ideal I.
Recall from Remark 2.6 that the incidence variety W ⊂ (Q \ Z)×

∏2
i=0 Vi has codimension

three. Since V(F :T G) ⊆ W ∪ Z, it follows that there is a containment

MinT (F :T G) ⊆ MinT (IW) ∪BT ∪MinT (G),

where BT and MinT (G) are the set of primes in B and MinR(G) respectively extended to T .
Since Fp = Gp holds for any p ∈ Spec(R) \B with height of p equal to two, it follows that
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in fact any prime of MinT (G) that is also an associated prime of F :T G is in BT , thus the
containment above reduces to

MinT (F :T G) ⊆ MinT (IW) ∪BT . (7)

Consider the T -module H =
⊕n+2

i=0 Hi (EN(ϕ ⊕ Ψ)). From [Eis95, Theorem A2.59] it
follows that In(ϕ ⊕ ψ) annihilates H, therefore there is a containment

MinT (H) ⊆ MinT (In (ϕ ⊕ Ψ)) . (8)

The containments (F :T G)n ⊂ In (ϕ ⊕ Ψ) ⊆ (F :T G) noted in the proof of Lemma 4.1 imply
√

F :T G =
√

In (ϕ ⊕ Ψ) and hence MinT (In (ϕ ⊕ Ψ)) = MinT (F :T G). Therefore, from
equations (7), (8) we deduce

MinT (H) ⊆ MinT (In (ϕ ⊕ Ψ)) = MinT (F :T G) ⊆ MinT (IW) ∪BT . (9)

Let P be any ideal of T of height at least 3; in particular this applies to any P ∈ MinT (IW)
since the codimension of W is 3 by Remark 2.6. Then the complex EN (ϕ ⊕ Ψ) ⊗T TP =

ENTP (ϕ ⊕ Ψ) is exact by Lemma 3.11 (2) because ht
(
In (ϕ ⊕ Ψ)P

)
= ht(P) ≥ 3. It follows

that HP = 0 and therefore P is not in the support of H, so P < AssT (H). This shows that the
associated primes of H have height 2 and further reduces equation (9) to

MinT (H) ⊆ MinT (In (ϕ ⊕ Ψ)) ⊆ BT . (10)

Therefore AnnT (H) = Q1 ∩ Q2 where Q1 is 〈s, t〉-primary and Q2 is 〈u, v〉-primary. Now
〈s, t〉a ⊆ Q1 for some a ≥ 0 and similarly 〈u, v〉b ⊆ Q2 for some a ≥ 0, hence for m ≥
max{a, b} we have the desired conclusion

Bm = 〈s, t〉m ∩ 〈u, v〉m ⊆ Q1 ∩ Q2 ⊆ AnnT (H).

�

Remark 4.5. Example 6.2 illustrates the fact that it is possible for the Eagon-Northcott
complex in Corollary 4.7 to be a virtual projective resolution while not being a resolution,
i.e. not being exact.

Remark 4.6. In the setup of this section, where Fi =
∑n

j=1 H jig j for 0 ≤ i ≤ m, H ji =∑
α Cα

i jmα and α runs over the elements mα of a monomial basis of R(ai−k j,bi−l j), the hypothesis
that there is an equality Fp = Gp for every p ∈ Spec(R) \ B with ht(p) = 2 holds true
whenever G is locally a complete intersection (see Lemma 4.8). However, we prefer to state
Proposition 4.4 including this hypothesis, since we shall use it in a slightly more general
context in section 5 and also to draw a closer analogy with the following corollary.

Corollary 4.7. Suppose that G has a Hilbert-Burch resolution and the ideal F = ( f0, f1, f2)
arising by specializing the coefficients of F0, F1, F2 to values in k satisfies Fsat = Gsat. Denote
by ψ the corresponding specialization of the matrix Ψ in the setup at the beginning of this
section. Then the Eagon-Northcott complex EN(ϕ ⊕ ψ) over R is a virtual resolution for the
module R/In(ϕ ⊕ ψ).

Proof. By Corollary 4.2, the conclusion of Lemma 4.1 still holds for f0, f1, f2. The hypoth-
esis Fsat = Gsat implies that Fp = Gp for all p ∈ Spec(R) \B and thus Min(F :R G) ⊆ B.
Therefore the proof of Proposition 4.4 starting at equation (10) applies to show that EN(ϕ⊕ψ)
is B-torsion as a complex over R. �
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Lemma 4.8. Assume that G is a locally complete intersection ideal and Fi =
∑n

j=1 H jig j for
0 ≤ j ≤ m, where H ji =

∑
α Cα

i jm
α
j and mα

j runs over the elements of a monomial basis of
R(a−k j,b−l j) for some (a, b) ∈ N2. Then there is an equality Fp = Gp for every p ∈ Spec(R) \B
with ht(p) = 2.

Proof. Let p ∈ Spec(R) \B be an ideal with ht(p) = 2. We show that for any pair i, j we
have H ji < p. Assume the contrary, fix α0 in the indexing set of monomials in R(a−k j,b−l j) and
consider the prime ideal q = p + (Cα

i j : α , α0). Then H ji ∈ p implies that Cα0
i j mα0

j ∈ q and
since Cα0

i j < q this yields mα0
j ∈ q, which in turn implies that mα0

j ∈ q ∩ R = p for any α0. We
deduce that R(a−k j,b−l j) = 〈s, t〉a−k j ∩ 〈u, v〉b−l j ⊆ p and consequently p ∈ B, a contradiction.
Therefore the elements Hi j become units in Tp. Since Gp is a complete intersection with
dimk(p) Gp/G2

p = 2 and Fp ⊆ Gp is generated by 3 elements which are pairwise independent
in Gp/G2

p, the equality Fp = Gp follows. �

4.2. A matrix representation for the residual resultant. The computation of the residual
resultant hinges on the following proposition, which identifies a matrix whose rank drops
when evaluated at any point of the residual resultant. In an alternate terminology, the follow-
ing proposition gives a matrix representation for the residual resultant.

Proposition 4.9. Let g1, . . . , gn and f0, f1, f2 be polynomials in R with fi ∈ R(ai,bi) related
by the identities fi =

∑n
j=1 h jig j . Set G = (g1 . . . , gn), ψ = [h ji], and assume that G has a

Hilbert-Burch syzygy matrix ϕ. Let θ be a presentation map for the cyclic module R/In(ϕ⊕ψ).
The following statements are equivalent

(1) ResG ,{(ai,bi)}2i=0
( f0, f1, f2) , 0,

(2) V(In(ϕ ⊕ ψ)) = ∅,
(3) the restriction of the map θ to degree ν is surjective for all degrees ν = µ + (p, p′)

such that µ ∈ R(ϕ ⊕ ψ), (p, p′) ∈ N2 and p + p′ > 0.

Proof. (1)⇔ (2) : By Proposition 2.4, the condition ResG,{(ai,bi)}si=1
( f0, f1, f2) , 0 is equivalent

to Fsat = Gsat, which is equivalent to Fsat :R Gsat = R. In view of Corollary 4.2, this translates
to

√
In(ϕ ⊕ ψ)sat =

√
(F :R G)sat =

√
(Fsat :R Gsat) = R that is, V(In(ϕ ⊕ ψ)) = ∅.

(1)⇒ (3) : By Proposition 2.4 ResG,{(ai,bi)}2i=0
( f0, f1, f2) , 0 implies that Fsat = Gsat, whence

Corollary 4.7 implies that the Eagon-Northcott complex is a virtual projective resolution for
R/In(ϕ⊕ψ) and this module is µ-regular for µ ∈ R(ϕ⊕ψ). Since V(In(ϕ⊕ψ)) = V(F :R G) = ∅

by hypothesis and (1) ⇒ (2), we deduce from [MS05, Corollary 2.15] that HR/In(ϕ⊕ψ)(ν) = 0
for bidegrees ν = µ + (p, p′) such that (p, p′) ∈ N2 and p + p′ > 0. Since the cokernel of
the restriction of the map θ to degree ν is R/In(ϕ ⊕ ψ)ν, and by the previous considerations
R/In(ϕ ⊕ ψ)ν = 0 we deduce that this map is surjective.

For (3) ⇒ (2) we prove the contrapositive. Suppose that V(In(ϕ ⊕ ψ) is not empty. Due
to the equality V(In(ϕ ⊕ ψ)) = V(F : G), there exists a point ξ ∈ V(F) \ V(G). Evaluating
the following identity encompassing the expressions fi =

∑n
j=1 h jig j and the fact that ϕ is a

syzygy matrix for G at ξ[
0 · · · 0 f0 f1 f2

]
=

[
g1 . . . gn

] [
ϕ ⊕ ψ

]
,

shows that the rank of the matrix ϕ ⊕ ψ evaluated at ξ is not maximal (< n). Hence all the
maximal minors of ϕ ⊕ ψ vanish at ξ. Since all these minors generate In(ϕ ⊕ ψ) we deduce
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that for arbitrary ν ∈ N2 any polynomial in the image of the map θν vanishes at ξ. Since for
any point ξ there exist polynomials in Rν that do not vanish at ξ, it follows that the map θν is
not surjective. �

Remark 4.10. Proposition 4.9 relates the nonvanishing of ResG ,{(ai,bi)}2i=0
( f0, f1, f2) to the pre-

sentation of the module R/In(ϕ ⊕ ψ) restricted to any bidegree in the interior of the region
R(ϕ⊕ψ) described in Proposition 3.14. Note that by Remark 3.15 this region is stable under
specialization, that is R(ϕ ⊕ ψ) = R(ϕ ⊕ Ψ).

We now proceed to convert Proposition 4.9 into an effective computational tool.

In order to make the matrix representation for the residual resultant explicit we recall the
first map of the Eagon-Northcott complex (4) associated to the matrix ϕ ⊕ Ψ over T ,

d =

q∧
(ϕ ⊕ Ψ) :

⊕
{i1,...,iq}⊂[r]

T Xi1 ∧ · · · ∧ Xiq → T, Xi1 ∧ · · · ∧ Xiq 7→ ∆i1,...,iq .

Here ∆i1,...,iq is the maximal minor of ϕ ⊕ Ψ corresponding to the columns i1, . . . , iq and the
T -module generated by Xi1 ∧ · · · ∧ Xiq is generated in degree deg(∆i1,...,iq). For ν ∈ Z2, let dν
denote the map d restricted to bidegree ν. Since for any bidegree ν, Tν = C ⊗k Rν is a free
C-module, we obtain a map of finitely generated free C-modules.

dν :
⊕

{i1,...,iq}⊂[r]

Tν−deg(∆i1 ,...,iq ) → Tν.

An explicit matrix representing the map dν can be obtained in four steps:
(1) fix a basis for the vector space

⊕
{i1,...,iq}⊂[r] Tν−deg(∆i1 ,...,iq ),

(2) apply the map dν to this basis,
(3) fix a basis for Rν and express the result of step (2) in terms of this basis as vectors

with entries in C,
(4) form a matrix with entries in C denoted Θν having these vectors as columns.

Note that for step one, a standard basis of this vector space consists of elements mXi1∧· · ·∧Xiq
such that m is a monomial in R with deg(m) = ν − deg(∆i1,...,iq) for some {i1, . . . , iq} ⊆ [n].
Then in step (2) one obtains dν(m) = m · ∆i1,...,iq .

For any bidegree ν ∈ Z2 we denote by θν the image of the matrix Θν defined above under an
evaluation homomorphism. According to part (3) of Proposition 4.9, from this point onward
we let ν be a bidegree such that ν = µ+(p, p′) with µ ∈ R(ϕ⊕Ψ) and (p, p′) ∈ N2, p+ p′ > 0.
When this holds we say that ν is in the interior of R(ϕ ⊕ Ψ).

Proposition 4.11. If ν is in the interior of R(ϕ⊕Ψ), then any nonzero minor of size dimk(Rν)
of the matrix Θν is a multihomogeneous polynomial in the coefficients Cα

i j of F0, F1, F2 and
a multiple of ResG ,{(ai,bi)}2i=0

.

In light of Proposition 4.9 this proof follows along the lines of the argument in [Bus01].
We include the details for completeness.

Proof. First observe that any minor ρ of the matrix Θν is multihomogeneous in the coeffi-
cients of each Fi for i = 0, 1, 2. Indeed, if Fi is multiplied by a scalar λ ∈ k then the same is
true for the column in ϕ ⊕ Ψ that corresponds to the coefficients of λFi. Consequently any
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column in Θν containing the coefficients of an element m · ∆i1,...,is such that ∆i1,...,is involves a
column corresponding to the coefficients of λFi is multiplied by a factor of λn. This implies
that ρ is homogeneous of degree n ·dimk Rν ·d in the coefficients of Fi, where d is the number
of columns that appear in the the submatrix of Θν that have a factor of λn.

Next, fix ρ to be a maximal minor of Θν. We want to show that ρ vanishes at every
point where the resultant vanishes, for this implies ρ is a multiple of ResG ,{(ai,bi)}2i=0

. Let
Q = P1

k × P
1
k and let Q̃ be the blow-up of P1

k × P
1
k along the sheaf of ideals associated to G.

Define Q̃0 = Q̃ \ E where E is the exceptional divisor in Q̃. Let

Z0 = V
(
ResG ,{(ai,bi)}2i=0

)
= {c = (ci j) : ∃x ∈ Q̃0, π∗( f0) = π∗( f1) = π∗( f2) = 0},

i.e Z0 is the set of coefficients such that the pullbacks of the sections f0, f1, f2 have a common
root outside the exceptional divisor E. Suppose there is a choice of coefficients c ∈ Z0

such that ec(ρ) , 0. This implies that θν is surjective because ρ is a maximal nonvanishing
minor of size dimk(Rν). However, since c ∈ Z0, the specialized sections f0, f1, f2 have a
common root in V(F) \ V(G) by Proposition 2.4. Using the equivalence (1) ⇔ (3) of
Proposition 4.9 this implies that θν cannot be surjective, a contradiction. Therefore ec(ρ) = 0
and since c ∈ Z0 was arbitrary ρ vanishes on Z0. As Q̃0 is dense in Q̃, Z0 is also dense in
Z = {c = (ci j) : ∃x ∈ Q̃, π∗( f0) = π∗( f1) = π∗( f2) = 0}. Consequently, ρ vanishes on Z, i.e. ρ
vanishes at all the points where ResG,{(ai,bi)}2i=0

vanishes. �

Proposition 4.12. For ν in the interior of R(ϕ⊕Ψ) and 0 ≤ i ≤ 2 there exists a nonzero max-
imal minor of Θν of degree Ni in the coefficients of Fi, where Ni is given in Proposition 2.7.

Proof. Without loss of generality we assume i = 0. Choose a specialization F = ( f0, f1, f2)
such that Fsat = Gsat and such that the ideal F′ = ( f1, f2) has height two. In this case the
variety V(F′ :R G) has degree

deg(F′ :R G) = deg(F′) − deg(G) = a1b2 + b1a2 −

p∑
i=1

ei = N0

Denote by ψ12 the submatrix of ψ consisting of the columns corresponding to the coefficients
of f1, f2. Since F′ ⊆ F′ :R G we deduce ht(F′ :R G) ≥ ht(F′) = 2. In view of Lemma 4.1
and Lemma 3.11 we conclude that F′ :R G = I2(ϕ ⊕ ψ12) and EN(ψ ⊕ ψ12) is a resolution
of R/(F′ :R G). Moreover by Corollary 4.7 since Fsat = Gsat it follows that EN(ϕ ⊕ ψ) is a
virtual projective resolution for R/I2(ϕ ⊕ ψ).

Let R′ = R(ϕ⊕ψ12) denote the region specified by Proposition 3.9, which is contained in
the weak regularity region of R/In(ϕ⊕ψ12) and let R = R(ϕ⊕ψ) be the corresponding region
for R/In(ϕ⊕ψ). Using Remark 3.12, since ν ∈ R it follows that ν ∈ R′, hence R/In(ϕ⊕ψ12)
is also ν-regular. By [MS05, Corollary 2.15.] we deduce that HR/(F′:RG)(ν) = N0. Therefore

dimk (In (ϕ ⊕ ψ12))ν = dimk(F′ :R G)ν = dimk Rν − N0.

Denote by θ12 the matrix corresponding to the Eagon-Northcott complex of ϕ⊕ψ12. Follow-
ing the discussion before Proposition 4.11, the image of this matrix, (In (ϕ ⊕ ψ12))ν, is the
vector space

Spank

{
m · ∆i1,...,iq : none of the columns i1, . . . , iq involve the column of coefficients of F0

}
.
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Hence we can choose exactly dimk Rν−N0 columns in the matrix θν that are independent and
do not involve the coefficients of F0, therefore the same is true for the matrix Θν. Denote the
submatrix consisting of these columns by Θν,F1,F2 . Next, by Proposition 4.9 it follows that
the map θν is surjective and thus its image has dimension dimk Rν. Thus the vector space

Spank

{
m · ∆i1,...,iq : one column in i1, . . . , iq is a coefficient column of F0

}
has dimension N0. Therefore there exists N0 linearly independent columns in θν that only
involve the coefficients of F0 and the same is true for Θν. Denote the submatrix given by
these columns matrix by Θν,F0 . The columns of Θν,F1,F2 together with the columns of Θν,F0

span a vector space of dimension dimk Rν, hence the maximal minor corresponding to these
columns is a maximal non vanishing minor of Θν. Furthermore, since the entries of Θν are
linear in the coefficients of F0, the determinant of this minor has degree N0 in the coefficients
of F0, as desired. �

Proposition 4.13. The greatest common divisor of the maximal minors of the matrix Θν is
exactly ResG ,{(ai,bi)}2i=0

.

Proof. Let d be the greatest common divisor of the maximal minors of Θν. Proposition 4.11
implies that d is a multiple of ResG,{(ai,bi)}2i=0

. However, Proposition 4.12 states that the degree
of d in the coefficients of F0 is less than or equal to N0 and on the other hand Proposition 2.7
implies that ResG,{(ai,bi)}2i=0

has degree N0 in the coefficients of F0. Therefore the degree of d in
the coefficients of F0 is equal to N0. The same argument for i = 1, 2 allows to conclude that
d = ResG,{(ai,bi)}2i=0

since they have the same degree with respect to all sets of coefficients. �

Proposition 4.13 gives a practical method to compute the residual resultant. Note that
Lemma 4.8 yields that the Eagon-Northcott complex gives a virtual projective resolution in
this context.

Algorithm 4.14 (Computation of the residual resultant).
Input: G a locally complete intersection ideal with syzygy matrix ϕ, Ψ as in equation (5).

(1) Pick ν in the interior of the regularity region R(ϕ ⊕ Ψ).
(2) Compute the matrix Θν as explained before Proposition 4.11.
(3) Compute a maximal minor δi of degree Ni in the coefficients of Fi for 0 ≤ i ≤ 2.
(4) Return gcd (det(δ0), det(δ1), det(δ2)).

Examples illustrating this algorithm can be found in section 6.1.

Remark 4.15. The computations in steps (3) and (4) in the above algorithm are compu-
tationally expensive. However we can replace these two steps by the computation of the
determinant of the bidegree ν strand of the complex EN(ϕ ⊕ Ψ). Briefly, the determinant
of a complex is an alternating product of minors of the matrices of the differentials in the
complex. Theorem 34 in [GKZ08][Appendix A] establishes an equality between the the gcd
of the maximal minors of the first differential of a complex and the determinant of a com-
plex under certain hypotheses. Such hypotheses are satisfied for the complex EN(ϕ ⊕ Ψ)
and therefore we can use determinants of complexes in this setting. We refer the reader to
Appendix A in [GKZ08] for a detailed construction of the determinant of a complex. Al-
though computing the determinant of a complex can also be computationally expensive, by
comparison it is faster than computing the gcd of the maximal minors.
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5. Implicitization of tensor product surfaces
We now describe the specific setting of interest for our paper. First we establish the relation

between the residual resultant and the implicit equation of Λ and immediately after we give
explicit steps for its computation. Setting the coordinate ring of P3

k to be S = k[X,Y,Z,W]
our goal is to find the equation H ∈ S defining the algebraic variety

Λ = im(λ) =
{
[x : y : z : w] ∈ P3

k : p0w − p3x = p1w − p3y = p2w − p3z = 0
}

= V(H)

where λ : P1
k × P

1
k d P

3
k is a rational map as described in the introduction.

Let P = 〈p0, p1, p2, p3〉 be the ideal of R generated by the polynomials that define the
parameterization λ and set T = R ⊗k S . We assume that the pi have no common factors and
that P is a height two ideal in R that defines a local complete intersection set of points. Let
G = Psat denote the B-saturated ideal that defines the set of points in P1

k × P
1
k and set G to be

the sheaf of ideals on P1
k × P

1
k associated to G. Since Psat = G, the sheaf G (a, b) is generated

by its global sections p0, p1, p2, p3 on P1
k × P

1
k \ V(G). We denote by π : Q̃ → P1

k × P
1
k

the blow-up of P1
k × P

1
k along G , and by p̃i the global section π∗(pi) of the sheaf G̃(a,b) for

i = 0, 1, 2, 3. Since G̃(a,b) is an invertible sheaf on Q̃ and p̃0, p̃1, p̃2, p̃3 are global sections that
generate it, we deduce that there is a morphism

λ̃ : Q̃→ P3

such that λ̃∗O(1) � G̃(a,b) and λ̃∗(x) = p̃0, λ̃∗(y) = p̃1, λ̃∗(z) = p̃2, λ̃∗(w) = p̃3 ([Har77,
Ch.II.7]). As Q̃ is projective and irreducible, we have λ̃∗(Q̃) = deg(Q̃/Λ)Λ where Λ is the
rational surface in P3 and deg(Q̃/Λ) is the degree of the surjective map λ̃ : Q̃→ Λ.

Let β be the following regular map

β : U = P1
k × P

1
k \ V(G) −→ P3

[s : t] × [u, v] 7→ (p0 : p1 : p2 : p3).

Proposition 5.1. The degree of Λ divides

2ab −
p∑

i=1

ei

where ei is defined before Remark 2.6 and it is equal to this number when β is birational.

Proof. We have deg(̃λ∗(Q̃)) = deg(Q̃/Λ) · deg(Λ). Next, we compute deg(̃λ∗(Q̃)) by

deg(̃λ∗(Q̃)) =

∫
Q̃

c1(̃λ∗O(1))2 =

∫
Q̃

c1(G̃(a,b))2 = 2ab −
p∑

i=1

ei.

The last equality above follows from the same computation as in the proof of Proposition 2.7.
Thus deg(̃λ∗(Q̃)) = 2ab −

∑p
i=1 ei, which proves the first part of the statement.
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Now we consider the following diagram, where E denotes the exceptional divisor of the
blow-up π,

Q̃ \ E
λ̃|Q̃\E //

π

��

P3

U = P1
k × P

1
k \ V(G)

β // P3.

Since by construction λ̃ is unique and since the vertical map is an isomorphism outside the
exceptional divisor, we deduce that λ̃ |Q̃\E= β◦π and hence deg(Q̃/Λ) = deg(U/β(U)) which
is one if π is birational. �

The next proposition establishes the relation between residual resultanst in P1
k ×P

1
k and the

implicitization problem for tensor product surfaces with basepoints.

Proposition 5.2. Suppose that (a, b) ≥ (ki, li) for all i, (a, b) ≥ (k j1 + 1, l j1) for some j1, and
(a, b) ≥ (k j2 , l j2 + 1) for some j2. Then

ResG ,(a,b)(p0 − Xp3, p1 − Y p3, p2 − Zp3) = H(X,Y,Z, 1)deg(U/β(U)) (11)

with deg(U/β(U)) = 1 if β is birational.

Proof. The residual resultant is defined as a general resultant over the blow-up of P1
k × P

1
k

along G . Let ξ denote a point in Q̃ \ V(p̃3) and let W̃ denote the variety

{ξ × (x, y, z) | p̃0(ξ) − xp̃3(ξ) = p̃1(ξ) − yp̃3(ξ) = p̃2(ξ) − zp̃3(ξ) = 0}.

Note that considering only points in Q̃ \ V(p̃3) for the incidence variety is not a restriction.
Indeed if ξ is such that p̃3(ξ) = 0, then for some i ∈ {0, 1, 2} we must have p̃i(ξ) , 0 because
p̃0, p̃1, p̃2, p̃3 generate the sheaf G̃ (a, b) on Q̃. Thus ξ cannot be a solution of the system
p̃0(ξ) − xp̃3(ξ) = p̃1(ξ) − yp̃3(ξ) = p̃2(ξ) − p̃3z = 0. Consider the following diagram

W̃
π2 //

π1
��

P3 \ V(W)

Q̃ \ V( p̃3) π // P1
k × P

1
k \ V(G).

β

OO

The cycle in P3 that represents the residual resultant is exactly π2∗(W̃), i.e. π2∗(W̃) =

deg(W̃/π2(W̃))Λ (in the generic case we have deg(W̃/π2(W̃)) = 1). As the blow-up π is
an isomorphism outside the exceptional divisor, the equation that defines π2∗(W̃) vanishes if
and only if the point (x, y, z, 1) ∈ P3 is in Λ. We deduce that

ResG ,(a,b)(p0 − Xp3, p1 − Y p3, p2 − Zp3) = H(X,Y,Z, 1)deg(W̃/π2(W̃)).

Now the map β |P1
k×P

1
k\V(p3) makes the above diagram commute, and since π is birational, we

deduce that deg(W̃/π2(W̃)) = deg(U/β(U)).
�
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Remark 5.3. It follows from Proposition 2.7 that in the case where deg( f0) = deg( f1) =

deg( f2) = (a, b) then ResG ,{(a,b)} has degree 2ab −
∑p

i=1 ei in the coefficients of f0, f1 and f2.
Looking at the degrees of the polynomials in equation (11) from Proposition 5.2, we deduce
that 2ab−

∑p
i=1 ei = deg(U/β(U)) · deg(H), this yields an alternate proof of the first assertion

in Proposition 5.1.

Proposition 5.2 establishes that the residual resultant of F = (F0, F1, F2) = (p0−Xp3, p1−

Y p3, p2 − Zp3) with respect to G computes the implicit equation H = 0. To use the meth-
ods presented in section 4 to compute the implicit equation of a tensor product surface via
residual resultants we assume the given parameterization has a special form. To set up a
parametrization λ we start with a locally complete intersection ideal G = 〈g1, . . . , gn〉 ⊆ R of
height two with a Hilbert-Burch resolution and four bihomogenous polynomials p0, p1, p2,
p3 ∈ R(a,b) related by[

p0 p1 p2 p3

]
=

[
g1 · · · gn

]
[h ji], h ji ∈ R(a−ki,b−li). (12)

Second, we assume Psat = Gsat. The importance of this assumption is clarified in the follow-
ing Lemma 5.4 and guarantees that we can use Eagon-Northcott complex of In(ϕ⊕Ψ) to find
suitable degrees in the regularity region of T/In(ϕ ⊕ Ψ).

Lemma 5.4. Suppose that G is a locally complete intersection ideal and Psat = Gsat. Then
the ideal F = (p0 − Xp3, p1 − Y p3, p2 − Zp3) has the property that Fp = Gp for any ideal
p ∈ Spec R \B with ht(p) = 2.

Proof. Let p ∈ Spec(R) \B be an ideal with ht(p) = 2. Since Psat = Gsat it follows that Pp =

Gp and since Gp is a complete intersection it is furthermore the case that dimk(p) Pp/P2
p = 2.

Now Fp ⊆ Pp is generated by 3 elements which are pairwise independent in Pp/P2
p, thus the

equality Fp = Gp follows. �

Using the relation from Equation (12), we can write the polynomials F0 = p0 − Xp3, F1 =

p1 − Y p3, F2 = p2 − Zp3 from Proposition 5.2 as[
F0 F1 F2

]
=

[
p0 − Xp3 p1 − Y p3 p2 − Zp3

]
=

[
g1 · · · gn

]
Ψ. (13)

Based on Algorithm 4.14 we derive a version that is tailored to the implicitization problem.

Algorithm 5.5 (Implicitization algorithm).
Input: G a locally complete intersection ideal, P as in equation (12) such that Psat = Gsat.

(1) Set Ψ =
[
hi0 − Xhi3 hi0 − Yhi3 hi2 − Zhi3

]
1≤i≤n

as in equation (13).
(2) Pick ν in the interior of the regularity region R(ϕ ⊕ Ψ).
(3) Compute the matrix Θν as explained before Proposition 4.11.
(4) Compute a maximal minor δi of degree Ni in the coefficients of Fi for 0 ≤ i ≤ 2.
(5) Return gcd (det(δ0), det(δ1), det(δ2)).

Examples illustrating this algorithm can be found in section 6.2.

Remark 5.6. If the hypothesis Psat = Gsat is not satisfied, Algorithm 5.5 no longer applies
since the presentation map Θ for R/In(ϕ ⊕ Ψ) described in Proposition 4.9 is no longer sur-
jective when restricted to any bidegree. However, given a bidegree ν ∈ N2, if the dimension
of the cokernel of Θν is c, then the proof of Proposition 4.11 shows that the resultant divides
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the greatest common divisor of the generators of the c-th Fitting ideal of Θν, i.e. the minors
of size (dimk Rν − c) × (dimk Rν − c) for Θν. This is illustrated in Example 6.4.

Remark 5.7. As highlighted in Remark 4.15, steps (3) and (4) can be replaced by the compu-
tation of the determinant of a complex. Determinants of complexes are also used in syzygy
approach methods for implicitization of triangular and tensor product surfaces, see for in-
stance [Cha06, Bus01, Bot11]. More importantly, in the context of implicitization it is suf-
ficient to compute Θν. The matrix Θν is known as an implicit matrix representation of the
surface. Matrix representations are a useful alternative to implicit equations to represent a
surface. A detailed account of their use in Geometric Modeling is outlined by Busé [Bus14].

6. Examples
6.1. Examples of computing residual resultants.

Example 6.1 (Residual resultant of one reduced point). We compute the residual resultant
ResG,(1,1), where G = 〈s, v〉 is the defining ideal of the reduced point [0 : 1]×[1 : 0] in P1

k×P
1
k .

Consider the system
F0 = (uc00 + vc01)s + (sc02 + tc03)v
F1 = (uc10 + vc11)s + (sc12 + tc13)v
F2 = (uc20 + vc21)s + (sc22 + tc23)v

,

and let T = C ⊗ R, where C = k[ci j] is the ring of generic coefficients. The ideal G is a
complete intersection and the matrix ϕ ⊕ Ψ is

ϕ ⊕ Ψ =

(
−v uc00 + vc01 uc10 + vc11 uc20 + vc21

s sc02 + tc03 sc12 + tc13 sc22 + tc23

)
.

To calculate ResG,(1,1), we find a bidegree ν as in Remark 4.10 and compute the matrix Θν.
Let J denote the ideal I2(ϕ ⊕ Ψ). From Proposition 3.14, since the numerical parameters for
this example are (a, b) = (c, d) = (e, f ) = (1, 1) and (e1, f1) = (1, 0), (e2, f2) = (0, 1) we
obtain the estimate

R =

(
3a + c − e − min

1≤i≤ j≤n
(ei + e j), 3b + d − f − min

1≤i≤ j≤n
( fi + f j)

)
+ St−3 +N2

= (3, 3) + S t−3 + N2

=
(
(3, 0) + N2

)
∪

(
(2, 1) + N2

)
∪

(
(1, 2) + N2

)
∪

(
(0, 3) + N2

)
⊆ reg(R/J).

(A) (B)

Figure 2. Example 6.1, (A) regularity region R(ϕ ⊕ Ψ), (B) strong regularity region.
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We can choose any ν in the interior of the regularity region to set up Θν. For ν = (2, 2),
Θ(2,2) is 9 × 24 matrix. We can alternatively use the notion of strong regularity to find
bidegrees such that T/J is ν-regular. Computing the minimal free resolution for J with
Macaulay2 [GS02] yields

0→ T (−1,−2) ⊕ T (−2,−1) ⊕ T (−2,−2)→ T (−1,−1)2 ⊕ T (−1,−2)3 ⊕ T (−2,−1)3

→ T (−1,−1)6 → T → T/J → 0
hence (

(1, 0) + N2
)
∪

(
(0, 1) + N2

)
= regs(T/J) ⊆ reg(T/J).

This means we can compute the determinant of the EN complex restricted to bidegree (1, 1)
to find the residual resultant of the system. This yields the matrix Θ(1,1) of size 6 × 12. The
residual resultant is

ResG ,(1,1) = −c03c11c20 − c03c12c20 + c01c13c20 + c02c13c20 + c03c10c21 − c00c13c21+

c03c10c22 − c00c1,3c22 − c01c10c23 − c02c10c23 + c00c11c23 + c00a12c23

For this example we can compute ResG ,(1,1) in a much simpler way. Indeed, we can rewrite
the system above as a linear system having three unkowns su, sv, tv. This system has the
coefficient matrix

ρ =

 c00 c01 + c02 c03

c10 c11 + c12 c13

c20 c21 + c22 c23

 ,
hence the system has a solution whenever this determinant is zero. Indeed, one can check
that the displayed equation above gives ResG,(1,1) = det(ρ).

Example 6.2 (Residual resultant of two complete intersection points). We compute the resid-
ual resultant ResG ,(1,2), where G = 〈uv, s〉 is a complete intersection defining a set of two
reduced complete points in P1

k × P
1
k that lie on the same line in one of the rulings. Consider

the system
F0 = (sc00 + tc01)uv + (u2c02 + uvc03 + v2c04)s
F1 = (sc10 + tc11)uv + (u2c12 + uvc13 + v2c14)s
F2 = (sc20 + tc21)uv + (u2c22 + uvc23 + v2c24)s.

According to Proposition 2.7, ResG ,(1,2) is of degree 2 in the coefficients of each Fi. We set
up the matrix

ϕ ⊕ Ψ =

(
−s sc00 + tc01 sc10 + tc11 sc20 + tc21

uv u2c02 + uvc03 + v2c04 u2c12 + uvc13 + v2c14 u2c22 + uvc23 + v2c24

)
.

Let J denote the ideal I2(ϕ ⊕ Ψ). In a similar fashion as in Example 6.1, we compute the
regularity region for R/J specified in Proposition 3.14 as illustrated in Figure 3. From this
region it follows that we may use ν = (1, 6). The matrix Θ(1,6) is of size 14 × 30. The strong
regularity region in this case is depicted in Figure 3 (Right) and it is given by

regs(T/J) =
(
(1, 2) + Z2

+

)
∪

(
(0, 3) + Z2

+

)
.

Estimating the regularity of T/J using the strong regularity region allows the use of the
bidegree ν = (1, 3), for which the matrix Θ(1,3) is an 8 × 12 matrix. The polynomial ResG ,(1,2)

contains 141 terms.
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(A) (B)

Figure 3. Example 6.2, (A) Regularity region R(ϕ ⊕ Ψ), (B) strong regularity region.

In this example, it is true that F : G = I2(ϕ ⊕ Ψ), but not for the reason given in the
the hypothesis of Lemma 4.1 (2). The Eagon-Northcott complex obtained from the matrix
ϕ ⊕ Ψ is a virtual projective resolution for I2(ϕ ⊕ Ψ), but it is not a resolution for this ideal
since it is not exact. This is to be expected considering the proof of Lemma 3.11 because
ht(I2(ϕ ⊕ Ψ)) = 2. However, this allows to estimate the regularity of T/I2(ϕ ⊕ Ψ) using
Proposition 3.14 as pictured in Figure 3.

6.2. Examples of implicitization. In this section we illustrate the techniques we developed
in the previous sections to compute the implicit equation of a map P1

k × P
1
k → P

3 defined by
four bihomogeneous polynomials of bidegreee (a, b).

Example 6.3. Let I = 〈s, u〉 ∩ 〈t, v〉 be the ideal from Example 3.4 which defines two non-
collinear points in P1

k × P
1
k . This set is pictured below together with its Hilbert function.

s t
u
v

r r HX =

0 1 2 3
0 1 2 2 2
1 2 2 2 2
2 2 2 2 2
3 2 2 2 2

Let G = 〈sv, tu〉 and denote by g1, g2 the two generators of G. Here G is a complete intersec-
tion with resolution

0 // R (
−sv
tu

)// R2(
tu sv

)// G // 0.

Note that Gsat = I, so, while G is not saturated, however V(G) = V(I) and therefore the
complex displayed above is a Hilbert-Burch virtual resolution for I. Next we consider the
ideal P = 〈p0, p1, p2, p3〉 where

[
p0 p1 p2 p3

]
=

[
g1 g2

]
h and h is the 2 × 4 matrix

h =

[
s t 0 0
0 0 s t

]
.

The bihomogeneous polynomials p0 = s2v, p1 = stv, p2 = stu, p3 = t2u define a parame-
terization of a tensor product surface of bidegree (2, 1) with two basepoints given by V(P).
Note that the homogeneous implicit equation for this surface is easily obtained and equal to
YZ − XW = 0. Since the primary decomposition of the ideal P is P = (s2, st, t2) ∩ (s, u) ∩
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(t, v) ∩ (u, v), it follows that Psat = Gsat. We obtain the matrix Ψ by writing[
p0 − Xp3 p1 − Y p3 p2 − Zp3

]
=

[
g1 g2

] [h01 − h31X h11 − h31Y h21 − h31Z
h02 − h32X h12 − h32Y h22 − h32Z

]
︸                                           ︷︷                                           ︸

Ψ

.

We note that the bidegree (2, 1) does not satisfy the inequality conditions in the hypotheses
of Proposition 2.4. However, we can use the result in this proposition because we can find
an open set such that the sheaf G̃ (2, 1) is very ample. To see this, set U to be the open
set described in the proof of Proposition 2.4 with g j1 = g1 and g j2 = g2. It suffices to
consider x, y ∈ P1

k × P
1
k and show that the sections of G (2, 1) separate points. Suppose that

I(x) = 〈l1, h2〉, I(y) = 〈l2, h2〉 with li ∈ R(1,0) and hi ∈ R(0,1). If l1 is not a multiple of l2 and
l1 = as + bt, a, b ∈ k then the form svl1 ∈ P(2,1) vanishes at x and not at y. An analogous
argument with h1, h2 shows that if l1 is a multiple of l2 we can find a form in P(2,1) that
vanishes at x and not at y. This shows that the pullbacks p̃0, p̃1, p̃2, p̃3 of p0, p1, p2, p3 to
Q̃ separate points. Following the proof in Proposition 2.4, we see that p̃0, p̃1, p̃2, p̃3 also
separate tangents. Since G̃ (2, 1) is generated by its global sections p̃0, p̃1, p̃2, p̃3 and G̃ (2, 1)
is very ample on an open subset, we conclude the residual resultant ResG ,(2,1) exists and
satisfies the same properties as in the conclusion of Proposition 2.4.

To obtain the implicit equation using a residual resultant we set up the matrix Θν for a
bidegree ν according to Remark 4.10. On one hand we compute the regularity region of
EN(φ ⊕ Ψ) following Proposition 3.14. On the other hand we compute the strong regularity
region determined by a minimal free resolution of T/J. The regions found by these two
methods and the shifts in the minimal free resolution of R/J are displayed in Figure 6.3.

(A) (B) (C) i Shifts in homological degree i
1 (2, 0), (2, 1)
2 (2, 1), (3, 0), (3, 1)
3 (3, 1), (2, 1), (3, 0), (3, 2)
4 (3, 2)

Figure 4. Example 6.3, (A) regularity region from Proposition 3.14, (B)
strong regularity, and (C) bigraded shifts of a minimal free resolution of T/J.

Note that in this example, the two methods of estimating the regularity region for the
module T/In(ϕ ⊕ Ψ) agree as shown in Figure 6.3. Now for ν = (3, 0) one has

Θν =


0 0 1 0 0 0
−Y 0 −Z 1 1 0
X −Y 0 −Z −Z 1
0 X 0 0 0 −Z


whence I4(Θν) = 〈YZ − X〉 gives the implicit equation restricted to the affine set W = 1.

Example 6.4. Using the same setup as in Example 6.3, we change the entries of the matrix
h that determines the parametrization ideal P. Set

h =

[
su sv 0 tu + sv
0 tu su tv

]
,
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so P = 〈s2u v, t2u2 + s2v2, s t u2, s t u v + t2u v + s2v2〉. The generators of P define a tensor
product surface of bidegree (2, 2) with two basepoints. The support of P and G is the same,
however the primary decomposition of P reveals that the point corresponding to (s, u) has
multiplicity 2 in the scheme defined by P.

In this case we cannot use the Eagon-Northcott complex EN(ϕ⊕Ψ) to compute bidegrees
in the regularity region of T/I2(ϕ ⊕ Ψ) because the first homology module of EN(ϕ ⊕ Ψ)
is not B-torsion. In fact the first homology is a torsion module supported at the point with
multiplicity 2 i.e.〈s, u〉. This shows the necessity of the hypothesis of Proposition 4.4.

(A) (B) i Shifts in homological degree i
1 (2, 2)
2 (4, 2), (2, 4), (4, 3), (3, 2), (3, 3), (2, 3)
3 (4, 3), (4, 4), (4, 5), (3, 4), (3, 5), (5, 4), (2, 3), (4, 2), (5, 3)
4 (3, 5), (5, 3), (3, 4), (5, 4), (5, 5)
5 (4, 4), (4, 5), (5, 4), (5, 5)

Figure 5. Example 6.4, (A) strong regularity and (B) shifts in the resolution
for T/In(ϕ ⊕ Ψ).

The free resolution of T/I2(ϕ ⊕ Ψ) is 0 → T 5 → T 23 → T 32 → T 19 → T 6 → C and
the strong regularity region regs (T/In(ϕ ⊕ Ψ)) =

(
(2, 4) + Z2

+

)
∪

(
(3, 3) + Z2

+

)
∪

(
(4, 2)Z2

+

)
is

depicted in Figure 5. Therefore for ν = (5, 2) the 18 × 24 matrix Θ(5,2) provides the implicit
equation.

Although (3, 2) is not the strong regularity region, we can use this bidegree to set up a
12 × 12 matrix Θν whose determinant vanishes, but that has an 11 × 11 maximal minor
whose determinant is a multiple of the implicit equation of the tensor product surface.

Θ(3,2),11×11 =



0 0 0 0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0 −X 0 −Y + 1
X 0 Y − 1 0 0 0 Z 0 0 0 0
0 0 0 0 1 0 −1 0 −X 1 −Y
X −1 Y 0 −X − Y 0 Z 0 −Z −X Z
0 X 0 Y − 1 X 0 0 Z 0 0 −Z
0 0 −1 0 −X 1 0 −1 0 −X Z
X X Y Y 0 −X − Y Z Z 0 −Z 0
0 0 0 0 0 X 0 0 0 0 0
0 0 0 −1 0 −X 0 0 0 0 0
0 X 0 Y 0 0 0 Z 0 0 0


The implicit equation is the degree 5 factor of

X ·
(
X4Y + X3Y Z + X2Y Z2 + X Y2Z2 + X Y Z3 − X4 − 2 X2Z2 − Z4

)
In this example the cokernel of Θ(3,2) is 1-dimensional, and sum of the multiplicities of the
basepoints is three, but there are two basepoints. This illustrates the observation made in
Remark 5.6 that the residual resultant can be recovered as a divisor of the submaximal minors
of Θ(3,2) even if the base points in P have higher multiplicity than the points in G.
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Example 6.5. We continue with the setup from Example 6.3 and change h to

h> =


4
9 s u + t u + s v + 9

5 t v 10 s u + 1
2 t u + 2

3 s v + 2
3 t v

1
3 s u + 10

7 t u + 9
4 s v + 2

9 t v 8
5 s u + 1

2 t u + 5
7 s v + 2

3 t v
s u + 4

5 t u + s v + 5
8 t v 2 s u + 7

3 t u + s v + 9
5 t v

3
5 s u + 7

3 t u + s v + 8 t v 4
5 s u + 7

3 t u + 3
10 s v + 7

9 t v

 .
This choice of h determines the ideal P and a tensor product surface of bidegree (2, 2) with
two basepoints V(P) and Psat = Gsat. We use Proposition 3.14 to obtain the regularity region
of EN(ϕ ⊕ Ψ) depicted in Figure 6.5. The resolution of T/I2(ϕ ⊕ Ψ) is

0→ T 119 → T 171 → T 71 → T 24 → T 6 → T.

(A) (B)

Figure 6. Example 6.5, (A) regularity region of EN(ϕ ⊕ Ψ) and (B) strong
regularity region with corner (14, 11).

The strong regularity region for this example is considerably worse than the regularity
provided by Proposition 3.14. For ν = (3, 3), Θν is a matrix of size 16 × 24. Although the
point ν = (2, 3) is not in the interior of the regularity regions in Figure 6.5, the matrix Θν

provides a 12 × 12 determinental representation for the implicit equation of the surface.
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